WO2004109957A1 - 光信号受信装置およびその二値化処理用識別点制御方法 - Google Patents

光信号受信装置およびその二値化処理用識別点制御方法 Download PDF

Info

Publication number
WO2004109957A1
WO2004109957A1 PCT/JP2003/007013 JP0307013W WO2004109957A1 WO 2004109957 A1 WO2004109957 A1 WO 2004109957A1 JP 0307013 W JP0307013 W JP 0307013W WO 2004109957 A1 WO2004109957 A1 WO 2004109957A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
signal
electric signal
optical signal
processing unit
Prior art date
Application number
PCT/JP2003/007013
Other languages
English (en)
French (fr)
Inventor
Katsumi Fukumitsu
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to EP03730796.4A priority Critical patent/EP1630983B1/en
Priority to PCT/JP2003/007013 priority patent/WO2004109957A1/ja
Priority to JP2005500530A priority patent/JP3881001B2/ja
Publication of WO2004109957A1 publication Critical patent/WO2004109957A1/ja
Priority to US11/152,332 priority patent/US7319824B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/695Arrangements for optimizing the decision element in the receiver, e.g. by using automatic threshold control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/061Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
    • H04L25/063Setting decision thresholds using feedback techniques only

Definitions

  • the present invention relates to an optical signal receiving apparatus and an identification point control method for binarization processing thereof, and more particularly to an optical signal receiving apparatus and an identification point control method capable of optimally determining an identification point irrespective of an eye pattern.
  • the present invention relates to an optical signal receiving apparatus capable of optimally determining a discrimination point in a short time without introducing an error into a signal, and a discrimination point control method for binarization processing.
  • Optical transmission systems including optical submarine repeater transmission systems, are in the midst of increasing transmission capacity and transmission distance.
  • Wavelength multiplex transmission which requires a large number of multiplexes in order to respond to the increase in transmission capacity, is underway.
  • a system has been introduced, and an error correction code with a high correction capability has been introduced to avoid an increase in code errors due to a longer transmission distance.
  • Fig. 7 shows an example of a wavelength division multiplexed optical submarine transmission system focusing on signals transmitted in one direction.
  • the wavelength multiplexing optical submarine transmission system is exemplified by optical transmission, which constitutes the main transmission system of digital communication, wavelength multiplexing for large capacity, and This is because the introduction of an error correction code with high correction capability makes it the most suitable transmission system for illustration.
  • the application area of the present invention is not limited to the wavelength division multiplexed optical submarine transmission system, and is not limited to the optical transmission system, and that the present invention can be applied to a digital transmission system regardless of the transmission method. Keep it.
  • the transmitting terminal equipment 11 OA and the receiving terminal equipment 110 B are composed of the optical fiber 105 a and the submarine repeater.
  • STM-64 frames are multiplexed from the transmitting terminal equipment 11 OA to the receiving terminal equipment 110 B by being connected via 105 B s (gigabits Z seconds).
  • the transmitting end station device 1 1 OA is composed of n (n is an integer of 2 or more) transmission conversions. It is configured to include a unit 101 — l to 101 — n, an amplifier 102 —:! To 102 — n, a wavelength multiplexing unit 103, and a transmission amplifier 104.
  • the transmission converters 101-1 to 101-n receive the optical signal modulated by the STM-64 frame, temporarily convert it to an electric signal, and add a service bit such as an error correction code.
  • This is a transmission converter that generates a GbZs signal, modulates an optical signal with the 12 Gb / s signal, and outputs the modulated optical signal.
  • the wavelengths of the optical signals output from the transmission conversion device are all different.
  • the amplifiers 102-1 to 102-n are amplifiers for amplifying the optical signal output from each of the transmission conversion units 101-1 to 101-n.
  • an optical fiber amplifier using an erbium-ion-doped optical fiber is used.
  • the wavelength multiplexing unit 103 performs wavelength multiplexing on optical signals of different wavelengths output from the respective amplifiers 102-1 to 102-n.
  • the transmission amplifier 104 includes a plurality of wavelengths output from the wavelength multiplexing unit 103. It amplifies the multiplexed optical signal, and usually uses an optical fiber amplifier using an erbium-ion-doped optical fiber.
  • the submarine repeater 105 compensates for attenuation of an optical signal in an optical transmission line laid on the seabed, and an optical fiber amplifier using an erbium-ion-doped optical fiber is usually used.
  • the reception-side terminal station device 110B includes a reception amplifier 106, a wavelength separation unit 107, amplifiers 108-1 to 108-n, and reception conversion units 109-1 to 109-n.
  • the receiving amplifier 106 amplifies the transmitted optical signal, and an optical fiber amplifier using an erbium-ion-doped optical fiber is usually used. Further, the wavelength separation unit 107 separates the optical signal transmitted by wavelength multiplexing into the original optical signal of each wavelength.
  • the optical signal of each wavelength output here is modulated by an electric signal of 12 GbZs.
  • the amplifiers 108-1 to 108-n are amplifiers for amplifying the optical signals of the respective wavelengths that have been wavelength-separated. Usually, an optical fiber amplifier using an erbium-ion-doped optical fiber is used.
  • the receiving converters 109-1-109-n convert the service bits by temporarily converting the optical signal obtained by modulating the 12-Gb-nos electrical signal into an electrical signal and performing error correction. This is a receiving converter that removes and outputs an optical signal modulated with STM-64 frames.
  • Each of the receiving converters 109- ;! to 109-n converts the input optical signal into an electric signal corresponding to the intensity, and then modulates the intensity by a change in intensity with respect to the time axis.
  • An identification circuit for decoding the 12 Gb / s digital signal is arranged, and the identification accuracy of the identification circuit finally becomes an evaluation measure of the transmission quality.
  • FIG. 8 is a block diagram showing a configuration example of each of the reception conversion sections 109-1 to 109-n in the conventional reception-side terminal apparatus 110B shown in FIG.
  • 111 is a preamplifier (AMP) for amplifying an optical signal modulated by an input 12 GbZs electric signal
  • 112 is a preamplifier 111.
  • An optical interface (OZE; Optical / Electrical) that converts the output optical signals into electrical signals and outputs 12 GbZs electrical signals.
  • the above-mentioned identification circuit is arranged therein.
  • Reference numeral 1 13 denotes a demultiplexer (DMUX; De-Multiplexer) for decomposing the 12 GbZs electric signal output from the optical / electrical interface unit 112 into 751 Mb / s X 16.
  • Reference numeral 14 denotes a serial / parallel converter (S / P; Serial / Parallel) for converting an electric signal of 75 1 Mb / SX16 into an electric signal of 178 Mb / s X64.
  • 115 is an error correction decoder (FEC, DEC; Forward-acting Error Collecting code, Decoder) that performs error correction for each 178 Mb / s signal output from the serial / parallel converter 114. Ah .
  • FEC error correction decoder
  • DEC Forward-acting Error Collecting code
  • Reference numeral 116 denotes a speed converter (SPD CONV; Speed Converter) for converting a frame format of 12 GbZs system to a frame format of STM-64 system.
  • the output of the converter is 150 MbZ s. X64.
  • 117 is a parallel / serial converter (abbreviated as “P / S” in the figure) that converts an electric signal of 155 MbZs X 64 into an electric signal of 62 IMb / s X 16.
  • Reference numeral 18 denotes an electro-optical converter (abbreviated as “EZO” in the figure) that modulates an optical signal with an electrical signal of 62 IMb / s X16, and 119 denotes a monitor of the reception conversion unit 109.
  • a processor MP; Maintenance Processor
  • 120 is a control buffer (BUFF; Buffer) that collects the number of error codes from the error correction decoder 115 and responds in response to the command of the processor 119. It is.
  • FIG. 9 is a block diagram showing a configuration example of the above-described conventional optical / electrical interface 112.
  • the photodiode 121 receives an optical signal (wavelength-separated optical signal) from the AMP 111 shown in FIG. 8 and converts an electric signal (voltage signal) having an amplitude value corresponding to the intensity thereof.
  • the amplifier 122 amplifies the electric signal from the photodiode 121.
  • the equalizer 123 performs an equalization process on the electric signal amplified by the amplifier 122, and the timing extracting unit 124 outputs a signal modulated in a subsequent stage from the electric signal from the amplifier 122. It extracts the timing component for extracting the component and outputs it as a clock signal.
  • the D flip-flop 125 compares the magnitude of the fixed voltage value held in the reference voltage holding unit 126 with the signal from the equalizer 123 as a data signal, and according to the comparison result.
  • the signal is output in synchronization with the clock signal from the timing extraction unit 124.
  • the optical signal received by the photodiode 121 is subjected to amplitude modulation processing of a 12 Gb / s data signal in any one of the transmission conversion units 1101-1-1 to 101_n of the transmitting terminal equipment 110A.
  • the modulated signal is decoded by the D flip-flop 125 described above and output as a digital signal. You can do it.
  • the D flip-flop 125 sets the point determined by the voltage held in the reference voltage holding unit 126 and the phase of the clock signal from the timing extraction unit 124 as an identification point, as “1” or “0”. It outputs a (binarized) digital signal consisting of a logical level of "in synchronization with the clock signal. It outputs a 12 Gb / s digital signal modulated by the amplitude change with respect to the time axis.
  • An identification circuit for decoding is configured.
  • FIGS. 10 (a) and 10 (b) are diagrams showing the relationship between the signal waveform of the data signal (voltage signal) input to the above-described D flip-flop 125 and the discrimination point I.
  • the horizontal axis indicates time, and the vertical axis indicates amplitude.
  • the discrimination point I corresponds to the fixed voltage value held by the reference voltage holding unit 126 and the phase of the clock signal from the timing extraction unit 124. It will be determined more.
  • the highest level of the amplitude is the level of the logic level "1"
  • the lowest level of the amplitude is the level of the logic level "0”.
  • a switching point of the logical level occurs every time of one bit. The area surrounded by the logic level "1", the logic level "0", and the transition state before and after the switching point is called an eye pattern.
  • FIG. 10 (a) shows an eye pattern in a normal state
  • FIG. 10 (b) shows an eye pattern when a transmission signal is deteriorated.
  • the D flip-flop 125 can perform the received waveform identification processing with high accuracy even if a fixed identification point voltage is used. Therefore, the bit error rate at the time of identification is minimized and the transmission quality is maximized.
  • the identification circuit 125 of the receiving end terminal device 110B in order for the identification circuit 125 of the receiving end terminal device 110B to decode the modulated data with minimum code error, the identification point voltage must be Rather than setting a fixed value, it is desirable to change it according to the transmission characteristics.
  • the gain of an optical fiber amplifier is wavelength-dependent.
  • An object of the present invention is to provide an optical signal receiving apparatus and an identification point control method for binarizing the optical signal receiving apparatus. Disclosure of the invention
  • a discrimination point control method for binarization processing receives an optical signal obtained by modulating a data signal in a frame format and converts the optical signal into an electric signal corresponding to the intensity.
  • a binarization processing unit that compares the electric signal from the photoelectric conversion unit with a predetermined discrimination point electric signal, and outputs the digital signal as binarized digital data;
  • a decoding unit for decoding frame information obtained by modulating the optical signal received by the photoelectric conversion unit from the digital data from the binarization processing unit by performing a frame capture process and an error correction process.
  • What A method of controlling the identification point for binarization processing in the optical signal receiving apparatus, wherein the number of times error correction processing is performed in the decoding processing unit is obtained;
  • a capturing error determination step for determining whether or not a capturing error has occurred; and in the capturing error determining step, when the capturing error has not occurred, the decoding process is performed.
  • a target value reaching determination step for determining whether or not the number of times of error correction processing in the section has reached a target value; and in the target value reaching determination step, the number of times of error correction processing reaches the target value.
  • the discrimination point electric signal increase / decrease step includes an increase / decrease range reduction step of reducing an increase / decrease range for increasing or decreasing the identification point electric signal.
  • the discrimination point electrical signal increase / decrease step is performed in the error correction number acquisition step, and the error correction number comparison step of comparing the magnitude of the error correction number acquired this time with the error correction number acquired last time is included in the error correction number acquisition step.
  • the number comparison step if the number of error corrections obtained this time is smaller than the number of error corrections obtained last time, the direction of increasing or decreasing the identification point electric signal is kept as it is, while the number of error corrections obtained this time is If the number of error corrections is larger than the acquired number of error corrections, an increase / decrease direction determining step of inverting the direction of increasing / decreasing the identification point electric signal; and A calculation step of increasing or decreasing the value of the signal by a predetermined increment or decrement unit amount; and an identification point electric signal in the calculation step.
  • a limit value processing step of reversing a direction in which the discrimination point electric signal is increased / decreased may be configured. it can.
  • the protection stage is used to determine whether the acquisition error has occurred and the case where the acquisition error has not occurred. May be provided for the determination.
  • the acquisition error determination step when information indicating the occurrence of the acquisition error for the first predetermined number of times is received from the decoding processing unit, while it is determined that the acquisition error has occurred, the supplementary error has occurred. If the information indicating that the capture error has not been received is received the second predetermined number of times, it can be determined that the capture error has not occurred.
  • the increase / decrease range is not changed until the number of times of receiving the information indicating that the supplementary error has not occurred reaches the second predetermined number. It may be kept in the maximum range that can be taken.
  • the discrimination point control for the binarization process may be stopped based on an external alarm signal.
  • the optical signal receiving apparatus of the present invention includes: a photoelectric conversion unit that receives an optical signal whose data signal is modulated in a frame format and converts the optical signal into an analog electric signal; A binarization processing unit that outputs as binary digital data by comparing the magnitude with the discrimination point voltage; and a light received by the photoelectric conversion unit from the digital data from the binarization processing unit.
  • a decoding processing unit for decoding the frame information obtained by modulating the signal by performing a frame capturing process and an error correcting process, information on an error of capturing the frame from the decoding processing unit, and performing the error correction. Number information, and a tracking control unit that controls the tracking of the identification point voltage in the binarization processing unit based on the information. It is a symptom.
  • the discrimination point is determined by the processing by the tracking control unit, that is, the error correction processing number acquisition step, the supplementary error judgment step, the target value reaching judgment step, the discrimination point electric signal increase / decrease step and the increase / decrease range reduction step.
  • the transmission quality can be kept high by reducing the bit error rate by always optimizing and following the received signal.
  • FIGS. 3 to 5 are flowcharts for explaining the tracking control of the discrimination point voltage by the arithmetic processing unit.
  • 6 (a) and 6 (b) are diagrams for explaining the operation and effect of the binarization processing identification point control according to the present embodiment.
  • FIG. 7 is a diagram showing an example of a wavelength division multiplexed optical submarine transmission system focusing on a signal transmitted in one direction as a background art of the present invention.
  • FIG. 8 is a block diagram showing a configuration example of each reception conversion device shown in FIG.
  • FIG. 9 is a block diagram showing a main part of the reception conversion device shown in FIG.
  • 10 (a) and 10 (b) are diagrams for explaining the problem to be solved by the present invention.
  • FIG. 1 is a block diagram showing an optical transmission system according to an embodiment of the present invention.
  • the optical transmission system 1 shown in FIG. 1 is, in particular, a pair of the transmission conversion device and the reception conversion device shown in FIG. Of transmission and reception of optical signals. That is, in the optical transmission system 1 shown in FIG. 1, an optical signal whose data is modulated into light of a specific wavelength in the transmission converter 10 is received by the reception converter 20 and output as a decoded data signal. It has become.
  • the transmission path including the optical fiber 105a and the submarine repeater 105b is illustrated as a transmission path 30.
  • the transmission conversion device 10 shown in FIG. 1 includes an electric circuit unit 11 including a first signal conversion unit 13, an FEC encoding processing unit 14, and a second signal conversion unit 15. Both are configured with an EZO unit 12.
  • the first signal converter 13 outputs a frame signal obtained by speed-converting an STM-64 signal or the like input in parallel from an intra-station interface of a plurality of channels (not shown) as a serial signal.
  • the processing unit 14 adds a service-bit such as an error correction code to the frame signal from the first signal conversion unit 13, and the second signal conversion unit 15 outputs the frame signal from the FEC encoding processing unit 14. It multiplexes frame signals to generate, for example, 12 GbZs signals.
  • the EZO unit 12 modulates and outputs light of a predetermined wavelength with the 12 GbZs signal generated by the second signal conversion unit 15 of the electric circuit unit 11, and as described above, this optical signal Are multiplexed with optical signals of other wavelengths and transmitted through the transmission line 30.
  • the receiving / converting device 20 shown in FIG. 1 converts an optical signal of 12 GbZs (after wavelength separation) transmitted through the transmission line 30 into an electric signal, an O / E unit 21, an electric circuit unit 22, It comprises a processing unit 28 and a DZA conversion unit 29.
  • the O / E unit 21 includes an AMP 23 and an optical Z electrical interface unit 24 corresponding to those shown in FIG. 8 (see reference numerals 111 and 112). 24 has a configuration as shown in FIG. 2 in detail.
  • the optical Z electrical interface unit 24 includes a photodiode (PD) 24a, a pump 24b, and an equalizer (EQL) 24c that function in substantially the same manner as that shown in FIG. 9 (see reference numerals 121 to 124). And a D-flip-flop (D-FF) 24e that outputs a binarized signal under the characteristic control of the present invention, in addition to a timing extraction unit (TIM) 24d.
  • PD photodiode
  • EQL equalizer
  • D-FF D-flip-flop
  • the D flip-flop 24 e receives the set voltage value (digital value) from the D / A conversion unit 29 described later, and the amplitude of the signal input from the equalizer 24 c is larger than the set voltage value. "1" if the value is large, "0” if the amplitude value of the signal input from the equalizer 24c is smaller than this set voltage value Are output in synchronization with the clock signal from the timing extraction unit 24d.
  • the D flip-flop 24 e is configured to output the set voltage value from the D / A converter 29 and the electric signal input from the equalizer 24 c and the clock signal from the timing extractor 124.
  • a binarized signal having a logical level of "1" or "0" is output using a point determined by the phase difference as an identification point.
  • the above-described photodiode 24a receives an optical signal in which a data signal is modulated in a frame format of, for example, 12 Gb / s, and converts the optical signal into an electric signal (a voltage signal having an amplitude value according to the intensity).
  • the equalizer 24c, the timing extractor 24d, and the D flip-flop 24e compare the electrical signal from the photodiode 24a with the electrical signal at the predetermined discrimination point. By performing the above, it functions as a binarization processing unit that outputs as binarized digitized data.
  • the electric circuit section 22 converts a frame, which is a signal converted into an electric signal by the OZE section 21, into a signal (for example, an STM-64 signal) addressed to an intra-office interface (not shown). It comprises a conversion unit 25, FEC synchronization, a decoding processing unit 26 and a fourth signal conversion unit 27.
  • the third signal conversion unit 25 separates the binary digital signal from the optical-Z electrical conversion interface unit 24 of the OZE unit 21 and converts it from a serial signal to a parallel signal. It has the same functions as DMUX 113 and SZP 114 shown in FIG.
  • the FEC synchronization / decoding processing unit 26 has basically the same function as the error correction decoder 115 in FIG. 9 described above, and converts the digital data from the binarization processing unit into a third signal.
  • a frame processing unit that inputs the signal through the unit 25 and modulates the digital data into frame information modulated into an optical signal received by the photodiode 24 a by performing a frame capture process and an error correction process to function as a decoding unit. I do.
  • the number of times that the error correction processing is performed in the FEC synchronization / decoding processing unit 26 is stored in the buffer 29, and is also stored in the FEC synchronization / demodulation processing unit 26. When the frame synchronization is lost, the fact is outputted to the arithmetic processing unit 28.
  • the fourth signal conversion section 27 converts the speed of the frame information from the FEC synchronization / demodulation processing section 26 and converts the serial information into a parallel signal.
  • the SPDCONV shown in FIG. It has the same function as 116 and PZS117.
  • the arithmetic processing unit 28 compares the information on the frame capture error from the FEC synchronization / decoding processing unit 26 and the information on the number of times the error correction has been performed from the FEC synchronization / decoding processing unit 26. Based on the input information and the information, the tracking control of the identification point voltage used in the D flip-flop 24 e of the optical / electrical interface unit 24 is performed, and it functions as a tracking control unit.
  • the arithmetic processing unit 28 ′ may be configured by, for example, a microprocessor operated by software, configured to be operated by firmware, or configured to be operated by hardware. It is possible.
  • the 0-to-8 conversion unit 29 converts the identification point voltage signal (digital signal) output from the arithmetic processing unit 28 for follow-up control into an analog signal.
  • the D flip-flop 24 e By using the discrimination point voltage signal converted into the digital signal as a threshold voltage for the binarization process, the electric signal to be input as data can be output as a binarized digital signal. ing.
  • FIGS. 3 to 5 are flowcharts for explaining the tracking control of the discrimination point voltage by the arithmetic processing unit 28.
  • the control mode of the arithmetic processing unit 28 will be described according to these flowcharts.
  • Advance. The arithmetic processing unit 28 reads and writes data and instructions using the IZ ⁇ registers Vth CONT, Vth UNCONT, SLOST, VTH_ON / OFF, VTH—SET, and EC in the following tracking control. .
  • Vth CONT is used to notify the enable / disable of the discrimination point control by reading, and to notify the start and stop of the discrimination point control by writing.
  • UNCONT indicates an alarm that cannot control the discrimination point
  • SLOST indicates that the FEC frame is out of sync
  • VTH—ON / OFF indicates the amplitude threshold voltage of the D flip-flop 24 e (identification VTH-SET outputs the value of the amplitude threshold voltage, and EC reports the number of FEC error corrections.
  • variables Vth—set, Vstep—set, Vplimit, and Vmlimit in the arithmetic processing in the arithmetic processing unit 28 are initialized as an initial operation.
  • the arithmetic processing unit 28 After the setting (step S 2), after the elapse of the warm-up standby time (for example, about 10 seconds) set by the variable TimerlO (step S 3), the arithmetic processing unit 28 automatically sets Start control.
  • the arithmetic processing unit 28 When the arithmetic processing unit 28 is configured by a microprocessor that operates by executing software, all of the operations used by the arithmetic processing unit 28 prior to the above-described setting of the variables in the arithmetic processing are performed. Is loaded from the storage device (step S1).
  • Vth-set is a set value of the discrimination point voltage (amplitude threshold voltage) at the time of the arithmetic processing in the arithmetic processing unit 28, and is set as an initial value of this Vth-set at the time of initial setting.
  • Vth—init eg, “1 2 8”. It should be noted that this Vth-init has a value from "0" to "2" when the minimum value of the amplitude that can be output overnight by the equalizer 24c is "0" and the maximum value is "265". It can be set arbitrarily within the range of 6 5 ”.
  • Vstep-set is a set value of the step width of the amplitude threshold voltage setting. That is, this Vstep-set indicates the increment / decrement unit amount when increasing / decreasing the identification point voltage.
  • the Vstep-init set as the initial value of this Vth-step (for example, “ 1 "). In this case, Vstep-init can be arbitrarily set in the range of “0” to “20”.
  • Vplimit is the set value of the limit value of the plus side amplitude threshold voltage.
  • Vpmax which is the maximum value of the plus side amplitude threshold voltage (in this case, “2 6 5”,) Set.
  • the amplitude value of Vpmax “2 65” is defined as the maximum value on the plus side of the amplitude of the signal input to the D flip-flop 24 e. Then, as shown in Fig. 6 (a) described later, it is shown that the amplitude threshold voltage (identification point voltage) Vth-SET can be increased to about the value Vpmax.
  • Vmlimit is the set value of the limit value of the negative amplitude threshold voltage.
  • Vmmax in this case, “0” that is the maximum value of the negative amplitude threshold voltage is set.
  • the amplitude threshold voltage (Identification point voltage) Vth—SET indicates that the value can be increased to the minus side up to the value Vmmax.
  • “10” is set as the TimerlO set as the standby time for the device warm-up, but the value of the TimerlO is “10” to “20”.
  • an external alarm signal is input. If it has, the discrimination point control for binarization processing is stopped based on this alarm signal. For example, when an alarm of a type that affects the tracking control by the arithmetic processing unit 28 such as a disconnection of the high-order group side optical signal input is received, specifically, the above-described IZO register Vth UNCONT in the arithmetic processing unit 28 is used. When such an alarm is notified, the current amplitude threshold voltage value Vth_set is held and control is stopped (YES route in step S4).
  • Step S5 from the route, Step S6 from the NO route of Step S5).
  • step S4 when the alarm in step S4 described above is restored and the Enable command is notified from the MPTR (the I / O register Vth CONT In the case where “Enable” is set), the tracking control is restarted from the currently held amplitude threshold voltage value Vth-1 set (NO route in step S4, YES route in step S5 to step S7). At this time, the 1-th register 0 VthCONT indicating the status of the arithmetic processing unit 28 is set to “starting”.
  • the amplitude threshold voltage is set to the D-flip-flop 2 by setting IZ ⁇ Register VTH—SET for outputting the amplitude threshold voltage to the AZD converter 29 side. 4 Set to e (step S8).
  • the I / ⁇ register Vth_ON / OFF which is a key flag for setting the amplitude threshold voltage (identification point voltage) to the D flip-flop 24 e, is set to “1” (to enable the output of the amplitude threshold voltage).
  • the IZO register Vth_ON / OFF is set to “0” ( (A flag indicating that the amplitude threshold voltage cannot be output.)
  • the DZA conversion section 29 reads the amplitude threshold voltage value (digital signal) set in the IZO register VTH-SET, converts this into an analog signal, and outputs it to the D flip-flop 24 e. Can be.
  • the arithmetic processing unit 28 After outputting the above-mentioned amplitude threshold voltage VTH_SET, the arithmetic processing unit 28 waits for the time set as Wait-time as a time for error stabilization immediately after the amplitude threshold voltage change setting, and then ( In step S9), the number of error corrections measured during the measurement time set as Meas-time is obtained from the I / ⁇ register EC. In the arithmetic processing unit 28, this error correction number is used as a variable EC_cur in the subsequent arithmetic processing (step S10).
  • step S10 the FEC synchronization An error correction processing number obtaining step of obtaining the number of times the error correction processing has been performed.
  • the waiting time set as the above-mentioned Wait one time for example, “1” can be set as an initial value, but in the case of the present embodiment, an integer value of “0” to “1 0” is used. Can also be set.
  • “1” can be set as an initial value, but in the case of the present embodiment, it is set to an integer value of “0” to “10”. It is also possible to set a value in 0.1 steps from "0" to "1".
  • the FEC synchronization / decoding processing unit 26 sets the value of the IZO register SLOST for notifying the loss of FEC frame synchronization. Read out the IZO register SLOST value to determine whether out-of-synchronization has occurred (ie, whether an acquisition error has occurred, or whether synchronization has been achieved (ie, whether an acquisition error has occurred). And a protection stage is provided (step S11).
  • protection stage means not only reading out of IZO data indicating that the FEC is out of synchronization once or being synchronized, but also reading out of the I / O data for the specified number of times, causing the FEC to go out of synchronization. Alternatively, it refers to the processing function of the arithmetic processing unit 28 that determines that FEC synchronization is established.
  • the amplitude threshold voltage is allowed to proceed in the current direction as described later (backward protection), but the number of FEC out-of-synchronization states is described.
  • the specified protection count it is called “hunting” and the amplitude threshold voltage is forcibly advanced in the currently specified direction (forward protection).
  • this variable Hunt—bwd is used as a hunting backward protection counter.
  • the process of calculating the amplitude threshold voltage Vth_set is not performed until MaxHunt—bwd or more (Step S 13).
  • MaxHunt-bwd can be set to, for example, “10J”, but in the present embodiment, any value from “0” to “2666” can be set. .
  • the arithmetic processing unit 28 sets the value of Hunt-fwd (initial value is “0”) to “HFE—fwd” (every time a SLOST occurrence) is read from the IZO register SLOST. By adding “1”, the arithmetic processing unit 28 counts the number of times that it is determined that the FEC loss of synchronization has occurred (from the YES route of step S11 to step S22).
  • This variable Hunt—fwd is set as the count of forward protection counts for hunting. The number of times that the value of Hunt—fwd is determined to be out of synchronization, that is, from the 1/0 register SLOST, the “FEC synchronization status” Until the number of times that is read is equal to or greater than the maximum value MaxHunt-fwd, processing for narrowing the range in which the amplitude threshold voltage described later is increased or decreased is not performed (step S23).
  • the information indicating the acquisition error is transmitted from the FEC synchronization / decoding processing unit 26 as the first predetermined number of times.
  • the arithmetic processing unit 28 determines that a trapping error has occurred.
  • the MaxHunt-fwd described above can be set to, for example, “20”, but in the present embodiment, any value from “0” to “266” can be set. it can.
  • an acquisition error determination step is configured to determine whether or not FEC out of synchronization as an acquisition error has occurred.
  • the Hunt—bwd becomes MaxHimt—bwd as the second predetermined number, and the increase / decrease of the identification point voltage defined by the value of Vplimit to Vplimit
  • the range is held in the maximum range that the electric signal from the photo diode 24a can take (that is, the range defined by the values of Vmmax and Vpmax [see FIGS. 6 (a) and 6 (b) to be described later). deep.
  • the IZ ⁇ registers Vth UNCONT and Vth CONT which are the criteria for determining whether to continue / stop following control, are referred to. While (steps S4 and S5), the process returns to the error correction number acquisition sequence (steps S7 to S10).
  • the Hunt—bwd is set to the value of MaxHunt—bwd (from the YES route of step S13 to step S15), and Set the variable Hunt—fwd to “0” (step S16).
  • step S17 Following the process of setting Hunt—bwd to MaxHunt—bwd, based on whether or not the number of error corrections obtained in step S10 is “0”, the following threshold value increase / decrease is set. Processing is performed (step S17).
  • step S17 the measured value of the number of times of the error correction processing in the FEC synchronization-decoding processing unit 26 when the captured error is not generated in the captured error determination steps S11 to S13. Constitutes a target value reaching determination step for determining whether or not the target value of the control has reached the target value (in this case, “0J”).
  • Set EC-cur set in Part 28 to the number of error corrections EC in the previous measurement EC-pre (Step Step S 21) from the YES route of step S 17 returns to the original control sequence (step S 21 to step S 4), but if the number of error corrections does not reach “0”, Performs the process of increasing or decreasing the threshold setting voltage (NO route in step S17).
  • step S18 error correction frequency comparison step
  • the control of the amplitude threshold voltage is considered to be in the right direction, and Dir1 sign
  • the threshold setting voltage is increased (or decreased) in accordance with the increasing / decreasing direction set by (step S20 from the NO route of step S18).
  • step S19 If the number of error corrections EC-cur in the current measurement is larger than the number of error corrections EC-pre in the previous measurement, the control of the amplitude threshold voltage is considered to be in the wrong direction.
  • the direction of increase / decrease set by sign is reversed (step S19 from the YES route of step S18) to increase (or decrease) the threshold setting voltage (step S20).
  • step S19 described above if the number of error corrections obtained this time is smaller than the number of error corrections obtained last time in the error correction number comparison step S18, the direction of increasing or decreasing the identification point electric signal is determined. On the other hand, if the number of error corrections acquired this time is larger than the number of error corrections acquired last time, it functions as an increase / decrease direction determination step of reversing the direction of increasing / decreasing the identification point electrical signal.
  • FIG. 5 is a flowchart for explaining the threshold value calculation processing for increasing (or decreasing) the threshold value setting voltage in step S20 described above.
  • Vth-set by using the above-described Vth-set, Dir_sign, and Vstep-set as the threshold value calculation processing, the threshold value was increased (or decreased) by calculating the following equation (1).
  • Vth—set step S201.
  • the original calculated Vth-set changes by Vstep-set from the original Vth_set, and the direction of the change is determined by the sign of Dir-sign.
  • step S201 is performed in accordance with the increase / decrease direction determined in the increase / decrease direction determination step S19. It functions as a calculation step for performing a calculation for increasing or decreasing by a predetermined increase / decrease unit amount.
  • Vth-set it is determined whether or not the Vth-set calculated in this way exceeds the maximum value of the amplitude threshold voltage that can be taken as one Vth-set. That is, when Vth-set exceeds the maximum value Vmlimit (in the negative direction) of the negative amplitude threshold voltage that can be taken as Vth_set, the threshold setting voltage Vth-set is set to the maximum value Vmlimit, and Dir_sign is set.
  • Vmlimit in the negative direction
  • Dir_sign Dir_sign
  • Vth-set exceeds the maximum value Vplimit of the positive amplitude threshold voltage that can be taken as Vth-set (in the plus direction)
  • the threshold setting voltage Vth_set is set to the maximum value Vplimit, and Dir- By changing the sign from “+1” to “1 1”, the direction of changing Vth set by the threshold calculation process is changed from the increasing direction to the decreasing direction (N ⁇ route of step S202, step S2). Step S205 from YES route of 204).
  • Vth-set does not exceed the above-described maximum value Vplimit of the plus side amplitude threshold voltage (in the brush direction) and does not exceed the maximum value Vmlimit of the minus side amplitude threshold voltage (in the minus direction). , The sign of Dir-sign is not changed, and the direction of changing Vth-set is not changed (NO route of step S204).
  • the above-described steps S202 to S205 are the calculation steps S202 If the discrimination point electric signal reaches the limit value of the increase / decrease range as a result of the calculation of the discrimination point electric signal in, it functions as a limit value processing step for reversing the direction in which the discrimination point electric signal is increased or decreased.
  • Vth-set is calculated, and the sign of Dii'_sign used in the next calculation of Vth-set is determined (N ⁇ route of steps S203, S204, S205)
  • the EC-cur set in the arithmetic processing unit 28 is set to the number of error corrections EC ⁇ pre during the previous measurement (step S21), and the process returns to the original control sequence (steps S21 to S21). S 4).
  • step S17 in target value reaching determination step S17, it is determined that the number of times of error correction processing has reached target value ⁇ 0 ''.
  • the discrimination point electrical signal is kept as it is, while if it is determined that the number of error correction processing has not reached the target value, the number of error correction processing is reduced to the target value “0”. It functions as a discrimination point electric signal increase / decrease step of increasing or decreasing the discrimination point electric signal within a predetermined increase / decrease range so as to approach.
  • steps S4 to S21 are executed.
  • the threshold setting voltage Vth_set increases and decreases in the direction of the minimum number of error corrections within the range of Vmlimit and Vplimit set as the initial values.However, when the FEC loss of synchronization occurs beyond the protection stage, Changes Vmlimit and Vplimit so that the range in which the above-described threshold setting voltage Vth-set increases or decreases is narrowed.
  • the EC—curr set in the arithmetic processing unit 28 is the number of error corrections in the previous measurement EC—pre (Step S 21) and return to the original control sequence (Step S 21 to Step S 4) If the FEC loss of synchronization exceeds the protection stage, that is, Hunt—fwd is the maximum value If the value is greater than MaxHunt—fwd, this Hunt_fwd is set to the value of MaxHunt—fwd (from the YES route of step S23 to step S24), and the above variable Hunt—bwd is set to “0”. (Step S25).
  • the maximum value Vplimit of the plus-side amplitude threshold voltage used in steps S202 and S204 described above is set to the value obtained by adding Vnb to the initial value Vth—init of the amplitude threshold voltage, and the minus-side amplitude threshold is set.
  • the maximum voltage value Vmlimit is a value obtained by subtracting Vnb from the initial value Vth-init of the amplitude threshold voltage (step S26).
  • Vnb indicates the narrow band limit width of the amplitude threshold voltage. In this case, Vnb can be set to “2 6”. In addition, Vnb can be set to a value between “0” and “1 2 0”. Any value can be set within the range. When Vnb is “2 6”, Vp_init is “1 5 3” and Vmlimit is “1 0 3” because Vth_init is “1 2 8”.
  • step S26 if the FEC is lost as a capture error in the capture error determination step S11, the identification point electrical signal increase / decrease step S18 to S21 is performed.
  • An increase / decrease range reduction step of reducing an increase / decrease range for increasing or decreasing the point electric signal is configured.
  • the same amplitude threshold voltage calculation processing as described above is performed. 5
  • the amplitude threshold voltage Vth-SET can be increased or decreased from the above Vmlimit “103” to Vplimit within the range of “153”. By limiting the range in which the amplitude threshold voltage can be taken, it is expected that the loss of synchronization will be recovered early.
  • the threshold voltage is allowed to proceed in the current direction as it is (backward protection, NO route in step S13), but generation comparison of error measurement values (EC-cur and EC-pre comparison of magnitude) is not performed, and specified protection If the number of times exceeds the number of times, in steps S 19 and S 20, the comparison of generation of the error measurement value is determined, and the shift operation of the amplitude threshold voltage is performed.
  • the setting variables Vth-init, Vstep-init, Vnb, MaxHunt_fwd, MaxHunt_Dwd, MaxHunt_Dwd, Meas-time, and TimerlO used in the arithmetic processing unit 28 can be easily changed during debugging, and debugging is completed. Until this is done, the final value will not be determined.
  • the optical signal transmitted from the transmission conversion device 10 is wavelength-multiplexed and transmitted through the transmission line 30 and wavelength-separated and received by the reception conversion device 20.
  • the identification point voltage Vth Since the SET can be increased or decreased, for example, when an optical signal having a normal eye pattern as shown in Fig. 6 (a) is input, or as shown in Fig. 6 (b) Even in the case of an optical signal having an eye pattern in which signal deterioration or the like has occurred, the discrimination point I can be set at a point where there is little overlap with the signal component in the figure.
  • the present inventor has confirmed through simulation experiments that the code error rate can be reduced by the amplitude threshold voltage tracking control by the arithmetic processing unit 28 as described above.
  • the identification point is constantly optimized according to the received signal by the processing (steps S1 to S26) by the arithmetic processing unit 28 as the tracking control unit. This has the advantage that the bit error rate can be reduced and the transmission quality can be kept high.
  • the identification point tracking control of the received signal of the present invention to the reception side apparatus of the wavelength division multiplexing optical transmission system, the identification point can be controlled to be different for each reception conversion apparatus (that is, for each wavelength). Even if the code level varies for each wavelength due to the gain wavelength dependence of the optical fiber amplifier, the code error rate is reduced and the transmission quality is kept high. Can be.
  • the optical signal receiving apparatus and the discriminating point control method for binarization processing of the present invention compare the magnitude of the received signal with the discriminating point electric signal and output the digitized digitized data. It is particularly useful for receiving signal processing in an optical signal receiving device in an optical transmission system such as an optical submarine repeater transmission system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

識別点を受信信号に応じて常時最適化追従することにより、符号誤り率を減少させて伝送品質を高品質に保つことができるようにした、光信号受信装置における二値化処理用識別点制御方法である。 目標値到達判定ステップ(S17)で、誤り訂正処理の回数が目標値に到達していると判定された場合には、識別点電気信号はそのままとする一方、誤り訂正処理の回数が目標値に到達していないと判定された場合には、誤り訂正処理の回数が当該目標値に近づくように、所定の増減範囲で前記識別点電気信号を増加又は減少させる識別点電気信号増減ステップ(S18~S21)をそなえて構成する。

Description

明 細 書 光信号受信装置およびその二値化処理用識別点制御方法 技術分野
本発明は、 光信号受信装置およびその二値化処理用識別点制御方法に係り、 特に、 アイ ·パターンの如何にかかわらず識別点を最適に決めることができ、 且つ、 イン ·サービス中でも伝送データに誤りを混入させずに短時間で識別点 を最適に決めることができる光信号受信装置およびその二値化処理用識別点制 御方法に関する。
光海底中継伝送システムをはじめとする光伝送システムは、 伝送容量の大容 量化と伝送距離の長距離化の途上にあり、 伝送容量の大容量化に対応するため に多重数が大きい波長多重伝送システムが導入されており、 又、 伝送距離の長 距離化による符号誤りの増加を避けるために訂正能力が高い誤り訂正符号が導 入されている。
図 7に、 片方向に伝送される信号に着目した波長多重光海底伝送システムの 一例を示す。 尚、 波長多重光海底伝送システムを例示しているのは、 ディジタ ル通信の主要伝送方式を構成する光伝送を行なっていること、 大容量化のため に波長多重を行なっていること、 及び、 訂正能力が高い誤り訂正符号を導入し ていることによって、例示するには最も適した伝送システムであるためである。 しかし、 本発明の適用領域が波長多重光海底伝送システムに限定されること はなく、 光伝送システムに限定されることもなく、 本発明は伝送方式を問わな いディジタル伝送システムに適用できることを指摘しておく。
ここで、 図 7に示す波長多重光海底伝送システム 1 0 0においては、 送信側 端局装置 1 1 O Aと受信側端局装置 1 1 0 Bとが光ファイバ 1 0 5 aおよび海 底中継器 1 0 5 Bを介して接続されて、 送信側端局装置 1 1 O Aから受信側端 局装置 1 1 0 Bに宛てて、 S TM— 6 4のフレームを多重化して約 1 2 G b Z s (ギガ · ビット Z秒) で伝送するようになっている。
ここで、 送信側端局装置 1 1 O Aは、 n ( nは 2以上の整数) 個の送信変換 部 101— l〜101_n, 増幅器 102—:!〜 102— n, 波長多重部 10 3および送信増幅器 104をそなえて構成されている。
送信変換部 101— 1〜101— nは、 STM— 64のフレ一ムによって変 調された光信号を受けて一旦電気信号に変換すると共に誤り訂正符号等のサー ビス ·ビットを付加して 12 GbZsの信号を生成し、 該 12 Gb/sの信号 によって光信号を変調して出力する送信変換装置である。 そして、 送信変換装 置が出力する光信号の波長は全て異なる。
増幅器 102— 1〜 102— nは、 各々の送信変換部 101— 1〜 101— nが出力する光信号を増幅する増幅器で、 通常はエルビウム ·イオン添加光フ アイバを用いた光ファィバ増幅器が用いられる。
また、 波長多重部 103は、 各々の増幅器 102— 1〜 102— nが出力す る互いに異なる波長の光信号を波長多重化するもので、 送信増幅器 104は、 波長多重部 103が出力する複数波長の光信号が多重化された光信号を増幅す るもので、 通常はエルビウム ·イオン添加光ファイバを用いた光ファイバ増幅 器が用いられる。
また、 海底中継器 105は、 海底に敷設された光伝送路における光信号の減 衰を補償するもので、 通常はエルビウム ·イオン添加光ファイバを用いた光フ アイバ増幅器が用いられる。
さらに、受信側端局装置 110 Bは、受信増幅器 106,波長分離部 107, 増幅器 108— 1〜 108— nおよび受信変換部 109— 1〜 109— nをそ なえている。
受信増幅器 106は、 伝送されてきた光信号を増幅するもので、 通常はエル ピウム ·イオン添加光ファイバを用いた光ファイバ増幅器が用いられる。 又、 波長分離部 107は、 波長多重されて伝送されてきた光信号を元の各々の波長 の光信号に分離するものである。 ここで出力される各々の波長の光信号は 12 GbZsの電気信号によって変調されている。
増幅器 108— 1〜 108— nは、 波長分離された各々の波長の光信号を増 幅する増幅器で、 通常はエルビウム ·イオン添加光ファイバを用いた光フアイ バ増幅器が用いられる。 受信変換部 1 09— 1〜1 09— nは、 1 2 G bノ sの電気信号が変調され た光信号を一旦電気信号に変換すると共に、 誤り訂正を行なうなどしてサービ ス ·ビットを除去して STM— 64のフレームで変調された光信号を出力する 受信変換装置である。
そして、 各受信変換部 1 09—;!〜 1 09— nには、 入力された光信号につ いてその強度に応じた電気信号に変換してから、 時間軸に対する強度変化によ つて変調された 12 Gb/ sのディジタル信号を復号化する識別回路が配置さ れており、 最終的には該識別回路における識別確度が伝送品質の評価尺度にな る。 背景技術
図 8は、 図 7に示した従来の受信側端局装置 1 1 0 Bにおける各受信変換部 109— 1〜 1 09— nの構成例を示すブロック図であり、 この図 8に示す受 信変換部 1 09において、 1 1 1は、 入力される 1 2 GbZsの電気信号で変 調された光信号を増幅する前置増幅器 (AMP) で、 1 1 2は、 前置増幅器 1 1 1が出力する光信号を電気変換して 1 2 GbZsの電気信号を出力する光ノ 電気イン夕フェース部 (OZE; Optical/Electrical) である。 前述の識別回路 はこの中に配置されている。
また、 1 1 3は、 光 ·電気インタフェース部 1 1 2が出力する 12 GbZs の電気信号を 7 5 1 M b/ s X 1 6に分解する多重分離器 (DMUX ; De -Multiplexer) で、 1 14は、 75 1Mb/ S X 1 6の電気信号を 1 78 M b/s X 64の電気信号に変換する直列 ·並列変換器 (S/P; Serial/Parallel ) である。
さらに、 1 1 5は、 直列 ·並列変換器 1 14が出力する 1 78 M bノ sの信 号毎に誤り訂正を行なう誤り訂正復号器 ( F E C , DEC ; Forward-acting Error Collecting code, Decoder) あ 。
また、 1 16は、 1 2 GbZs系のフレーム 'フォ一マットから STM— 6 4系のフレーム ·フォーマツトに変換する速度変換器 (S PD CONV; Speed Converter) で、 この出力は 1 5 5 MbZ s X 64である。 さらに、 1 17は、 1 55MbZs X 64の電気信号を 62 IMb/ s X 1 6の電気信号に変換する並列 ·直列変換器(図では「P/S」 と略記している。 ) で、 1 18は、 62 IMb/s X 1 6の電気信号によって光信号を変調する 電気 ·光変換器 (図では 「EZO」 と略記している。) で、 1 19は、 受信変換 部 1 09の監視 ·制御を司るプロセッサ(MP ; Maintenance Processor)で、 120はプロセッサ 1 1 9のコマンドに対応して誤り訂正復号器 1 1 5から誤 り符号数を収集してレスポンスする制御バッファ(BUFF ;Buffer)である。 ところで、 図 9は上述の従来における光 ·電気インタフェース 1 1 2の構成 例を示すブロック図であり、 この図 9に示す光 ·電気イン夕フエ一ス部 1 1 2 は、 フォトダイオード (Photodiode; PD) 1 2 1, アンプ 122, 等化器 ( E Q L; Equalizer) 1 23, タイミング抽出部 (T I M) 124, Dフリップ フロップ (D-FF; D-Flip Flop) 1 2 5およびリフアレンス電圧保持部 1 26 をそなえて構成されている。
ここで、 フォトダイオード 12 1は、 図 8に示す AMP 1 1 1からの光信号 (波長分離された光信号) を受光してその強度に応じた振幅値を有する電気信 号 (電圧信号) を出力するもので、 アンプ 1 22は、 フォトダイオード 1 2 1 からの電気信号を増幅するものである。
さらに、 等化器 1 23は、 アンプ 1 22にて増幅された電気信号について等 化処理を施すもので、 タイミング抽出部 1 24は、 アンプ 122からの電気信 号から、 後段において変調された信号成分を取り出すためのタイミング成分を 抽出し、 クロック信号として出力するものである。
Dフリップフロップ 1 25は、等化器 123からの信号をデータ信号として、 リファレンス電圧保持部 1 26にて保持されている固定の電圧値との大小を比 較して、 その比較結果に応じた信号を、 タイミング抽出部 1 24からのクロッ ク信号に同期させて出力するものである。
フォトダイオード 12 1で受光する光信号は、 送信側端局装置 1 1 0Aのい ずれかの送信変換部 1 0 1— 1〜1 0 1 _nにおいて 12 Gb/sのデータ信 号が振幅変調処理により変調されたものであるが、 上述の Dフリップフロップ 1 25により、 この変調された信号を復号化して、 ディジタル信号として出力 することができるようになつている。
したがって、 Dフリップフロップ 125は、 リファレンス電圧保持部 126 にて保持されている電圧と、 タイミング抽出部 124からのクロック信号の位 相とにより決定される点を識別点として、 "1 "又は" 0"の論理レベルからな る (二値化された) ディジタル信号をクロック信号に同期して出力するように なっており、 時間軸に対する振幅変化によって変調された 12Gb/sのディ ジ夕ル信号を復号化する識別回路を構成する。
図 10 (a), 図 10 (b) はともに、 上述の Dフリップフロップ 125に入 力されるデータ信号 (電圧信号) の信号波形と識別点 Iとの関係を示す図であ り、 図中、 横軸は時間、 縦軸は振幅を示している。 この図 10 (a), 図 10 ( b) に示すように、 識別点 Iは、 リファレンス電圧保持部 126にて保持され ている固定電圧値と、 タイミング抽出部 124からのクロック信号の位相とに より決定されるものである。
ここで、 振幅の最高レベルが論理レベル "1" のレベルで、 振幅の最低レべ ルが論理レベル "0" のレベルである。 又、 伝送速度に対応した 1ビットの時 間で伝送情報の論理レベルが変化する可能性があるので、 1ビッ卜の時間毎に 論理レベルの切り替わり点が生ずる。 そして、 論理レベルが "1" のレベル、 論理レベルが "0" のレベル、 及び、 切り替わり点前後の過渡状態で囲まれた 領域をアイ ·パターンという。
実際には、 ビット毎に論理レベルが "1" のレベル、 論理レベルが "0" の レベル、 及び、 切り替わり点前後の過渡状態が変化するためにアイ 'パターン は狭くなる。 尚、 図 10 (a) では正常時のアイ ·パターンを示しており、 図 10 (b) は伝送信号の劣化等が生じた場合のアイ 'パターンを示している。 図 10 (a) のようなアイ ·パターンの場合には、 固定的に設定された識別 点電圧を用いても、 Dフリップフロップ 125では受信波形の識別処理を高精 度に行なうことが可能であるため、 識別時の符号誤り率が最小になって伝送品 質が最高になる。
これに対し、 伝送路の損失変動ゃ光ファィパ増幅器の利得変動が生じると、 受信波形の振幅は、 図 10 (b) に示すように、 図 10 (a) に示す正常時に 比して小さくなつており、固定的に設定された識別点電圧 Iを用いた場合には、 Dフリップフロップ 1 2 5では精度高く識別処理を行なうことが困難となり、 符号誤り率が劣化するため、 伝送品質の向上に支障を来たす。
言い換えれば、 光通信システムにおいて、 長距離 '大容量化を突き進めてい くと、さまざまな変動要因により、伝送されて受信器に入力される受信信号は、 短期的にも長期的にも変動することとなり、 受信器における信号識別回路の最 適識別点も同様に変動することになる。
換言すれば、 波長多重光伝送システムにおいて、 上述の受信側端局装置 1 1 0 Bの識別回路 1 2 5において変調データを符号誤りを最小にして復号するた めには、 識別点電圧としては固定値に設定しておくよりも、 伝送特性に応じて 変化させることが望まれる。
又、 波長多重光伝送システムにおいては、 光ファイバ増幅器の利得に波長依 存性がある。 この波長依存性を光可変等化器を用いて軽減する技術もあるが、 長距離伝送路で光ファイバ増幅器の段数が多くなると等化残差が累積して波長 毎に符号のレベルがばらつくことが避けられない。 従って、 このような場合に は受信変換装置毎に異なる識別点に制御して識別する必要がある。
本発明は、 このような課題に鑑み創案されたもので、 識別点を受信信号に応 じて常時最適化追従することにより、 符号誤り率を減少させて伝送品質を高品 質に保つことができるようにした、 光信号受信装置およびその二値化処理用識 別点制御方法を提供することを目的とする。 発明の開示
上記の目的を達成するために、 本発明の二値化処理用識別点制御方法は、 フ レーム形式でデ一タ信号が変調された光信号を受信しその強度に応じた電気信 号に変換する光電変換部と、 該光電変換部からの前記電気信号について、 所定 の識別点電気信号との大小比較を行なうことにより、 二値化されたディジタル データとして出力する二値化処理部と、 該ニ値化処理部からのディジタルデ一 夕から、 該光電変換部で受信した光信号が変調されたフレーム情報を、 フレー ム捕捉処理および誤り訂正処理を行なって復号する復号処理部とをそなえてな る光信号受信装置における前記二値化処理用識別点を制御する方法であって、 前記の復号処理部における誤り訂正処理が行なわれた回数を取得する誤り訂 正処理回数取得ステップと、前記の復号処理部でのフレーム捕捉処理において、 捕捉エラーが生じているか否かを判定する捕捉エラ一判定ステップと、 該捕捉 エラー判定ステップにおいて、 前記捕捉エラ一が生じていない場合において、 前記の復号処理部での誤り訂正処理の回数が目標値に到達しているか否かを判 定する目標値到達判定ステップと、 該目標値到達判定判定ステップにおいて、 前記誤り訂正処理の回数が目標値に到達していると判定された場合には、 前記 識別点電気信号はそのままとする一方、 前記誤り訂正処理の回数が目標値に到 達していないと判定された場合には、 前記誤り訂正処理の回数が当該目標値に 近づくように、 所定の増減範囲で前記識別点電気信号を増加又は減少させる識 別点電気信号増減ステップと、 該捕捉エラー判定ステップにおいて、 前記捕捉 エラーが生じている場合においては、 前記識別点電気信号増減ステップにおい て前記識別点電気信号を増加又は減少させるための増減範囲を縮小させる増減 範囲縮小ステップと、 をそなえて構成されたことを特徴としている。
また、 該識別点電気信号増減ステップを、 該誤り訂正回数取得ステップにお いて、 今回取得した誤り訂正回数と前回取得した誤り訂正回数との大小を比較 する誤り訂正回数比較ステップと、 該誤り訂正回数比較ステップにおいて、 今 回取得した誤り訂正回数が前回取得した誤り訂正回数よりも小さい場合には、 前記識別点電気信号を増減させる方向をそのままとする一方、 今回取得した誤 り訂正回数が前回取得した誤り訂正回数よりも大きい場合には、 前記識別点電 気信号を増減させる方向を反転させる増減方向決定ステップと、 前記増減方向 決定ステップにて決定された増減方向に従って、 前記識別点電気信号を所定の 増減単位量だけ増加又は減少させる計算を行なう計算ステップと、 該計算ステ ップにおける識別点電気信号の計算の結果、 該識別点電気信号が前記増減範囲 の限界値となった場合には、 前記識別点電気信号を増減させる方向を反転させ る限界値処理ステップと、 をそなえて構成することもできる。
この場合において、 該捕捉エラー判定ステップにおいて、 前記捕捉エラーが 生じている場合および前記捕捉エラーが生じていない場合を、 それぞれ保護段 を設けて判定することとしてもよい。
さらに、 該捕捉エラー判定ステップにおいて、 第 1所定回数前記捕捉エラー 発生を示す情報を該復号処理部から受けた場合には、 前記捕捉エラーが生じて いると判定する一方、 前記補足エラーが発生していない旨を示す情報を第 2所 定回数受けた場合には、 前記捕捉エラ一が生じていないと判定することもでき る。
また、 該捕捉エラー判定ステップにおいて、 前記補足エラ一が発生していな い旨を示す情報を受けた回数が第 2所定回数となるまでは、 前記増減範囲を該 光電変換部からの前記電気信号がとりうる最大範囲に保持しておくこととして もよい。
また、 外部からのアラーム信号に基づいて、 上記二値化処理用の識別点制御 を停止するようにしてもよい。
さらに、 本発明の光信号受信装置は、 フレーム形式でデータ信号が変調され た光信号を受信してアナログ電気信号に変換する光電変換部と、 該光電変換部 からのアナログ電気信号について、 所定の識別点電圧との大小比較を行なうこ とにより、 二値化されたディジタルデータとして出力する二値化処理部と、 該 二値化処理部からのディジタルデータから、 該光電変換部で受信した光信号が 変調されたフレーム情報を、 フレーム捕捉処理および誤り訂正処理を行なって 復号する復号処理部と、 該復号処理部からの前記フレームの捕捉ェラーに関す る情報と、 前記誤り訂正が行なわれた回数情報とを入力され、 これらの情報か ら、 前記二値化処理部における前記識別点電圧を追従制御する追従制御部とを そなえて構成されたことを特徴としている。
したがって、 本発明によれば、 追従制御部による処理、 即ち誤り訂正処理回 数取得ステップ, 補足エラー判定ステップ, 目標値到達判定ステップ, 識別点 電気信号増減ステップおよび増減範囲縮小ステップにより、 識別点を受信信号 に応じて常時最適化追従することにより、 符号誤り率を減少させて伝送品質 高品質に保つことができる利点がある。 図面の簡単な説明 図 1は本発明の実施の形態にかかる光伝送システムを示すブロック図である。 図 2は本発明の一実施形態における光 Z電気インタフェース部を示すブロッ ク図である。
図 3〜図 5は演算処理部による識別点電圧の追従制御について説明するため のフローチヤ一トである。
図 6 (a), 図 6 (b) はともに本実施形態にかかる二値化処理用識別点制御 による作用効果を説明するための図である。
図 7は本発明の背景技術としての、 片方向に伝送される信号に着目した波長 多重光海底伝送システムの一例を示す図である。
図 8は図 7に示した各受信変換装置の構成例を示すプロック図である。
図 9は図 8に示す受信変換装置の要部を示すプロック図である。
図 10 (a), 図 10 (b) はともに本発明が解決すべき課題について説明す るための図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態を説明する。
図 1は本発明の実施の形態にかかる光伝送システムを示すブロック図で、 こ の図 1に示す光伝送システム 1は、 特に前述の図 7における一組の送信変換装 置および受信変換装置との光信号の送受に着目したものである。 即ち、 この図 1に示す光伝送システム 1においては、 送信変換装置 10において特定波長の 光にデータが変調された光信号を、 受信変換装置 20において受信して、 復号 されたデータ信号として出力するようになっている。
なお、 図 1に示す光伝送システム 1においては、 図 7に示す増幅器 102— l〜102— n, 波長多重部 103, 送信増幅器 104, 受信増幅器 106 , 波長分離部 107および増幅器 108— 1〜 108— nの図示は省略している。 又、光ファイバ 105 aおよび海底中継器 105 bからなる伝送路については、 伝送路 30として図示している。
ここで、 この図 1に示す送信変換装置 10は、 第 1信号変換部 13, FEC 符号化処理部 14および第 2信号変換部 15をそなえてなる電気回路部 1 1と ともに、 EZO部 12をそなえて構成されている。
また、 第 1信号変換部 13は、 図示しない複数チャンネルの局内インタフエ —スからパラレル入力された STM— 64信号等について速度変換されたフレ —ム信号をシリアル信号として出力するもので、 F E C符号化処理部 14は、 第 1信号変換部 13からのフレーム信号について、 誤り訂正符号等のサ一ビス - ビットを付加するもので、 第 2信号変換部 15は、 F EC符号化処理部 14 からのフレーム信号を多重化して例えば 12 GbZsの信号を生成するもので ある。
また、 EZO部 12は、 電気回路部 11の第 2信号変換部 15で生成された 12 GbZsの信号によって所定波長の光を変調して出力するものであり、 上 述したように、 この光信号は他の波長の光信号とともに波長多重されて伝送路 30を通じて伝送されるようになっている。
さらに、 図 1に示す受信変換装置 20は、 伝送路 30を通じて伝送されてき た 12GbZsの (波長分離された後の) 光信号について電気信号に変換する O/E部 21, 電気回路部 22, 演算処理部 28および DZA変換部 29をそ なえて構成されている。
ここで、 O/E部 21は、 前述の図 8に示すもの (符号 111, 112参照 ) に相当する AMP 23および光 Z電気インタフエ一ス部 24をそなえている が、 この光 Z電気インタフェース部 24は、 詳細には図 2に示すような構成を 有している。
また、 光 Z電気インタフェース部 24は、 前述の図 9に示すもの (符号 12 1〜124参照) とほぼ同様に機能するフォトダイオード (PD) 24 a, ァ ンプ 24b, 等化器 (EQL) 24c, タイミング抽出部 (TIM) 24dを そなえるとともに、 本願発明の特徴的な制御を受けて二値化信号を出力する D フリップフロップ (D-FF) 24 eをそなえている。
すなわち、 Dフリップフロップ 24 eは、 後述の D/A変換部 29からの設 定電圧値 (ディジタル値) を受けて、 この設定電圧値よりも等化器 24 cから データ入力される信号の振幅値が大きい場合には "1" を、 この設定電圧値よ りも等化器 24 cからデータ入力される信号の振幅値が小さい場合には "0" を、 それぞれタイミング抽出部 24 dからのクロック信号に同期して出力する ようになつている。
換言すれば、 この Dフリップフロップ 24 eは、 D/A変換部 29からの設 定電圧値および、 等化器 24 cからデータ入力される電気信号とタイミング抽 出部 124からのクロック信号との位相差により決定される点を識別点として、 "1" 又は "0" の論理レベルからなる二値化信号を出力する。
したがって、 上述のフォトダイオード 24 aにより、 例えば 12 Gb/sの フレーム形式でデータ信号が変調された光信号を受信しその強度に応じた電気 信号 (強度に応じた振幅値を持つ電圧信号) に変換する光電変換部として機能 するとともに、 等化器 24 c, タイミング抽出部 24 dおよび Dフリップフロ ップ 24 eにより、 フォトダイオード 24 aからの電気信号について、 所定の 識別点電気信号との大小比較を行なうことにより、 二値化されたディジ夕ルデ 一夕として出力する二値化処理部として機能する。
また、 電気回路部 22は、 OZE部 21にて電気信号に変換された信号をな すフレームを図示しない局内インタフェースに宛てた信号 (例えば STM— 6 4信号) に変換するもので、 第 3信号変換部 25, F EC同期 '復号処理部 2 6および第 4信号変換部 27をそなえて構成されている。
ここで、 第 3信号変換部 25は、 OZE部 21の光 Z電気変換インタフエ一 ス部 24からの二値化されたディジタル信号を分離しシリアル信号からパラレ ル信号に変換するものであり、 前述の図 8に示す DMUX 1 13および SZP 1 14と同様の機能を有している。
さらに、 FEC同期 ·復号処理部 26は、 前述の図 9における誤り訂正復号 器 1 1 5と基本的に同様の機能を有しており、 二値化処理部からのディジタル データを第 3信号変換部 25を介して入力されて、このディジタルデータから、 フォトダイオード 24 aで受信した光信号に変調されているフレーム情報を、 フレーム捕捉処理および誤り訂正処理を行なって復号する復号処理部として機 能する。
なお、 この FEC同期 ·復号処理部 26における誤り訂正処理が行なわれた 回数はバッファ 29に記憶されるとともに、 FEC同期 .復調処理部 26にお いてフレーム同期外れが生じている場合には、 その旨を演算処理部 2 8に出力 するようになつている。
さらに、 第 4信号変換部 2 7は、 F E C同期 ·復調処理部 2 6からのフレー ム情報について速度変換を行なうとともにシリアル信号からパラレル信号に変 換するものであり、 前述の図 8に示す S P D C O N V 1 1 6および P Z S 1 1 7と同様の機能を有している。
また、 演算処理部 2 8は、 F E C同期 '復号処理部 2 6からのフレームの捕 捉エラ一に関する情報と、 F E C同期 ·復号処理部 2 6からの誤り訂正が行な われた回数情報とを入力され、 これらの情報から、 光/電気インタフェース部 2 4の Dフリップフロップ 2 4 eにおいて用いられる識別点電圧を追従制御す るものであり、 追従制御部として機能するものである。
また、 この演算処理部 2 8 'としては、 例えば、 ソフトウェアによって動作す るマイクロプロセッサにより構成したり、 ファームウェアによって動作させる ように構成したり、 ハードウェアによって動作させるように構成したりするこ とが可能である。
さらに、 0 八変換部2 9は、 演算処理部 2 8から追従制御用に出力される 識別点電圧信号 (ディジタル信号) をアナログ信号に変換するものであり、 D フリップフロップ 2 4 eにおいては、 このディジタル信号に変換された識別点 電圧信号を二値化処理のための閾値電圧として用いることにより、 データ入力 される電気信号について二値化されたディジタル信号として出力することがで きるようになつている。
図 3〜図 5は演算処理部 2 8による識別点電圧の追従制御について説明する ためのフローチャートであり、 以下においては、 これらのフロ一チャートに従 つて、 演算処理部 2 8の制御態様について説明を進める。 尚、 演算処理部 2 8 では、 以下の追従制御を行なうにあたり、 I Z〇レジスタ Vth CONT, Vth UNCONT, SLOST, VTH_ON/OFF, VTH— SET, ECを用いてデータ〜命令 の読み出し 書き込みを行なっている。
なお、 Vth CONTは、 読み出しにより識別点制御の Enable/Disableが通知 され、 書き込みにより識別点制御の起動 Z停止を通知するもので、 Vth UNCONTは、 識別点制御が不可能なアラームを通知するもので、 SLOSTは、 FECフレーム同期外れが通知されるもので、 VTH— ON/OFFは、 Dフリツプフ ロップ 2 4 eにおける振幅閾値電圧 (識別点電圧) を設定するためのキーフラ グで、 VTH— SETは、 振幅閾値電圧の値を出力するもので、 ECは FECエラ一 訂正個数を通知されるものである。
まず、 受信変換装置 2 0を駆動するための電源を投入した後、 初期動作とし て、 演算処理部 2 8での演算処理上の変数 Vth— set, Vstep— set, Vplimitおよ び Vmlimitを初期設定してから (ステップ S 2 )、 変数 TimerlOで設定される ウォームアップのための待機時間 (例えば 1 0秒程度) を経過した後 (ステツ プ S 3 )、 演算処理部 2 8では自動的に制御を開始する。
なお、 演算処理部 2 8がソフトウェアの実行により動作するマイクロプロセ ッサにより構成された場合には、 上述の演算処理上の変数の設定に先行して、 演算処理部 2 8にて使用する全ての変数情報を記憶装置からロードしておく ( ステップ S 1 )。
ここで、 Vth— setは、 演算処理部 2 8における演算処理の際における識別点 電圧 (振幅閾値電圧) の設定値であり、 初期設定時においては、 この Vth— set の初期値として設定されている Vth—init (例えば、 「1 2 8」) に設定する。 尚 、 この Vth— initについては、等化器 2 4 cでデ一夕出力可能な振幅の最小値を 「0」, 最大値を 「2 6 5」 とする場合に、 「0」 〜 「2 6 5」 の範囲で任意に 設定することが可能である。
また、 Vstep— setは、振幅閾値電圧設定のステップ幅の設定値である。即ち、 この Vstep— setは、 識別点電圧を増減させる際の増減単位量を示すもので、 初 期設定時においては、この Vth— stepの初期値として設定されている Vstep— init (例えば、 「1」) に設定する。 尚、 この場合においては、 Vstep— initについて は、 「0」 〜 「2 0」 の範囲で任意に設定できるようにしている。
さらに、 Vplimit は、 プラス側振幅閾値電圧の限界値の設定値で、 初期設定 時においては、 プラス側振幅閾値電圧の最大値である Vpmax (この場合にお 'いては 「2 6 5」,) を設定する。 この Vpmax 「2 6 5」 の振幅値を、 Dフリ ップフロップ 2 4 eにデータ入力される信号振幅のプラス側最大値であるとす ると、 後述の図 6 ( a ) に示すように、 振幅閾値電圧 (識別点電圧) Vth— SET が値 Vpmax程度まで増加させることができることを示している。
同様に、 Vmlimitは、 マイナス側振幅閾値電圧の限界値の設定値で、 初期設 定時においては、 マイナス側振幅閾値電圧の最大値である Vmmax (この場合 においては 「0」) を設定する。 この Vmmax 「0」 の振幅値を、 Dフリップフ ロップ 2 4 eにデ一夕入力される信号振幅のマイナス側最大値であるとすると、 後述の図 6 ( a ) に示すように、 振幅閾値電圧 (識別点電圧) Vth— SET が値 Vmmax程度までマイナス側に増加させることができることを示している。
また、 上述の装置ウォームアップのための待機時間として設定される TimerlOは、 本実施形態において 「1 0」 が設定されているが、 この TimerlO の値としては、 「1 0」 〜「2 0」 の間の整数値で任意に設定することができる 上述の 4つの変数が初期設定されると、 この振幅閾値電圧の追従制御が開始 することになるが、 このとき、 外部からのアラーム信号が入力されている場合 には、 このアラーム信号に基づいて二値化処理用の識別点制御を停止する。 たとえば、 高次群側光信号入力断等の、 演算処理部 2 8による追従制御に影 響する種類の警報を受けた場合、 具体的には、 演算処理部 2 8における I ZO レジスタ Vth UNCONTを通じて上述のごとき警報を通知された場合には、 現 状の振幅閾値電圧値 Vth_setを保持し制御を停止する (ステップ S 4の Y E S ルート)。
さらに、 上述のごとき警報を通知されていない場合 (もしくは警報が解除さ れた場合) においても、 M P T R (Maintenance Processor for Tributary) か ら NM S (Network Management System) 経由で Disable命令を受けた場合 、 具体的には I Z〇レジスタ Vth CONTを通じて 「Disable」 が通知された楊 合においては、 当該 M P T Rから Enable命令を受けるまでは、 現状の閾値を 保持し、 制御を停止する (ステップ S 4の N〇ルートからステップ S 5、 ステ ップ S 5の N Oルートからステップ S 6 )。
また、 上述のステップ S 4における警報が復旧するとともに、 M P T Rから Enable命令が通知されるようになった場合 ( I / Oレジスタ Vth CONTに 「 Enable」 が設定された場合) においては、 現状保持している振幅閾値電圧値 Vth一 setから追従制御を再開させる (ステップ S 4の N 0ルート, ステップ S 5の Y E Sルートからステップ S 7 )。 このとき、演算処理部 2 8のステ一タス を示す 1ノ0レジスタ VthCONTは 「起動中」 に設定される。
なお、 演算処理部 2 8による追従制御の実行中においては、 演算処理部 2 8 のステータスを示す I /Oレジス夕 Vth CONTには「起動中」の旨を書き込む ことにより、 実行中である状態を N M S : Craft Terminal/SSE(System Surveillance Equipment)等を経由して上位装置である M P T Rに通知しつづ け、 追従制御の停止中においては、 I ZOレジス夕 Vth CONTには 「停止中」 の旨が書き込まれる。
上述のごとく追従制御が開始されると、 まず、 振幅閾値電圧を AZD変換部 2 9側に出力するための I Z〇レジス夕 VTH— SETを設定することにより、振 幅閾値電圧を Dフリップフロップ 2 4 eに設定する (ステップ S 8 )。
即ち、 この Dフリップフロップ 2 4 eに振幅閾値電圧 (識別点電圧) を設定 するためのキ一フラグである I /〇レジスタ Vth_ON/OFFを 「1」 (振幅閾値 電圧を出力可能状態とする旨のフラグ) とした上で、 演算処理部 2 8に設定さ れている振幅閾値電圧 Vth— setを I /〇レジスタ VTH— SETに設定してから、 I ZOレジスタ Vth_ON/OFFを「0」 (振幅閾値電圧を出力不可状態とする旨 のフラグ) に戻す。
これにより、 DZA変換部 2 9では上述の I ZOレジスタ VTH— SETに設定 された振幅閾値電圧値 (ディジタル信号) を読み込み、 これをアナログ信号に 変換して Dフリップフロップ 2 4 eに出力することができる。
そして、 演算処理部 2 8では、 上述の振幅閾値電圧 VTH_SETを出力してか ら、振幅閾値電圧変更設定直後のエラー安定化のための時間として、 Wait— time として設定された時間待機した後に (ステップ S 9 )、 Meas— time として設定 された測定時間の間に測定された誤り訂正個数を I /〇レジスタ ECから取得 する。 演算処理部 2 8においては、 このエラ一訂正個数を変数 EC_curとして 後段の演算処理に用いる (ステップ S 1 0 )。
換言すれば、 このステップ S 1 0により、 F E C同期 '復号処理部 2 6にお ける誤り訂正処理が行なわれた回数を取得する誤り訂正処理回数取得ステップ を構成する。
なお、 上述の Wait一 timeとして設定される待機時間としては、 初期値として 例えば 「1」 を設定することができるが、 本実施形態の場合においては 「0」 〜 「1 0」 の整数値に設定することもできる。 又、 Meas—timeとして設定され る測定時間についても、初期値として例えば「 1」を設定することができるが、 本実施形態の場合においては 「0」 〜 「1 0」 の整数値に設定したり、 「0」 〜 「1」 までの間の 0 . 1刻みの値を設定したりすることも可能である。
演算処理部 2 8において、 上述のごとくエラ一訂正個数を EC— curとして設 定すると、 次いで、 F E C同期 ·復号処理部 2 6が F E Cフレーム同期外れを 通知するための I ZOレジスタ SLOSTの値を読み出し、 この I ZOレジス夕 SLOST の値から、 同期外れが発生しているか (即ち捕捉エラーが生じている カ 、 同期がとれている状態か (即ち捕捉エラーが生じていないか) を、 それぞ れ保護段を設けて判定している (ステップ S 1 1 )。
なお、 ここでいう 「保護段」 とは、 一度の F E C同期外れ又は同期が取れて いる旨の I ZOデータの読み出しのみならず、 規定された回数の Iノ〇データ の読み出しによって、 F E C同期外れ又は F E C同期が取れていると判断する 演算処理部 2 8での処理機能を指す。
このとき、 後述するように、 同期が取れている判定が規定回数に達する場合 には、 後述するように振幅閾値電圧は現状の方向でそのまま進ませるが (後方 保護)、 F E C同期外れ状態の回数が規定保護回数を超えたら 「ハンチング」 と 称して、 強制的に振幅閾値電圧を現在指定されている方向に進ませる (前方保 護)。
具体的には、 演算処理部 2 8において、 I 〇レジス夕 SLOSTから 「同期 がとれている状態」である旨(SLOST非発生)が読み出されるごとに Hunt— bwd (初期値は 「0」) の値に 「1」 を加えてゆくことで、 演算処理部 2 8で F E C 同期が取れていると判断される回数をカウントしている (ステップ S 1 1の N Oルー卜からステップ S 1 2 )。
つまり、 この変数 Hunt—bwdは、ハンチングの後方保護回数カウンタとして 設定されるもので、 Hunt一 bwdが示す同期がとれていると判断される回数、 即 ち 1ノ〇レジス夕 SLOSTから 「同期がとれている状態」 である旨が読み出さ れた回数が最大値 MaxHunt— bwd以上となるまでは、 振幅閾値電圧 Vth_set を計算する処理を行なわないのである (ステップ S 1 3 )。
換言すれば、 補足エラーが発生していない旨を示す情報を第 2所定回数とし ての MaxHunt一 bwdの回数受けた場合に、演算処理部 2 8では捕捉エラーが生 じていないと判定するのである。 尚、 上述の MaxHunt一 bwdは、 例えば「 1 0 J に設定しておくことができるが、 本実施形態においては 「0」 〜 「2 6 6」 のうちの任意の値を設定することができる。
同様に、 演算処理部 2 8においては、 I ZOレジスタ SLOSTから 「F E C 同期外れの状態」 である旨 (SLOST発生) が読み出されるごとに Hunt— fwd (初期値は 「0」) の値に 「1」 を加えてゆくことで、 演算処理部 2 8で、 F E C同期外れが生じていると判断される回数をカウントしている (ステップ S 1 1の Y E Sルートからステップ S 2 2 )。
この変数 Hunt— fwdは、 ハンチングの前方保護回数カウン夕として設定され るもので、 この Hunt— fwdの値が示す同期外れと判断される回数、 即ち 1ノ0 レジスタ SLOSTから 「F E C同期の状態」 である旨が読み出された回数が最 大値 MaxHunt— fwd以上となるまでは、 後述する振幅閾値電圧を増減させる範 囲を狭めるための処理は行なわないのである (ステップ S 2 3 )。
換言すれば、 捕捉エラーを示す情報を: F E C同期 ·復号処理部 2 6から第 1 所定回数としての
Figure imgf000019_0001
の回数受けた場合に、 演算処理部 2 8では捕 捉エラ一が生じていると判定するのである。 尚、 上述の MaxHunt— fwdは、 例 えば 「2 0」 に設定しておくことができるが、 本実施形態においては 「0」 〜 「2 6 6」 のうちの任意の値を設定することができる。
したがって、 上述のステップ S 1 1〜S 1 3 , S 2 2 , S 2 3により、 F E
C同期 ·復号処理部 2 6でのフレーム捕捉処理において、 捕捉エラ一としての F E C同期外れが生じているか否かを判定する捕捉エラー判定ステップを構成 する。
さて、 I Z〇レジスタ SLOSTにおいて 「同期がとれている状態」 である旨 が通知されている場合において、 Hunt一 bwdが MaxHuntJwdの値以上となる までは、 Vplimitおよび Vmlimitの値をそれぞれ最大値 Vpmaxおよび Vmmax に維持しながら (ステップ S 13の NOル一卜からステップ S 14)、演算処理 部 28に設定された EC— curを前回測定時の誤り訂正回数 EC_preに設定して (ステップ S 21)、 もとの制御シーケンスに戻る(ステップ S 21からステツ プ S 4)。
すなわち、 補足エラーが発生していない旨を示す情報を受けた回数 Hunt— bwd が第 2所定回数としての MaxHimt— bwd となるまでは、 Vmlimit から Vplimitの値で定義される識別点電圧値の増減範囲を、 フォ卜ダイォード 24 aからの電気信号がとりうる最大範囲 (即ち Vmmaxと Vpmaxの値で定 義される範囲 〔後述の図 6 (a), 図 6 (b) 参照〕 に保持しておく。
すなわち、 Dフリツプフロップ 24 eに設定された識別電圧値 (Vth— SET に相当するアナログ値) を用いることにより、 追従制御を継続/停止する判断 基準となる I Z〇レジスタ Vth UNCONT, Vth CONTを参照しながら (ステ ップ S 4, S 5)、 誤り訂正個数の取得シーケンス (ステップ S 7〜ステップ S 10) に戻るのである。
さらに、 Hunt— bwdが最大値 MaxHmit— bwd以上^なつた場合には、 この Hunt— bwdを MaxHunt— bwdの値に設定するとともに(ステップ S 13の YE Sルートからステップ S 1 5)、 上述の変数 Hunt— fwd を 「0」 に設定する ( ステップ S 16)。
Hunt— bwdを MaxHunt— bwdに設定する処理に続いて、ステップ S 10で取 得した誤り訂正個数が 「0」 となっているか否かに基づいて、 以下に示す閾値 設定電圧の増減のための処理を行なう (ステップ S 17)。
したがって、 上述のステップ S 17により、 捕捉エラ一判定ステップ S 1 1 〜S 13において、 捕捉エラ一が生じていない場合において、 FEC同期 -復 号処理部 26での誤り訂正処理の回数の測定値が制御の目標値 (この場合は 「 0J) に到達しているか否かを判定する目標値到達判定ステップを構成する。 すなわち、 誤り訂正個数が 「0」 となっている場合には、 演算処理部 28に 設定された EC— curを前回測定時の誤り訂正回数 EC一 preに設定して (ステツ プ S 1 7の Y E Sルートからステップ S 2 1 )、もとの制御シーケンスに戻るこ とになるが(ステップ S 2 1からステップ S 4 )、 誤り訂正個数が「0」 となつ ていない場合には、 閾値設定電圧を増減させる処理を行なう (ステップ S 1 7 の N Oルート)。
このとき、 閾値設定電圧を増減させる処理としては、 まず誤り訂正個数の世 代比較を行なう。 即ち、 今回測定時の誤り訂正個数 EC一 curが、 前回測定時の 誤り訂正個数 EC— preよりも大きいか小さいかを判定する (ステップ S 1 8, 誤り訂正回数比較ステップ)。
ここで、 今回測定時の誤り訂正個数 EC一 curが、 前回測定時の誤り訂正個数 EC_ re よりも小さい場合には、 振幅閾値電圧の制御が正しい方向に向かって いると考えて、 Dir一 signによって設定される増減方向に従って、 閾値設定電圧 を増加 (又は減少) させる (ステップ S 1 8の N Oルートからステップ S 2 0 )。
また、 今回測定時の誤り訂正個数 EC— cur が、 前回測定時の誤り訂正個数 EC— pre よりも大きい場合には、 振幅閾値電圧の制御が間違った方向に向かつ ていると考え、 Dir— signによって設定される増減方向を反転させて (ステップ S 1 8の Y E Sルートからステップ S 1 9 )、 閾値設定電圧を増加 (又は減少) させる (ステップ S 2 0 )。
したがって、 上述のステップ S 1 9により、 誤り訂正回数比較ステップ S 1 8において、 今回取得した誤り訂正回数が前回取得した誤り訂正回数よりも小 さい場合には、 識別点電気信号を増減させる方向をそのままとする一方、 今回 取得した誤り訂正回数が前回取得した誤り訂正回数よりも大きい場合には、 識 別点電気信号を増減させる方向を反転させる増減方向決定ステップとして機能 する。
なお、 上述の Dir— signは、 初期値としては「+ 1」 を設定しておくことがで きるが、 この初期値状態においては、 閾値計算処理により Vth— setをステップ 幅 Vstep— setだけ増加させることになり、 符号が反転されて 「一 1」 となった 場合には閾値計算処理により Vth— setをステツプ幅 Vstep— setだけ減少させる (又はマイナス方向に増加させる) ことになる。 図 5は上述のステップ S 2 0における閾値設定電圧を増加 (又は減少) させ る閾値計算処理を説明するためのフローチャートである。 この図 5に示すよう に、 閾値計算処理として、 上述の Vth— set, Dir_signおよび Vstep— setを用い ることにより、 以下の式 (1 ) を計算することによって、 増加 (又は減少) さ れた振幅閾値電圧 Vth— set を計算する (ステップ S 2 0 1 )。 この式 (1 ) に 示すように、 もとの計算された Vth一 setは、 もとの Vth_setに対し Vstep— set だけ変化し、 その変化の方向は Dir一 signの符号で決定される。
Vth— set = Vth— set + Dir— sign XVstep— set … (1 ) したがって、 上述のステップ S 2 0 1は、 増減方向決定ステップ S 1 9にて 決定された増減方向に従って、 識別点電気信号を所定の増減単位量だけ増加又 は減少させる計算を行なう計算ステップとして機能する。
そして、 このように計算された Vth— setが、 Vth一 setとしてとりうる振幅閾 値電圧の最大値を超えたか否かを判断する。 即ち、 Vth— setが、 Vth_set とし てとりうるマイナス側振幅閾値電圧の最大値 Vmlimitを (マイナス方向に)超 えた場合には、 閾値設定電圧 Vth— setを当該最大値 Vmlimitとするとともに、 Dir_signを「一 1」から「+ 1」とすることにより、閾値計算処理により Vth一 set を変化させる方向を減少方向から増加方向に変更する (ステップ S 2 0 2の Y E Sルートからステップ S 2 0 3 )。
反対に、 Vth— setが、 Vth— set としてとりうるプラス側振幅閾値電圧の最大 値 Vplimitを (プラス方向に) 超えた場合には、 閾値設定電圧 Vth_setを当該 最大値 Vplimitとするとともに、 Dir— signを 「+ 1」 から 「一 1」 とすること により、 閾値計算処理により Vth一 setを変化させる方向を増加方向から減少方 向に変更する (ステップ S 2 0 2の N〇ルート, ステップ S 2 0 4の Y E Sル 一卜からステップ S 2 0 5 )。
なお、 Vth— setが、 上述のプラス側振幅閾値電圧の最大値 Vplimitを (ブラ ス方向に)超えておらず、 マイナス側振幅閾値電圧の最大値 Vmlimitを (マイ ナス方向に)越えていない場合には、 Dir— signの符号はそのままとし、 Vth— set を変化させる方向は変更しない (ステップ S 2 0 4の N Oルート)。
したがって、 上述のステップ S 2 0 2〜S 2 0 5は、 計算ステップ S 2 0 1 における識別点電気信号の計算の結果、 識別点電気信号が増減範囲の限界値と なった場合には、 識別点電気信号を増減させる方向を反転させる限界値処理ス テツプとして機能する。
上述のごとく Vth一 set が計算され、 次回の Vth— set の計算の際に用いる Dii'_signの符号を決定すると (ステップ S 2 0 3, S 2 0 4の N〇ルート, S 2 0 5 )、 演算処理部 2 8に設定された EC— cur を前回測定時の誤り訂正回数 EC^preに設定して (ステップ S 2 1 )、 もとの制御シーケンスに戻る (ステツ プ S 2 1からステップ S 4 )。
これにより、 上述のステップ S 1 7に続くステップ S 1 8〜S 2 1は、 目標 値到達判定ステップ S 1 7において、 誤り訂正処理の回数が目標値 「0」 に到 達していると判定された場合には、 識別点電気信号はそのままとする一方、 誤 り訂正処理の回数が目標値に到達していないと判定された場合には、 誤り訂正 処理の回数が当該目標値 「0」 に近づくように、 所定の増減範囲で識別点電気 信号を増加又は減少させる識別点電気信号増減ステップとして機能する。
ところで、 装置電源投入時から上述のごとき振幅閾値電圧の追従制御自動的 に開始すると、 ステップ S 4 , S 5におけるアラーム等や、 F E C同期外れが 生じなければ、 ステップ S 4〜ステップ S 2 1により、 閾値設定電圧 Vth_set は、初期値として設定された Vmlimitおよび Vplimitの範囲で、 誤り訂正個数 が最小となる方向に追従して増減するが、 F E C同期外れが保護段を越えて発 生した場合には、 上述の閾値設定電圧 Vth— setが増減する範囲が狭まるように 、 Vmlimitおよび Vplimitを変化させる。
すなわち、 I Z〇レジスタ SLOSTにおいて 「F E C同期外れの状態」 であ る旨が通知されている場合において(ステップ S 1 1の Y E Sルート)、 F E C 同期外れが保護段を越えるまで、即ち Hunt一 fwdが MaxHunt— fwdの値以上と なるまでは(ステップ S 2 2 , ステップ S 2 3の N Oル一ト)、演算処理部 2 8 に設定された EC— curを前回測定時の誤り訂正回数 EC— preに設定して (ステ ップ S 2 1 )、 もとの制御シーケンスに戻る(ステップ S 2 1からステップ S 4 さらに、 F E C同期外れが保護段を越えた場合、 即ち Hunt— fwd が最大値 MaxHunt— fwd以上となつた塲合には、 この Hunt_fwdを MaxHunt— fwdの値 に設定するとともに(ステップ S 2 3の Y E Sルートからステップ S 2 4 )、上 述の変数 Hunt— bwdを 「0」 に設定する (ステップ S 2 5 )。
ついで、 上述のステップ S 2 0 2 , S 2 0 4において用いるプラス側振幅閾 値電圧の最大値 Vplimitを振幅閾値電圧の初期値 Vth— initに Vnbを加算した 値とするとともに、マイナス側振幅閾値電圧の最大値 Vmlimitは振幅閾値電圧 の初期値 Vth一 initに Vnbを減算した値とする (ステップ S 2 6 )。 尚、 Vnbは 、 振幅閾値電圧の狭帯域制限幅を示すもので、 この場合には 「2 6」 と設定す ることができるが、 この他、 「0」 〜 「1 2 0」 の値の範囲内で、 任意に設定す ることも可能である。 尚、 Vnbを 「2 6」 とした場合には、 Vth_initは 「1 2 8」 であるので、 Vplimitは 「1 5 3」、 Vmlimitは 「1 0 3」 となる。
したがって、 上述のステップ S 2 6により、 捕捉エラー判定ステップ S 1 1 において、 捕捉エラーとしての F E C同期外れが生じている場合においては、 識別点電気信号増減ステップ S 1 8〜S 2 1において前記識別点電気信号を増 加又は減少させるための増減範囲を縮小させる増減範囲縮小ステップを構成す る。
• ついで、上述のごとく変更された Vplimitおよび Vmlimitの値を用いながら 、 前述の場合と同様の振幅閾値電圧の計算処理 (ステップ S 2 0 , 図 5のステ ップ S 2 0 1〜S 2 0 5参照) を行なうことにより、 振幅閾値電圧 Vth— SET を上述の Vmlimit 「1 0 3」 から Vplimitは 「1 5 3」 の範囲内で増減させる ことができる。このように振幅閾値電圧のとりうる範囲を制限することにより、 早期に同期外れから回復することが期待される。
なお、 このような振幅閾値電圧のとりうる範囲の制限により、 F E C同期外 れが復旧しても、 その確からしさは不明なので、 同期がとれている旨の判定が 規定回数に達するまでは、 振幅閾値電圧は現状の方向でそのまま進ませるが ( 後方保護, ステップ S 1 3の N Oルート)、 エラ一測定値の世代比較 (EC— cur と EC— preとの大小比較) は行なわず、 規定保護回数を超えたら、 ステップ S 1 9, S 2 0で、 エラー測定値の世代比較の判定を行ない、 振幅閾値電圧のシ フト動作を行なう。 なお、 上述の演算処理部 2 8において用いられる設定変数 Vth— init, Vstep一 init, Vnb, MaxHunt_fwd, MaxHunt_Dwd, Meas一 time, TimerlOに ついては、 デバッグ中に容易に変更可能な扱いができ、 デバッグ完了するまで は、 最終値決定とはならない。
上述の構成により、 送信変換装置 1 0から送信される光信号が波長多重され て伝送路 3 0を通じて伝送され、 波長分離されてから受信変換装置 2 0にて受 信するが、 この受信変換装置 2 0においては、 演算処理部 2 8において識別電 圧としての振幅閾値電圧を誤り訂正個数に常時追従して増減させることができ るので、 常に誤り訂正個数が少なくなるように識別点電圧 Vth— SETを増減さ せることができるので、 例えば、 図 6 ( a ) に未すような正常時のアイ ·パタ ーンを有する光信号が入力されている場合や、 図 6 ( b ) に示すような信号劣 化等が生じたアイ ·パターンを有する光信号となった場合においても、 図中信 号成分との重なりが少ない点に識別点 Iを設定することができる。
本発明者は、 上述のごとき、 演算処理部 2 8による振幅閾値電圧の追従制御 により、 符号誤り率を減少できることをシミュレーション実験により確認して いる。
このように、 本発明の一実施形態によれば、 追従制御部としての演算処理部 2 8による処理 (ステップ S 1〜S 2 6 ) により、 識別点を受信信号に応じて 常時最適化追従することにより、 符号誤り率を減少させて伝送品質を高品質に 保つことができる利点がある。
また、 本実施形態のごとく、 波長多重光伝送システムの受信側装置に本願発 明の受信信号の識別点追従制御を適用することにより、 受信変換装置毎 (即ち 波長毎) に異なる識別点に制御して識別することができ、 光ファイバ増幅器の 利得波長依存性に起因した波長毎の符号のレベルのバラツキが生じているとし ても、 符号誤り率を減少させて伝送品質を高品質に保つことができる。
なお、 上述した実施形態に関わらず、 本発明の趣旨を逸脱しない範囲で種々 変形して実施することができる。
なお、 本発明の各実施形態が開示されていれば、 当業者によって製造するこ とが可能である。 産業上の利用可能性
以上のように、 本発明の光信号受信装置およびその二値化処理用識別点制御 方法は、 受信信号の識別点電気信号との大小比較を行なって二値化されたディ ジ夕ルデータを出力する際に有用であり、 特に光海底中継伝送システム等の光 伝送システムにおける光信号受信装置における受信信号処理に適している。

Claims

請 求 の 範 囲
1 . フレーム形式でデータ信号が変調された光信号を受信しその強度に応じ た電気信号に変換する光電変換部と、 該光電変換部からの前記電気信号につい て、 所定の識別点電気信号との大小比較を行なうことにより、 二値化されたデ イジタルデータとして出力する二値化処理部と、 該ニ値化処理部からのデイジ タルデータから、該光電変換部で受信した光信号が変調されたフレーム情報を、 フレーム捕捉処理および誤り訂正処理を行なって復号する復号処理部とをそな えてなる光信号受信装置における前記二値化処理用識別点を制御する方法であ つて、
前記の復号処理部における誤り訂正処理が行なわれた回数を取得する誤り訂 正処理回数取得ステップと、
前記の復号処理部でのフレーム捕捉処理において、 捕捉エラ一が生じている か否かを判定する捕捉エラ一判定ステップと、
該捕捉エラー判定ステップにおいて、 前記捕捉エラーが生じていない場合に おいて、 前記の復号処理部での誤り訂正処理の回数が目標値に到達しているか 否かを判定する目標値到達判定ステップと、
該目標値到達判定判定ステップにおいて、 前記誤り訂正処理の回数が目標値 に到達していると判定された場合には、 前記識別点電気信号はそのままとする 一方、 前記誤り訂正処理の回数が目標値に到達していないと判定された場合に は、 前記誤り訂正処理の回数が当該目標値に近づくように、 所定の増減範囲で 前記識別点電気信号を増加又は減少させる識別点電気信号増減ステップと、 該捕捉エラー判定ステップにおいて、 前記捕捉エラーが生じている場合にお いては、 前記識別点電気信号増減ステップにおいて前記識別点電気信号を増加 又は減少させるための増減範囲を縮小させる増減範囲縮小ステップと、 をそなえて構成されたことを特徴とする、 光信号受信装置における二値化処理 用識別点制御方法。
2 . 該識別点電気信号増減ステツプが、
該誤り訂正回数取得ステップにおいて、 今回取得した誤り訂正回数と前回取 得した誤り訂正回数との大小を比較する誤り訂正回数比較二 該誤り訂正回数比較ステップにおいて、 今回取得した誤り訂正回数が前回取 得した誤り訂正回数よりも小さい場合には、 前記識別点電気信号を増減させる 方向をそのままとする一方、 今回取得した誤り訂正回数が前回取得した誤り訂 正回数よりも大きい場合には、 前記識別点電気信号を増減させる方向を反転さ せる増減方向決定ステップと、
前記増減方向決定ステップにて決定された増減方向に従って、 前記識別点電 気信号を所定の増減単位量だけ増加又は減少させる計算を行なう計算ステップ と、
該計算ステップにおける識別点電気信号の計算の結果、 該識別点電気信号が 前記増減範囲の限界値となった場合には、 前記識別点電気信号を増減させる方 向を反転させる限界値処理ステップと、
をそなえて構成されたことを特徴とする、 請求の範囲第 1項記載の光信号受信 装置における二値化処理用識別点制御方法。
3 . 該捕捉エラー判定ステップにおいて、 前記捕捉エラーが生じている場合 および前記捕捉エラ一が生じていない場合を、 それぞれ保護段を設けて判定す ることを特徴とする、 請求の範囲第 1項又は第 2項記載の光信号受信装置にお ける二値化処理用識別点制御方法。
4 . 該捕捉エラ一判定ステップにおいて、 第 1所定回数前記捕捉エラー発生 を示す情報を該復号処理部から受けた場合には、 前記捕捉エラーが生じている と判定する一方、 前記補足エラーが発生していない旨を示す情報を第 2所定回 数受けた場合には、 前記捕捉エラーが生じていないと判定することを特徴とす る、 請求の範囲第 3項記載の光信号受信装置における二値化処理用識別点制御 方法。
5 . 該捕捉エラー判定ステップにおいて、 前記補足エラーが発生していない 旨を示す情報を受けた回数が第 2所定回数となるまでは、 前記増減範囲を該光 電変換部からの前記電気信号がとりうる最大範囲に保持しておくことを特徴と する、 請求の範囲第 4項記載の光信号受信装置における二値化処理用識別点制 御方法。
6 . 外部からのアラーム信号に基づいて、 上記二値化処理用の識別点制御を 停止することを特徴とする、 請求の範囲第 1項〜第 5項のいずれか 1項記載の 光信号受信装置における二値化処理用識別点制御方法。
7 . フレーム形式でデータ信号が変調された光信号を受信してアナログ電気 信号に変換する光電変換部と、
該光電変換部からのアナログ電気信号について、 所定の識別点電圧との大小 比較を行なうことにより、 二値化されたディジタルデータとして出力する二値 化処理部と、
該ニ値化処理部からのディジ夕ルデータから、 該光電変換部で受信した光信 号が変調されたフレーム情報を、 フレーム捕捉処理および誤り訂正処理を行な つて復号する復号処理部と、
該復号処理部からの前記フレームの捕捉エラーに関する情報と、 前記誤り訂 正が行なわれた回数情報とを入力され、 これらの情報から、 前記二値化処理部 における前記識別点電圧を追従制御する追従制御部とをそなえて構成されたこ とを
特徴とする、 光信号受信装置。
PCT/JP2003/007013 2003-06-03 2003-06-03 光信号受信装置およびその二値化処理用識別点制御方法 WO2004109957A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03730796.4A EP1630983B1 (en) 2003-06-03 2003-06-03 Optical signal reception device and for-digitization discrimination point control method thereof
PCT/JP2003/007013 WO2004109957A1 (ja) 2003-06-03 2003-06-03 光信号受信装置およびその二値化処理用識別点制御方法
JP2005500530A JP3881001B2 (ja) 2003-06-03 2003-06-03 光信号受信装置およびその二値化処理用識別点制御方法
US11/152,332 US7319824B2 (en) 2003-06-03 2005-06-15 Optical signal receiver, and method for controlling identification point for binarization processing performed thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/007013 WO2004109957A1 (ja) 2003-06-03 2003-06-03 光信号受信装置およびその二値化処理用識別点制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/152,332 Continuation US7319824B2 (en) 2003-06-03 2005-06-15 Optical signal receiver, and method for controlling identification point for binarization processing performed thereby

Publications (1)

Publication Number Publication Date
WO2004109957A1 true WO2004109957A1 (ja) 2004-12-16

Family

ID=33495906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007013 WO2004109957A1 (ja) 2003-06-03 2003-06-03 光信号受信装置およびその二値化処理用識別点制御方法

Country Status (4)

Country Link
US (1) US7319824B2 (ja)
EP (1) EP1630983B1 (ja)
JP (1) JP3881001B2 (ja)
WO (1) WO2004109957A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI365615B (en) * 2007-03-22 2012-06-01 Realtek Semiconductor Corp Receiver of a displayport interface having an error correction circuit and method applied to the receiver
EP2043289A1 (en) * 2007-09-28 2009-04-01 Alcatel Lucent Method and communication system for transmitting a date signal over an optical transmission system
US8369705B2 (en) * 2009-06-10 2013-02-05 Alcatel Lucent System and method for channel-adaptive error-resilient transmission to multiple transceivers
TWI471723B (zh) * 2012-04-20 2015-02-01 Nat Univ Tsing Hua 利用光學傳輸之偵錯系統
CN105680952B (zh) * 2016-01-29 2018-01-26 北京邮电大学 一种信号跟踪方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291970A (ja) * 1992-04-10 1993-11-05 Fujitsu Ltd 交差偏波干渉補償器のリセット方式
JPH1117477A (ja) * 1997-06-24 1999-01-22 Nec Aerospace Syst Ltd 高周波受信装置
JP2000151550A (ja) * 1998-11-06 2000-05-30 Jisedai Digital Television Hoso System Kenkyusho:Kk 受信装置
JP2001358790A (ja) * 2000-04-15 2001-12-26 Mitel Semiconductor Ltd クォードレィチャー振幅変調復調器および受信機
GB2371187A (en) 2001-01-15 2002-07-17 Marconi Comm Ltd Signal slicing circuit with variable threshold levels
WO2003013030A2 (en) 2001-07-27 2003-02-13 Ciena Corporation An optical signal receiver
JP2003218964A (ja) * 2002-01-23 2003-07-31 Nec Corp 受信機及びそれに用いるエラーカウントフィードバック方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896391A (en) * 1996-12-19 1999-04-20 Northern Telecom Limited Forward error correction assisted receiver optimization
DE19717642A1 (de) * 1997-04-25 1998-11-05 Siemens Ag Verfahren zur Datenregeneration
US6463109B1 (en) * 1998-08-25 2002-10-08 Vitesse Semiconductor Corporation Multiple channel adaptive data recovery system
GB2354412A (en) * 1999-09-18 2001-03-21 Marconi Comm Ltd Receiver which optimises detection thresholds in response to the error rates of each data level
US6742154B1 (en) * 2000-05-25 2004-05-25 Ciena Corporation Forward error correction codes for digital optical network optimization
JP3652995B2 (ja) * 2001-03-16 2005-05-25 日本電気株式会社 クロックデータ再生回路の識別電圧制御回路と識別電圧制御方法及び光受信装置、識別電圧制御プログラム
US7164692B2 (en) * 2002-04-08 2007-01-16 Jeffrey Lloyd Cox Apparatus and method for transmitting 10 Gigabit Ethernet LAN signals over a transport system
WO2004095740A1 (ja) * 2003-04-23 2004-11-04 Mitsubishi Denki Kabushiki Kaisha 光受信装置および光伝送システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291970A (ja) * 1992-04-10 1993-11-05 Fujitsu Ltd 交差偏波干渉補償器のリセット方式
JPH1117477A (ja) * 1997-06-24 1999-01-22 Nec Aerospace Syst Ltd 高周波受信装置
JP2000151550A (ja) * 1998-11-06 2000-05-30 Jisedai Digital Television Hoso System Kenkyusho:Kk 受信装置
JP2001358790A (ja) * 2000-04-15 2001-12-26 Mitel Semiconductor Ltd クォードレィチャー振幅変調復調器および受信機
GB2371187A (en) 2001-01-15 2002-07-17 Marconi Comm Ltd Signal slicing circuit with variable threshold levels
WO2003013030A2 (en) 2001-07-27 2003-02-13 Ciena Corporation An optical signal receiver
JP2003218964A (ja) * 2002-01-23 2003-07-31 Nec Corp 受信機及びそれに用いるエラーカウントフィードバック方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1630983A4

Also Published As

Publication number Publication date
US7319824B2 (en) 2008-01-15
JPWO2004109957A1 (ja) 2006-07-20
US20060072926A1 (en) 2006-04-06
EP1630983A1 (en) 2006-03-01
EP1630983A4 (en) 2009-01-28
JP3881001B2 (ja) 2007-02-14
EP1630983B1 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
US8224180B2 (en) Method and system for protection switching
US7356256B1 (en) Digital performance monitoring for an optical communications system
US7151875B2 (en) Method and apparatus for balancing the power of optical channels traversing an optical add drop multiplexer
US10958338B2 (en) Short-term optical recovery systems and methods for coherent optical receivers
US7920791B2 (en) Passive optical network system and method of data transmission in the passive optical network
JP2013523046A (ja) 同調可能な受信機
JP2006180506A (ja) 光信号受信機において決定閾値を制御する方法および装置
EP2782282A2 (en) Soft maximum likelihood sequence estimation in digital communication
US7319824B2 (en) Optical signal receiver, and method for controlling identification point for binarization processing performed thereby
CN108391185B (zh) 一种光模块的控制方法、装置和光模块
US8712253B2 (en) Optical packet signal transmission device and WDM optical communication network
JP5104503B2 (ja) 光受信機及びその光位相制御方法
US8331781B2 (en) Optical access network, remote unit, optical communication method, and optical communication program
US8682157B2 (en) Optical communication system, optical receiving terminal, and optical signal fault detection method
JP2009177237A (ja) 分散補償装置
JP5206867B2 (ja) 光通信装置及び分散補償方法
JP4900481B2 (ja) 波長分割多重装置及び光信号の入力断の検出方法
EP1261159A1 (en) Differential dense wavelength division multiplexing (DDWDM) in optical systems
US7424230B2 (en) Digital transmission system
JP3498839B2 (ja) 光通信用受信器
US8295709B2 (en) Variable dispersion compensation device
ES2398753T3 (es) Dispositivo receptor óptico adaptativo y método asociado
US7076165B2 (en) Optical transponder with add/drop operation function of optical channels
JP3910615B2 (ja) 波長分割多重光信号の切り替え制御装置
US20070064236A1 (en) Method and circuit for statistical estimation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005500530

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11152332

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003730796

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003730796

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11152332

Country of ref document: US