WO2004107762A1 - 撮影方法及び撮影装置 - Google Patents

撮影方法及び撮影装置 Download PDF

Info

Publication number
WO2004107762A1
WO2004107762A1 PCT/JP2003/006839 JP0306839W WO2004107762A1 WO 2004107762 A1 WO2004107762 A1 WO 2004107762A1 JP 0306839 W JP0306839 W JP 0306839W WO 2004107762 A1 WO2004107762 A1 WO 2004107762A1
Authority
WO
WIPO (PCT)
Prior art keywords
photographing
distance
imaging
focus position
imaging device
Prior art date
Application number
PCT/JP2003/006839
Other languages
English (en)
French (fr)
Inventor
Seijiro Tomita
Original Assignee
Seijiro Tomita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seijiro Tomita filed Critical Seijiro Tomita
Priority to AU2003241981A priority Critical patent/AU2003241981A1/en
Priority to PCT/JP2003/006839 priority patent/WO2004107762A1/ja
Priority to JP2005500228A priority patent/JPWO2004107762A1/ja
Publication of WO2004107762A1 publication Critical patent/WO2004107762A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof

Definitions

  • the present invention relates to a photographing method and a photographing apparatus, and more particularly to a photographing method and a photographing apparatus for photographing a stereoscopic video.
  • stereoscopic images that represent a three-dimensional space are frequently used in games, movies, and the like, and give the illusion that the user is in a virtual space formed in the stereoscopic images. You can enjoy the realism of the content.
  • One method of capturing such a stereoscopic image is to simultaneously project the images obtained by the respective imaging means using two imaging means and stereoscopically view the image with the left and right eyes of the viewer. .
  • FIG. 7 is a schematic view showing an example of a conventional photographing apparatus.
  • the photographing apparatus 51 has a first photographing means 52, a second photographing means 53, and the like, and includes a first photographing means 52 and The second photographing means 53 are horizontally arranged with a parallax d therebetween.
  • the first photographing means 52 is fixed to the housing 51a, and the optical axis CL1 of the first photographing means 52 is formed in a fixed direction.
  • the second photographing means 53 is disposed so as to be swingable in the direction of arrow R with respect to the housing 1a, and the optical axis CL2 of the second photographing means 53 is set at an angle of 0 with respect to the optical axis CL1. You can only tilt it.
  • the first photographing means 52 has a function of outputting the photographed first field image fp1 to the control unit 54.
  • the second photographing means 53 has a function of outputting the photographed second field image fp2 to the control unit 54.
  • the control unit 54 processes the images photographed by the first photographing means 52 and the second photographing means 53 and displays them on the display unit 55.
  • the control unit 54 forms one frame image by alternately displaying the first field image fp1 and the second field image fp2, and outputs the frame image to the display unit 55.
  • an imaging target surface to be imaged is set, and a distance L from the imaging device 1 to the imaging target surface S is measured. Then, based on the measured distance L and the parallax d between the first imaging means 52 and the second imaging means 53, an angle 0 at which the second imaging means 53 should be tilted is calculated. At this time, the optical axis CL 1 of the first photographing means 52 and the optical axis CL 2 of the second photographing means 53 form a convergence point CP (“compare ence point”) on the photographing target surface S. .
  • the first photographing means 52 and the second photographing means 53 start photographing, and the photographed first field image fp 1 and the second field image fp 2 are sent to the control unit 54, respectively.
  • the first field image fp 1 and the second field image fp 2 are images obtained by photographing the photographing target surface S from different angles.
  • the control unit 54 forms a frame image in which the first field image fp 1 and the second field image fp 2 are alternately displayed (interlaced display), and causes the display unit 55 to display the frame image.
  • the frame image is displayed by the two field images fp1 and fp2 having different shooting angles, so that the user can view the stereoscopic video from the display unit 5.
  • the angle adjustment of the second photographing means 53 is performed by measuring the distance L from the photographing target surface S to be photographed to the photographing device 51, and using the measured distance L and a preset parallax d. Thus, the angle ⁇ at which the second photographing means 53 is inclined is calculated. Then, the second photographing means 53 is tilted by the angle ⁇ , and the setting of the compensating ence point CP on the photographing target surface S is performed.
  • the distance L to the photographing target surface S must be measured, which takes time.
  • the angle ⁇ ⁇ ⁇ to be inclined of the second photographing means 53 is very small, the distance L needs to be measured with high accuracy. Then, when an error occurs in the measured value of the distance L, each time the second photographing means 53 must be finely adjusted, there is a problem that it takes time and effort.
  • laser transmitters are provided for both photographing means, and laser light is emitted along the optical axis of each photographing means, so that both laser lights intersect on the plane of symmetry of photographing.
  • the shooting area (display area) 70 When displaying a stereoscopic image, as shown in FIG. 8, in the shooting area (display area) 70, the focus and the CP are focused on the shooting object O, and the areas 71 1, other than the predetermined area 73 near the CP, It is conceivable to blur 72 to make images other than the object less noticeable. For this reason, as shown in FIG. 7, when the photographing object O moves and moves to an area other than the above-mentioned area, for example, to a later area 71 (indicated by O 3 in FIG. 7), Since the object O is blurred, the CP must follow the object O in real time as it moves.
  • an object of the present invention is to solve the above-mentioned problems and to provide a photographing method and a photographing apparatus capable of adjusting the relative angle between the first photographing means and the second photographing means in real time during photographing with high accuracy in a short time. I have.
  • the present invention described in claim 1 includes a first photographing unit, a second photographing unit, and a swinging unit that at least one of the photographing units is swingably held.
  • each of the imaging means is used as an imaging target surface. Measure the distance to the object to be focused, and shake based on the distance.
  • An imaging method characterized by controlling moving means and determining the CPs of both the imaging means based on the position of the imaging target surface.
  • the position of the CP can be quickly matched with the imaging target surface by the driving unit based on the measured distance to the imaging target surface.
  • PC position information and focus position information are recorded on a recording medium for each captured frame. Things.
  • the PC position information and the focus position information are recorded for each frame, this information can be used at the stage of image display and other image processing.
  • the CP position and the focus position are always matched.
  • the subject can always be displayed at the display screen position.
  • the present invention described in claim 4 provides the imaging method according to claim 1 or 2 only when a shift of a predetermined value or more between the CP position and the focus position occurs. It is characterized by matching the CP position with the focus position.
  • a shift of a predetermined amount or more occurs between the CP position and the focus position. It is characterized by the following.
  • the amount of body lifting and sinking can be constant.
  • a shift of a predetermined amount or more occurs between the CP position and the focus position.
  • a warning screen is displayed at each location.
  • a warning screen such as a zebra pattern can be displayed at a position where a predetermined amount or more of deviation has occurred between the CP position and the focus position in a captured image, and the CP position and the focus position can be displayed. It can be easily recognized where the gap has occurred.
  • the distance measurement is performed using light.
  • the distance since the distance is measured using light, the distance can be measured non-contactly, quickly and accurately.
  • a distance measuring method using light any known means such as a triangulation method can be applied.
  • An eighth aspect of the present invention is the imaging method according to the first aspect, wherein the distance measurement is performed using an ultrasonic wave.
  • the distance measurement is performed using ultrasonic waves, the distance can be measured non-contactly, quickly and accurately, and no unnecessary image is reflected on the photographing device.
  • the distance measurement is performed using an electromagnetic wave.
  • the distance measurement is performed using an electromagnetic wave (one longer than the wavelength of infrared rays, for example, a millimeter wave radar), the distance can be measured quickly and accurately in a non-contact manner. Useless images are not reflected.
  • an electromagnetic wave one longer than the wavelength of infrared rays, for example, a millimeter wave radar
  • the present invention described in claim 10 includes claims 1 to 6.
  • the distance measurement is characterized by calculating a distance from an image captured by the first imaging means and the second imaging means to an imaging target surface. .
  • the distance to the photographing target surface can be obtained by calculation from the images acquired by the first photographing means and the second photographing means, so that it is not necessary to provide a special distance measuring means.
  • the present invention described in claim 11 is the imaging method according to any one of claims 1 to 10, wherein the swing drives an electric device provided at a lower portion of the imaging unit. It is characterized by the following.
  • each of the left and right imaging units is quickly and accurately driven by the electric device.
  • the present invention described in claim 12 is the imaging method according to any one of claims 1 to 11, wherein both the first imaging unit and the second imaging unit are driven to swing. It is characterized by the following.
  • the first photographing means and the second photographing means can be arranged at symmetrical positions with respect to an axis perpendicular to the photographing target plane.
  • the present invention described in claim 13 is the imaging method according to any one of claims 1 to 12, wherein the distance measurement and the CP position adjustment are performed during video shooting. It is a feature. ⁇
  • an optimum image can be obtained even when the object to be photographed is moving.
  • the present invention described in claim 14 is the imaging method according to any one of claims 1 to 12, wherein the distance measurement and the CP position adjustment are performed before capturing an image. It is assumed that. .
  • the present invention described in claim 15 is a photographing method according to any one of claims 1 to 12, wherein the imaging means is configured to measure a measured subject. It is characterized by focusing based on the distance to the shadow body.
  • the criterion for focusing by the imaging means and the criterion for setting the CP are the same, so that image defects due to errors in distance measurement can be prevented, and a distance measuring device is not required in the imaging device.
  • the present invention described in claim 16 includes a first photographing unit, a second photographing unit, and a swinging unit that at least one of the photographing units is swingably held, and the light of the first photographing unit is Move the position of the CP (Compact Bind Point) where the axis intersects the optical axis of the second photographing means. Move the above.
  • each photographing means focuses as a photographing target surface.
  • Distance measuring means for measuring the distance to the object; and swing adjusting means for controlling the swing means based on the distance and determining the CP of the two photographing means based on the position of the photographing target surface.
  • the swing adjusting means adjusts the swing means based on the distance to the photographing target surface measured by the distance measuring means, and adjusts the position of the CP. It is possible to quickly match the target surface.
  • the present invention described in claim 17 is the imaging device according to claim 16, further comprising a recording unit that records PC position information and focus position information on a recording medium for each captured frame.
  • a recording unit that records PC position information and focus position information on a recording medium for each captured frame.
  • the present invention described in claim 18 is the imaging device according to claim 16 or claim 17, wherein the swing adjusting means drives the swing means to adjust the CP position and the focus.
  • the feature is that the position is always matched.
  • the swing adjustment means always keeps the CP position and the focus position in one.
  • the subject can always be displayed at the position of the display screen.
  • the rotation adjusting means drives the rocking means to adjust the CP position and the focus. It is characterized in that the CP position and the focus position are matched only when a deviation of a predetermined value or more from the position occurs.
  • the swing adjusting means does not change the CP position even if the CP position is shifted from the focused position to the predetermined position, so that the CP position on the display screen does not move unnecessarily. Easy-to-view images can be provided.
  • the present invention described in claim 20 is the imaging device according to claim 16 or claim 17, wherein the rotational adjustment means drives the rocking means to adjust the CP position and the focus. It is characterized in that a deviation of at least a predetermined amount from the position is generated.
  • the present invention described in claim 21 is the photographing device according to any one of claims 16 to 20, further comprising a warning unit, wherein the warning unit is configured to switch between the CP position and the focus position. If a predetermined amount or more of deviation occurs in the meantime, a warning screen is displayed at a place where a certain amount or more of deviation occurs.
  • a warning screen for example, a zebra pattern can be displayed at a position where a predetermined amount or more of deviation has occurred between the CP position and the focus position in a captured image, and the CP position and the focus position can be displayed. It is easy to recognize where the deviation from the position has occurred.
  • the present invention described in claim 22 is the imaging apparatus according to any one of claims 16 to 21, wherein the distance measuring unit is an optical distance measuring unit. To do. According to the present invention, since the distance is measured using light, the distance can be measured non-contactly, quickly and accurately. As a distance measuring method using light, any known means such as a triangulation method can be applied.
  • the present invention described in claim 23 is the imaging device according to any one of claims 16 to 21, wherein the distance measuring unit is an ultrasonic distance measuring unit. To do.
  • the distance measurement is performed using ultrasonic waves, the distance can be measured non-contactly, quickly and accurately, and no unnecessary image is reflected on the photographing device.
  • the present invention described in claim 24 is the imaging device according to any one of claims 16 to 21, wherein the distance measuring unit is a radar unit using electromagnetic waves. It is a feature.
  • the distance measurement is performed using an electromagnetic wave (one longer than the wavelength of infrared rays, for example, a millimeter wave radar), the distance can be measured quickly and accurately in a non-contact manner. Useless images are not reflected.
  • an electromagnetic wave one longer than the wavelength of infrared rays, for example, a millimeter wave radar
  • the present invention described in claim 25 is the photographing device according to any one of claims 16 to 21, wherein the distance measuring means is a first photographing means and a photographed image of the second photographing means. It is characterized in that it is a calculating means for calculating the distance to the surface to be imaged. According to the present invention, the distance to the photographing target surface can be obtained by calculation from the images acquired by the first photographing means and the second photographing means, so that it is not necessary to provide a special distance measuring means.
  • the present invention described in claim 26 is the imaging device according to any one of claims 16 to 25, wherein the rocking means is an electric device provided below the imaging device. It is characterized by the following. According to the present invention, each of the left and right imaging means is quickly and accurately driven by the electric device.
  • the present invention described in Claims 27 to 17 is the invention of Claims 16 to Claims. 26.
  • the first photographing means and the second photographing means can be arranged at symmetrical positions with respect to an axis perpendicular to the plane to be photographed.
  • the present invention described in claim 28 is the imaging apparatus according to any one of claims 16 to 27, wherein the distance measurement by the distance measurement unit and the driving of the swing unit by the swing adjustment unit. Is characterized in that it is performed during video shooting.
  • an optimum image can be obtained even when the object to be photographed is moving.
  • the present invention described in claim 29 is a photographing apparatus according to any one of claims 16 to 27, wherein the distance measurement by the distance measurement unit and the driving of the swing unit by the swing adjustment unit are performed. Is characterized in that it is performed before shooting a video.
  • the present invention described in claim 30 is the imaging device according to any one of claims 15 to 29, wherein the imaging unit measures a distance to the object measured by the distance measurement unit. It is characterized by focusing on the basis.
  • the criterion for focusing by the imaging means and the criterion for setting the CP are the same, it is possible to prevent image defects due to errors in distance measurement and to eliminate the need for a distance measuring device in the imaging device.
  • FIG. 1 is a diagram showing an example of a form of a photographing apparatus according to the present invention.
  • FIG. 2 is a block diagram showing an embodiment of the photographing apparatus shown in FIG.
  • FIG. 3 is a diagram showing an operation state of the photographing device shown in FIG.
  • FIG. 4 is a flowchart showing the operation of the image display shown in FIG.
  • FIG. 5 is a block diagram showing another embodiment of the photographing apparatus according to the present invention. You.
  • FIG. 6 is a diagram showing a method of measuring the distance of the imaging device shown in FIG.
  • FIG. 7 is a diagram showing a conventional photographing device.
  • FIG. 8 is a diagram showing a display state of a stereoscopic image.
  • FIG. 1 is a diagram showing an embodiment of the photographing apparatus according to the present invention
  • FIG. 2 is a block diagram showing an embodiment of the photographing apparatus shown in FIG. 1
  • FIG. 3 is a flowchart showing the operation of the image display shown in FIG.
  • FIG. 4 is a diagram showing an operation state of the photographing device shown in FIG.
  • the photographing apparatus 1 includes a first photographing unit 2 disposed on the right side, a second photographing unit 3 disposed on the left side, and the like.
  • the second photographing means 3 is horizontally disposed at a distance of half (d / 2) of the parallax d from an axis C connecting the photographing reference 1a and the photographing object surface S in contact with the photographing object O.
  • the camera 2 as the first photographing means and the camera 3 as the second photographing means are step motors as rocking means for rocking in the directions of arrow R1 and arrow R2 with respect to the photographing reference 1a. 6 and 7 so that the optical axes CL 1 and CL 2 can be inclined by angles ⁇ 1 and ⁇ 2 with respect to the normals N 1 and N 2 of the reference line 1 a. I have. In this example, ⁇ 1 and 0 2 are controlled to have the same value so that C P (Compact Enhance Point) is on the axis C.
  • C P Cosmetic Enhance Point
  • the distance measuring means 4 is arranged on the axis C so as to measure the distance to the photographing object O, that is, the distance L to the photographing symmetry plane S.
  • an ultrasonic distance measuring device is used as the distance measuring means. This distance measuring device emits ultrasonic waves, receives reflected sound from the object to be photographed, and measures the distance L based on the time from transmission to reception. It is.
  • the step motors 2 and 3 are driven based on the distance L to drive the step motor, and control is performed such that the CP is located at the distance L on the axis C.
  • the automatic adjustment means 4 is provided.
  • the swing adjusting means 4 calculates the parallax d between the two photographing means 2 and 3 and the distance measured by the distance measuring device 4 described above.
  • a step motor driving means 12 for driving the step motors 6 and 7 based on the value of the angle ⁇ . If this value 0 is provided with a table that sets d and L as indexed extraction values, the time and effort of the arithmetic processing can be reduced.
  • a recording means 14 such as a video tape recorder or a video disk recorder is provided, and in addition to the image signals of the left and right cameras 2 and 3, the distances L and CP to the object O are recorded.
  • the distance to is recorded as data.
  • the distance data to the object O and the distance data to the CP may be recorded between frames of each image.
  • other means for example, an image signal may be directly transmitted to a broadcast wave, a distance L to the object O, and a distance to the CP may be transported as data.
  • a warning means 15 and a moeta 16 are provided.
  • the warning means 15 displays a warning screen, for example, a zebra pattern F, at a place where a certain amount or more of displacement occurs when a predetermined amount or more of displacement occurs between the CP position and the focus position. is there.
  • a zebra pattern F displays a stripe pattern on a monitor in a region where a certain amount or more of displacement has occurred.
  • the focus of the cameras 2 and 3 is adjusted to the imaging symmetry plane S based on the distance L measured by the ultrasonic distance measuring device 4. This means that the camera's own distance measurement may be performed, but the result of the distance measurement is not correct. -Be careful as it may be fatal.
  • the ultrasonic distance measuring device 4 measures the distance 1 to the imaging object O1 (S1). 1, S2, S3). Then, the previously set distance is compared with the currently measured distance, and if the difference exceeds a predetermined allowable amount, the camera angle calculating means 11 calculates the light of the cameras 2 and 3 from the above-described calculation formula.
  • the step motors 6 and 7 swing the cameras 2 and 3 to set C ⁇ on the photographing target ⁇ ⁇ 1 on the photographing target surface S 1. At this time, the focus of the cameras 2 and 3 is also set to ⁇ ⁇ 1.
  • the object to be photographed moves on the surface S2 to be photographed, and it is determined whether or not the amount exceeds the allowable amount (S4). If the amount is within the allowable amount, the photographing is continued as it is.
  • FIG. 5 and 6 show another embodiment of the present invention.
  • FIG. 5 is a block diagram showing another embodiment of the photographing apparatus according to the present invention
  • FIG. 6 is an explanatory view showing a method of measuring the distance of the photographing apparatus shown in FIG.
  • the photographing apparatus 1 is provided with distance calculating means 13 for acquiring image data from the two cameras 2 and 3 and measuring the distance from the image data to the photographing object as distance measuring means. I have.
  • the distance calculating means 13 calculates the distance L to the object of interest O and the deviation ⁇ y from the axis by the following method.
  • Equation 1 Equation 1 where f represents the focal length of the lens of the imaging means.
  • tan A is a constant of the angle of view of the camera, and can be obtained in advance by calculation and measurement.
  • the following numerical value 756 is the number of elements from the center of the CCD image sensor to the left and right edges. The number can be changed as appropriate by changing the number of image elements and the starting point of calculation (for example, setting the starting point to the left end).
  • XR and XL are the amount of image shift
  • ⁇ y is the amount of deviation from the center in this example.
  • the distance L to the object point and the shift amount Ay in the left and right directions are obtained from the images of the left and right imaging elements.
  • the table can store in advance the correction amount of the aberration for the optical element, and this value can be appropriately changed according to the correction amount of the lens or the like to be used.
  • the camera angle ⁇ is calculated in the same manner as in the above-described first embodiment, and CP can be made to substantially match the photographing object O.
  • an ultrasonic distance measuring unit and a unit that obtains a distance by calculation are used as the distance measuring unit, but other distance measuring units include a distance measuring method using light, for example, An infrared active method, a passive method, a triangulation method can be used, and any known means using an image processing method of a video signal of another digital camera, such as an electromagnetic wave, can be used as an imaging means. Radar means using the same can be used in the same way.
  • the reference light may be applied at the time of blanking between frames so that the reference light does not enter the image information.
  • the present invention includes a first photographing unit, a second photographing unit, and a swinging unit that holds at least one of the photographing units so as to be swingable, and an optical axis of the first photographing unit. And moving the position of a CP (comparence point) where the optical axis of the second photographing means intersects with the optical axis of the second photographing means.
  • the shooting method is characterized in that the distance between the shooting means is measured, and the oscillating means is controlled based on the distance, and the CP of the two shooting means is determined based on the position of the shooting target surface. Even if is moved, the position of the CP can be quickly matched to the imaging target surface by the rocking means based on the measured distance to the imaging target surface.
  • PC position information and focus position information are recorded on a recording medium for each captured frame. Since the PC position information and focus position information are recorded for each frame, this information can be used in image display and other image processing stages.
  • the present invention described in Claim 3 is characterized in that, in the imaging method according to any one of Claims 1 and 2, the CP position and the focus position are always coincident with each other. Since the CP position and the focus position can always be matched, the subject can always be displayed at the display screen position. ,
  • the present invention described in claim 4 provides the imaging method according to claim 1 or 2 only when a shift of a predetermined value or more between the CP position and the focus position occurs. Since the CP position and the focus position are matched, the CP position is not changed even if the CP position deviates from the focused position to the predetermined position. It is possible to provide easy-to-view images without moving unnecessarily.
  • the present invention described in claim 5 provides the imaging method according to any one of claims 1 and 2, further comprising: It is characterized by causing a shift of a predetermined amount or more, so that when the video is played back, the height of the object to be focused and the amount of sinking should be constant. Can be.
  • a shift of a predetermined amount or more occurs between the CP position and the focus position.
  • a warning screen is displayed at each location, so that a warning screen, for example, a zebra pattern, is displayed at a place where a certain amount or more of deviation between the CP position and the focus position in the captured image occurs. It can be displayed, and it is easy to recognize the position where the shift occurs between the CP position and the focus position.
  • the distance measurement is performed using light. Contact, distance can be measured quickly and accurately.
  • any known means such as a triangulation method can be applied.
  • the present invention described in claim 8 is the imaging method according to claim 1, wherein the distance measurement is performed using an ultrasonic wave. Contact, quick and accurate distance measurement can be performed, and unnecessary images are not reflected on the camera.
  • the distance measurement is performed using an electromagnetic wave (e.g., longer than an infrared wavelength, such as a millimeter wave). (Radar), so that distance measurement can be performed quickly and accurately without contact, and unnecessary images are not reflected on the imaging device. ..
  • the distance is measured based on images captured by the first imaging unit and the second imaging unit. It is a special feature that the distance to the object is calculated. Since it can be obtained by calculation from the images acquired by the first photographing means and the second photographing means, it is not necessary to provide a special distance measuring means.
  • the present invention described in claim 11 is the imaging method according to any one of claims 1 to 10, wherein the swing drives an electric device provided at a lower portion of the imaging unit. Therefore, each of the left and right imaging units is quickly and accurately driven by the electric device.
  • the present invention described in claim 12 is the imaging method according to any one of claims 1 to 11, wherein both the first imaging unit and the second imaging unit are driven to swing. Therefore, the first photographing means and the second photographing means can be arranged symmetrically with respect to an axis perpendicular to the plane to be photographed.
  • the present invention described in claim 13 is the imaging method according to any one of claims 1 to 12, wherein the distance measurement and the CP position adjustment are performed during video shooting. Since it is a feature, an optimal image can be obtained even when the object to be photographed is moving.
  • the present invention described in claim 14 is the imaging method according to any one of claims 1 to 12, wherein the distance measurement and the CP position adjustment are performed before the image is captured. Because of this feature, if the object does not move, the optimal image can be obtained simply by adjusting the CP and focus before shooting.
  • the imaging unit focuses on the basis of the measured distance to the object. Since the criterion for focusing by the imaging means and the criterion for setting the CP are the same, image defects due to errors in distance measurement can be prevented, and a distance measurement device is not required in the imaging device.
  • the present invention described in claim 16 includes a first photographing unit, a second photographing unit, and a swinging unit that holds at least one of the photographing units in a swingable manner.
  • the imaging apparatus is provided with an adjusting means, even if the object of each imaging means moves, the swing adjusting means is based on the distance to the imaging target surface measured by the distance measuring means. By adjusting the oscillating means, the position of the CP can be quickly matched with the surface to be imaged.
  • the present invention described in claim 17 is the imaging device according to claim 16, further comprising a recording unit that records PC position information and focus position information on a recording medium for each captured frame. Since the recording means records the PC position information and the focus position information for each frame, this information can be used in image display and other image processing stages.
  • the present invention described in claim 18 is the imaging device according to claim 16 or claim 17, wherein the swing adjusting means drives the swing means to adjust the CP position and the focus. Since the position is always coincident, the automatic adjustment means can always keep the CP position and the focus position coincident, so that the object to be photographed is always displayed at the display screen position. be able to.
  • the present invention described in claim 19 is the imaging device according to any one of claims 17 and 18, wherein the swing adjusting means drives the swing means to change the CP position. Since the CP position and the focus position are matched only when there is a deviation of a predetermined value or more from the focus position, the swing adjustment means starts from the point where the focus is achieved. Since the CP position is not changed even if the CP position deviates to the specified position, an easy-to-view image can be provided without the CP position on the display screen moving unnecessarily.
  • the present invention described in claim 20 is the imaging device according to any one of claim 16 and claim 17, wherein the swing adjusting means drives the swing means to change the CP position. It is characterized by causing a deviation of more than a predetermined amount from the focus position, so that when the video is played back, the height of the object to be focused and the amount of sinking are reduced by one. Can be fixed.
  • the present invention described in claim 21 is the photographing device according to any one of claims 16 to 20, further comprising a warning unit, wherein the warning unit is configured to switch between the CP position and the focus position. If a gap exceeding a predetermined amount occurs in between, a warning screen is displayed at the place where the gap exceeds a certain amount, so that the CP position and the focus position in the captured image are A warning screen, for example, a zebra pattern, can be displayed at a place where a predetermined amount or more of displacement has occurred in the meantime, and a place where a displacement has occurred between the CP position and the focus position can be easily recognized.
  • a warning screen for example, a zebra pattern
  • the present invention described in claim 22 is the imaging apparatus according to any one of claims 16 to 21, wherein the distance measuring unit is an optical distance measuring unit. Therefore, distance measurement can be performed quickly and accurately without contact.
  • the distance measuring unit is an optical distance measuring unit. Therefore, distance measurement can be performed quickly and accurately without contact.
  • any known means such as a triangulation method can be applied.
  • the present invention described in claim 23 is the imaging device according to any one of claims 16 to 21, wherein the distance measuring unit is an ultrasonic distance measuring unit. Therefore, the distance can be measured quickly and accurately in a non-contact manner, and unnecessary images are not reflected on the photographing device.
  • the present invention described in claim 24 is the imaging device according to any one of claims 16 to 21, wherein the distance measuring unit is an electromagnetic wave (e.g., longer than a wavelength of infrared light, for example, It is characterized by radar means using a millimeter-wave radar. In addition to being able to measure the distance quickly and accurately by touching, unnecessary images are not reflected on the camera.
  • the distance measuring unit is an electromagnetic wave (e.g., longer than a wavelength of infrared light, for example, It is characterized by radar means using a millimeter-wave radar.
  • the present invention described in claim 25 is the photographing device according to any one of claims 16 to 21, wherein the distance measuring means is a first photographing means and a photographed image of the second photographing means. It is characterized in that it is a calculating means for calculating the distance to the surface to be photographed, and thus the distance to the surface to be photographed is determined by the image obtained by the first and second photographing means. It is not necessary to provide any special distance measuring means since it can be obtained by calculation from.
  • the present invention described in claim 26 is the imaging device according to any one of claims 16 to 25, wherein the rocking means is an electric device provided below the imaging device. Therefore, each of the left and right imaging units is driven quickly and accurately by the electric device.
  • a swing unit is provided in both the first and second imaging units. Therefore, the first photographing means and the second photographing means can be arranged at symmetrical positions with respect to an axis perpendicular to the plane to be photographed.
  • the present invention described in claim 28 is the imaging device according to any one of claims 16 to 27, wherein the distance measurement by the distance measurement unit and the driving of the swing unit by the swing adjustment unit. Is characterized in that it is performed during video shooting, so that an optimum image can be obtained even when the object is moving.
  • the present invention described in claim 29 is the imaging device according to any one of claims 16 to 27, wherein the distance measurement by the distance measurement unit and the driving of the swing unit by the manual adjustment unit. The feature is that it is performed before shooting a video, so if the object does not move, an optimal image can be obtained only by adjusting the CP and focus once before shooting.
  • the present invention described in claim 30 is the imaging device according to any one of claims 15 to 29, wherein the imaging unit measures a distance to the object to be measured measured by the distance measurement unit. Since the focus is based on the focus, the standard for focusing the imaging means and the standard for setting the CP are the same, so that image defects due to errors in distance measurement can be prevented. No equipment is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Accessories Of Cameras (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

短時間で精度良く撮影時にリアルタイムで第1撮影手段と第2撮影手段の相対角度を調整することができる撮影方法及び撮影装置を提供することを目的として、第1撮影手段と、第2撮影手段と、少なくとも一方の撮影手段が揺動可能に保持する揺動手段とを備え、第1撮影手段の光軸と第2撮影手段の光軸とが交叉するCP(コンバージェンスポイント)の位置を移動させるべく前記を揺動させる撮影方法及び装置において、各撮影手段がピントを合わせる撮影対象面までの距離を計測し、前記距離に基づいて揺動手段を制御し前記両撮影手段のCPを前記撮影対象面の位置に基づいて決定する。

Description

撮影方法及び撮影装置 技術分野
本発明は、 撮影方法及び撮影装置に係り、 特に立体映像を撮影する ための撮影方法及び撮影装置に関する。 技術背景
近年、 マルチメディア関連産業が発達しており、 生活の身近なとこ ろにも関わってきている。 特に、 3次元空間を表現した立体映像は、 ゲームや映画等に頻繁に用いられ、 ユーザが立体映像内に形成された 仮想空間の中にいるような錯覚を起こさせて、 ゲームや映画等のコン テンッの臨場感を味わえるものとなっている。 このような立体映像を 撮影する方法の 1つとして、 2つの撮像手段を用いてそれぞれの撮影 手段により得られた映像を同時に映写し、 観者の左右両眼で立体視す ることがおこなわれる。
図 7は従来の撮影装置の一例を示す模式図であり、 該撮影装置 5 1 は、 第 1撮影手段 5 2、 第 2撮影手段 5 3等を有していて、 第 1撮影 手段 5 2及び第 2撮影手段 5 3は、 それぞれ視差 dだけ離れて水平に 配置されている。 また、 第 1撮影手段 5 2は筐体 5 1 aに対して固定 されており、 一定の方向に第 1撮影手段 5 2の光軸 C L 1が形成され ている。 一方、 第 2撮影手段 5 3は筐体 1 aに対して矢印 R方向に揺 動可能に配置されており、 光軸 C L 1に対して第 2撮影手段 5 3の光 軸 C L 2を角度 0だけ傾けることができるようになっている。
第 1撮影手段 5 2は撮影した第 1 フィールド画像 f p 1を制御部 5 4に出力する機能を有している。 また、 第 2撮影手段 5 3は撮影した 第 2フィールド画像 f p 2を制御部 5 4に出力する機能を有している。 制御部 5 4は、 第 1撮影手段 5 2と第 2撮影手段 5 3によって撮影さ れた画像を処理して表示部 5 5に表示されるものである。具体的には、 制御部 5 4はたとえば第 1 フィールド画像 f p 1と第 2フィールド画 像 f p 2を交互に表示することによって、 1つのフレーム画像を形成 して表示部 5 5に出力するものである。
次に、 撮影装置 1の動作例について説明する。 まず、 撮影すべき撮 影対象面が設定されて、 撮影装置 1から撮影対象面 Sまでの距離 Lが 測定される。 そして、 測定された距離 Lと第 1撮影手段 5 2と第 2撮 影手段 5 3の視差 dによって、 第 2撮影手段 5 3の傾けるべき角度 0 が算出される。 このとき、 第 1撮影手段 5 2の光軸 C L 1 と第 2撮影 手段 5 3の光軸 C L 2は、撮影対象面 S上で収束点 C P (「コンパージ エンスポイント」) を形成することとなる。 そして、 第 1撮影手段 5 2 と第 2撮影手段 5 3が撮影を開始して、 撮影された第 1 フィールド画 像 f p 1 と第 2フィールド画像 f p 2がそれぞれ制御部 5 4に送られ る。 このとき第 1 フィールド画像 f p 1と第 2フィールド画像 f p 2 は、 撮影対象面 Sをそれぞれ異なる角度から撮影された画像となって いる。
制御部 5 4は第 1 フィールド画像 f p 1 と第 2フィールド画像 f p 2を交互に表示させた (インターレース表示させた) フレーム画像を 形成して、表示部 5 5にそのフレーム画像を表示させる。このように、 撮影する角度の異なる 2つのフィールド画像 f p l、 f p 2によって フレーム画像が表示させることによって、 ユーザは表示部 5から立体 映像を鑑賞することができる。
上述したように、 第 2撮影手段 5 3の角度調整は、 撮影したい撮影 対象面 Sから撮影装置 5 1までの距離 Lが測定され、 測定された距離 Lと予め設定されている視差 dを用いて第 2撮影手段 5 3の傾けるベ き角度 Θが算出される。 そして、 第 2撮影手段 5 3が角度 Θだけ傾け られて、 撮影対象面 S上にコンパージエンスボイント C Pの設定が行 わ 。
しかし、第 2撮影手段 5 3の傾けるべき角度 0を算出するためには、 撮影対象面 Sまでの距離 Lを実測しなければならず、 時間がかかって しまうという問題がある。 また、 第 2撮影手段 5 3の傾けるべき角度 Θは微少であるため、 距離 Lの測定は、 高精度のものが要求される。 そして、 距離 Lの測定値に誤差が生じた場合、 その都度第 2撮影手段 5 3を微調整しなければならず、 手間がかかってしまうという問題が ある。 このよ うな不具合を改良した技術として、 両撮影手段にレーザ 発信器を設け、 各撮影手段の光軸に沿ってレーザ光を照射し、 両レー ザ光が撮影対称面上で交叉するようにしたもの (特開特開 2 0 0 1— 2 3 1 0 5 5号公報参照) もあるが、 撮影対象物上にレーザスポット が照射され撮影されてしまうため、 実際の撮影時にレーザ光を照射す ることができず、 撮影対象物が移動するような場合にはリアルタイム で C Pを調整することはできなかった。
また、 立体画像を表示するときには、 図 8に示すように、 撮影領域 (表示領域) 7 0において、 撮影対象物 Oにピントと C Pをあわせ、 C P近傍の所定領域 7 3以外の領域 7 1、 7 2にぼかしをかけ、 対象 物以外の画像が目立たないようにすることが考えられている。 このた め、図 7に示すように、撮影対象物 Oが移動して前記領域以外の領域、 例えば後の領域 7 1に移動した場合には(図 7中 O 3で示した)、 この 対象物 Oがぼけてしまうため、 C Pは撮影対象物 Oの移動にあわせて リアルタイムで追従させなければならない。
そこで本発明は上記課題を解消し、 短時間で精度良く撮影時にリア ルタイムで第 1撮影手段と第 2撮影手段の相対角度を調整することが できる撮影方法及び撮影装置を提供することを目的としている。
発明の開示
本発明において、請求の範囲 1に記載の本発明は、第 1撮影手段と、 第 2撮影手段と、 少なく とも一方の撮影手段が揺動可能に保持する揺 動手段と、 を備え、 第 1撮影手段の光軸と第 2撮影手段の光軸とが交 叉する C P (コンパージエンスポイント) の位置を移動させるベく前 記を揺動させる撮影方法において、 各撮影手段が撮影対象面としてピ ントを合わせる撮影対象までの距離を計測し、 前記距離に基づいて揺 動手段を制御し、 前記両撮影手段の C Pを前記撮影対象面の位置に基 づいて決定すること特徴とする撮影方法である。
本発明にあっては、 各撮影手段の対象が移動しても、 測定した撮影 対象面までの距離に基づいて摇動手段により C Pの位置を迅速に撮影 対象面に一致させることができる。
請求の範囲 2に記載の本発明は、 請求の範囲 1に記載の撮影方法に おいて、 撮影したフレームごとに P C位置情報と、 ピントの位置情報 とを記録媒体に記録することを特徴とするものである。
本発明によれば、 P C位置情報とピント位置情報をフレームごとに 記録しているから、 この情報を画像表示その他画像処理の段階で活用 することができる。
請求の範囲 3に記載の本発明は、 請求の範囲 1又は請求の範囲 2の いずれかに記載の撮影方法において、 C P位置とピント位置とを常に 一致させることを特徴とするものである。
本発明によれば、 C P位置とピント位置とを常に一致させておくこ とができるから、 被撮影隊は常に表示画面位置に表示させることがで さる。
請求の範囲 4に記載の本発明は、 請求の範囲 1又は請求の範囲 2の いずれかに記載の撮影方法において、 C P位置とピント位置との間に 所定の値以上のずれが生じたときだけ C P位置とピント位置とを一致 させることを特徴とするものである。
本発明によれば、 ピントが合っている個所から所定位置まで C P位 置がずれても C P位置の変更を行わないから、 表示画面の C P位置が むやみに移動することなく見やすい画像を提供できる。
請求の範囲 5に記載の本発明は、 請求の範囲 1又は請求の範囲 2の いずれかに記載の撮影方法において、 C P位置とピント位置との間に 予め定めた一定量以上のずれを生じさせることを特徴とするものであ る。
本発明によれば、 映像再生時において、 ピントが合っている被撮影 体の浮き出し量、 沈み込み量を一定のものとすることができる。
請求の範囲 6に記載の本発明は、 請求の範囲 1乃至請求の範囲 5の いずれかに記載の撮影方法において、 C P位置とピント位置との間に 予め定めた一定量以上のずれが生じた個所に警告画面を表示させるこ とを特徴とする。
本発明によれば、 撮影画像中の C P位置とピント位置との間に予め 定めた一定量以上のずれが生じた個所に警告画面例えばゼブラパター ンを表示することができ、 C P位置とピント位置との間にずれが生じ た個所を容易に認識できる。
請求の範囲 7に記載の本発明は、 請求の範囲 1に記載の撮影方法に おいて、 前記距離測定は、 光を用いて行うことを特徴とするものであ る。
本発明によれば、 距離測定は光を用いて行うので、 非接触、 迅速且 つ正確に距離を測定することができる。 光を用いる距離計測法として は、 三角測量法等公知のどのような手段でも適用できる。
請求の範囲 8に記載の本発明は、 請求の範囲 1に記載の撮影方法に おいて、 前記距離測定は、 超音波を用いて行うことを特徴とするもの である。
本発明によれば、 距離測定は超音波を用いて行うので、 非接触、 迅 速且つ正確に距離を測定することができるほか、 撮影装置への無用の 画像の写り込みが発生しない。
請求の範囲 9に記載の本発明は、 請求の範囲 1乃至請求の範囲 6の いずれかに記載の撮影方法において、 前記距離測定は、 電磁波を用い て行うことを特徴とするものである。
本発明によれば、 距離測定は電磁波 (赤外線の波長より長いもの、 例えばミリ波レーダ) を用いて行うので、 非接触、 迅速且つ正確に距 離を測定することができるほか、 撮影装置への無用の画像の写り込み が発生しない。
請求の範囲 1 0に記載の本発明は、 請求の範囲 1乃至請求の範囲 6 記載の撮影方法において、 距離測定は第 1撮影手段及び第 2撮影手段 の撮影画像から撮影対象面までの距離を演算するものであることを特 徴とするものである。 .
本発明によれば、 撮影対象面までの距離は、 第 1撮影手段及び第 2 撮影手段の取得した画像から計算により求めることができるので、 特 別の距離測定手段を設ける必要がない。
請求の範囲 1 1に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 0のいずれかに記載の撮影方法において、 前記揺動は撮影手段の下部 に設けられた電動装置を駆動することにより行うことを特徴とするも のである。
本発明によれば、 左右各撮像手段は電動装置により迅速且つ正確に 駆動される。
請求の範囲 1 2に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 1のいずれかに記載の撮影方法において、 前記第 1撮影手段及び第 2 撮影手段の両方を揺動駆動することを特徴とするものである。
本発明によれば、 第 1撮影手段及び第 2撮影手段を撮影対象面に直 角な軸に対して対称位置に配置できる。
請求の範囲 1 3に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 2のいずれかに記載の撮影方法において、 距離の測定は、 及び C P位 置調整は映像撮影中に行うことを特徴とするものである。 ·
本発明によ.れば、 被撮影物が移動している場合でも最適な画像を得 ることができる。
請求の範囲 1 4に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 2のいずれかに記載の撮影方法において、 距離の測定及び C P位置調 整は、 映像撮影前に行うことを特徴とするものである。 .
本発明によれば、 被撮影物が移動しない場合、 撮影前に一旦 C Pと ピントの調整をするだけで最適な画像を得ることができる。
請求の範囲 1 5に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 2のいずれかに記載の撮影方法において、 撮像手段は測定された被撮 影体までの距離に基づいてピントを合わせることを特徴とするもので ある。
本発明によれば、 撮像手段のピント合わせの基準と C P設定の基準 が同一になるため、 距離測定の誤差による画像不良を防止できる他、 撮像装置に距離測定装置が不要となる。
請求の範囲 1 6に記載の本発明は、 第 1撮影手段と、 第 2撮影手段 と、 少なくとも一方の撮影手段が揺動可能に保持する揺動手段とを備 え、 第 1撮影手段の光軸と第 2撮影手段の光軸とが交叉する C P (コ ンパージヱンスボイント) の位置を移動させるベく前記を摇動させる 撮影装置において、 各撮影手段が撮影対象面としてピントを合わせる 撮影対象までの距離を測定する距離測定手段と、 前記距離に基づいて 揺動手段を制御し前記両撮影手段の C Pを前記撮影対象面の位置に基 づいて定める揺動調整手段とを備えたことを特徴とする撮影装置であ る。
本発明にあっては、 各撮影手段の対象が移動しても、 距離測定手段 で測定した撮影対象面までの距離に基づいて揺動調整手段は揺動手段 を調整して、 C Pの位置を迅速に撮影対象面に一致させることができ る。
請求の範囲 1 7に記載の本発明は、 請求の範囲 1 6に記載の撮影装 置において、 撮影したフレームごとに P C位置情報と、 ピントの位置 情報とを記録媒体に記録する記録手段を備えた特徴とするものである。 本発明によれば、 記録手段は P C位置情報とピント位置情報をフレ ームごとに記録しているから、 この情報を画像表示その他画像処理の 段階で活用することができる。
請求の範囲 1 8に記載の本発明は、 請求の範囲 1 6又は請求の範囲 1 7のいずれかに記載の撮影装置において、 揺動調整手段は揺動手段 を駆動して、 C P位置とピント位置とを常に一致させることを特徴と するものである。
本発明によれば、 揺動調整手段は C P位置とピント位置とを常に一 致させておくことができるから、 被撮影体は常に表示画面位置に表示 させることができる。
請求の範囲 1 9に記載の本発明は、 請求の範囲 1 7又は請求の範囲 1 8のいずれかに記載の撮影装置において、 摇動調整手段は揺動手段 を駆動して、 C P位置とピント位置との間に所定の値以上のずれが生 じたときだけ C P位置とピン ト位置とを一致させることを特徴とする' ものである。
本発明によれば、 揺動調整手段は、 ピントが合っている個所から所 定位置まで C P位置がずれても C P位置の変更を行わないから、 表示 画面の C P位置がむやみに移動することなく見やすい画像を提供でき る。
請求の範囲 2 0に記載の本発明は、 請求の範囲 1 6又は請求の範囲 1 7のいずれかに記載の撮影装置において、 摇動調整手段は揺動手段 を駆動して、 C P位置とピント位置との間に予め定めた一定量以上の ずれを生じさせることを特徴とするものである。
本発明によれば、 映像再生時において、 ピントが合っている被撮影 体の浮き出し量、 沈み込み量を一定のものとすることができる。
請求の範囲 2 1に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 0のいずれかに記載の撮影装置において、 警告手段を備え、 該警告 手段は、 C P位置とピント位置との間に予め定めた一定量以上のずれ が生じたら、 一定量以上のずれが生じた個所に警告画面を表示させる ことを特徴とするものである。
本発明によれば、 撮影画像中の C P位置とピント位置との間に予め 定めた一定量以上のずれが生じた個所に、 警告画面例えばゼブラパタ ーンを表示することができ、 C P位置とピント位置との間にずれが生 じた個所を容易に認識できる。
請求の範囲 2 2に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 1のいずれかに記載の撮影装置において、 前記距離測定手段は、 光 学距離測定手段であることを特徴とするものである。 本発明によれば、 距離測定は光を用いて行うので、 非接触、 迅速且 つ正確に距離を測定することができる。 光を用いる距離計測法として は、 三角測量法等公知のどのような手段でも適用できる。
請求の範囲 2 3に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 1のいずれかに記載の撮影装置において、 前記距離測定手段は、 超 音波距離測定手段であることを特徴とするものである。
本発明によれば、 距離測定は超音波を用いて行うので、 非接触、 迅 速且つ正確に距離を測定することができるほか、 撮影装置への無用の 画像の写り込みが発生しない。 '
請求の範囲 2 4に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 1のいずれかに記載の撮影装置において、 前記距離測定手段は、 電 磁波を用いたレーダ手段であることを特徴とするものである。
本発明によれば、 距離測定は電磁波 (赤外線の波長より長いもの、 例えばミリ波レーダ) を用いて行うので、 非接触、 迅速且つ正確に距 離を測定することができるほか、 撮影装置への無用の画像の写り込み が発生しない。
請求の範囲 2 5に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 1のいずれかに記載の撮影装置において、 距離測定手段は第 1撮影 手段及び第 2撮影手段の撮影画像から撮影対象面までの距離を演算す る演算手段であることを特徴とすることを特徴とするものである。 本発明によれば、 撮影対象面までの距離は、 第 1撮影手段及び第 2 撮影手段の取得した画像から計算により求めることができるので、 特 別の距離測定手段を設ける必要がない。
請求の範囲 2 6に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 5のいずれかに記載の撮影装置において、 前記揺動手段は撮像装置 の下部に設けられた電動装置であることを特徴とするものである。 本発明によれば、 左右各撮像手段は電動装置により迅速且つ正確に 駆動される
請求の範囲 2 7に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 6のいずれかに記載の撮影装置において、 前記第 1及び第 2の撮影 手段の両方に揺動手段が設けられていることを特徴とするものである。 本発明によれば、 第 1撮影手段及び第 2撮影手段を撮影対象面に直 角な軸に対して対称位置に配置できる。
請求の範囲 2 8に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 7のいずれかに記載の撮影装置において、 距離測定手段による距離 測定及び揺動調整手段による摇動手段の駆動は、 映像撮影中に行うこ とを特徴とするである。
本発明によれば、 被撮影物が移動している場合でも最適な画像を得 ることができる。
請求の範囲 2 9に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 7のいずれかに記載の撮影装置において、 距離測定手段による距離 測定及び揺動調整手段による揺動手段の駆動は、 映像撮影前に行うこ とを特徴とするものである。
本発明によれば、 被撮影物が移動しない場合、 撮影前に一旦 C Pと ピントの調整をするだけで最適な画像を得ることができる。
請求の範囲 3 0に記載の本発明は、請求の範囲 1 5乃至請求の範囲 2 9のいずれかに記載の撮影装置において、 撮像手段は距離測定手段 で測定された被撮影体までの距離に基づいてピントを合わせることを 特徴とするものである。
本発明によれば、撮像手段のピント合わせの基準と C P設定の基準 が同一になるため距離測定の誤差による画像不良を防止できる他、 撮 像装置に距離測定装置が不要となる。
図面の簡単な説明
図 1は、 本発明に係る撮影装置の形態例を示す図である。
図 2は、 図 1に示した撮影装置の形態例を示すプロック図である。 図 3は、 図 1に示した撮影装置の作動の状態を示す図である。
図 4は、図 1に示した画像表示の作動を示すフローチヤ一トである。 図 5は、 本発明に係る他の撮影装置の形態例を示すプロック図であ る。
図 6は、 図 5に示した撮影装置の距離測定の方法を示す図である。 図 7は、 従来の撮影装置を示す図である。
図 8は、 立体画像の表示状態を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を参照して説明する。 図 1乃至図 4は、本発明に係る撮影装置の構成例を示すものである。 図 1は本発明に係る撮影装置の形態例を示す図、 図 2は図 1に示した 撮影装置の形態例を示すプロック図、 図 3は図 1に示した画像表示の 作動を示すフローチヤ一ト、 図 4は図 1に示した撮影装置の作動の状 態を示す図である。
本例において、 撮影装置 1は、 図 1に示すように、 右側に配置され た第 1撮影手段 2、左側に配置された第 2撮影手段 3等を有していて、 第 1撮影手段 2及び第 2撮影手段 3は撮影基準 1 aと撮影対象物 Oに 接する撮影対象面 Sを結ぶ軸 Cから視差 dの半分 ( d / 2 ) だけ離れ て水平に配置されている。
また、 第 1撮影手段であるカメラ 2と第 2撮影手段であるカメラ 3 とは、 撮影基準 1 aに対して矢印 R 1方向、 及び矢印 R 2方向に揺動 させる揺動手段であるステップモータ 6, 7上に配置されており、 光 軸 C L 1 と光軸 C L 2を基準線 1 aの法線 N 1 , N 2に対して角度 Θ 1, Θ 2だけ傾けることができるようになつている。 本例では、 C P (コンパージエンスボイント) が前記軸 C上にくるよう Θ 1 と 0 2と は等しい値になるよう制御される。
更に本例では、 前記軸 C上には距離測定手段 4が配置されており、 撮影対象物 Oまでの距離、 即ち撮影対称面 Sまでの距離 Lを測定する ようにしている。 本例では、 距離測定手段として超音波式の距離測定 装置を使用する。 この距離測定装置は、 超音波を発信して、 撮影対象 物での反射音を受信し発信から受信までの時間で距離 Lを測定するも のである。
そして、 本例では図 2に示すように、 距離 Lに基づいて前記ステツ プモータ 2, 3を駆動して前記ステップモータを駆動し、 軸 C上の距 離 Lの地点に C Pが位置するよう制御する摇動調整手段 4が設けられ ている。
この揺動調整手段 4は、 両撮影手段 2 , 3の視差量 d及び上述した 距離測定装置 4で測定した距離しから
Θ = t a n ~ 1 ( d / 2 L )
を求めるカメラ角度演算手段 1 1 と、 この角度 Θの値に基づいてス テツプモータ 6, 7を駆動するステップモータ駆動手段 1 2とを備え る。 この値 0は dと Lとをインデックスした抽出値として設定したテ 一ブルを設けておけば、 演算処理の手間が省ける。
また、 本例では、 例えばビデオテープレコーダ、 ビデオディスクレ コーダ等の記録手段 1 4が設けられており、 左右のカメラ 2, 3の画 像信号の他、 撮影対象物 Oまでの距離 L、 C Pまでの距離をデータと して記録している。 この際撮影対象物 Oまでの距離 L、 C Pまでの距 離データは各画像のフレーム間に記録すればよい。 尚、 媒体としては 他の手段、 例えば放送電波に直接画像信号、 撮影対象物 Oまでの距離 L、 C Pまでの距離をデータとして搬送してもよい。
更に、 本例では警告手段 1 5 とモエタ 1 6とを設けている。 該警告 手段 1 5は、 C P位置とピント位置との間に予め定めた一定量以上の ずれが生じたら、 一定量以上のずれが生じた個所に警告画面、 例えば ゼブラパターン Fを表示するものである。 これにより、 C P位置とピ ント位置との不自然な浮き出しや引っ込み量が生じる個所を容易に認 識できる。 ここでゼブラパターンは、 一定量以上のずれが生じた領域 部分を、 モニタ上で縞模様を表示するものである。
なお本例では、 超音波距離計測装置 4で計測した距離 Lに基づいて カメラ 2、 3のピントを撮影対称面 Sに合わせるようにしている。 こ れは、 カメラ独自の距離測定を行ってもよいが、 距離計測の結果が不 —致となる場合があるので注意を要する。
次に、 図 3及び図 4に基づいて本例に係る撮影装置の作動について 説明する。 まず、 図 3に示すように撮影対称面 S 1上にあるとき (図 3中 O 1で示した)、超音波距離測定装置 4が撮影対象物 O 1までの距 離 1を測定する (S 1, S 2, S 3)。 そして、 前回設定された距離 と今回測定した距離とを比較して、 その差が予め定められた許容量を 超えると、 カメラ角度演算手段 1 1は、 上述の計算式からカメラ 2, 3の光軸 C L 1 , C L 2と基準線 1 aの法線 N 1 , N 2との角度 θ = Θ 1 = Θ 2を演算して、 ステップモータ駆動手段 1 2に出力する (S 5)。 これにより、 ステップモータ 6, 7はカメラ 2, 3を揺動させ、 C Ρを撮影対象面 S 1上の撮影対象物 Ο 1上に設定する。 このとき力 メラ 2, 3のピントも撮影対象物 Ο 1に設定される。
そして、 撮影対象物が移動して撮影対象面 S 2上になり、 許容量を 超えるかどうかが判定され(S 4)、許容量内ならば撮影はそのまま続 行される。
距離の変化 Δ Lが許容量を超えた時には、 超音波距離測定装置 4測 定した対象物 (図中 Ο 2) までの距離 L 2を測定し (S 1 )、 カメラ角 度演算手段 1 1は、 上述の計算式からカメラ 2, 3の光軸 C L 1, C L 2と基準線 1 aの法線 N 1, N 2との角度 Θ 3 = 0 + Δ 0 = Θ 1 + 厶 Θ = Θ 2 + Δ Θを演算して、 ステップモータ駆動手段 1 2に出力す る (S 2)。 これにより、 ステップモータ 6 , 7はカメラ 2, 3を揺動 させ、 C Pを撮影対象面 S 2上の撮影対象物 O 2上に設定する。 この ときカメラ 2, 3のピントも撮影対象物 O 2に合わせられる。
図 5及び図 6は、 本発明の他の形態を示すものである。 図 5は本発 明に係る撮影装置の他の形態を示すプロック図、 図 6は図 5に示す撮 影装置の距離測定の方法を示す説明図である。
本例において、撮影装置 1は距離測定手段として、 2台のカメラ 2 , 3からの画像データを取得し、 この画像データから撮影対象物までの 距離を測定する距離演算手段 1 3を設けるものとレている。 この距離演算手段 1 3は、 着目物体 Oまでの距離 L及び軸じからの ずれ量 Δ yを以下の手法で計算する。
即ち、図 6において、左カメラ 3においては、以下の式が成立する。 y LP/{( A y / c o s 〔(Δ ζ — A y t a n 0 L) s i η Θ L] }= f / {( z c/ c o s Θ L)— 〔(A z — A y t a n 0 L) s i n Θ L] }
(式 1 ) ここで f は撮像手段のレンズの焦点距離を表している。
右力メラ 2の式でも同様の式が成り立つ。
そして、 0 L= 0 R= 0 としてカメラを固定すると式 1は以下のように 簡単となる。
y LP/ΚΔ y/ c o s θ )+[(Δ z - A y t a n 0 ) s i η θ ] }= f /{( ζ cZ c ο s θ )— 〔(Δ ζ — Δ y t a η 0 ) s i η 0〕 } . (式 2 ) 図 6より三角形 f 、 y! p、 O yと三角形 f P Qは相似であるので、 y LP/ 'A' = f / ' B ' となる。
ここで ' A, = 'c' + 'd'
' B, = 'e, ― £f,
として分け、 'c' 'd' 'e' 'f を導き出すと、
'c, =(A y Z c o s Θ )
'd' =(Δ z— A y t a n 0)Z s i n Θ
'e, =( z Q,/ c o s Θ )
£f =(Δ ζ — A y t a n 6 ) - c o s Θ
になる。
'c, 〜 'f' を yL/ 'A' =f/ 'B, に代入すると、
y (厶 yZ c o s 0 )+ 〔(A z —厶 y t a n 0 ) s i n Θ ] }= f / {( z c/ c o s Θ )- 〔(厶 z—厶 y t a n 0 ) c o s 0〕 } (式 3 ) この 2式(式 2及び式 3 )から Δ z、 Δ yを求めれば良い。
ここで t a n Aはカメラの画角で定数であるので、 計算及ぴ定測で あらかじめ求めておくことができる。 また、 以下の数値 7 5 6は C C D撮像素子の中央から左右の端縁までの素子数であり、 この値は、 撮 像素子の素子数及び計算の起端点を変更 (例えば起端点を左端にする 等) することにより適宜変更できる。
また、 ' R ' は、
〔(厶 z +厶 y t a n 0 ) s ΐ η θ — (A y / c o s θ )] / 〔{z / c o s θ — 〔(厶 ζ +Δ γ ΐ & η θ)Ζ。 。 3 0〕 } ΐ & ηΑ〕 =+ R/756
' L ' は、
〔(厶 z —厶 y t a n θ ) s i n Θ + (厶 y / c o s Θ )] / {{z / c o s Θ — 〔(厶 z —厶 y t a n 0 )/ c o s 0〕 } t a n A〕 =+xL/756 となる。
' R,
756(Δ z +A y t a n 0 ) s i n Θ - [(756 · Δ y )/ c o s 0〕 = 〔(十 z · x R · t a n A)/ c o s Θ 3 一 { C x R( Δ z + Δ y t a n Θ ) t a n A] / c o s Θ }
7¾b ' t a n Q ^ s i n e ― (756/ c o s Θ )+ C(X R - t a n Θ · t a n A)/ c o s θ〕 Δ y
=+756 - A z - s i n e+ Ciz - X R - t a n A)/ c o s Θ〕 一 〔(x R · 厶 z · t a n A)/ c o s Θ
' L '
756(Δ z - A y t a n 9 ) s i n Θ +〔(756 · Δ y )/ c o s Θ ] = [(+ z - X L " t a n A)/ c o s Θ ] — { 〔(X L(厶 z +厶 y t a n 0 ) t a n A)/ c o s Θ ]
-756 · t a n Θ · s i n Θ +(756/ c o s Θ )— { [-(x L · t a n Θ · t a n A)〕 / c o s 0 }} A y
=—756 - A z - s i n 0 -l- C( z - X L- t a n A)/ c o s Θ ] — C(x L · Δ z · t a n A)/ c o s Θ ]
〔― 756 · Δ ζ · s i n 0 +{ 〔 t a n A . xn(z —厶 z)〕 / c o s θ }〕 / {756 · t a n Θ · s i n Θ + [(-756+x R · t a n Θ · t a n A)/ c o s Θ ] }
= 〔― 756 · Α ζ · 3 ί η 0 +{ 〔 ΐ & η Α · χ L(+ z—厶 z )〕 / c o s θ }} / {-756 - t a n 9 - s i n 0 + 〔(756— X L - t a n θ · t a n A)/ c o s Θ〕 }
'K' =— 756 · 厶 z · s i n Θ
'M' =(-756+X R - t a n Θ · t a n A)/ c o s Θ
'N, =(756- X L · t a n Θ · t a n A)/ c o s Θ
' O ' =756 - t a n 0 - s i n 0 + 〔(— 756+X R · t a n Θ · t a n A)/ c o s Θ〕
' P, =-756 - t a n e - s i n e -l- 〔(756— X L - t a n Θ · t a n A)/ c o s Θ〕
{ 〔― '(¾, · Δ z + 'R, X R(z - Δ z )) / 'O' }={ 〔― 'Q, ' Δ z + ' R ' x L( z - Δ z )〕 / ' P ' }
£Q' ' P ' Δ z + ' R ' ' P ' x R · z - ' R ' ' P ' x R · Δ z = 一 'Q' Ό' · Δ z + Ό' ' R ' X L ' z - 'O, ' R ' X L . 厶 z
(― 'Q' ' P ' - 'R, ' P , . X R+ '0, ' R ' X L+ 'Q, 'O, )厶 z =+ Ό' £ R ' x L - z - £ R ' ' P, R - z =( '0, ' R ' X L— ' R ' ' P ' x R) z '
' S ' =- £Q' ' P ' 一 'R, ' P ' · X R+ Ό' ' R ' X L+ 'Q' '0, Ό ' = Ό' ' R ' X L- ' R ' ' P ' X R
ここで、
X R、 X Lは画像のズレ量
zは C P
求めるのは Δ ζである。
'R ' は下式で求められる。
756( A z +A y t a n 0 ) s i n ト 〔(756 - A y)/ c o s 0 ] = z · x R - t a n A)/ c o s Θ ] — { L X R、厶 z +A y t a n Θ ) t a n A〕 _ c o s 6 } -
756 · Δ z + [( x R · t a n A)/ c o s ] · Δ ζ二 〔(z · x R · t a n A)/ c o s Θ ] ― C(xR ' A y t a n 0 « t a n A)/ c o s Θ 3 一 756 - A y - t a n 0 - s i n 0 + [(756 · Δ y )/ c o s Θ ] {(756 · c o s Θ + x R · t a n A)/ c o s θ}Α ζ =(ζ · x R · t a n A- XR' 厶 y ' t a n 0 ' t a n A— 756 · Δ y · s i n 2 Θ +756 · Δ y )Z c o s Θ
'L' は下式で求められる。
756( A z _ A y t a n 6 ) s i η θ + [(756 · Δ y )/ c o s θ ] = 〔(z · x L · t a n A)/ c o s Θ 3 ― { 〔X L(A z _A y t a n Θ ) t a n A] / c o s 6 }
756 · 厶 z + C(x L · t a n A)/ c o s 6〕 - A z = 〔(z ' xL - t a n A)/ c o s Θ ] + [(xL ' A y t a n Q · t a n A)/ c o s Θ ) 一 756 - A y - t a n 0 - s i n 0 - 〔(756 · Δ y )Z c o s Θ〕
{(756 · c o s 9 +X L* t a n A)/ c o s θ }厶 z =(z · x L · t a n A+ L · A y - t a n Θ · t a n A— 756 · Δ y · s i n 2 Θ +756 · Δ y )/ c o s Θ
基本式より Δ yも計算する。 なお Δ yは、本例ではセンターからの ズレ量である。
( z · R · t a n A- X R - Δ γ · t a η Θ · t a n A -756 · Δ y · s i η2θ +756 · Δ y )/ 〔(756 - c o s e )-t-(xR - t a n A)〕 = ( z · x L * t a n A + X L * A y * t a n Θ · t a n A+756 · 厶 y · s i n20 - 756 · A y)/ 〔(756 · c o s Θ )+(xL * t a n A)]
〔 z · x R · t a n A+ (― x R · t a n Θ · t a n A— 756 s i n 2 Θ +756) Δ y〕 / 'L' = 〔 z · xい t a n A+(X L · t a n 0 · t a n A+756 · s i n20 -756) Δ y〕 / 'M'
'L' =( z · x R · t a n A- x R · Δ y · t a n Θ · t a n A— 756 · Δ y · s i n2 Θ +756 · Δ y)/ 〔(756 · c o s Θ )+( R · t a n A)]
'M' = (z - X L' t a n A+ X L- A y - t a n 6 ' t a n A+756 · Δ y · s i n20 -756 · Δ y )/ 〔(756 · c o s Θ )+(X L · t a n A))
'N' =■ XR · t a n Θ · t a n A— 756 s i n 2 Θ +756
Ό' = L · t a n Θ · t a n A+756 · s i η2θ -756
' Q' - z · x R · t a n A JR' = z ' XL * t a nA
'Μ' 'Q' + 'M' 'Ν' Δ y = 'L' 'R' + 'L' Ό' A y
{ 'M, 'N' - 'L, Ό' }Δ y =( 'L, 'R, - 'Μ' CQ' )
Δ y= 'S, / 'T,
これにより、 左右の撮像素子の画像から、 物点までの距離 L及ぴ左 右方向のずれ量 A yが求められる。
本例では、 この結果をテーブルに予め格納しておくことにより、 画 像取得時から瞬時に L及び Δ yの値を出力することができる。
また、 テーブルには予め光学素子に関する収差の補正量を格納して おくことができ、 この値は使用するレンズ等の補正量に合わせて適宜 変更できる。
これにより上述した第 1の形態と同様にカメラ角度 Θを演算し、 C Pを撮影対象物 Oにほぼ一致させることができる。
なお、 上記例では、 距離測定手段として、 超音波距離測定手段及び 計算により距離を求めるものを使用じた例を示したが、 他の距離計測 手段としては、 光を利用した距離測定方式、 例えば赤外線アクティブ 方式、 パッシブ方式、 三角測量法を用いることができ、 また、 撮像手 段としては、 別のデジタルカメラの映像信号の画像処理法等を利用し た公知のどのような手段、 例えば、 電磁波を用いたレーダ手段も同様 に使用できる。このとき光や赤外線を参照光として使用する場合には、 画像情報に参照光が入らないように、 フレームとフレームとの間のブ ランキング時に参照光を照射すればよい。
また、 上記例では揺動手段としてステップモータを使用した例を示 したが、 他の電動駆動手段、 流体圧駆動手段、 超音波モータ等を使用 することができる。
そして、 上記例では撮影中に距離測定を行うようにしたが、 静止物 を撮影するときには撮影前に距離の測定を行えば足りる。 産業上の利用可能性 請求の範囲 1に記載の本発明は、第 1撮影手段と、第 2撮影手段と、 少なく とも一方の撮影手段が揺動可能に保持する揺動手段とを備え、 第 1撮影手段の光軸と第 2撮影手段の光軸とが交叉する C P (コンパ ージエンスポイント) の位置を移動させるベく前記を摇動させる撮影 方法において、 各撮影手段が撮影対象面としてピントを合わせる撮影 対象までの距離を計測し、 前記距離に基づいて揺動手段を制御し前記 両撮影手段の C Pを前記撮影対象面の位置に基づいて決定すること特 徴とする撮影方法としたため、 各撮影手段の対象が移動しても、 測定 した撮影対象面までの距離に基づいて揺動手段により C Pの位置を迅 速に撮影対象面に一致させることができる。
請求の範囲 2に記載の本発明は、 請求の範囲 1に記載の撮影方法に おいて、 撮影したフレームごとに P C位置情報と、 ピントの位置情報 とを記録媒体に記録することを特徴とするものであるため、 P C位置 情報とピント位置情報をフレームごとに記録しているから、 この情報 を画像表示その他画像処理の段階で活用することができる。
請求の範囲 3に記載の本発明は、 請求の範囲 1又は請求の範囲 2の いずれかに記載の撮影方法において、 C P位置とピント位置とを常に 一致させることを特徴とするものであるため、 C P位置とピント位置 とを常に一致させておくことができるから、 被撮影隊は常に表示画面 位置に表示させることができる。,
請求の範囲 4に記載の本発明は、 請求の範囲 1又は請求の範囲 2の いずれかに記載の撮影方法において、 C P位置とピント位置との間に 所定の値以上のずれが生じたときだけ C P位置とピント位置とを一致 させることを特徴とするものであるため、 ピントが合っている個所か ら所定位置まで C P位置がずれても C P位置の変更を行わないから、 表示画面の C P位置がむやみに移動することなく見やすい画像を提供 できる。
請求の範囲 5に記載の本発明は、 請求の範囲 1又は請求の範囲 2の いずれかに記載の撮影方法において、 C P位置とピント位置との間に 予め定めた一定量以上のずれを生じさせることを特徴とするものであ るため、 映像再生時において、 ピントが合っている被撮影体の浮き出 し量、 沈み込み量を一定のものとすることができる。
請求の範囲 6に記載の本発明は、 請求の範囲 1乃至請求の範囲 5の いずれかに記載の撮影方法において、 C P位置とピント位置との間に 予め定めた一定量以上のずれが生じた個所に警告画面を表示させるこ とを特徴とするものであるため、 撮影画像中の C P位置とピント位置 との間に予め定めた一定量以上のずれが生じた個所に警告画面例えば ゼブラパターンを表示することができ、 C P位置とピント位置との間 にずれが生じた個所を容易に認識できる。
請求の範囲 7に記載の本発明は、 請求の範囲 1に記載の撮影方法に おいて、 前記距離測定は、 光を用いて行うことを特徴とするものであ るため、 距離測定を、 非接触、 迅速且つ正確に距離を測定することが できる。 光を用いる距離計測法としては、 三角測量法等公知のどのよ うな手段でも適用できる。
請求の範囲 8に記載の本発明は、 請求の範囲 1に記載の撮影方法に おいて、 前記距離測定は、 超音波を用いて行うことを特徴とするもの であるため、 距離測定を、 非接触、 迅速且つ正確に距離を測定するこ とができるほか、 撮影装置への無用の画像の写り込みが発生しない。 請求の範囲 9に記載の本発明は、 請求の範囲 1乃至請求の範囲 6の いずれかに記載の撮影方法において、 前記距離測定は、 電磁波 (赤外 線の波長より長いもの、 例えばミ リ波レーダ) を用いて行うことを特 徴とするものであるため、 距離測定を、 非接触、 迅速且つ正確に距離 を測定することができるほか、 撮影装置への無用の画像の写り込みが 発生しない.。
請求の範囲 1 0に記載の本発明は、 請求の範囲 1乃至請求の範囲 6 のいずれかに記載の撮影方法において、 距離測定は第 1撮影手段及び 第 2撮影手段の撮影画像から撮影対象面までの距離を演算するもので あることを特徼とするものであるため、 撮影対象面までの距離は、 第 1撮影手段及び第 2撮影手段の取得した画像から計算により求めるこ とができるので、 特別の距離測定手段を設ける必要がない。
請求の範囲 1 1に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 0のいずれかに記載の撮影方法において、 前記揺動は撮影手段の下部 に設けられた電動装置を駆動することにより行うことを特徴とするも のであるため、 左右各撮像手段は電動装置により迅速且つ正確に駆動 される。
請求の範囲 1 2に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 1のいずれかに記載の撮影方法において、 前記第 1撮影手段及び第 2 撮影手段の両方を揺動駆動することを特徴とするものであるため、 第 1撮影手段及び第 2撮影手段を撮影対象面に直角な軸に対して対称位 置に配置できる。
請求の範囲 1 3に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 2のいずれかに記載の撮影方法において、 距離の測定は、 及び C P位 置調整は映像撮影中に行うことを特徴とするものであるため、 被撮影 物が移動している場合でも最適な画像を得ることができる。
請求の範囲 1 4に記載の本発明は、 請求の範囲 1乃至請求の範囲 1 2のいずれかに記載の撮影方法において、 距離の測定及ぴ C P位置調 整は、 映像撮影前に行うことを特徴とするものであるため、 被撮影物 が移動しない場合、 撮影前に一旦 C Pとピントの調整をするだけで最 適な画像を得ることができる。
請求の範囲 1 5に記載の本発明は、 請求の範囲 1乃至 1 4に記載の 撮影方法において、 撮像手段は測定された被撮影体までの距離に基づ いてピントを合わせることを特徴とするものであるため、 撮像手段の ピント合わせの基準と C P設定の基準が同一になるため距離測定の誤 差による画像不良を防止できる他、 撮像装置に距離測定装置が不要と なる。
請求の範囲 1 6に記載の本発明は、 第 1撮影手段と、 第 2撮影手段 と、 少なく とも一方の撮影手段が揺動可能に保持する揺動手段とを備 え、 第 1撮影手段の光軸と第 2撮影手段の光軸とが交叉する C P (コ ンパージエンスボイント) の位置を移動させるベく前記を揺動させる 撮影装置において、 各撮影手段が撮影対象面としてピントを合わせる 撮影対象までの距離を測定する距離測定手段と、 前記距離に基づいて 揺動手段を制御し前記両撮影手段の C Pを前記撮影対象面の位置に基 づいて定める揺動調整手段とを備えたことを特徴とする撮影装置であ るため、 各撮影手段の対象が移動しても、 距離測定手段で測定した撮 影対象面までの距離に基づいて揺動調整手段は揺動手段を調整して、 C Pの位置を迅速に撮影対象面に一致させることができる。
請求の範囲 1 7に記載の本発明は、 請求の範囲 1 6に記載の撮影装 置において、 撮影したフレームごとに P C位置情報と、 ピントの位置 情報とを記録媒体に記録する記録手段を備えた特徴とするものである ため、 記録手段は P C位置情報とピント位置情報をフレームごとに記 録しているから、 この情報を画像表示その他画像処理の段階で活用す ることができる。
請求の範囲 1 8に記載の本発明は、 請求の範囲 1 6又は請求の範囲 1 7のいずれかに記載の撮影装置において、 揺動調整手段は揺動手段 を駆動して、 C P位置とピント位置とを常に一致させることを特徴と するものであるため、 摇動調整手段は C P位置とピント位置とを常に 一致させておくことができるから、 被撮影体は常に表示画面位置に表 示させることができる。
請求の範囲 1 9に記載の本発明は、 請求の範囲 1 7又は請求の範囲 1 8のいずれかに記載の撮影装置において、 揺動調整手段は、 揺動手 段を駆動して、 C P位置とピント位置との間に所定の値以上のずれが 生じたときだけ C P位置とピント位置とを一致させることを特徴とす るものであるため、 揺動調整手段は、 ピントが合っている個所から所 定位置まで C P位置がずれても C P位置の変更を行わないから、 表示 画面の C P位置がむやみに移動することなく見やすい画像を提供でき る。 · 請求の範囲 2 0に記載の本発明は、 請求の範囲 1 6又は請求の範囲 1 7のいずれかに記載の撮影装置において、 揺動調整手段は、 揺動手 段を駆動して、 C P位置とピント位置との間に予め定めた一定量以上 のずれを生じさせることを特徴とするものであるため、 映像再生時に おいて、 ピントが合っている被撮影体の浮き出し量、 沈み込み量を一 定のものとすることができる。
請求の範囲 2 1に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 0のいずれかに記載の撮影装置において、 警告手段を備え、 該警告 手段は、 C P位置とピント位置との間に予め定めた一定量以上のずれ が生じたら一定量以上のずれが生じた個所に警告画面を表示させるこ とを特徴とするものであるため、 撮影画像中の C P位置とピント位置 との間に予め定めた一定量以上のずれが生じた個所に警告画面、 例え ばゼブラパターンを表示することができ、 C P位置とピント位置との 間にずれが生じた個所を容易に認識できる。
請求の範囲 2 2に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 1のいずれかに記載の撮影装置において、 前記距離測定手段は、 光 学距離測定手段であることを特徴とするものであるため、 距離測定を 非接触、 迅速且つ正確に距離を測定することができる。 光を用いる距 離計測法としては、 三角測量法等公知のどのような手段でも適用でき る。
請求の範囲 2 3に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 1のいずれかに記載の撮影装置において、 前記距離測定手段は、 超 音波距離測定手段であることを特徴とするものであるため、 距離測定 を、 非接触、 迅速且つ正確に距離を測定することができるほか、 撮影 装置への無用の画像の写り込みが発生しない。
請求の範囲 2 4に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 1のいずれかに記載の撮影装置において、 前記距離測定手段は、 電 磁波 (赤外線の波長より長いもの、 例えばミ リ波レーダ) を用いたレ ーダ手段であることを特徴とするものであるため、 距離測定を、 非接 触、 迅速且つ正確に距離を測定することができるほか、 撮影装置への 無用の画像の写り込みが発生しない。
請求の範囲 2 5に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 1のいずれかに記載の撮影装置において、 距離測定手段は第 1撮影 手段及び第 2撮影手段の撮影画像から撮影対象面までの距離を演算す る演算手段であることを特徴とすることを特徴とするものであるため、 撮影対象面までの距離は、 第 1撮影手段及び第 2撮影手段の取得した 画像から計算により求めることができるので、 特別の距離測定手段を 設ける必要がない。
請求の範囲 2 6に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 5のいずれかに記載の撮影装置において、 前記揺動手段は撮像装置 の下部に設けられた電動装置であることを特徴とするものであるため、 左右各撮像手段は、 電動装置により迅速且つ正確に駆動される。
請求の範囲 2 7に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 6のいずれかに記載の撮影装置において、 前記第 1及び第 2の撮影 手段の両方に揺動手段が設けられていることを特徴とするものである ため、 第 1撮影手段及び第 2撮影手段を撮影対象面に直角な軸に対し て対称位置に配置できる。
請求の範囲 2 8に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 7のいずれかに記載の撮影装置において、 距離測定手段による距離 測定及び揺動調整手段による揺動手段の駆動は、 映像撮影中に行うこ とを特徴とするものであるため、 被撮影物が移動している場合でも最 適な画像を得ることができる。
請求の範囲 2 9に記載の本発明は、 請求の範囲 1 6乃至請求の範囲 2 7のいずれかに記載の撮影装置において、 距離測定手段による距離 測定及び摇動調整手段による揺動手段の駆動は、 映像撮影前に行うこ とを特徴とするものであるため、 被撮影物が移動しない場合、 撮影前 に一旦 C Pとピントの調整をするだけで最適な画像を得ることができ る。 請求の範囲 3 0に記載の本発明は、 請求の範囲 1 5乃至請求の範囲 2 9のいずれかに記載の撮影装置において、 撮像手段は距離測定手段で 測定された被撮影体までの距離に基づいてピントを合わせることを特 徴とするものであるため、 撮像手段のピント合わせの基準と C P設定 の基準が同一になるため距離測定の誤差による画像不良を防止できる 他、 撮像装置に距離測定装置が不要となる。

Claims

請求の範囲
1 . 第 1撮影手段と、 第 2撮影手段と、 少なく とも一方の撮影手段 が揺動可能に保持する揺動手段とを備え、 第 1撮影手段の光軸と第 2撮影手段の光軸とが交叉する C P (コンパ一ジヱンスポィント) の位置を移動させるベく前記を摇動させる撮影方法において、 各撮 影手段が撮影対象面としてピントを合わせる撮影対象までの距離を 計測し、 前記距離に基づいて揺動手段を制御し前記両撮影手段の C Pを前記撮影対象面の位置に基づいて決定すること特徴とする撮影 方法。
2 . 撮影したフレームごとに P C位置情報と、 ピントの位置情報と を記録媒体に記録することを特徴とする請求の範囲 1に記載の撮影 方法。
3 . C P位置とピント位置とを常に一致させることを特徴とする 請求の範囲 1又は請求の範囲 2のいずれかに記載の撮影方法。
4 . C P位置とピント位置との間に所定の値以上のずれが生じた ときだけ C P位置とピント位置とを一致させることを特徴とする請 求の範囲 1又は請求の範囲 2のいずれかに記載の撮影方法。
5 . C P位置とピン ト位置との間に予め定めた一定量以上のずれ を生じさせることを特徴とする請求の範囲 1又は請求の範囲 2のい ずれかに記載の撮影方法。
6 . C P位置とピント位置との間に予め定めた一定量以上のずれ が生じたら警告を発することを特徴とする請求の範囲 1乃至請求の範 囲 5のいずれかに記載の撮影方法。
7 . 前記距離測定は、 光を用いて行うことを特徴とする請求の範囲 1に記載の撮影方法。
8 . 前記距離測定は、 超音波を用いて行うことを特徴とする請求の 範囲 1に記載の撮影方法。
9 . 前記距離測定は、 電磁波を用いて行うことを特徴とする請求の 範囲 1乃至請求の範囲 6のいずれかに記載の撮影方法。
0 . 距離測定は、 第 1撮影手段及び第 2撮影手段の撮影画像から撮 影対象面までの距離を演算するものであることを特徴とする請求の 範囲 1乃至請求の範囲 6のいずれかに記載の撮影方法。
1 . 前記揺動は、 撮影手段の下部に設けられた電動装置を駆動する ことにより行うことを特徴とする請求の範囲 1乃至請求の範囲 1 0 のいずれかに記載の撮影方法。
2 . 前記第 1撮影手段及び第 2撮影手段の両方を揺動駆動するこ とを特徴とする請求の範囲 1乃至請求の範囲 1 1のいずれかに記載 の撮影方法。
3 . 距離の測定は、 映像撮影中に行うことを特徴とする請求の範囲 1乃至請求の範囲 1 2のいずれかに記載の撮影方法。
4 . 距離の測定は、 映像撮影前に行うことを特徴とする請求の範囲 1乃至請求の範囲 1 3のいずれかに記載の撮影方法。
5 . 撮像手段は測定された被撮影体までの距離に基づいてピン トを 合わせることを特徴とする請求の範囲 1乃至請求の範囲 1 4のいず れかに記載の撮影方法。
6 . 第 1撮影手段と、 第 2撮影手段と、 少なく とも一方の撮影手段 が揺動可能に保持する揺動手段と、 を備え、 第 1撮影手段の光軸と 第 2撮影手段の光軸とが交叉する C P (コンパージヱンスボイント) の位置を移動させるベく前記撮影手段を揺動させる撮影装置におい て、 各撮影手段が撮影対象面としてピントを合わせる撮影対象まで の距離を測定する距離測定手段と、 前記距離に基づいて揺動手段を 制御し、 前記両撮影手段の C Pを前記撮影対象面の位置に基づいて 定める揺動調整手段と、 を備えたことを特徴とする撮影装置。
7 . 撮影したフレームごとに P C位置情報とピン トの位置情報と を記録媒体に記録する記録手段を備えた特徴とする請求の範囲 1 6 に記載の撮影装置
8 . 揺動調節手段は、 揺動手段を駆動して C P位置とピント位置と を常に一致させることを特徴とする請求の範囲 1 6又は請求の範囲 1 7のいずれかに記載の撮影装置。 ·
9 . 揺動調節手段は、 揺動手段を駆動して、 C P位置とピント位置 との間に所定の値以上のずれが生じたときだけ C P位置とピント位 置とを一致させることを特徴とする請求の範囲 1 6又は請求の範囲 1 7のいずれかに記載の撮影装置。
0 . 揺動調節手段は、 揺動手段を駆動して、 C P位置とピント位置 との間に予め定めた一定量以上のずれを生じさせることを特徴とす る請求の範囲 1 6又は請求の範囲 1 7のいずれかに記載の撮影装置。1 . 警告手段を備え、 該警告手段は、 C P位置とピント位置との間 に予め定めた一定量以上のずれが生じたら一定量以上のずれが生じ た個所に警告画面を表示させることを請求の範囲 1 6乃至請求の範 囲 2 0のいずれかに記載の撮影装置。
2 . 前記距離測定手段は、 光学距離測定手段であることを特徴とす る請求の範囲 1 6乃至請求の範囲 2 1のいずれかに記載の撮影装置。 3 . 前記距離測定手段は、 超音波距離測定手段であることを特徴と する請求の範囲 1 6乃至請求の範囲 2 1のいずれかに記載の撮影装 置。
4 . 前記距離測定手段は、 電磁波を用いたレーダ手段であることを 特徴とする請求の範囲 1 6乃至請求の範囲 2 1のいずれかに記載の 撮影装置。
5 . 距離測定手段は、 第 1撮影手段及び第 2撮影手段の撮影画像か ら撮影対象面までの距離を演算する演算手段であることを特徴とす ることを特徴とする請求の範囲 1 6乃至請求の範囲 2 1のいずれか に記載の撮影装置。
6 . 前記揺動手段は、 撮像装置の下部に設けられた電動装置である ことを特徴とする請求の範囲 1 6乃至請求の範囲 2 4のいずれかに 記載の撮影装置。
7 . 前記第 1及び第 2の撮影手段の両方に揺動手段が設けられてい ることを特徴とする請求の範囲 1 6乃至請求の範囲 2 6のいずれか に記載の撮影装置。
8 . 距離測定手段による距離測定及び揺動調整手段による揺動手段 の駆動は、 映像撮影中に行うことを特徴とする請求の範囲 1 6乃 至請求の範囲 2 7のいずれかに記載の撮影装置。
9 . 距離測定手段による距離測定及び摇勲調整手段による揺動手 段の駆動は、 映像撮影前に行うことを特徴とする請求の範囲 1 6乃 至請求の範囲 2 7のいずれかに記載の撮影装置。
0 . 撮像手段は、 距離測定手段で測定された被撮影体までの距離に 基づいてピントを合わせることを特徴とする請求の範囲 1 5乃至請 求の範囲 2 9のいずれかに記載の撮影装置。
PCT/JP2003/006839 2003-05-30 2003-05-30 撮影方法及び撮影装置 WO2004107762A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003241981A AU2003241981A1 (en) 2003-05-30 2003-05-30 Photographing method and photographing device
PCT/JP2003/006839 WO2004107762A1 (ja) 2003-05-30 2003-05-30 撮影方法及び撮影装置
JP2005500228A JPWO2004107762A1 (ja) 2003-05-30 2003-05-30 撮影方法及び撮影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/006839 WO2004107762A1 (ja) 2003-05-30 2003-05-30 撮影方法及び撮影装置

Publications (1)

Publication Number Publication Date
WO2004107762A1 true WO2004107762A1 (ja) 2004-12-09

Family

ID=33485801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006839 WO2004107762A1 (ja) 2003-05-30 2003-05-30 撮影方法及び撮影装置

Country Status (3)

Country Link
JP (1) JPWO2004107762A1 (ja)
AU (1) AU2003241981A1 (ja)
WO (1) WO2004107762A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009012761A2 (de) * 2007-07-24 2009-01-29 Florian Maier Vorrichtung zur automatischen positionierung von gekoppelten kameras zur plastischen bilddarstellung
CN101930162A (zh) * 2009-06-22 2010-12-29 富士胶片株式会社 成像设备及其控制方法
WO2011050593A1 (zh) * 2009-10-30 2011-05-05 深圳市掌网立体时代视讯技术有限公司 立体拍摄自动会聚跟踪方法及系统
CN102495520A (zh) * 2011-12-14 2012-06-13 天津大学 自会聚式多视点三维数据采集系统及方法
CN102523479A (zh) * 2011-12-20 2012-06-27 深圳市掌网立体时代视讯技术有限公司 一种3d可视距离和可视角度的测量系统和方法
JP2013171079A (ja) * 2012-02-17 2013-09-02 Nec System Technologies Ltd 撮影支援装置、撮影支援方法、及びプログラム
CN107289247A (zh) * 2017-08-04 2017-10-24 南京乐朋电子科技有限公司 一种双摄像头三维成像装置及其成像方法
JP2020061736A (ja) * 2018-10-09 2020-04-16 ザ・ボーイング・カンパニーThe Boeing Company 動的焦点のための適応カメラ制御および較正

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099740A (ja) * 1998-09-25 2000-04-07 Hideyoshi Tominaga 画像合成方法、画像入力装置、及び画像合成プログラムを記録した記録媒体
JP2001016615A (ja) * 1999-06-30 2001-01-19 Canon Inc 立体撮影装置
JP2001013394A (ja) * 1999-06-30 2001-01-19 Canon Inc 立体撮影装置
JP2001148866A (ja) * 1999-11-19 2001-05-29 Minolta Co Ltd 画像入力装置
JP2002027496A (ja) * 2000-07-03 2002-01-25 Canon Inc 撮影レンズユニット、撮影装置及び撮影システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099740A (ja) * 1998-09-25 2000-04-07 Hideyoshi Tominaga 画像合成方法、画像入力装置、及び画像合成プログラムを記録した記録媒体
JP2001016615A (ja) * 1999-06-30 2001-01-19 Canon Inc 立体撮影装置
JP2001013394A (ja) * 1999-06-30 2001-01-19 Canon Inc 立体撮影装置
JP2001148866A (ja) * 1999-11-19 2001-05-29 Minolta Co Ltd 画像入力装置
JP2002027496A (ja) * 2000-07-03 2002-01-25 Canon Inc 撮影レンズユニット、撮影装置及び撮影システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009012761A2 (de) * 2007-07-24 2009-01-29 Florian Maier Vorrichtung zur automatischen positionierung von gekoppelten kameras zur plastischen bilddarstellung
WO2009012761A3 (de) * 2007-07-24 2009-03-12 Florian Maier Vorrichtung zur automatischen positionierung von gekoppelten kameras zur plastischen bilddarstellung
CN101930162A (zh) * 2009-06-22 2010-12-29 富士胶片株式会社 成像设备及其控制方法
JP2011004340A (ja) * 2009-06-22 2011-01-06 Fujifilm Corp 撮影装置及びその制御方法
WO2011050593A1 (zh) * 2009-10-30 2011-05-05 深圳市掌网立体时代视讯技术有限公司 立体拍摄自动会聚跟踪方法及系统
CN102495520A (zh) * 2011-12-14 2012-06-13 天津大学 自会聚式多视点三维数据采集系统及方法
CN102523479A (zh) * 2011-12-20 2012-06-27 深圳市掌网立体时代视讯技术有限公司 一种3d可视距离和可视角度的测量系统和方法
JP2013171079A (ja) * 2012-02-17 2013-09-02 Nec System Technologies Ltd 撮影支援装置、撮影支援方法、及びプログラム
CN107289247A (zh) * 2017-08-04 2017-10-24 南京乐朋电子科技有限公司 一种双摄像头三维成像装置及其成像方法
JP2020061736A (ja) * 2018-10-09 2020-04-16 ザ・ボーイング・カンパニーThe Boeing Company 動的焦点のための適応カメラ制御および較正
JP7444574B2 (ja) 2018-10-09 2024-03-06 ザ・ボーイング・カンパニー 動的焦点のための適応カメラ制御および較正

Also Published As

Publication number Publication date
JPWO2004107762A1 (ja) 2006-07-20
AU2003241981A1 (en) 2005-01-21

Similar Documents

Publication Publication Date Title
JP3905736B2 (ja) ステレオ画像撮像装置及び自動輻輳調整装置
US9148570B2 (en) Image pickup apparatus that allows for short-distance photographing
US6987531B2 (en) Imaging system, photographing device and three-dimensional measurement auxiliary unit used for the system
JPH05344403A (ja) 撮像装置
WO2004107762A1 (ja) 撮影方法及び撮影装置
JPH08149515A (ja) 立体撮像装置
JP3478686B2 (ja) 複眼撮像装置
JP2000283721A (ja) 3次元入力装置
JPH06105339A (ja) 立体カメラ装置
JP2010276710A (ja) 立体映像投影装置および方法
JPH08205200A (ja) 立体撮像装置
JP3976860B2 (ja) 立体映像撮像装置
JP3520197B2 (ja) 立体カメラ装置
JPH04261278A (ja) 撮影装置
JP4235291B2 (ja) 立体映像システム
JP2007248585A (ja) カメラ
JPH01259348A (ja) 3次元画像表示装置
JP3635942B2 (ja) 3次元入力装置
JPH10336704A (ja) 複眼カメラ装置
JPH0225842A (ja) 三次元撮影装置
JP5967868B2 (ja) 撮像装置およびレンズ装置
JP2002027498A (ja) 立体映像撮影装置
JP2002247603A (ja) 立体撮影光学機器および立体撮影システム
JP2004101664A (ja) 立体像撮影用のアダプタ、及び立体像取り込み装置の装着機構
JP2002191059A (ja) 立体撮影装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005500228

Country of ref document: JP

122 Ep: pct application non-entry in european phase