WO2004103893A1 - 微細構造体及びその製造方法 - Google Patents

微細構造体及びその製造方法 Download PDF

Info

Publication number
WO2004103893A1
WO2004103893A1 PCT/JP2004/006937 JP2004006937W WO2004103893A1 WO 2004103893 A1 WO2004103893 A1 WO 2004103893A1 JP 2004006937 W JP2004006937 W JP 2004006937W WO 2004103893 A1 WO2004103893 A1 WO 2004103893A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstructure
metal
film
layer
inorganic oxide
Prior art date
Application number
PCT/JP2004/006937
Other languages
English (en)
French (fr)
Inventor
Takashi Ueno
Takashi Mochizuki
Shinichiro Nakamura
Masayoshi Mikami
Original Assignee
Dept Corporation
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dept Corporation, Mitsubishi Chemical Corporation filed Critical Dept Corporation
Priority to JP2005506363A priority Critical patent/JPWO2004103893A1/ja
Publication of WO2004103893A1 publication Critical patent/WO2004103893A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography

Definitions

  • the present invention relates to a microstructure formed using a reactive ion etching method and a method for manufacturing the same.
  • the microstructure of the present invention is a structure having a fine order in a very wide unit range from Angstroms to millimeters.
  • the structure of the present invention is a unique structure which does not exist in the past, but as a means for forming a similar fine structure, a surface material is mainly represented by an electron beam lithography method or an etching method. Force by mechanical and physical cutting The structure was prepared separately and aligned on the surface of the substrate by a physical bonding method such as bonding or crimping. Although this structure is useful in many industrial production sites and research fields as shown in the present invention, it has been difficult to easily produce it.
  • the stability is high because there are many unstable factors in the quality and reliability of the structure that has to be mechanically processed. It is also considered.
  • an optical injection element of a near-field probe or an injection element that produces an oxide or metal columnar crystal and uses it for other functions has a cylindrical structure of about 10 lOOnm. Force to use objects All of these are mechanically processed by using both electron beam lithography and dry etching, so it is very difficult to control the processing shape and manufacture itself, and the selectivity of the shape is limited. It is said that there is.
  • the present invention does not require a separate process for performing conventional mechanical or physical polishing or precision processing, or for arranging separately prepared microstructures on a substrate surface.
  • a reaction occurs on the target object to generate and deposit a chemical reactant, and the deposit is self-organized to realize the growth of the structure. It is intended to provide a method for easily forming a chemically stable structure.
  • At least two layers of a metal and an inorganic acid are laminated on a substrate made of an inorganic material or a polymer material by an appropriate method such as vapor deposition by a sputtering method or a multiple simultaneous sputtering method.
  • a desired geometrical shape is formed on the laminated substrate by using a resist mask. After specifying an arbitrary structure such as a circle, rectangle, or two-dimensional lattice, by performing reactive ion etching, it is possible to obtain a hollow cylinder, hollow prism, or groove-like structure.
  • the size provided by the mask may be submicron, micron, submillimeter and millimeter in size, but is not limited.
  • the present inventors have caused a chemical reaction on an object to be grown, and a reaction product obtained by the reaction is caused to continuously cause a secondary chemical reaction, thereby producing a reaction product.
  • a reaction product obtained by the reaction is caused to continuously cause a secondary chemical reaction, thereby producing a reaction product.
  • the reaction between the etching gas and the processed substrate material in the dry etching process of the substrate is considered.
  • the structure and state of the reaction product can be controlled.
  • the temperature of the reaction product to be controlled is set to a temperature at which condensation starts, and the substrate is dry-etched, the etching gas or the reaction product is partially condensed, and this becomes a fine mask on the nanometer scale for etching. If fine processing on the nanometer scale becomes possible, and if an alignment mark or an etching photomask is formed on the substrate in advance, the condensation will occur around the alignment mark or the etching photomask. As a result, they found that microfabrication could be performed very advantageously, and based on this finding, completed the present invention.
  • the condensation nucleus indicates a marking that induces condensation or specifies a condensation site when a reaction product condenses.
  • the condensation start temperature of the reaction product varies depending on the material.
  • the temperature is 200 ° C-250 ° C, which is the starting point of the atom transfer (migration action), and Pt is over 500 ° C. It becomes.
  • the atom transfer start temperature can be defined as the condensation start temperature during the reactive ion etching process, and the time is the time for performing the reactive ion etching.
  • the time for performing the reactive ion etching can be arbitrarily changed according to the growth state of the condensed nuclei, and the longer the time, the higher the height of the formed microstructure element itself.
  • the temperature is specified by the metal applied to the microstructure element and the material of the inorganic oxide film, but the time differs depending on the aspect ratio.
  • the time for performing this reactive ion etching is preferably 31 minutes.
  • the method for producing a microstructure according to the present invention is directed to a multi-layer structure having at least two or more metal layers and inorganic oxide layers on a substrate made of an inorganic material or a polymer material.
  • a multilayer which is an inorganic oxide layer
  • form an alignment mark for the purpose of specifying the position on the uppermost layer, and perform a reactive ion etching step to change the shape of the alignment mark. It is characterized in that a reflected fine structure is generated.
  • the multilayer under the alignment mark undergoes a reactive ion etching step, thereby causing a chemical reaction between the inorganic oxide layer and the metal layer,
  • the object to be etched can be grown by causing self-organization by utilizing the migration action of metal atoms or ions in the metal layer and the self-organizing activity reaction. Thereby, a fine structure can be manufactured.
  • the alignment mark is a mark for determining a position at which a fine structure is formed.
  • a structure having a hollow portion therein is produced through the reactive ion etching step, and the structure is
  • the shape can be made according to the shape of the alignment mark. For example, when the shape of the alignment mark is circular, the structure is cylindrical or conical, and when the shape of the alignment mark is square, the structure is prismatic or pyramidal. .
  • the method for producing a microstructure according to the present invention is a multilayer structure having at least two layers of a metal layer and an inorganic oxide layer on a substrate made of an inorganic material or a polymer material.
  • a multilayer, which is an inorganic oxide layer, is formed, a photomask for etching is formed on the uppermost layer to specify the position, and the shape of the photomask for etching is formed through a reactive ion etching process. It is characterized in that a reflected fine structure is generated.
  • an etching photomask for specifying a position is formed on the multilayer, and the reactive ion etching step is performed.
  • the reactive ion etching step causes a chemical reaction with the metal layer and the atoms or ions of the metal in the metal layer
  • the object to be etched can be grown by inducing self-organization by utilizing the migration action and the dangling activation reaction of. Thereby, a fine structure can be manufactured.
  • a structure having a hollow portion therein is produced through the reactive ion etching step, and the structure is It is possible to make the shape according to the pattern shape of the etching photomask.
  • the pattern shape of the etching photomask is circular
  • the structure is cylindrical or conical
  • the pattern shape of the etching photomask is square
  • the structure is prismatic or conical. It has a pyramid shape.
  • the substrate or the metal layer and the inorganic oxide layer may react with the reactive ion etching step. It is preferable that the temperature be the temperature at which condensation of the reaction product by the ion etching step starts.
  • the metal layer may be formed of Si, Al, Cu, Ni, Ti, Zr, Ta, Cr, W, Mo, V, Co, Zn, In, It is also possible to form one type of metal material film composed of one or more elements of Au, Ag, Pt, Ir, and Ru, or to select two or three types and sequentially form films. .
  • one type of metal material film composed of one or more of Ti, Mo, Au, and Pt is formed, or two or three types are selected and sequentially formed.
  • the inorganic oxide layer may be made of A10
  • the microstructure according to the present invention comprises: a substrate made of an inorganic material or a polymer material;
  • a plurality of layers formed on the substrate A plurality of layers formed on the substrate,
  • a structure having a hollow portion inside formed on the multilayer, A microstructure comprising:
  • the multilayer has at least two or more metal layers and inorganic oxide layers, and the uppermost layer is an inorganic oxide layer;
  • the structure is characterized in that the multilayer is manufactured through a reactive ion etching process using an alignment mark or an etching photomask.
  • the metal layer may be made of Si, Al, Cu, Ni, Ti, Zr, Ta, Cr, W, Mo, V, Co, Zn, In, Au, Ag. , Pt, Ir, Ru, one kind of metal material film composed of one or more elements, and ⁇ , two or three kinds, can be selected and sequentially formed.
  • one kind of metal material film composed of one or more elements of Ti, Mo, Au, and Pt is formed, and in some cases, two or three kinds are selected and sequentially formed.
  • the inorganic oxide layer may be made of A10, SiO 2, Ga
  • a film having a material strength of any one of SiO and Al 0 or a composite oxide thereof is used.
  • a film formed a film obtained by selecting two or three types of materials and sequentially forming a film made of each material, or a film formed by combining each material.
  • microstructure thus obtained is provided to various industrial fields or research fields.
  • the following is an application field in which the convenience is obtained by using the microstructure of the present invention, but even if it is not described, the properties which are easily inferred by using this structure are imparted.
  • the uses belong to the invention.
  • a method for manufacturing a piezoelectric element according to the present invention is characterized in that a piezoelectric film is added to a microstructure manufactured by the above-described method for manufacturing a microstructure. Further, a method of manufacturing a capacitor having various memory functions according to the present invention is characterized in that a piezoelectric film is added to the fine structure manufactured by the above-described method of manufacturing a fine structure.
  • the piezoelectric element according to the present invention is characterized in that a piezoelectric film is added to the above-described microstructure. I do. Further, a capacitor having various memory functions according to the present invention is characterized in that a piezoelectric film is added to the aforementioned fine structure.
  • a device element according to the present invention is characterized in that a heat dissipation function, a waste heat function or a heat conduction function is added to the above-described microstructure.
  • a device using waste heat and heat dissipation or heat conduction characteristics such as a heat sink containing water or an organic material having a cooling function utilizing a hollow space, when a fine structure is arranged in parallel. Applicable to devices.
  • a light-emitting element according to the present invention is characterized in that a function of applying a voltage to the above-described microstructure to emit electrons is added.
  • a characteristic force produced on a metal substrate or a metal thin film can easily emit electrons by applying a voltage, and can be applied to an emitter device element having the characteristic.
  • a light-emitting element according to the present invention is characterized in that a fluorescent material is filled in the above-described microstructure.
  • the present invention can be applied to a light emitting device element manufactured by filling a fluorescent material into the inside utilizing a hollow structure.
  • a method for manufacturing a light emitting device according to the present invention is characterized in that a fluorescent material is filled inside a microstructure manufactured by the above-described method for manufacturing a microstructure.
  • the method for manufacturing a microreactor device element according to the present invention is characterized in that a catalyst having a controlled micro-size is manufactured by supporting a catalyst inside the microstructure manufactured by the above-described microstructure manufacturing method.
  • a microreactor device element according to the present invention is characterized in that a catalyst is carried inside the above-mentioned microstructure to form a reaction furnace of a controlled minute size.
  • a carbon nanotube Z carbon fiber production element according to the present invention is characterized in that a catalyst is supported inside the above-described microstructure.
  • the optical element according to the present invention is characterized by using the light scattering or light diffraction characteristics of the surface of the fine structure described above. For example, as a result of fabricating a fine structure on the order of nanometers, a structure in the wavelength region of light is obtained, and the structure can be used for an optical element characterized by using light scattering or light diffraction characteristics of the surface. .
  • light is focused by utilizing the hollow and through-hole shape of the microstructure.
  • the present invention can also be applied to an optical probe element.
  • An electric circuit device device is characterized by using the above-described microstructure. It can be used as a mounting method for electric circuits used for semiconductors and electronic components. Also, the present invention can be applied as a contact material for joining a solder material and the object to a printed circuit board or the like and a device element thereof.
  • a semiconductor device is characterized in that the above-described fine structure is used as a trench structure for forming a circuit.
  • Semiconductor devices with a trench structure that can lower the on-resistance by digging a trench on a Si substrate are widely known powers.Conventionally, avalanche withstand capability has been sacrificed and trench formation is difficult, so transistor circuits
  • planar technology for forming a smooth surface on the Si wafer surface was widely used.
  • the shape of the microstructure of the present invention can be controlled arbitrarily, and furthermore, since it is hollow and easy to provide a through-hole, forming the structure of the present invention on a Si substrate has two dimensions. Has enabled the formation of trenches and the formation of circuit elements having a three-dimensional structure, and their application to semiconductor devices.
  • This capacitance element corresponds to a conventional trench capacitance element.
  • an inorganic oxide film is formed on a Si substrate, an etching mask is formed on the inorganic oxide film, and the etching mask is used as a mask.
  • the inorganic oxide film is etched by a reactive ion etching method. As a result, a microstructure having a hollow inside, for example, a cylindrical structure is formed.
  • a first conductive film is filled inside the cylindrical structure, and a second conductive film is formed outside the cylindrical structure.
  • a capacitive element including the first conductive film, the cylindrical structure, and the second conductive film can be formed.
  • a biochip device is characterized by using the microstructure described above.
  • this microstructure can be used as a container as it is, and can be used as a biochip device for DNA, RNA, protein and the like.
  • microarray device uses the fine structure described above.
  • a metal bump element for mounting a semiconductor element according to the present invention is characterized by using the above-mentioned fine structure. Further, a substrate with a semiconductor element according to the present invention is characterized in that a semiconductor element is bonded using the metal bump element.
  • a reactive ion etching step is performed to form a fine layer reflecting the shape of the alignment mark.
  • a structure can be created. Therefore, it is possible to provide a fine structure having a hollow portion therein and a method for manufacturing the same.
  • SiO is mainly contained on a substrate.
  • SiO composite oxidation containing 0.1% or more and 50% or less by weight
  • the thickness of the composite oxide material film is preferably about 50 to 200 nm!
  • the substrate may be an inorganic or polymeric material, a substrate having a metal layer on its surface, or a multilayer having at least two layers of a metal layer and an inorganic oxide layer. Substrates having multiple layers in which the upper layer is an inorganic oxide layer are included.
  • the substrate may be a substrate in which a single layer or a plurality of layers of a conductive layer or an insulating layer are laminated on a substrate such as a Si wafer or a glass substrate which is a strong substrate such as a Si wafer or a glass substrate. included.
  • the step of forming the etching photomask or the alignment mark is performed by applying and exposing a resist film on the SiO composite oxide material film and developing the resist film. Forming an etching mask that also has a resist pattern power on the SiO composite oxide material film
  • the etching step may include any one of CF, CHF, CF, and CF.
  • the method for manufacturing a microstructure it is possible to form a structure having a hollow portion inside which is hard to be formed by a conventional microfabrication technique using photolithography technology or etching technology. .
  • the microstructure manufactured by the above manufacturing method is a structure having a hollow portion inside, and has an external shape of a cone, a pyramid, a cylinder, a prism, and optionally a cylinder or prism. It is possible to control.
  • the fine structure preferably has a width of about 100-1 m and a height of about 100-20 m. In the case of a cylindrical microstructure, the diameter is preferably about 50 to 20 m.
  • the hollow portion is opened near the top of the microstructure, and the microstructure may be made of a composite material containing Au or Ag as a main component.
  • FIGS. 1A and 1B are cross-sectional views illustrating a method for manufacturing a microstructure according to an embodiment of the present invention.
  • FIG. 2 is an enlarged photograph of the microstructure shown in FIG. 1 (B).
  • a substrate 11 is prepared.
  • a Si wafer or a glass substrate can be used.
  • an underlying metal laminated film 12 is formed on the substrate 11.
  • the metal laminated film 12 is a laminated film formed by laminating Ti and Au by RF magnetron sputtering in order from the lower layer.
  • SiO was used as a main component by RF magnetron sputtering.
  • a Si target is used as a sputtering target, and sputtering is performed by reacting Si and O in an O-reactive atmosphere. like this
  • the SiO composite oxide material film 13 is formed on the metal laminated film 12.
  • the SiO composite oxide material film 13 is formed.
  • the elements are not limited to silicon nitride.
  • the content of the additive silicon nitride is variously changed.
  • a resist pattern 14 is formed on the SiO composite oxide material film 13.
  • the resist pattern 14 is formed by arranging a plurality of circular patterns having a diameter of about 500 nm at equal intervals, and the distance between the circular patterns is about 500 nm.
  • the SiO composite oxide material film 13 is reacted with the resist pattern 14 as a mask.
  • Etching is performed by an etching method.
  • the etching conditions at this time are mainly CF gas.
  • the mixed gas described above is used as an etching gas, and the reaction is performed for about 20 minutes in an atmosphere where the flow rate of the input gas is 50 sccm, the input electric power is 00 W, and the degree of vacuum is 0.1 Torr.
  • FIG. 1B A photograph of this structure is shown in FIG.
  • the structure 15 has a conical outer shape and has a hollow portion 15a therein, and the hollow portion 15a is open near a vertex of the structure. Therefore, the structure 15 itself has a structure penetrating through the hollow portion 15a.
  • the structure 15 is made of a composite material film containing Au.
  • the size of the structure 15 is about 3 ⁇ in height and about 2 ⁇ in diameter.
  • a hollow portion 15a is provided inside as described above.
  • the structure 15 is formed when the active gas and the inert gas, or a composite gas thereof, activates the surface state of the metal when the metal is etched by the reactive ion etching.
  • the secondary reaction of the active gas can be caused by laminating the element to be etched with another specific metal during the reaction of the surface, and the metal that has caused the secondary reaction It is considered that the reason for this is that the deposited particles become chemically activated and the suspended sediment particles combine to cause a growth reaction.
  • the Au layer composed of the above forms a reaction product by forming a chemical interaction, and the reaction product condenses and grows by self-organization. As a result, it is considered that a fine structure was formed.
  • the SiO composite oxide material film 13 is used as the uppermost layer.
  • Main component is SiO.
  • SiO composite material film containing 0.1% to 50% by weight of oxides of at least one of O and GeO or nitrides such as TaN, TiN, and Si3N4.
  • the resist pattern 14 was formed on the SiO composite oxide material film 13.
  • etching gas a mixed gas of CF gas and O gas was used as the etching gas.
  • the present invention is not limited to the above-described embodiment, and can be variously modified and implemented without departing from the gist of the present invention.
  • the pattern shape of the resist pattern 14 to a rectangle, as shown in FIG. 3A, the inside is hollow, the bottom is about 1 ⁇ m ⁇ 2 / ⁇ , and the height is about 2.5 m.
  • a rectangular column-shaped fine structure can be manufactured.
  • a prismatic shape with a hollow interior, a bottom of about 1mX1m and a height of about 2.5m Can be manufactured.
  • etching conditions such as the etching time
  • a cylindrical microstructure having a hollow interior, a diameter of about 1 m and a height of about 2. can be manufactured as shown in FIG.
  • microstructure according to the present invention can be applied to forces that can be applied to various uses, for example, the following uses.
  • the present invention can be applied to a piezoelectric element manufactured by adding a piezoelectric film to the above-described microstructure or a capacitive element having various memory functions.
  • a device element manufactured by adding a heat dissipation function, a waste heat function or a heat conduction function to the above-described microstructure, a surface area increased when a fine structure is arranged in parallel, and a hollow structure is utilized.
  • the present invention can be applied to a device element using waste heat and heat dissipation or heat conduction characteristics such as a heat sink containing water or an organic material having a cooling function.
  • the present invention can be applied to a light emitting element in which a fluorescent material is filled inside the above-described microstructure, and a light emitting device element manufactured by filling a fluorescent material inside using a hollow structure.
  • the present invention can be applied to a microreactor device element for producing a reactor having a controlled minute size by supporting a catalyst inside a microstructure manufactured by the above-described method for manufacturing a microstructure.
  • the present invention can be applied to the above-described carbon nanotube Z carbon fiber producing element in which a catalyst is supported inside the fine structure.
  • the present invention can be applied to an optical probe element characterized in that light is focused by utilizing the shape of a hollow and a through hole of a microstructure.
  • the present invention can be applied to an electric circuit mounted device element using the above-described microstructure, and can be used as a method of mounting an electric circuit used in a semiconductor or an electronic component.
  • the present invention is also applied to a contact material for joining a solder material and the object to a printed circuit board or the like and a device element thereof.
  • the present invention can be applied to a semiconductor element using the above-described fine structure as a trench structure for forming a circuit.
  • the present invention can be applied to a Noo chip device using the above-described fine structure.
  • the microstructure can be used as it is as a container, and can be used as a biochip device for DNA, RNA, protein, and the like.
  • the present invention can be applied to a metal bump element for mounting a semiconductor element using the above-described fine structure. Further, the present invention can be applied to a substrate with a semiconductor element in which at least one semiconductor element is bonded using the metal bump element.
  • an inorganic oxide film is formed on a Si substrate, an etching mask is formed on the inorganic oxide film, and the inorganic oxide film is etched by a reactive ion etching method using the etching mask as a mask.
  • the inside is a hollow microstructure, for example, a cylindrical shape A structure is formed.
  • a first conductive film is filled inside the cylindrical structure, and a second conductive film is formed outside the cylindrical structure.
  • a capacitive element including the first conductive film, the cylindrical structure, and the second conductive film can be formed.
  • the shape and aspect can be arbitrarily designed and manufactured on a substrate.
  • the capacitive element can be formed using both sides (inside and outside) of the wall surface of the groove, a three-dimensional capacitive element structure can be realized.
  • the plug electrode can also be formed three-dimensionally. Under these circumstances, it is possible to realize a semiconductor memory having three-dimensional plugs and capacitor cells, and to apply design rules that utilize large-scale and efficient substrates. Will come to life.
  • FIGS. 1A and 1B are cross-sectional views illustrating a method for manufacturing a microstructure according to an embodiment of the present invention.
  • FIG. 2 is an enlarged photograph of the microstructure shown in FIG. 1 (B).
  • FIG. 3 (A) is an enlarged photograph of a microstructure according to a modification of the embodiment according to the present invention
  • FIG. 3 (B) is an enlarged photograph of a microstructure according to another modification. It is.
  • FIG. 4 is a photograph showing a fine structure according to another modification of the example according to the present invention. Explanation of reference numerals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Drying Of Semiconductors (AREA)

Description

明 細 書
微細構造体及びその製造方法
技術分野
[0001] 本発明は、反応性イオンエッチング法を用いて形成される微細構造体及びその製 造方法に関する。本発明の微細構造体とは、オングストロームよりミリオーダーまでの 大変広い単位範囲で微細な秩序を有した構造体である。
背景技術
[0002] 本発明の構造体は従来には存在しない特異な物であるが、類似の微細構造を形 成する手段としては、主として表面素材を電子線リソグラフィ一法もしくはエッチング 法に代表される、機械的および物理的切削による力 別途個別に作成した構造体を 接着や圧着などの物理的な接合方法により基盤表面に整列させてなるものであった 。この構造体は本発明で示す様に多くの工業生産現場乃至研究分野で有用である にも関わらす簡便に作成することが困難であった。
[0003] また、これらの方法によると微細な形状にする場合の製造プロセスが複雑であった り、形状の制御や選択性に制約が大きい等、幾多の課題が存在している。この為、製 造プロセスにかなりの時間を要する上、スループットが低ぐ装置も高価である為に製 造コストが高価になってしまうなどの欠点があった。
[0004] また、最近では ECRエッチング法 (電子サイクロトロン共鳴型ドライエッチング法)等 により、化学的に機械加工を施して基板上に柱状の構造体を製作する方法も開発が なされたが、エッチング法を行う場合は対象とされる材料や使用ガスを含む製造方法 に制約を多く設ける為に、量産技術としてはその有用性が必ずしも高いとは考えられ ていない。
また、いずれの方法を活用した場合であっても、機械的に加工を施す為に出来上 力 Sつた構造物の品位や信頼性等において不安定な要素が多ぐ安定性を欠いてい るとも考えられる。
[0005] 例えば半導体素子に用いる為に、トレンチと言われるアスペクト比が大きい形状の 構造を形成する場合に、その技術的信頼性の確保の為に必要な情報に対し、これら の機械的加工技術については難易度が高い為に製造方法に依存することが高ぐ 制限を多く設ける製造プロセスにお 、ては優位性が高 、とは考え難 、。
[0006] また、例えば酸ィ匕物や金属の柱状結晶を作成して近接場用プローブの光インジェ クシヨン素子,あるいはその他の機能に活用するインジェクション素子などは、いずれ も 10— lOOnm程度の円筒構造物を使用する力 これらはいずれも電子線リソグラフィ 一およびドライエッチングを共用して機械的に加工を施す為に、加工形状の制御や 製造自体が大変困難であり、形状の選択性にも限界があるとされている。
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、従来の機械的あるいは物理的に研磨や精密加工を行ったり、あるいは 、別途作成された微細構造体を基盤表面上に配列させる為の別行程を要するので はなぐ化学的に対象物に反応を起こして化学反応物を生成させて堆積し、その堆 積物を自己組織化させることで構造物の成長を実現した新 、構造体の製造技術と して、機械的かつ化学的に安定な構造体を簡便に形成する方法を提供する事を目 的としてなされたものである。
この為、膨大な設備投資を要さず、汎用的に存在するドライプロセスの薄膜加工設 備を用いて、極めて簡便に構造物の製作を可能にする。
課題を解決するための手段
[0008] 我々は、上記目的を達成するために、試行錯誤と鋭意研鑽を重ねた結果、既存の 薄膜製造ドライプロセスを用いながら、反応性イオンエッチング法にて化学的に活性 である状態を適切に用いることにより、無機材料の物理化学反応による金属材料の 自己組織化過程を活用した微細構造体製造に成功したものである。
[0009] すなわち蒸着など適当な方法で作成された無機材料もしくは高分子材料力 なる 基板上に金属および無機酸ィヒ物をスパッタ法乃至多元同時スパッタ法にて少なくと も 2層以上の積層を成膜させてなる積層基板に、レジストマスクを用いて所望の幾何 学構造すなわち、円、長方形、あるいは 2次元格子等の任意の構造を指定した後、 反応性イオンエッチングを行うことにより、中空の円筒、中空の角柱、あるいは溝状の 構造体が得られることを特徴とする微細構造体およびその製造方法である。マスクに よって与えられるサイズはサブナ入ナ入サブミクロン、ミクロン、サブミリおよびミリォ ーダ一であってもよぐこれは制限されない。
[0010] 本発明者らは、成長させる対象物に化学反応を起こし、その反応により得られた反 応生成物に連続して二次的な化学反応を継続して起こさせることで反応生成物の自 己組織化を促進させて、微細な組織およびその構造体を製造する方法を開発すべく 鋭意研究を重ねた結果、基板のドライエッチング処理において、エッチングガスと該 加工基板物質との反応を時間と温度を任意に制御することにより、反応生成物の構 造や状態を制御することが可能になった。更に制御する反応生成物が凝縮を開始す る温度に設定し、基板をドライエッチング処理すると、エッチングガス又は該反応生成 物が部分的に凝縮し、これがエッチングに対するナノメータースケールの微細なマス クとなり、ナノメータースケールの微細加工が可能になること、そして基板に予めァラ ィメントマーク又はエッチング用フォトマスクを形成させておけば、このァライメントマー ク又はエッチング用フォトマスクを中心に前記凝縮が起こるので、極めて有利に微細 加工を施しうることを見出し、この知見に基づいて本発明を完成するに至った。
[0011] 尚、凝縮核とは、反応生成物が凝縮する際に、凝縮を誘導或いは凝縮箇所の特定 をするマーキングを示唆するものである。
反応生成物の凝縮開始温度は、材料により適宜異なる。例えば、 Auや A1の場合 は、その原子移動(マイグレーション作用)の起点となる 200°C— 250°Cであり、 Ptは 500°C超、 Tiならば 400°Cより 500°C程度の温度となる。この為、この原子移動開始 温度を反応性イオンエッチング 'プロセス時における凝縮開始温度と規定することが 出来、時間は反応性イオンエッチングを行う時間となる。反応性イオンエッチングを行 う時間とは、凝縮核の成長状態に応じて任意で変動させることが出来、時間が長けれ ば長いほど形成される微細構造体素子自体の高さに連動する。即ち、温度は微細構 造体素子に適用される金属と無機酸化膜の材料によって特定されると考えられるが、 時間についてはアスペクト比をどの程度にするかによつて異なる。例えば、アスペクト 比が 2の円筒形状の微細構造体を形成させる場合には、この反応性イオンエツチン グを行う時間は、 31分で実施することが好ま 、。
[0012] 本発明に係る微細構造体の製造方法は、無機材料もしくは高分子材料からなる基 板上に、金属層および無機酸ィ匕物層を少なくとも 2層以上有する複層であって最上 層が無機酸ィ匕物層である複層を形成し、その最上層に位置の特定を目的とするァラ ィメントマークを形成し、反応性イオンエッチング工程を経ることでァライメントマーク の形状を反映した微細構造体を生成することを特徴とする。
[0013] 上記微細構造体の製造方法によれば、ァライメントマーク下の複層が反応性イオン エッチング工程を経ることにより、無機酸ィ匕物層と金属層に化学的な反応を起こし、 前記金属層の中の金属の原子またはイオンのマイグレーション作用及びィ匕学的な活 性反応を活用して自己組織ィ匕を引き起こして被エッチング対象物を成長させることが できる。これにより、微細構造体を製造できる。
なお、ァライメントマークとは、微細構造体を形成する位置を決めるためのマークであ る。
[0014] また、本発明に係る微細構造体の製造方法にお!、ては、前記反応性イオンエッチ ング工程を経ることにより内部に中空部を有する構造体が製造され、前記構造体は 前記ァライメントマークの形状に応じた形状とされることが可能である。例えば、前記 ァライメントマークの形状が円形である場合は前記構造体が円柱形状又は円錐形状 とされ、前記ァライメントマークの形状が四角形である場合は前記構造体が角柱形状 又は角錐形状とされる。
[0015] 本発明に係る微細構造体の製造方法は、無機材料もしくは高分子材料からなる 基板上に、金属層および無機酸ィ匕物層を少なくとも 2層以上有する複層であって最 上層が無機酸ィ匕物層である複層を形成し、その最上層に位置の特定を目的とするェ ツチング用フォトマスクを形成し、反応性イオンエッチング工程を経ることでエッチング 用フォトマスクの形状を反映した微細構造体を生成することを特徴とする。
[0016] 上記微細構造体の製造方法によれば、複層上に位置の特定を目的とするエツチン グ用フォトマスクを形成し、反応性イオンエッチング工程を経ることにより、無機酸ィ匕 物層と金属層に化学的な反応を起こし、前記金属層の中の金属の原子またはイオン のマイグレーション作用及びィ匕学的な活性反応を活用して自己組織ィ匕を引き起こし て被エッチング対象物を成長させることができる。これにより、微細構造体を製造でき る。
[0017] また、本発明に係る微細構造体の製造方法にお!、ては、前記反応性イオンエッチ ング工程を経ることにより内部に中空部を有する構造体が製造され、前記構造体は 前記エッチング用フォトマスクのパターン形状に応じた形状とされることが可能である 。例えば、前記エッチング用フォトマスクのパターン形状が円形である場合は前記構 造体が円柱形状又は円錐形状とされ、前記エッチング用フォトマスクのパターン形状 が四角形である場合は前記構造体が角柱形状又は角錐形状とされる。
[0018] また、本発明に係る微細構造体の製造方法にお!、ては、前記反応性イオンエッチ ング工程を経る間に、前記基板又は前記金属層及び前記無機酸化物層が前記反応 性イオンエッチング工程による反応生成物の凝縮開始温度となることが好ましい。
[0019] また、本発明に係る微細構造体の製造方法において、前記金属層は、 Si, Al, Cu, Ni, Ti, Zr, Ta, Cr, W, Mo, V, Co, Zn, In, Au, Ag, Pt, Ir, Ruの内の 1元素以上で 構成される金属材料膜を 1種類成膜したもの、あるいは 2乃至 3種類を選択し順次成 膜したものであることも可能である。好ましくは、 Ti, Mo, Au, Ptの内の 1元素以上で 構成される金属材料膜を 1種類成膜したもの、あるいは 2乃至 3種類を選択し順次成 膜したものである。
[0020] また、本発明に係る微細構造体の製造方法において、前記無機酸化物層は、 A1 0
2
, Si〇, Ga 0, In 0, SnO, Zn〇, Ge〇, Ti〇の内のいずれ力 1種類の材料からな
3 2 2 3 2 3 2 2
る膜を成膜したもの、あるいは 2乃至 3種類の材料を選択し、各材料カゝらなる膜を順 次成膜したもの、もしくは各材料を複合させた膜を成膜したものであることも可能であ る。好ましくは、 SiO及び Al 0もしくはその複合酸ィ匕物の内のいずれか 1種類の材
2 2 3
料カゝらなる膜を成膜したもの、あるいは 2乃至 3種類の材料を選択し、各材料からなる 膜を順次成膜したもの、もしくは各材料を複合させた膜を成膜したものである。
[0021] 本発明に係る微細構造体は、無機材料もしくは高分子材料カゝらなる基板と、
前記基板上に形成された複層と、
前記複層上に形成された内部に中空部を有する構造体と、 を具備する微細構造体であって、
前記複層は、金属層および無機酸化物層を少なくとも 2層以上有し、且つ、最上層 が無機酸化物層であり、
前記構造体は、前記複層がァライメントマーク又はエッチング用フォトマスクを用い た反応性イオンエッチング工程を経ることにより製造されることを特徴とする。
[0022] また、本発明に係る微細構造体において、前記金属層は、 Si, Al, Cu, Ni, Ti, Zr, Ta, Cr, W, Mo, V, Co, Zn, In, Au, Ag, Pt, Ir, Ruの内の 1元素以上で構成される金 属材料膜を 1種類成膜したもの、ある ヽは 2乃至 3種類を選択し順次成膜したもので あることも可能である。好ましくは、 Ti, Mo, Au, Ptの内の 1元素以上で構成される金 属材料膜を 1種類成膜したもの、ある ヽは 2乃至 3種類を選択し順次成膜したもので ある。
[0023] また、本発明に係る微細構造体において、前記無機酸化物層は、 A1 0 , SiO , Ga
2 3 2
〇, In O, SnO, Zn〇, Ge〇, TiOの内のいずれか 1種類の材料からなる膜を成膜
2 3 2 3 2 2
したもの、あるいは 2乃至 3種類の材料を選択し、各材料カゝらなる膜を順次成膜したも の、もしくは各材料を複合させた膜を成膜したものであることも可能である。好ましくは 、 SiO及び Al 0もしくはその複合酸ィ匕物の内のいずれか 1種類の材料力もなる膜を
2 2 3
成膜したもの、あるいは 2乃至 3種類の材料を選択し、各材料からなる膜を順次成膜 したもの、もしくは各材料を複合させた膜を成膜したものである。
[0024] こうして得られる微細構造体は種々の工業分野、乃至研究分野に供与される。以 下に述べるのは本発明の微細構造体を用いることにより利便性が得られた応用分野 であるが、記載されていなくとも本構造体を用いることにより容易に類推される特性が 付与される用途は本発明に属する。
以下に応用例を述べる。
[0025] 本発明に係る圧電素子の製造方法は、前述した微細構造体の製造方法により製 造された微細構造体に圧電膜を付加することを特徴とする。また、本発明に係る各種 メモリ機能を有する容量素子の製造方法は、前述した微細構造体の製造方法により 製造された微細構造体に圧電膜を付加することを特徴とする。
本発明に係る圧電素子は、前述した微細構造体に圧電膜を付加したことを特徴と する。また、本発明に係る各種メモリ機能を有する容量素子は、前述した微細構造体 に圧電膜を付加したことを特徴とする。
[0026] 本発明に係るデバイス素子は、前述した微細構造体に放熱機能、廃熱機能又は熱 伝導機能を付加したことを特徴とする。例えば、微細な構造物を並列した場合に表面 積が大きくなること、および中空を利用して冷却機能を有する水あるいは有機材料を 含有させたヒートシンク等の廃熱および放熱乃至熱伝導特性を用いるデバイス素子 に適用できる。
[0027] 本発明に係る発光素子は、前述した微細構造体に電圧を印加して電子放出させる 機能を付加したことを特徴とする。例えば、金属基板又は金属薄膜の上に作製され る特徴力も電圧を印カロして電子放出させることが容易であり、それを特徴とするエミッ ターデバイス素子に適用できる。
[0028] 本発明に係る発光素子は、前述した微細構造体の内部に蛍光材料を充填したこと を特徴とする。例えば、中空構造を活用して内部に蛍光材料を充填することにより作 製される発光デバイス素子に適用できる。
本発明に係る発光素子の製造方法は、前述した微細構造体の製造方法により製 造された微細構造体の内部に蛍光材料を充填することを特徴とする。
[0029] 本発明に係るマイクロリアクタデバイス素子の製造方法は、前述した微細構造体の 製造方法により製造された微細構造体の内部に触媒を担持することにより制御微少 サイズの反応炉を製造することを特徴とする。
本発明に係るマイクロリアクタデバイス素子は、前述した微細構造体の内部に触媒 を担持することにより制御微少サイズの反応炉としたことを特徴とする。
[0030] 本発明に係るカーボンナノチューブ Zカーボンファイバー作製素子は、前述した微 細構造体の内部に触媒を担持したことを特徴とする。
[0031] 本発明に係る光学素子は、前述した微細構造体の表面の光散乱乃至光回折特性 を用いたことを特徴とする。例えば、微細構造体をナノ一オーダーで作製した結果、 光の波長領域の構造体が得られ、それを利用して表面の光散乱乃至光回折特性を 用いることを特徴とする光学素子に適用できる。
また、微細構造体の中空かつ貫通孔の形状を活用して光を焦光させることを特徴と する光プローブ素子に適用することもできる。
[0032] 本発明に係る電気回路実装デバイス素子は、前述した微細構造体を用いたことを 特徴とする。半導体や電子部品に用いられる電気回路の実装方法として利用できる 。また、プリント基板等に半田材と当該対象物とを接合させる為の接点材料およびそ のデバイス素子としても適用できる。
[0033] 本発明に係る半導体素子は、前述した微細構造体を回路形成用トレンチ構造とし て用いたことを特徴とする。
Si基板上にトレンチ (溝)を掘ってオン抵抗を低く出来るトレンチ構造の半導体素子 は広く知られている力 従来はアバランシェ耐量が犠牲になったり、トレンチの形成が 困難な為に、トランジスタの回路素子は Siウェハ表面に平滑に形成するプレーナ技 術が広く使用されていた。しかし、本発明の微細構造体は形状が任意で制御出来る こと、更には中空で貫通孔を設けることが容易なため、 Si基板上に本発明の該構造 体を形成することで、 2次元ある 、は 3次元構造を保有するトレンチの形成と回路素 子の形成、およびその半導体素子への応用が可能になった。
[0034] Si基板上に微細構造体を形成し、この微細構造体を用いて容量素子を形成する例 について説明する。この容量素子は、従来のトレンチ容量素子に相当するものである まず、 Si基板上に無機酸化膜を形成し、この無機酸ィ匕膜上にエッチングマスクを形 成し、このエッチングマスクをマスクとして前記無機酸ィ匕膜を反応性イオンエッチング 法によりエッチングする。これにより、内部が中空の微細構造体、例えば円筒形状の 構造体が形成される。
次いで、この円筒形状の構造体の内部に第 1導電膜を充填し、円筒形状の構造体 の外部に第 2導電膜を形成する。これにより、第 1導電膜と円筒形状の構造体と第 2 導電膜からなる容量素子を形成することができる。
[0035] 本発明に係るバイオチップデバイスは、前述した微細構造体を用いたことを特徴と する。つまり、この微細構造体はそのまま容器として活用することが可能であり、 DNA 、 RNA、蛋白などのバイオチップデバイスとして活用可能である。
また、本発明に係るマイクロアレイデバイスは、前述した微細構造体を用いたことを 特徴とする。
また、本発明に係る半導体素子実装用の金属バンプ素子は、前述した微細構造体 を用いたことを特徴とする。また、本発明に係る半導体素子付基盤は、前記金属バン プ素子を用いて半導体素子を接合したことを特徴とする。
発明の効果
[0036] 以上に説明したように本発明によれば、無機材料もしくは高分子材料力もなる基板 上に、金属層および無機酸化物層を少なくとも 2層以上有する複層であつて最上層 が無機酸ィ匕物層である複層を形成し、その最上層に位置の特定を目的とするァライ メントマークを形成し、反応性イオンエッチング工程を経ることにより、ァライメントマー クの形状を反映した微細構造体を生成することができる。したがって、内部に中空部 を有する微細構造体及びその製造方法を提供することができる。
発明を実施するための形態
[0037] 本発明の実施の形態による微細構造体の製造方法は、基板上に、 SiOを主成分
2 として、これに Al O 、 Ga O 、 In O 、 SnO 、 ZnO、 GeO及び TiOのうちのいずれ
2 3 2 3 2 3 2 2
か一種類以上の酸ィ匕物を 0. lwt%以上 50wt%以下含有されてなる SiO複合酸化
2 物材料膜を形成する工程と、前記 SiO複合酸ィ匕物材料膜上にエッチング用フォトマ
2
スク又はァライメントマークを形成する工程と、前記 SiO複合酸化物材料膜を反応性
2
イオンエッチング法によりエッチングする工程と、前記エッチング用フォトマスク又はァ ライメントマークを除去する工程と、を具備するものである。前記 SiO
2複合酸化物材 料膜の厚さは、 50— 200nm程度であることが好まし!/、。
[0038] なお、前記基板には、無機材料もしくは高分子材料力もなる基板、表面に金属層を 有する基板、又は金属層および無機酸ィヒ物層を少なくとも 2層以上有する複層であ つて最上層が無機酸ィ匕物層である複層を有する基板が含まれる。また、前記基板に は、 Siウェハ又はガラス基板など力もなる基板だけでなぐ Siウェハ又はガラス基板 などカゝらなる基板の上に導電層又は絶縁層を単層又は複数層を積層させたものも含 まれる。
また、前記エッチング用フォトマスク又はァライメントマークを形成する工程は、前記 SiO複合酸化物材料膜上にレジスト膜を塗布および露光し、現像することにより、前 記 SiO複合酸ィ匕物材料膜上にレジストパターン力もなるエッチングマスクを形成する
2
工程であることが好ましい。
[0039] また、前記エッチングする工程は、 CF 、 CHF 、 C F 、 C F、の内のいずれか一
4 3 2 6 4 8
つを主成分とする単独ある 、は混合ガスを用いてエッチングする工程であることも可 能である。
[0040] 上記微細構造体の製造方法によれば、フォトリソグラフィー技術やエッチング技術を 用いた従来の微細加工技術では形成できな力つた内部に中空部を有する構造体を 形成することが可能となる。
[0041] また、上記製造方法により製造された微細構造体は、内部に中空部を有する構造 体であって外観の形状としては円錐,角錐,円筒,角筒、更には円柱,角柱に任意 で制御を行うことが可能である。微細構造体は、その幅が、 100— 1 m程度、その高 さは 100應ー 20 m程度が好ましい。また、円筒形状の微細構造体の場合、その径 は 50應一 20 m程度が好ましい。前記中空部は前記微細構造体の頂点付近で開口 されており、前記微細構造体は Auもしくは Agを主成分として含有されてなる複合材料 からなるものであっても良い。
[0042] また、上記製造方法により製造される微細かつ特殊な形状を保有する構造体を実 現することで、従来広く使用されている電気機器や電子部品の基板や構造、特性に 大き 、影響を持つ技術が実現され、将来技術の布石ともなり得る可能性が極めて高 い事が考えられる。尚、本発明は、こうした技術思想に基づいてなされたものであり、 その技術思想が共通するものは本発明の範囲に含まれる。
[0043] また、本発明は上記実施の形態に限定されず、本発明の主旨を逸脱しない範囲内 で種々変更して実施することが可能である。
実施例
[0044] 以下、図面を参照して本発明の実施例について詳細に説明する。
以下の実施例で使用したィ匕合物は、いずれも文献に記載の手法に基づいて合成 したものである。
[0045] 図 1 (A) , (B)は、本発明の実施例による微細構造体の製造方法を示す断面図で ある。図 2は、図 1 (B)に示す微細構造体を拡大した写真である。 [0046] まず、図 1 (A)に示すように、基板 11を準備する。この基板 11は Siウェハ又はガラ ス基板などを用いることができる。次いで、この基板 11の上に下地の金属積層膜 12 を形成する。この金属積層膜 12は、下層から順に RFマグネトロンスパッタリング法に より Ti, Auを積層して形成した積層膜である。
[0047] 次に、金属積層膜 12の上に RFマグネトロンスパッタリング法により SiOを主成分と
2 する複合酸ィ匕物材料膜 13を成膜する。この際のスパッタリングターゲットとしては Siタ 一ゲットを使用し、 O反応性雰囲気下で Siと Oを反応させてスパッタを行う。このよう
2 2
にして金属積層膜 12の上には SiO複合酸化物材料膜 13が形成される。
2
[0048] なお、本実施例では、 SiO複合酸ィ匕物材料膜 13を成膜しているが、この複合添カロ
2
元素は酸ィ匕物に限定されるものではなぐ例えば窒化珪素を 0. lwt%以上 50wt% 以下含有する SiO複合材料膜であれば、添加物の窒化珪素の含有量を種々変更
2
することも可會である。
[0049] 次 、で、 SiO複合酸ィ匕物材料膜 13の上にレジスト膜を塗布し、このレジスト膜を露
2
光、現像することにより、該 SiO複合酸ィ匕物材料膜 13上にはレジストパターン 14が
2
形成される。このレジストパターン 14は、直径が 500nm程度の円形パターンを等間隔 に複数配置したものであり、この円形パターンの相互の間隔は 500nm程度である。
[0050] この後、レジストパターン 14をマスクとして SiO複合酸化物材料膜 13を反応性ィォ
2
ンエッチング法によりエッチングする。この際のエッチング条件は、 CFガスを主成分
4
とする混合ガスをエッチングガスとして用い、投入ガスの流量が 50sccm,投入電力量 力^ 00W,真空度が O.lTorrの雰囲気下で約 20分反応させるものとする。
[0051] 次いで、レジストパターン 14を除去する。これにより、図 1 (B)に示すように、金属積 層膜 12上には構造体 15が形成される。この構造体の写真は図 2に示されている。
[0052] 前記構造体 15は、その外形が円錐形状力 なり、内部に中空部 15aを有する構造 体であって、その中空部 15aは前記構造体の頂点付近で開口されたものである。従 つて、構造体 15は、それ自体が中空部 15aを介して貫通した構造となっている。また 、構造体 15は Auを含有する複合材料膜からなるものである。また、構造体 15のサイ ズは、約 3 μの高さで直径が約 2 μ程度である。
[0053] 上述したような製造プロセスを経ることにより上記のような内部に中空部 15aを有す る構造体 15が形成されるのは、反応性イオンエッチングにて金属をエッチングする際 に、活性ガスおよび不活性ガス,あるいはその複合ガスが金属の表面状態を活性状 態にした際に、活性である表面の反応中に活性ガスの 2次反応を、当該の被エッチ ング対象の元素に対して特定の別の金属と積層させることで引き起こすことが可能で あり、 2次反応を起こした金属が化学的に活性になって浮遊した堆積粒子同士が結 合して成長反応を起こすことが理由と考えられる。
[0054] 次に、構造体 25について EPMA法による元素定性分析にて測定した結果について 説明する。この結果は表 1に示されている。
[0055] [表 1] 表 1 . E P M A元 ¾¾tJ分圻 半^ a結果 (単位:原 )
Figure imgf000014_0001
[0056] EPMA分析により、 SiO複合酸化物材料膜 13の主成分である Si、この SiO複合酸
2 2
化物材料膜 13の下地に形成される Au膜の両元素が主成分として検出されると同時 に、 SiO複合酸ィ匕物材料膜 13に含有される、 0 (酸素),更には反応性イオンエッチ
2 2
ング法にて装置内に依存する C等を主たる構成元素として確認することが出来る。
[0057] この際、微細構造体と基板表面部の無機酸ィ匕物の含有元素としては、アルカリ元 素が顕著に含有量に差異が生じており、この結果を鑑みた場合に、 SiO
2複合酸化物 材料膜 13に含有する不純物アルカリ元素と、この SiO複合酸化物材料膜 13の下地
2
に構成される Au層とが、反応性イオンエッチングの際に、化学的な相互作用を引き 起こして反応生成物を形成し、その反応生成物が自己組織ィヒすることで凝縮かつ堆 積成長した結果として微細構造体を形成したものと考えられる。
[0058] 尚、上記実施例では、 SiO複合酸ィ匕物材料膜 13を最上層に用いているが、これ
2
に限定されるものではなぐ SiOを主成分として、これに Ga O、 Al O、 In O、 Zn
2 2 3 2 3 2 3
O及び GeOのうちのいずれか一種類以上の酸化物あるいは、 TaN、 TiN、 Si3N4等 の窒化物を 0. lwt%以上 50wt%以下含有されてなる SiO複合材料膜を用いること
2
も可能である。 [0059] また、上記実施例では、 SiO複合酸ィ匕物材料膜 13の上にレジストパターン 14を形
2
成しているが、これに限定されるものではなぐ SiO複合酸化物材料膜 13の上に他
2
の材質力もなるエッチングマスクを形成することも可能である。
[0060] また、上記実施例では、エッチングガスとして CFガスと Oガスとの混合ガスを用い
4 2
ているが、 CHF、 C F、 C Fの内のいずれか一つを主成分とする単独あるいは混
3 2 6 4 8
合ガスをエッチングガスとして用いることも可能である。
[0061] また、本発明は上記実施例に限定されず、本発明の主旨を逸脱しない範囲内で種 々変更して実施することが可能である。例えば、レジストパターン 14のパターン形状 を長方形に変更することにより、図 3 (A)に示すような内部が中空で底部が約 1 μ m Χ 2 /ζ πιで高さが約 2. 5 mの長方柱形状の微細構造体を作製することができる。ま た、レジストパターン 14のパターン形状を正方形に変更することにより、図 3 (B)に示 すような内部が中空で底部が約 1 mX 1 mで高さが約 2. 5 mの角柱形状の微 細構造体を作製することができる。また、エッチング時間などのエッチング条件を変更 することにより、図 4に示すような内部が中空で直径が約 1 mで高さが約 2. の 円柱形状の微細構造体を作製することができる。
[0062] また、本発明に係る微細構造体は、種々の用途に適用することができる力 例えば 次の用途に適用することも可能である。
[0063] 前述した微細構造体に圧電膜を付加することにより作製した圧電素子又は各種メ モリ機能を有する容量素子に適用できる。
[0064] 前述した微細構造体に放熱機能、廃熱機能又は熱伝導機能を付加することにより 作製したデバイス素子、微細な構造物を並列した場合に表面積が大きくなること、お よび中空を利用して冷却機能を有する水あるいは有機材料を含有させたヒートシンク 等の廃熱および放熱乃至熱伝導特性を用いるデバイス素子に適用できる。
[0065] 前述した微細構造体に電圧を印加して電子放出させる機能を付加した発光素子、 金属基板又は金属薄膜の上に作製される特徴から電圧を印加して電子放出させるこ とが容易であり、それを特徴とするエミッターデバイス素子に適用できる。
[0066] 前述した微細構造体の内部に蛍光材料を充填した発光素子、中空構造を活用し て内部に蛍光材料を充填することにより作製される発光デバイス素子に適用できる。 [0067] 前述した微細構造体の製造方法により製造された微細構造体の内部に触媒を担 持することにより制御微少サイズの反応炉を製造するマイクロリアクタデバイス素子に 適用できる。
[0068] 前述した微細構造体の内部に触媒を担持したカーボンナノチューブ Zカーボンフ アイバー作製素子に適用できる。
[0069] 前述した微細構造体の表面の光散乱乃至光回折特性を用いた光学素子、微細構 造体をナノ一オーダーで作製した結果、光の波長領域の構造体が得られ、それを利 用して表面の光散乱乃至光回折特性を用いることを特徴とする光学素子に適用でき る。
また、微細構造体の中空かつ貫通孔の形状を活用して光を焦光させることを特徴と する光プローブ素子に適用することもできる。
[0070] 前述した微細構造体を用いた電気回路実装デバイス素子に適用でき、半導体や 電子部品に用いられる電気回路の実装方法として利用できる。また、プリント基板等 に半田材と当該対象物とを接合させる為の接点材料およびそのデバイス素子として ち適用でさる。
[0071] 前述した微細構造体を回路形成用トレンチ構造として用いた半導体素子に適用で きる。
[0072] 前述した微細構造体を用いたノィォチップデバイスに適用できる。つまり、この微細 構造体はそのまま容器として活用することが可能であり、 DNA、 RNA、蛋白などのバイ ォチップデバイスとして活用可能である。
また、前述した微細構造体を用いた半導体素子実装用の金属バンプ素子に適用 できる。また、前記金属バンプ素子を用いて半導体素子を少なくとも一つ以上接合し た半導体素子付基盤に適用できる。
[0073] 次に、 Si基板上に微細構造体を形成し、この微細構造体を用いて容量素子を形成 する例について説明する。
まず、 Si基板上に無機酸化膜を形成し、この無機酸ィ匕膜上にエッチングマスクを形 成し、このエッチングマスクをマスクとして前記無機酸ィ匕膜を反応性イオンエッチング 法によりエッチングする。これにより、内部が中空の微細構造体、例えば円筒形状の 構造体が形成される。
次いで、この円筒形状の構造体の内部に第 1導電膜を充填し、円筒形状の構造体 の外部に第 2導電膜を形成する。これにより、第 1導電膜と円筒形状の構造体と第 2 導電膜からなる容量素子を形成することができる。
[0074] 上記容量素子により以下のメリットを実現できる。
ビアホールを形成せずに、基板上に形状やアスペクトを任意で設計して作製するこ とが出来る。また、溝の壁面の両側(内側、外側)を用いて容量素子が形成できる為 に 3次元の容量素子構造が実現できる。また、微細構造体の材質を例えば Wにする ことで、プラグ電極も 3次元で形成することができる。このような事から、 3次元のプラグ やキャパシタセルを保有する半導体メモリを実現できる為に、大容量かつ効率的に 基板を活用した設計ルールが適用出来る為、生産性や高集積化を合理的に実現出 来る様になる。
図面の簡単な説明
[0075] [図 1] (A) , (B)は、本発明の実施例による微細構造体の製造方法を示す断面図で ある。
[図 2]図 1 (B)に示す微細構造体を拡大した写真である。
[図 3] (A)は、本発明に係る実施例の変形例による微細構造体を拡大して示す写真 であり、(B)は、他の変形例による微細構造体を拡大して示す写真である。
[図 4]本発明に係る実施例の他の変形例による微細構造体を示す写真である。 符号の説明
[0076] 11· "基板
12…金属積層膜
13-SiO複合酸化物材料膜
2
14· ··レジストパターン
15…構造体
15a…中空咅

Claims

請求の範囲
[1] 無機材料もしくは高分子材料カゝらなる基板上に、金属層および無機酸ィ匕物層を少な くとも 2層以上有する複層であって最上層が無機酸ィ匕物層である複層を形成し、その 最上層に位置の特定を目的とするァライメントマークを形成し、反応性イオンエツチン グ工程を経ることでァライメントマークの形状を反映した微細構造体を生成することを 特徴とする微細構造体の製造方法。
[2] 請求項 1において、前記反応性イオンエッチング工程を経ることにより内部に中空部 を有する構造体が製造され、前記構造体は前記ァライメントマークの形状に応じた形 状とされることを特徴とする微細構造体の製造方法。
[3] 無機材料もしくは高分子材料カゝらなる基板上に、金属層および無機酸ィ匕物層を少な くとも 2層以上有する複層であって最上層が無機酸ィ匕物層である複層を形成し、その 最上層に位置の特定を目的とするエッチング用フォトマスクを形成し、反応性イオン エッチング工程を経ることでエッチング用フォトマスクの形状を反映した微細構造体を 生成することを特徴とする微細構造体の製造方法。
[4] 請求項 3において、前記反応性イオンエッチング工程を経ることにより内部に中空部 を有する構造体が製造され、前記構造体は前記エッチング用フォトマスクのパターン 形状に応じた形状とされることを特徴とする微細構造体の製造方法。
[5] 請求項 1乃至請求項 4のいずれか一項において、前記反応性イオンエッチング工程 により、前記無機酸化物層と前記金属層の化学的な反応を利用し、前記金属層の中 の金属の原子またはイオンのマイグレーション作用及びィ匕学的な活性反応を活用し て自己組織ィヒを引き起こして成長させることを特徴とする微細構造体の製造方法。
[6] 請求項 1乃至請求項 5のいずれか一項において、前記反応性イオンエッチング工程 を経る間に、前記基板又は前記金属層及び前記無機酸化物層が前記反応性イオン エッチング工程による反応生成物の凝縮開始温度となることを特徴とする微細構造 体の製造方法。
[7] 請求項 1乃至請求項 6のいずれか一項において、前記金属層は、 Si, Al, Cu, Ni, Ti , Zr, Ta, Cr, W, Mo, V, Co, Zn, In, Au, Ag, Pt, Ir, Ruの内の 1元素以上で構成さ れる金属材料膜を 1種類成膜したもの、ある ヽは 2乃至 3種類を選択し順次成膜した ものであることを特徴とする微細構造体の製造方法。
[8] 請求項 1乃至請求項 7のいずれか一項において、前記無機酸化物層は、 A1 0 , SiO
2 3
, Ga 0, In 0, SnO, Zn〇, Ge〇, Ti〇の内のいずれ力 1種類の材料からなる膜を
2 2 3 2 3 2 2
成膜したもの、あるいは 2乃至 3種類の材料を選択し、各材料からなる膜を順次成膜 したもの、もしくは各材料を複合させた膜を成膜したものであることを特徴とする微細 構造体の製造方法。
[9] 無機材料もしくは高分子材料からなる基板と、
前記基板上に形成された複層と、
前記複層上に形成された内部に中空部を有する構造体と、
を具備する微細構造体であって、
前記複層は、金属層および無機酸化物層を少なくとも 2層以上有し、且つ、最上層 が無機酸化物層であり、
前記構造体は、前記複層がァライメントマーク又はエッチング用フォトマスクを用い た反応性イオンエッチング工程を経ることにより製造されることを特徴とする微細構造 体。
[10] 請求項 9において、前記金属層は、 Si, Al, Cu, Ni, Ti, Zr, Ta, Cr, W, Mo, V, Co, Zn, In, Au, Ag, Pt, Ir, Ruの内の 1元素以上で構成される金属材料膜を 1種類成膜 したもの、あるいは 2乃至 3種類を選択し順次成膜したものであることを特徴とする微 細構造体。
[11] 請求項 9又は請求項 10において、前記無機酸化物層は、 A1 0 , SiO , Ga 0 , In 0
2 3 2 2 3 2
, SnO, Zn〇, Ge〇, TiOの内のいずれ力 1種類の材料からなる膜を成膜したもの、
3 2 2
あるいは 2乃至 3種類の材料を選択し、各材料カゝらなる膜を順次成膜したもの、もしく は各材料を複合させた膜を成膜したものであることを特徴とする微細構造体。
[12] 請求項 1乃至請求項 8のいずれか一項に記載の微細構造体の製造方法により製造 された微細構造体に圧電膜を付加することを特徴とする圧電素子の製造方法。
[13] 請求項 9乃至請求項 11の 、ずれか一項に記載の微細構造体に圧電膜を付加したこ とを特徴とする圧電素子。
[14] 請求項 9乃至請求項 11のいずれか一項に記載の微細構造体に放熱機能、廃熱機 能又は熱伝導機能を付加したことを特徴とするデバイス素子。
[15] 請求項 9乃至請求項 11のいずれか一項に記載の微細構造体に電圧を印加して電 子放出させる機能を付加したことを特徴とする発光素子。
[16] 請求項 9乃至請求項 11のいずれか一項に記載の微細構造体の内部に蛍光材料を 充填したことを特徴とする発光素子。
[17] 請求項 1乃至請求項 8のいずれか一項に記載の微細構造体の製造方法により製造 された微細構造体の内部に蛍光材料を充填することを特徴とする発光素子の製造方 法。
[18] 請求項 1乃至請求項 8のいずれか一項に記載の微細構造体の製造方法により製造 された微細構造体の内部に触媒を担持することにより制御微少サイズの反応炉を製 造することを特徴とするマイクロリアクタデバイス素子の製造方法。
[19] 請求項 9乃至請求項 11のいずれか一項に記載の微細構造体の内部に触媒を担持 することにより制御微少サイズの反応炉としたことを特徴とするマイクロリアクタデバイ ス素子。
[20] 請求項 9乃至請求項 11のいずれか一項に記載の微細構造体の内部に触媒を担持 したことを特徴とするカーボンナノチューブ Zカーボンファイバー作製素子。
[21] 請求項 9乃至請求項 11のいずれか一項に記載の微細構造体の表面の光散乱乃至 光回折特性を用いたことを特徴とする光学素子。
[22] 請求項 9乃至請求項 11の 、ずれか一項に記載の微細構造体を用いたことを特徴と する電気回路実装デバイス素子。
[23] 請求項 9乃至請求項 11のいずれか一項に記載の微細構造体を回路形成用トレンチ 構造として用いたことを特徴とする半導体素子。
[24] 請求項 9乃至請求項 11の 、ずれか一項に記載の微細構造体を用いたことを特徴と するバイオチップデバイス。
[25] 請求項 9乃至請求項 11の 、ずれか一項に記載の微細構造体を用いたことを特徴と する半導体素子実装用の金属バンプ素子。
[26] 請求項 25に記載の金属バンプ素子を用いて半導体素子を接合したことを特徴とす る半導体素子付基盤。
PCT/JP2004/006937 2003-05-22 2004-05-21 微細構造体及びその製造方法 WO2004103893A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506363A JPWO2004103893A1 (ja) 2003-05-22 2004-05-21 微細構造体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-144441 2003-05-22
JP2003144441 2003-05-22

Publications (1)

Publication Number Publication Date
WO2004103893A1 true WO2004103893A1 (ja) 2004-12-02

Family

ID=33475207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006937 WO2004103893A1 (ja) 2003-05-22 2004-05-21 微細構造体及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2004103893A1 (ja)
WO (1) WO2004103893A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249981B1 (ko) 2010-06-29 2013-04-05 한국과학기술원 3차원 나노구조체 및 그 제조방법
KR101356800B1 (ko) 2011-11-21 2014-01-28 한국과학기술원 연속적으로 패턴화된 구조를 가지는 3차원 다성분 나노구조체 및 그 제조방법
US10727233B2 (en) 2017-10-20 2020-07-28 Samsung Electronics Co., Ltd. Integrated circuit devices and methods of fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216161A (ja) * 1999-01-25 2000-08-04 Nec Corp 無機反射防止膜を使った配線形成方法
JP2002144300A (ja) * 2000-07-27 2002-05-21 Toshiba Tec Corp パイプジョイント及びその作製方法並びにそれを用いた流体デバイス
JP2003053699A (ja) * 2001-08-10 2003-02-26 Nikon Corp ピンホール製造方法及び測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216161A (ja) * 1999-01-25 2000-08-04 Nec Corp 無機反射防止膜を使った配線形成方法
JP2002144300A (ja) * 2000-07-27 2002-05-21 Toshiba Tec Corp パイプジョイント及びその作製方法並びにそれを用いた流体デバイス
JP2003053699A (ja) * 2001-08-10 2003-02-26 Nikon Corp ピンホール製造方法及び測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249981B1 (ko) 2010-06-29 2013-04-05 한국과학기술원 3차원 나노구조체 및 그 제조방법
KR101356800B1 (ko) 2011-11-21 2014-01-28 한국과학기술원 연속적으로 패턴화된 구조를 가지는 3차원 다성분 나노구조체 및 그 제조방법
US10727233B2 (en) 2017-10-20 2020-07-28 Samsung Electronics Co., Ltd. Integrated circuit devices and methods of fabricating the same

Also Published As

Publication number Publication date
JPWO2004103893A1 (ja) 2006-07-20

Similar Documents

Publication Publication Date Title
EP2267761B1 (en) Method for releasing a graphene layer
CN109075073A (zh) 纳米颗粒制造
US7161168B2 (en) Superlattice nanopatterning of wires and complex patterns
US9028242B2 (en) Template and method of making high aspect ratio template for lithography and use of the template for perforating a substrate at nanoscale
KR101878600B1 (ko) 광학 바이오센서를 위한 주기적 금속 나노 패턴의 제조 방법
WO2014156782A1 (ja) 中空構造体の製造方法
Balasundaram et al. Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching
KR20040105319A (ko) 탄소나노튜브 어레이의 제작방법
EP1483427A1 (en) Directed assembly of highly-organized carbon nanotube architectures
KR20050062778A (ko) 나노와이어 성장 및 다른 용도를 위한 촉매 나노입자의제조 방법
JP2010053263A (ja) 微細構造を有する高分子薄膜およびパターン基板の製造方法
US20090202787A1 (en) Method for manufacturing a nanostructure in-situ, and in-situ manufactured nanostructure devices
JP2006518543A (ja) 基板上のナノチューブの分散成長
WO2004103893A1 (ja) 微細構造体及びその製造方法
KR101886056B1 (ko) 진공증착에 의한 나노구조체 패턴 형성방법 및 이를 이용한 센서 소자
KR101857647B1 (ko) 진공증착에 의한 하이브리드 패턴 형성방법, 이를 이용한 센서 소자의 제조방법 및 이에 의해 제조된 센서 소자
KR100548017B1 (ko) 나노미터 또는 그 이하 사이즈의 패턴 형성방법
KR100523765B1 (ko) 유기초분자의 나노패턴을 이용한 탄소나노튜브 어레이의제작방법
JP4684570B2 (ja) 基板上に規則配列した触媒金属微粒子を利用したカーボンナノチューブの形成法
KR20110093667A (ko) 입자 및 그 제조방법
KR100657221B1 (ko) 콜로이드 자기조립에 의한 다공성 마스크의 제조방법 및그 용도
KR101067381B1 (ko) 나노선 수평 성장을 위한 금속촉매의 측면 증착방법 및 이를 이용하여 수평 성장된 나노선의 제조방법
JP2005268686A (ja) 金属パターン形成方法
RU2462785C1 (ru) Способ изготовления упорядоченных наноструктур
WO2003015145A1 (fr) Procede de micro-usinage utilisant un faisceau ionique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506363

Country of ref document: JP

122 Ep: pct application non-entry in european phase