WO2004102244A1 - プラスチック光ファイバケーブル - Google Patents

プラスチック光ファイバケーブル Download PDF

Info

Publication number
WO2004102244A1
WO2004102244A1 PCT/JP2004/006803 JP2004006803W WO2004102244A1 WO 2004102244 A1 WO2004102244 A1 WO 2004102244A1 JP 2004006803 W JP2004006803 W JP 2004006803W WO 2004102244 A1 WO2004102244 A1 WO 2004102244A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic optical
optical fiber
fiber cable
aggregate
strength member
Prior art date
Application number
PCT/JP2004/006803
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Matsuyama
Tomonori Arai
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2005506244A priority Critical patent/JPWO2004102244A1/ja
Publication of WO2004102244A1 publication Critical patent/WO2004102244A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4434Central member to take up tensile loads
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements

Definitions

  • the present invention relates to a plastic optical fiber cable for communication composed of a plurality of plastic optical fibers.
  • the optical fiber used as a large-capacity communication medium is a silica glass optical fiber.
  • POF plastic optical fiber
  • LAN Local Area Network
  • intelligent pills Intelligent pills
  • optical fiber is not practical if it is bare (hereinafter referred to as a bare fiber). Because of the necessity of protecting optical fibers, increasing the number of cores, and attaching connectors, optical fiber wires are coated or composited with tensile strength materials, that is, used as cables.
  • Japanese Patent Application Laid-Open No. 2000-221323 discloses that a plurality of optical fiber cores coated with three layers of optical fiber are loosely inserted into a tube integrated with a strength member. There is disclosed an optical fiber unit which is housed and filled with a jelly-like mixture for waterproofing so as to prevent the optical fiber from coming into contact with other solid objects.
  • Japanese Patent Application Laid-Open No. 2000-2756482 discloses that a plurality of optical fiber cores having a primary coating layer formed on an optical fiber are twisted around a central tension member.
  • An optical fiber unit is disclosed in which an integrated material having a low Young's modulus and a low glass transition temperature is collectively coated therearound.
  • Japanese Patent Application Laid-Open No. 2002-3228279 discloses an optical fiber cable which is excellent in heat resistance and mechanical properties due to bending and does not increase transmission loss.
  • a shaft core and a plurality of partition plates are provided, and the cross section has a shape in which the plurality of partition plates are radially formed from the shaft core toward the inner peripheral surface of the outer layer.
  • the interior of the space is partitioned into a plurality of partition grooves by a partition plate portion having an enlarged portion formed at the tip contacting the inner peripheral surface of the outer layer and a connecting portion connecting the enlarged portion and the shaft core portion.
  • a configuration in which two or more optical fibers are dispersedly arranged in a partition groove is disclosed.
  • 2002-350066 discloses that a plurality of plastic optical fibers and a tensile strength reinforcing member are provided as an optical fiber that is flexible and easy to handle.
  • a structure having a core layer, a buffer layer formed by winding a fluororesin tape around the core layer, and a protective layer provided outside the buffer layer and formed by melt-extrusion coating of the fluororesin. Is disclosed.
  • the cable disclosed in Japanese Patent Application Laid-Open No. 2000-221373 uses a quartz glass optical fiber because it is used for an optical submarine cable.
  • P ⁇ F was used in this configuration, there was a problem that, at high temperatures, the POF elongation was larger than that of the tube, and mic opening bends were generated, resulting in a much larger increase in loss than a quartz glass optical fiber.
  • a method to increase the tube inner diameter However, if the inner diameter of the tube is increased, the outer diameter of the cable will increase, making it impossible to achieve a small diameter.
  • the jelly-like mixture is injected into a tube, the difference in the linear expansion coefficient between the POF and the mixture of the solid-like mixture causes a further increase in loss with respect to temperature change.
  • the cable disclosed in JP-A-2000-275482 also uses a quartz glass optical fiber because it is used for an optical submarine cable. Therefore, even when P OF is used in this configuration, microbends are likely to occur with respect to temperature changes due to the difference between the spring expansion coefficients of P OF and the integrated material. Also, at high temperatures, P ⁇ F elongation is larger than that of the central tension member, and the Young's modulus of the integrated material is small, so elongation is not suppressed, and microbending tends to occur in the POF.
  • An object of the present invention is to provide a plastic optical fiber cable that suppresses microbending of POF and has a small diameter.
  • one of the plastic optical fiber cables of the present invention is a plastic optical fiber cable composed of a plurality of plastic optical fibers, wherein the plastic optical fibers are in contact with each other at two or more places in a cross-sectional direction. And are integrated in a bundled state to form an aggregate.
  • another one of the plastic optical fiber cables of the present invention includes a plurality of plastic optical fibers and a cable having a linear expansion coefficient similar to that of the plastic optical fibers.
  • a plastic optical fiber cable composed of a Mie fiber the plastic optical fiber and the dummy fiber are integrated in a state where they are bundled so as to be in contact with each other at two or more places in a cross-sectional direction. It is characterized by forming.
  • another one of the plastic optical fiber cables of the present invention is a plastic optical fiber cable composed of a plurality of plastic optical fibers and a tensile member, wherein the plastic optical fiber and the tensile member are: It is characterized in that it is integrated in a bundled state so as to be in contact with two or more places in the cross-sectional direction to form an aggregate.
  • Still another one of the plastic optical fiber cables of the present invention is composed of a plurality of plastic optical fibers, a dummy fiber having the same linear expansion coefficient as the plastic optical fiber, and a tensile strength member.
  • the strength member is disposed at the center of the assembly. Further, it is preferable that the strength member is a metal wire or a fiber-reinforced plastic.
  • the assembly may be wound and integrated with a tape-like material, may be wound and integrated with a thread-like material, or may be bonded only in the vicinity of a contact portion that contacts each other in a bundled state. Preferably they are integrated.
  • the plurality of POFs, the P ⁇ F and the dummy fiber or the tensile strength member are converged and integrated to form an aggregate.
  • the area is increased, making it difficult to bend against external forces. As a result, microbends due to environmental temperature changes and the like are less likely to occur.
  • the POF has an increased loss against bending as compared to quartz glass optical fiber.
  • the loss is unlikely to increase, as with the quartz glass optical fiber. Therefore, even if a plurality of POFs are integrated with each other, or the POF is integrated with a dummy fiber or a tensile strength member to form an aggregate, no increase in loss occurs.
  • the configuration of the cable is simple, it is possible to provide a small-diameter plastic optical fiber cable.
  • FIG. 1 is a cross-sectional view showing one embodiment of the plastic optical fiber cable of the present invention.
  • FIG. 2 is a sectional view showing another embodiment of the plastic optical fiber cable of the present invention.
  • FIG. 3 is a sectional view showing still another embodiment of the plastic optical fiber cable of the present invention.
  • FIG. 4 is a sectional view showing still another embodiment of the plastic optical fiber cable of the present invention.
  • FIG. 5 is a sectional view showing still another embodiment of the plastic optical fiber cable of the present invention.
  • this plastic optical fiber cable 10 is composed of an aggregate 15 obtained by integrating four POFs 1 that are bundled in a substantially square shape at the center with a tape 4, and an aggregate 15 It is a four-core cable composed of a fiber strength member 8 arranged so as to surround the outer circumference of the fiber 15 and a covering portion 9 further coated on the outer circumference of the fiber strength member 8.
  • the material of the POF 1 constituting the assembly 15 is not particularly limited.
  • a resin a refractive index distribution type plastic optical fiber (hereinafter, referred to as “a resin”) comprising a central portion made of fluororesin and an acrylic resin covering the outer periphery thereof is used.
  • Fluororesin POF fluororesin POF
  • PMMA polymethylmethacrylate
  • the outer diameter of POF 1 is preferably 400 to 1000.
  • the POFs 1 are wound and integrated by a tape 4 to form an aggregate 15 in a state where four POFs 1 are bundled so as to be in contact with each other at two or more places in a cross-sectional direction.
  • the four P ⁇ Fs 1 are integrated and the effective sectional area of the POF becomes approximately four times, so that the bending resistance against an external force is greatly improved. As a result, microbends due to environmental temperature changes and the like are less likely to occur.
  • the number of P ⁇ F 1 that make up the aggregate 15 is at two or more places in the cross-sectional direction. There is no particular limitation as long as they are focused so as to perform the focusing, but the number is preferably 3 to 6, more preferably 4.
  • the tape 4 is used as a means for integrating the aggregate 15.
  • the material of the tape 4 is not particularly limited.
  • polyethylene terephthalate, polyester non-woven cloth, paper, and the like can be used.
  • the width and thickness of the tape 4 can also be appropriately selected. Among these, the width of the tape is preferably 2 to 10 mm, more preferably 2 to 5 mm.
  • the thickness of the tape is preferably from 3 to 100 zx m, more preferably from 3 to 10 m.
  • the thickness of the tape is preferably uniform in the longitudinal direction. If the thickness is greater than the above range or the thickness is not uniform in the longitudinal direction, microbends will occur in POF 1 due to changes in the ambient temperature, etc. due to the difference in linear expansion coefficient between POF 1 and tape 4, As a result, the transmission loss may increase, which is not preferable.
  • the winding pitch is preferably equal to or greater than the tape width, more preferably 4 to 12 times the tape width, particularly preferably 5 to 10 times, and most preferably 6 to 9 times.
  • the winding pitch means that, when a single tape is wound, in a section including the axis of the assembly, two corresponding points (for example, the center in the width direction) of the tapes adjacent to each other are parallel to the axis. The distance measured. For example, if the tape width is 4 mm and the winding pitch is 8 mm, the winding pitch is twice the tape width. By setting the winding pitch in such a range, it is possible to suppress the occurrence of microbends due to the integration of the aggregate, and also to suppress an increase in loss during cable manufacturing.
  • the tape 4 preferably has some elasticity in the longitudinal direction.
  • the means for integrating the aggregates 15 may be a thread-like material other than a tape-like material such as the tape 4.
  • a thread include natural threads such as cotton thread and silk thread, synthetic fiber threads such as acrylic and polyester, and aramide fiber threads.
  • bonding only the vicinity of the contact portion that contacts each other at two or more locations in the cutting plane direction may be integrated by bonding.
  • Such bonding can be performed by, for example, an epoxy-based adhesive or a silicon sealing agent.
  • Adhesion with a large outer peripheral area is not preferable because microbends occur in accordance with temperature changes due to the difference in linear expansion coefficient between the POF and the resin agent, resulting in increased loss.
  • the adhesion strength between the POFs or between the POF and the dummy fiber or strength member described later is 500 m in fiber outer diameter, and the length of one P ⁇ F from the aggregate 3
  • the drawing tension per 0 mm is preferably from 30 to 100 g, more preferably from 100 to 600 g, particularly preferably from 100 to 350 g, and from 200 to 300 g. g is most preferred. If the adhesion strength is less than 30 g, there is no effect of increasing the effective area, and if the adhesion strength exceeds 100 g, the outer periphery of the POF 1 is deformed by the tape 4 etc. to process the aggregate 15 It is not preferable because loss increases at the time (actually at the time of manufacturing the cable). That is, in the present invention, that the aggregate is integrated preferably means that the pulling tension per one POF of 30 mm from the aggregate is preferably in the above range.
  • the fiber tensile strength member 8 disposed around the aggregate 15 aramide fiber, polyethylene terephthalate (PET) fiber, carbon fiber, glass fiber, or the like can be used. Further, as the covering portion 9 that covers the outer periphery of the fiber strength member 8, for example, polyvinyl chloride vinyl, flame retardant polyethylene, or the like can be used, and there is no particular limitation.
  • the plastic optical fiber cable 10 it is possible to suppress the occurrence of microbends caused by changes in environmental temperature and the like, and to provide a small-diameter plastic optical fiber cable. Specifically, according to the above configuration, it is possible to obtain a thin plastic optical fiber cable 10 having an outer diameter of 2 to 5 mm, preferably 2 to 3.5 mm while suppressing the occurrence of microbend. Can be.
  • FIG. 4 shows a cross-sectional structure of a plastic optical fiber cable according to another embodiment of the present invention.
  • the same parts as those of the above embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • a tensile member 3 described later is arranged at a position of a gap between four POFs 1. It was done. At this time, for example, when the fiber outer diameter of the POF 1 is 500 m, it is preferable to dispose a tensile strength member having an outer diameter of about 200 m. In this case, the outer diameter of the covered portion can be set to 2.6 mm, and a thin, durable plastic optical fiber that can be obtained. With this configuration, the occurrence of microbending can be further suppressed.
  • FIG. 2 shows a cross-sectional structure of a plastic optical fiber cable according to another embodiment of the present invention.
  • the plastic optical fiber cable 20 differs from the plastic optical fiber cable 10 of FIG. 1 in that two POFs 1 and two dummy fibers 2 are alternately arranged. That is, an aggregate 25 is constituted by two POFs 1 and two dummy fibers 2.
  • the total number of POFs 1 and dummy fibers is preferably 3 to 6.
  • the effective cross-sectional area may be increased by using the dummy fiber, and the generation of microbends due to a temperature change or the like can be suppressed.
  • the dummy fiber 2 may be exactly the same as the POF 1 or may have a different configuration, but the dummy fiber 2 may have the same linear expansion coefficient as the POF 1. preferable. If the coefficient of linear expansion is different, bending of the microphone opening is likely to occur due to a temperature change, and transmission loss increases, which is not preferable.
  • the dummy fiber 2 having a configuration different from that of the POF specifically, for example, when the above-mentioned fluororesin-based POF is used as the POF, an acrylic fiber or the like having the same outer diameter as this can be used. In this case, the coefficient of linear expansion of both a degree both at 8 X 10 5 7.
  • FIG. 5 shows a cross-sectional structure of a plastic optical fiber cable according to another embodiment of the present invention.
  • a tensile member 3 described later is arranged at the position of the center gap of the assembly 45.
  • FIG. 3 shows a cross-sectional structure of a plastic optical fiber, which is still another embodiment of the present invention.
  • the aggregate 35 is formed by twisting six POFs 1 around the strength member 3 in the center, and the outer periphery is wound around the tape 4 to form an integral body.
  • This is a 6-core cable in which the aggregate 35 is formed.
  • a metal wire such as a zinc plated hard steel wire, a copper alloy wire, a stainless steel wire, or the like, or a fiber reinforced plastic obtained by solidifying aramide fiber, glass fiber, or the like with a resin is preferably used. It is preferable to use a metal wire as the tensile member because the material is easily available.
  • the use of a fiber-reinforced plastic as the tensile strength member is preferable in that the linear expansion coefficients of the tensile strength member and the fiber tensile strength member can be easily matched, and a plastic optical fiber cable without using a conductor can be obtained.
  • the tensile strength member and the fiber tensile strength member are arranged. It is preferable that the respective linear expansion coefficients are substantially equal.
  • substantially equal means that one coefficient of linear expansion is within 5 times, preferably 3 times, of the other.
  • a metal wire is used as the tensile strength member and aramid fiber is used as the fiber tensile strength member
  • copper alloy wire is used as the metal wire because the linear expansion coefficients of the tensile strength member and the fiber tensile strength member are close to each other. preferable.
  • a four-core plastic optical fiber cable 10 having the configuration shown in Fig. 1 was manufactured using the following constituent materials.
  • P OF 1 is a fluororesin type P OF (fiber outer diameter 500 m, core diameter 1
  • the outer diameter of the clad was 20 m, the outer diameter of the clad was 250 m, and the outer diameter of the clad was coated with an acrylic resin so as to have a fiber outer diameter of 500 m.
  • the NA was 0.185.
  • Linear expansion coefficient is 8X 10- 5 / ° C.
  • Aramid fiber (1270 decitex, using four fibers) was used as the fiber tensile strength member 8.
  • the covering portion 9 was made of a soft vinyl chloride resin and covered such that the inner diameter was 2.0 mm and the outer diameter was 3.0 mm.
  • an aggregate 25 having a configuration as shown in FIG. 2 is formed in the same manner as in the first embodiment except that two dummy fibers 2 are used instead of the two diagonal POFs 1.
  • a plastic optical fiber cable 20 was manufactured. It is a dummy fiber 2, an acrylic fiber (linear expansion coefficient: 8 X 10- 5 Z ° C ) outer diameter 500 / m using, P 0 F 1, the tape 4, the fiber tension member 8, the coating portion 9 The same one as in Example 1 was used.
  • the pulling tension of POF 1 in the aggregate 25 was 400 g / 30 mm.
  • a zinc plated hard steel wire having a wire diameter of 500 zm was used, and the same POF l, tape 4, and fiber tensile member 8 as in Example 1 were used. It was coated so that the inner diameter was 2.2 mm and the outer diameter was 3.2 mm.
  • the drawing tension of P ⁇ F 1 in the aggregate 35 was 600 g / 30 mm.
  • the assembly 45 shown in Fig. 4 was constructed, in which four POFs 1 were arranged around the central tensile strength member 3, and a four-core plastic optical fiber cable 40 was manufactured. .
  • a copper alloy (copper / silver ratio is 90/10) wire with a wire diameter of 200 xm was used as tensile member 3.
  • the same POF 1 and fiber tensile strength member 8 as in Example 1 were used.
  • As tape 4 a PET tape with a thickness of 4 ⁇ m and a tape width of 2.5 mm was used.
  • the winding pitch was 2.5 mm, the same as the tape width, and the tape was wound without gaps.
  • the covering part 9 was made of a soft vinyl chloride resin and was covered so that the inner diameter was 1.8 mm and the outer diameter was 2.6 mm.
  • the pulling tension of POF 1 in the assembly 45 was 600 g / 30 mm.
  • Example 5 A plastic optical fiber cable was manufactured in the same manner as in Example 4, except that the winding pitch of the tape was 10 mm (four times the tape width). The pull-out tension of P OF in the aggregate was 400 g / 30 mm.
  • a plastic optical fiber cable was manufactured in the same manner as in Example 4, except that the winding pitch of the tape was 20 mm (8 times the tape width).
  • the pull-out tension of POF in the aggregate was 300 g / 30 mm.
  • a plastic optical fiber cable was manufactured in the same manner as in Example 4, except that the winding pitch of the tape was 25 mm (10 times the tape width).
  • the pull-out tension of the POF in the assembly was 100 g / 30 mm.
  • Example 1 Four POFs 1 were loosely housed in a soft vinyl chloride resin-coated tube having the same dimensions as in Example 1, and four aramide fibers of Example 1 were further placed in the coated tube.
  • a plastic optical fiber cable was manufactured in the same manner as in Example 4 except that the tape winding pitch was set to 40 mm (16 times the tape width). However, some parts of the assembly were not integrated.
  • the pull-out tension of POF in the aggregate was 20 g / 30 mm.
  • the minute bending loss was measured for the aggregates of Examples 1 to 7, the aggregate of Comparative Example 2, and the single P 1F1.
  • the temperature characteristics of loss increase (dBZkm) and cable loss change (dBZkm) during cable manufacturing are specified in JIS C-6823. It was measured by the cutback method.
  • the micro bending loss measurement is performed by assembling the assembly on a steel wire with an outer diameter of 0.4 mm installed on a flat plate.
  • the increase in loss when a single POF was installed and a load of 550 g / 40 mm was applied through a lmm-thick rubber plate was measured.
  • the loss change at 70 ° C. and 120 was measured based on 25. The results are shown in Table 1.
  • the small bending loss of the aggregate in the example is smaller than that of a single plastic optical fiber, and the small bending loss is obtained by integrating P ⁇ F into an aggregate. Less likely to occur.
  • the temperature characteristic is smaller than that of Comparative Example 1, and the generation of microbends is suppressed by forming an aggregate.
  • the temperature characteristics are further improved as compared with Examples 1 and 2 in which the tensile member is not provided. Also, in Examples 5 to 7 in which the tape winding pitch was widened and set in an appropriate range, the increase in loss during the production of the capsule could be suppressed to a low level.
  • the POFs and the POF and the dummy fiber or the tensile strength member are integrated in a state of being focused so as to be in contact with each other at two or more locations in the cross-sectional direction to form an aggregate. are doing.
  • This increases the substantial fiber cross-sectional area and the residual stress in the POF becomes a linear tensile or compressive stress. For this reason, microbends due to changes in environmental temperature and the like are suppressed, and a plastic optical fiber cable having stable transmission characteristics can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Communication Cables (AREA)

Abstract

環境温度等の変化によって生じるマイクロベンドの発生を抑制し、かつ、細径のプラスチック光ファイバケーブルを提供する。このプラスチック光ファイバケーブルは、複数のPOFと、抗張力体とで構成され、POFおよび抗張力体とが、断面方向で互いに2ヶ所以上で接触するように集束された状態で一体化されて集合体を形成している。抗張力体は集合体の中央に配置されていることが好ましい。

Description

明細書
-—ブル 技術分野
本発明は、 複数のプラスチック光ファイバで構成されている通信用プラスチッ ク光ファイバケ一プルに関する。 背景技術
大容量の通信媒体として用いられている光ファイバは、 石英ガラス光ファイバ
(Si l ica Glass Fiber) と、 プラスチック光ファイバ (以下 P O Fと記す) に大 別される。 このうち P O Fは、 石英ガラス光ファイバに比較してコ.ァ径が大きく 、 端末処理等の作業性に優れていることから各種用途が拡大している。 特に、 屈 折率分布型のフッ素樹脂からなる P O Fは、 伝送損失が 1ひ d B / k m以下で、 数百 m以上での適用が可能である。 具体的な用途としては、 インテリジェントピ ル (Intel l igent Bui lding) 等の L AN (Local Area Network) 用通信媒体とし て実用化が進められている。 ·
光ファイバは、 裸のまま (以下光ファイバ素線 (Bare Fiber) と記す) では実 用的ではない。 光ファイバの保護、 多芯化、 コネクタ付け等の必要性から、 光フ アイパ素線に被覆を施したり、 抗張力材等と複合化、 すなわちケーブル化されて 使用される。
このケーブル化において留意しなければならない特性の 1つに、 環境温度等の 変化によって光ファイバにマイクロベンドが発生し、 その結果伝送損失が劣化す る現象がある。 特に、 通常のプラスチック光ファイバケ一ブルでは、 コア径が 1 0 0 m以上の P O Fが使用されている。 光ファイバでは、 コア径が大きくファ ィバ径が小さくなると、 微小曲がりによる損失は急激に増加することが知られて いる ( . Olshansky, APPLIED OPTICS Vol. 14, 1975, pp20-21) 。 そのため、 石 英ガラス光ファイバに比べて P O Fではマイクロベンドの発生を抑制する対策が 必要となっている。
光ファイバのマイクロベンド抑制に関しては、 いくつかの提案がなされている 。 例えば、 特開 2 0 0 0— 2 2 1 3 7 3号公報には、 光ファイバ素線に 3層被覆 された複数の光ファイバ心線を、 抗張力体と一体化されたチューブ内にルースに 収納し、 防水用ジェリー状混和物を充填し、 光ファイバ心線が他の固形物と接触 することを避けた光ファィバュニットが開示されている。
また、 特開 2 0 0 0— 2 7 5 4 8 2号公報には、 光ファイバに一次被覆層が形 成された複数の光ファイバ心線を中心テンションメンバ一の周りに撚り合わせ、 これらの周囲に低ヤング率でガラス転移温度が低温の一体化材を一括被覆した光 ファイバュニットが開示されている。
更に特開 2 0 0 2— 3 2 8 2 7 9号公報には、 耐熱性、 屈曲による機械的特性 に優れ、 伝送損失が増加しない光ファイバケ一プルとして、 外被層で囲まれた空 間内に、 軸芯部と複数の仕切り板部を有し、 かつその断面が該軸芯部から外被層 の内周面に向けて複数の仕切り板部が放射状に形成された形状を有し、 外被層の 内周面と接する先端に形成された拡大部と、 該拡大部と軸芯部を連絡する連絡部 とを有する仕切り板部によって前記空間内が複数の仕切り条溝に区画され、 2本 以上の光ファイバが仕切り条溝内に分散配置されている構成が開示されている。 また、 特開 2 0 0 2 _ 3 5 0 6 9 6号公報には、 可撓性を有して取扱いが容易 な光フアイバゲ一ブルとして、 複数本のプラスチック光フアイバおよび抗張力性 補強部材を有する芯層、 該芯層を包囲するようにフッ素樹脂製テープを巻回して なる緩衝層、 並びに、 該緩衝層の外側に設けられかつフッ素樹脂の溶融押出し被 覆で形成された保護層を有する構成が開示されている。
上記の従来技術のうち、 特開 2 0 0 0— 2 2 1 3 7 3号公報のケーブルは、 光 海底ケーブルに用いられるため石英ガラス光フアイパが使用される。 この構成で P〇 Fを用いた場合、 高温では P O Fの伸びがチューブより大きいためマイク口 ベンドが発生しゃすくなり、 石英ガラス光ファイバよりはるかに大きな損失増加 が生じてしまうという問題があった。 また、 チューブ内径を大きくする方式も考 えられるが、 チューブ内径を大きくすると、 ケーブル外径が大きくなり細径の実 現は不可能となる。 また、 チューブ内にジェリー状混和物を注入すると、 POF とジ工リ一状混和物の線膨張係数の違いにより、 温度変化に対してさらに損失増 加が生じてしまう。
また、 特開 2000— 275482号公報のケーブルも、 光海底ケーブルに用 いられるために石英ガラス光フアイバが使用される。 よって、 この構成に P OF を用いた場合も、 P O Fと一体化材の泉膨張係数の差から温度変化に対してマイ クロベンドが生じやすくなる。 また、 高温では中心のテンションメンバーより P 〇 Fの伸びが大きく一体化材のヤング率が小さいため伸びが抑制されず、 やはり POFにマイクロベンドが発生しやすくなる。 なお、 上記同様に P OFの外径を 大きくする方式や、 被覆を施すことにより外径を大きくする方式も考えられるが 、 結果的にケーブル外径が大きくなり細径のケーブルの実現が不可能となる。 また、 特開 2002— 328279号公報のケ一プル構成においては仕切りス ぺーサを用い、 特開 2002— 350696号公報のケ一ブル構成においては緩 衝槽および保護層が必要であるため、 共にケ一ブルの構成が複雑で結果的にケ一 ブル外径が大きくなつてしまうという問題があつた。 発明の開示
本発明の目的は、 P OFのマイクロベンド発生を抑制し、 かつ、 細径のプラス チック光ファイバケーブルを提供することにある。
上記目的を達成するため、 本発明のプラスチック光ファイバケ一ブルの 1つは 、 複数のプラスチック光ファイバで構成されるプラスチック光ファイバケーブル において、 前記プラスチック光ファイバが、 断面方向で互いに 2ケ所以上で接触 するように集束された状態で一体化されて集合体を形成していることを特徴とす る。
また、 本発明のプラスチック光ファイバケーブルの他の 1つは、 複数のプラス チック光ファイバと、 該プラスチック光ファイバと同様な線膨張係数を有するダ ミーファイバとで構成されるプラスチック光ファイバケーブルにおいて、 前記プ ラスチック光ファイバおよび前記ダミ一ファイバとが、 断面方向で互いに 2ケ所 以上で接触するように集束された状態で一体化されて集合体を形成していること を特徴とする。
更に、 本発明のプラスチック光ファイバケーブルの更に他の 1つは、 複数のプ ラスチック光ファイバと、 抗張力体とで構成されるプラスチック光ファイバケ一 ブルにおいて、 前記プラスチック光ファイバおよび前記抗張力体とが、 断面方向 で互いに 2ケ所以上で接触するように集束された状態で一体化されて集合体を形 成していることを特徴とする。
また、 本発明のプラスチック光ファイバケ一プルの更に他の 1つは、 複数のプ ラスチック光ファイバと、 該プラスチック光ファイバと同様な線膨張係数を有す るダミーファイバと、 抗張力体とで構成されるプラスチック光ファイバケーブル において、 前記プラスチック光ファイバと前記ダミーファイバと前記抗張力体と が、 断面方向で互いに 2ケ所以上で接触するように集束された状態で一体化され て集合体を形成していることを特徴とする。
この場合、 前記抗張力体が前記集合体の中心部に配置されていることが好まし レ^ また、 前記抗張力体が金属線または繊維強化プラスチックであることが好ま しい。
更に、 前記集合体が、 テープ状物で巻き付けられて一体化されているか、 糸状 物で巻き付けられて一体化されているか、 または、 集束された状態で互いに接触 する接触部近傍のみが接着されて一体化されていることが好ましい。
本発明のプラスチック光ファイバケーブルによれば、 複数の P O F同士、 P〇 Fとダミーファイバまたは抗張力体とが、 集束して一体化されて集合体を形成す るようにしたので、 P O Fの実効断面積が増加して、 外力に対する曲がり難さが 大幅に向上する。 その結果、 環境温度変化等によるマイクロベンドが生じ難くな る。
また、 P O Fは、 曲がりに対しては石英ガラス光ファイバに比較して損失増加 が生じやすいが、 直線的な引張り、 圧縮、 側圧に対しては、 石英ガラス光フアイ パと同様に損失増加は生じ難い。 そのため、 複数の P O F同士、 P O Fとダミー フアイバまたは抗張力体とを一体化して集合体を形成しても損失増加が生じるこ とはない。
また、 ケーブルの構成が単純であるので細径のプラスチック光ファイバケープ ルを提供することができる。
更に、 集合体の断面方向の中心部に抗張力体を配置した構成では、 温度変化等 の環境変化に対して、 P O Fの伸び、 縮みを抑制し、 残留応力を P O Fの直線的 応力に変換させることを目的にしている。
例えば、 この集合体の温度が上昇した場合、 P O Fの伸びは、 集合体と抗張力 体の引張弾性率の差に応じて抑制され、 P O F内には長手方向での直線的な圧縮 応力が残存する。 逆に温度が低下した場合は P O F内に直線的な引張応力が残存 する。 P O Fは前述のように長手方向での直線的な外力に対しては損失増加を生 じにくいために、 これらの残存応力によつて損失増加が生じることはない。 図面の簡単な説明
図 1は、 本発明のプラスチック光ファイバケーブルの一実施形態を示す断面図 である。
図 2は、 本発明のプラスチック光ファイバケ一ブルの他の実施形態を示す断面 図である。
図 3は、 本発明のプラスチック光ファイバケーブルの更に他の実施形態を示す 断面図である。
図 4は、 本発明のプラスチック光フアイバケ一ブルの更に他の実施形態を示す 断面図である。
図 5は、 本発明のプラスチック光ファイバケーブルの更に他の実施形態を示す 断面図である。
符号の説明 1 : P〇F、 2 :ダミ一ファイバ、 3 :抗張力体、 4 :テープ、 8 :繊維抗張力体、 9 :被覆部、
10、 20、 30、 40、 50 :プラスチック光ファイバケーブル、 15、 25、 35、 45、 55 :集合体。 発明を実施するための最良の形態
以下、 本発明のプラスチック光ファイバケーブルについて、 図面を用いて詳細 に説明する。
図 1に示すように、 このプラスチック光ファイバケーブル 10は、 中心部にほ ぼ正方形状に集束されている 4本の P OF 1を、 テープ 4で一体化して得られる 集合体 15と、 集合体 15の外周を囲むように配置される繊維抗張力体 8と、 更 に繊維抗張力体 8の外周に被覆される被覆部 9とで構成される 4心ケーブルとな つている。
集合体 15を構成する P OF 1の材質としては特に限定されず、 例えば、 フッ 素樹脂からなる中心部とその外周を被覆するアクリル系樹脂とからなる屈折率分 布型のプラスチック光ファイバ (以下フッ素樹脂系 POFという) や、 ポリメチ ルメ夕クリレート (PMMA) 等が使用できる。 なかでも上記のフッ素樹脂系 P OFを用いることが、 伝送損失が低く、 使用できる光の波長領域が広いことから 好ましい。 また、 POF 1の外径としては 400〜1000 であることが好 ましい。
この POF 1は、 4本が断面方向で互いに 2ケ所以上で接触するように集束さ れた状態で、 テープ 4によって巻きつけられて一体化されて集合体 15を形成し ている。
このような集合体 15を形成することにより、 4本の P〇 F 1が一体化されて P OFの実効断面積はおよそ 4倍となるので、 外力に対する曲がり難さが大幅に 向上する。 その結果、 環境温度変化等によるマイクロベンドは生じ難くなる。 集合体 15を構成する P〇 F 1の本数は、 断面方向で互いに 2ケ所以上で接触 するように集束されていればよく特に限定されないが、 3〜 6本であることが好 ましく、 4本であることがより好ましい。
テープ 4は、 集合体 1 5を一体化する手段として用いられる。 テープ 4の材質 は特に限定されないが、 例えば、 ポリエチレンテレフ夕レート、 ポリエステル不 織布、 紙等を用いることができる。 テープ 4の幅や厚さも適宜選択可能である。 このうちテープの幅は 2〜1 0 mmが好ましく、 2〜5 mmがより好ましい。 ま たテープの厚さは、 3〜1 0 0 zx mが好ましく、 3〜1 0 mがより好ましい。 テープの厚さは、 長手方向で均一な厚さとなることが好ましい。 厚さが上記範囲 より厚くなつたり、 長手方向で厚さが不均一な場合、 P O F 1とテープ 4との線 膨張係数の差により、 環境温度等の変化で P O F 1にマイクロベンドが発生し、 結果的に伝送損失を増大させる可能性があるので好ましくない。
巻きつけピッチはテープ幅と同等かそれ以上が好ましく、 テープ幅の 4〜1 2 倍がより好ましく、 5〜1 0倍が特に好ましく、 6〜 9倍が最も好ましい。 ここ で巻きつけピッチとは、 1本のテープを巻く場合に、 集合体の軸線を含む断面に おいて、 互いに隣り合うテープの相対応する 2点 (例えば幅方向の中心) を軸線 に平行に計った距離をいう。 例えばテープ幅が 4 mmの場合に、 巻きつけピッチ が 8 mmであれば、 巻きつけピッチはテープ幅の 2倍である。 巻きつけピッチを このような範囲にすることにより、 集合体の一体化によるマイクロベンドの発生 を抑制しつつ、 ケーブル製造時における損失の増加も抑制できる。 また、 テープ 4の長手方向には若干の弾性を有することが好ましい。
なお、 本発明においては、 集合体 1 5を一体化する手段はテープ 4のようなテ 一プ状物以外に、 糸状物を巻きつけてもよい。 このような糸状物としては、 綿糸 、 絹糸等の天然糸、 アクリル、 ポリエステル等の合成繊維糸、 ァラミド繊維糸等 が挙げられる。
また、 斬面方向で互いに 2ケ所以上で接触する接触部近傍のみを接着によって 一体化してもよい。 このような接着は、 例えば、 エポキシ系接着剤、 シリコンシ 一リング剤によって行なうことができる。 この場合、 接着は接触部近傍のみが好 ましい。 広い外周面積での接着を行なうと、 P O Fと樹脂剤等との線膨張係数の 差により、 温度変化に応じてマイクロベンドが生じ、 結果的に損失が増大してし まうので好ましくない。
集合体 1 5における、 P O F同士、 または、 P O Fと後述するダミーファイバ または抗張力体との側面の密着強度は、 ファイバ外径 5 0 0 mで、 集合体から の P〇F 1本の長さ 3 0 mmあたりの引き抜き張力として、 3 0〜1 0 0 0 gが 好ましく、 1 0 0〜6 0 0 gがより好ましく、 1 0 0〜3 5 0 gが特に好ましく 、 2 0 0〜3 0 0 gが最も好ましい。 密着強度が 3 0 g未満であると実効断面積 の増大効果がなく、 また、 1 0 0 0 gを超えるとテープ 4等によって P O F 1の 外周部に変形を生じさせて集合体 1 5の加工時 (実際にはケーブルの製造時) に 損失増加が生じるので好ましくない。 すなわち本発明において、 集合体が一体化 しているとは、 好適には集合体からの P O F 1本の長さ 3 0 mmあたりの引き抜 き張力が上記範囲であることを好ましく意味する。
なお、 集合体 1 5の周囲に配置される繊維抗張力体 8としては、 ァラミド繊維 、 ポリエチレンテレフ夕レート (P E T) 繊維、 炭素繊維、 ガラス繊維等が使用 できる。 また、 繊維抗張力体 8の外周に被覆される被覆部 9としては、 例えば、 ポリ塩ィ匕ビニルや難燃性ポリエチレン等が使用可能であり特に限定されない。 以上のように、 このプラスチック光ファイバケーブル 1 0によれば、 環境温度 等の変化によって生じるマイクロベンドの発生を抑制し、 かつ、 細径のプラスチ ック光ファイバケーブルを提供できる。 具体的には、 上記の構成によれば、 マイ クロベンドの発生を抑制しつつ、 2〜5 mm、 好適には 2〜3 . 5 mmの外径の 、 細いプラスチック光ファイバケーブル 1 0を得ることができる。
図 4には、 本発明の別の態様の 1つであるプラスチック光ファイバケーブルの 断面構造が示されている。 なお、 以下の実施形態の説明においては、 前記実施形 態と同一部分には同符合を付して、 その説明を省略することにする。
このプラスチック光ファイバケーブル 4 0においては、 図 1に示された態様に 加えて、 さらに 4本の P O F 1の間の空隙の位置に、 後述する抗張力体 3を配置 したものである。 このとき例えば P OF 1のファイバ外径が 500 mである場 合に、 外径が約 200 mの抗張力体を配置することが好ましい。 この場合に被 覆部の外径を 2. 6 mmとすることができ、 細く耐久性に優れたプラスチック光 フアイバゲ一ブルが得られる。 この構成にするとマイクロベンドの発生をより抑 制することが可能である。
図 2には、 本発明の別の態様の 1つであるプラスチック光ファイバケ一プルの 断面構造が示されている。
このプラスチック光ファイバケーブル 20においては、 2本の POF 1と 2本 のダミ一ファイバ 2とが交互に配置されている点が、 図 1のプラスチック光ファ イバゲ一ブル 10と異なっている。 すなわち 2本の P OF 1と 2本のダミーファ ィバ 2によって、 集合体 25が構成されている。 POF 1とダミーファイバとの 合計の本数は 3〜 6本であることが好ましい。
このように、 本発明においては、 ダミーファイバを用いて実効断面積を増大さ せてもよく、 これによつても、 温度変化等によるマイクロベンドの発生を抑制す ることができる。
この場合、 ダミーファイバ 2は、 POF 1と全く同じものを用いてもよく、 異 なる構成のものを用いてもよいが、 ダミ一ファイバ 2は P OF 1と同様な線膨張 係数を有することが好ましい。 線膨張係数が異なると、 温度変化に対してマイク 口ベンドが生じやすくなり、 伝送損失の増加が生じるので好ましくない。
P OFと異なる構成のダミーファイバ 2としては、 具体的には、 例えば、 PO Fとして上記のフッ素樹脂系 POFを用いる場合、 これと同程度の外径を有する アクリルファイバ等を用いることができる。 この場合、 両者の線膨張係数は共に 8 X 10 57で程度である。
なお、 本発明における、 POFおよびダミーファイバとが断面方向で互いに 2 ケ所以上で接触するように集束された状態とは、 図 2のような接触状態を含む概 念であり、 接触箇所には、 P OF同士の接触箇所のみならず、 POFとダミーフ アイバとの接触箇所も含まれる。 図 5には、 本発明の別の態様の 1つであるプラスチック光ファイバケーブルの 断面構造が示されている。 このプラスチック光フアイバケーブル 5 0においては 、 図 2に示された態様に加えて、 さらに集合体 4 5の中心の空隙の位置に、 後述 する抗張力体 3を配置したものである。
図 3には、 本発明の更に別の態様の 1つであるプラスチック光フアイバケープ ルの断面構造が示されている。 このプラスチック光ファイバケーブル 3 0におい ては、 集合体 3 5が、 中心部の抗張力体 3の周囲に 6本の P O F 1が撚り合せら れ、 その外周がテ一プ 4で巻きつけられて一体化され、 集合体 3 5が形成されて いる 6心ケーブルである。
抗張力体 3としては、 例えば、 亜鉛メツキ硬鋼線、 銅合金線、 ステンレス線等 の金属線や、 ァラミド繊維、 ガラス繊維等を樹脂で固化した繊維強化プラスチッ ク等が好ましく用いられる。 抗張力体として金属線を用いると、 材料が入手しや すい等の点で好ましい。 また抗張力体として繊維強化プラスチックを用いると、 抗張力体と繊維抗張力体との線膨張係数を合わせやすく、 導電体を用いないブラ スチック光フアイパケーブルが得られる点で好ましい。
本発明のプラスチック光ファイバケ一ブルにおいて、 集合体の中心部に抗張力 体を配置し、 さらに集合体の外周を囲むように繊維抗張力体が配置される場合に 、 該抗張力体および該繊維抗張力体のそれぞれの線膨張係数がほぼ等しいことが 好ましい。 ここでほぼ等しいとは、 一方の線膨張係数が他方の線膨張係数の 5倍 以内、 好ましくは 3倍以内であることを意味する。 例えば抗張力体として金属線 を用い、 繊維抗張力体としてァラミド繊維を用いる場合に、 金属線としては銅合 金線を用いることが、 抗張力体と繊維抗張力体とのそれぞれの線膨張係数が近い 点から好ましい。
この集合体 3 5で温度変化が生じると、 P O F 1の伸びまたは縮みは、 中心部 の抗張力体 3によって制約を受け、 伸縮方向は横弾性率の大きい抗張力体 3に沿 つた方向となり、 かつ伸び量も抑制される。 その結果、 P O F 1には温度変化に 応じた圧縮または引張り応力が発生する。 例えば、 常温に対して 45°Cの温度低下が生じた時、 集合体 35の縮みは 0. 4%となり、 一本あたりの P OF 1の引張応力は伸び率で 0. 35 %に相当する 値となる。
P O F 1は、 直線的な引張応力に対しては約 3 %の伸びまでは損失増加が生じ ることはないので、 上記の 35%程度の引張応力では損失増加が生じること はない。 一方、 逆に高温側への温度変化があった場合は、 POF 1の伸びが抑制 され、 その結果 P〇F 1へは圧縮応力が発生する。 弓 I張応力と同様に POF 1は 圧縮に対しても損失増加は生じない。 したがって、 この構成によれば、 特に温度 変化に対して優れた伝送特性を実現することができる。
(実施例)
以下、 本発明を実施例および比較例により具体的に説明する。
実施例 1
以下の構成材料によって、 図 1に示すような構成の 4心のプラスチック光ファ ィバケ一ブル 10を製造した。
P OF 1としては、 フッ素樹脂系 P OF (ファイバ外径 500 m、 コア径 1
20 m, クラッド径 250 m、 クラッドの外周をファイバ外径 500 mと なるようにアクリル系樹脂で被覆、 NAが 0. 185、 旭硝子株式会社製:商品 名 「ルキナ」 ) を用いた。 線膨張係数は、 8X 10— 5/°Cである。
これを図 1のように 4本集束して、 テープ 4を用いてテープ幅と同じ巻きつけ ピッチで隙間なく 4本の P〇F 1を一体化して集合体 15を得た。 テープ 4とし ては、 テープ厚 5 _tm、 テープ幅 4mmのポリエチレンテレフタレ一ト (PET ) テープを用いた。 なお、 集合体 15での POF 1の引き抜き張力は 400 gZ
30mmであった。
繊維抗張力体 8としてはァラミド繊維 (1270デシテックス、 4本使用) を 用いた。 被覆部 9としては軟質塩化ビニル樹脂を用い、 内径が 2. 0mm、 外径 が 3. 0mmとなるように被覆した。 実施例 2
図 1の構成において、 対角線上の 2本の P OF 1の代わりに 2本のダミーファ ィバ 2を用いた以外は実施例 1と同様にして、 図 2のような構成の、 集合体 25 を有するプラスチック光ファイバケ一ブル 20を製造した。 ダミーファイバ 2と しては、 外径 500 / mのアクリルファイバ (線膨張係数: 8 X 10- 5Z°C) を 用い、 P 0 F 1、 テープ 4、 繊維抗張力体 8、 被覆部 9は実施例 1と同様のもの を用いた。 なお、 集合体 25での POF 1の引き抜き張力は 400 g/30mm であった。
実施例 3
図 3に示すような構成の、 中央の抗張力体 3の周囲に 6本の P O F 1が配置さ れた構成である集合体 35を作成し、 6心のプラスチック光ファイバケ一ブル 3 0を製造した。 抗張力体 3としては、 線径 500 zmの亜鉛メツキ硬鋼線を用い 、 POF l、 テープ 4、 繊維抗張力体 8は実施例 1と同様のものを用い、 被覆部 9としては軟質塩化ビニル樹脂を用い、 内径が 2. 2 mm、 外径が 3. 2mmと なるように被覆した。 なお、 集合体 35での P〇F 1の引き抜き張力は 600 g /30mmであった。
実施例 4
図 4に示すような構成の、 中央の抗張力体 3の周囲に 4本の POF 1が配置さ れた構成である集合体 45を作成し、 4心のプラスチック光ファイバケ一ブル 4 0を製造した。 抗張力体 3としては、 線径 200 xmの銅合金 (銅/銀の比率は 90/10) 線を用いた。 POF l、 繊維抗張力体 8は実施例 1と同様のものを 用いた。 テープ 4としては、 厚さが 4^m、 テープ幅が 2. 5mmの PETテ一 プを用い、 巻きつけピッチはテープ幅と同じ 2. 5 mmとして隙間なく巻きつけ た。 被覆部 9としては軟質塩化ビニル樹脂を用い、 内径が 1. 8mm、 外径が 2 . 6mmとなるように被覆した。 なお、 集合体 45での POF 1の引き抜き張力 は 600 g/30mmであった。
実施例 5 テープの巻きつけピッチを 10mm (テープ幅の 4倍) とした以外は、 実施例 4と同様にしてプラスチック光ファイバケーブルを製造した。 集合体での P OF の引き抜き張力は 400 g/30mmであった。
実施例 6
テープの巻きつけピッチを 20mm (テープ幅の 8倍) とした以外は、 実施例 4と同様にしてプラスチック光ファイバケーブルを製造した。 集合体での P OF の引き抜き張力は 300 g/30mmであった。
実施例 7
テープの巻きつけピッチを 25mm (テープ幅の 10倍) とした以外は、 実施 例 4と同様にしてプラスチック光ファイバケーブルを製造した。 集合体での PO Fの引き抜き張力は 100 g/30mmであった。
比較例 1
実施例 1と同じ寸法を持つ軟質塩化ビニル樹脂の被覆チューブ内に 4本の PO F 1をルーズに収納し、 更に被覆チューブ内に実施例 1のァラミド繊維 4本を配 置した。
比較例 2
テープの巻きつけピッチを 40mm (テープ幅の 16倍) とした以外は、 実施 例 4と同様にしてプラスチック光ファイバケーブルを製造した。 しかし集合体は ところどころで一体化していない部分が見られた。 集合体での P OFの引き抜き 張力は 20 g/30mmであった。
試験例
実施例 1〜 7の集合体、 比較例 2の集合体、 および P〇 F 1の単体について、 微小曲がり損失を測定した。 また、 実施例 1〜7、 比較例 1〜2のプラスチック 光ファイバケーブルについて、 ケーブル製造時の損失増加 (dBZkm) 、 ケー ブルの損失変化 (d BZkm) の温度特性を J I S C- 6823に規定される カツトバック法により測定した。
微小曲がり損失測定は、 平板上に設置した外径 0. 4mmの鋼線上に集合体ま たは 1本の P O Fを設置して l mm厚のゴム板を介して 5 5 0 g / 4 0 mmの荷 重をかけた時の損失増加を測定した。 また、 温度特性測定は、 2 5 を基準とし て 7 0 °Cと一 2 0ででの損失変化を測定した。 その結果を表 1に示す。
(表 1 )
Figure imgf000016_0001
表 1の結果より、 実施例における集合体の微小曲がり損失は、 単体のプラスチ ック光ファイバに比較して小さく、 P〇 Fを一体化して集合体とすることによつ て微小曲がり損失が生じにくくなつている。 また、 温度特性も比較例 1に比較し て小さく、 集合体とすることによりマイクロベンドの発生が抑制されている。 さ らに、 中心部に抗張力体を配置した構成の実施例 3〜 7においては、 抗張力体が ない構成である実施例 1 、 2に比較して温度特性がさらに改善されている。 また テープの巻きつけピッチを広くし適切な範囲にした実施例 5〜 7においては、 ケ 一プル製造時の損失増加も低く抑制できている。 産業上の利用の可能性
以上説明したように、 本発明によれば、 P O F同士、 P O Fとダミーファイバ または抗張力体とが、 断面方向で互いに 2ケ所以上で接触するように集束された 状態で一体化されて集合体を形成している。 これにより、 実質的なファイバ断面 積が増大し、 P O F内の残留応力が直線的な引張または圧縮応力となっている。 このため、 環境温度等の変化に対するマイクロベンドが抑制され、 安定な伝送特 性を有するプラスチック光ファイバケーブルを提供することができる。

Claims

請求の範囲
1 . 複数のプラスチック光ファイバで構成されるプラスチック光ファイバケープ ルにおいて、 前記プラスチック光ファイバが、 断面方向で互いに 2ケ所以上で接 触するように集束された状態で一体化されて集合体を形成していることを特徴と するプラスチック光フアイバケーブル。
2 . 複数のプラスチック光ファイバと、 該プラスチック光ファイバと同様な線膨 張係数を有するダミーファイバとで構成されるプラスチック光ファイバケーブル において、 前記プラスチック光ファイバおよび前記ダミーファイバとが、 断面方 向で互いに 2ケ所以上で接触するように集束された状態で一体化されて集合体を 形成していることを特徴とするプラスチック光ファイバケーブル。
3 . 複数のプラスチック光ファイバと、 抗張力体とで構成されるプラスチック光 ファイバケーブルにおいて、 前記プラスチック光ファイバおよび前記抗張力体と が、 断面方向で互いに 2ケ所以上で接触するように集束された状態で一体化され て集合体を形成していることを特徴とするプラスチック光フアイパケーブル。
4. 複数のプラスチック光ファイバと、 該プラスチック光ファイバと同様な線膨 張係数を有するダミーファイバと、 抗張力体とで構成されるプラスチック光ファ ィバケーブルにおいて、 前記プラスチック光ファイバと前記ダミーファイバと前 記抗張力体とが、 断面方向で互いに 2ケ所以上で接触するように集束された状態 で一体化されて集合体を形成していることを特徴とするプラスチック光ファイバ ケ一ブル。
5 . 前記抗張力体が前記集合体の中心部に配置されている請求項 3または 4に記 載のプラスチック光ファイバケーブル。
6 . 前記抗張力体が金属線である請求項 3〜 5のいずれか 1つに記載のプラスチ ック光ファイバケーブル。
7 . 前記抗張力体が繊維強化プラスチックである請求項 3〜 5のいずれか 1つに 記載のプラスチック光フアイバケ一ブル。
8 . 前記集合体がテープ状物で巻き付けられて一体化されている請求項 1〜 7に 7
-—ブル。
9 . 前記集合体が糸状物で巻き付けられて一体化されている請求項 1〜 7に記載 のプラスチック光フアイバケーブル。
1 0 . 前記集合体が、 前記集束された状態で互いに接触する接触部近傍のみが接 着されて一体化されている請求項 1〜 7に記載のプラスチック光ファイバケープ ル。
PCT/JP2004/006803 2003-05-15 2004-05-13 プラスチック光ファイバケーブル WO2004102244A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506244A JPWO2004102244A1 (ja) 2003-05-15 2004-05-13 プラスチック光ファイバケーブル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-137891 2003-05-15
JP2003137891 2003-05-15

Publications (1)

Publication Number Publication Date
WO2004102244A1 true WO2004102244A1 (ja) 2004-11-25

Family

ID=33447275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006803 WO2004102244A1 (ja) 2003-05-15 2004-05-13 プラスチック光ファイバケーブル

Country Status (2)

Country Link
JP (1) JPWO2004102244A1 (ja)
WO (1) WO2004102244A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11378766B2 (en) * 2018-11-06 2022-07-05 Sumitomo Electric Industries, Ltd. Optical fiber cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171003A (ja) * 1989-11-30 1991-07-24 Furukawa Electric Co Ltd:The プラスチック光ファイバ撚合体とプラスチック光ファイバユニット撚合体
JPH04212115A (ja) * 1990-05-11 1992-08-03 Furukawa Electric Co Ltd:The プラスチック光ファイバケーブルの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171003A (ja) * 1989-11-30 1991-07-24 Furukawa Electric Co Ltd:The プラスチック光ファイバ撚合体とプラスチック光ファイバユニット撚合体
JPH04212115A (ja) * 1990-05-11 1992-08-03 Furukawa Electric Co Ltd:The プラスチック光ファイバケーブルの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11378766B2 (en) * 2018-11-06 2022-07-05 Sumitomo Electric Industries, Ltd. Optical fiber cable

Also Published As

Publication number Publication date
JPWO2004102244A1 (ja) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4806708B2 (ja) コネクタ化したケーブルアセンブリの形成方法
JP4619424B2 (ja) 光ファイバケーブル
US8363994B2 (en) Fiber optic cable assembly
JP5235125B2 (ja) 光ファイバテープ及び光ファイバケーブル
JPH07503079A (ja) 高屈曲性の光ファイバーコイルケーブル
JP2014085554A (ja) 光ケーブル
EP1403671B1 (en) Dielectric optical fiber cable having reduced preferential bending
US20150192749A1 (en) Optical fiber cable
JP2009181119A (ja) 光ケーブル
JP5332111B2 (ja) 光ケーブル
WO2012036031A1 (ja) プラスチック光ファイバユニット、およびそれを用いたプラスチック光ファイバケーブル
JP4185473B2 (ja) 光ファイバコード
WO2004102244A1 (ja) プラスチック光ファイバケーブル
US7397990B2 (en) Signal transmitting cable
JP4268075B2 (ja) 光ファイバケーブル
EP4239386A1 (en) Optical fiber cable with elongated strength members and manufacturing method thereof
EP4212933A1 (en) Optical fiber cable with flexible wrapping tubes
JP7135744B2 (ja) 光ファイバケーブル
EP4212934A1 (en) Optical fiber cable with embedded strength members
EP4206774A1 (en) Embedded strength member for optical fiber cables and manufacturing method thereof
Foord et al. Special issue paper. Principles of fibre-optical cable design
JP7155617B2 (ja) 光ファイバケーブル
JP2004212960A (ja) 光ファイバケーブル
JPH08262296A (ja) 光ファイバケーブル
JP4013045B2 (ja) 光ファイバケーブル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005506244

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application