Gassensor, insbesondere für eine Fahrzeug-Klimaanlage
Die Erfindung betrifft einen Gassensor zur Messung einer Gaskonzentration, insbesondere für eine Fahrzeug-Klimaanlage.
Gassensoren zur Messung von Gaskonzentrationen, die auf der Messung der Absorption infraroter Strahlung (IR-Strahlung) beruhen, werden derzeit überwiegend in medizinischen und biologischen Anwendungsbereichen oder in der Branddetektion verwendet. Sie weisen im Allgemeinen eine Infrarot (IR)- Strahlungsquelle und eine IR-Detektionseinrichtung auf, zwischen denen entlang einer optischen Achse eine Absorptionsstrecke bzw. ein Absorp- tionsbereich ausgebildet ist, in welchem die abgestrahlte IR-Strahlung in einem bestimmten Wellenlängenbereich in Abhängigkeit der zu messenden Gaskonzentration absorbiert wird. Änderungen der betreffenden Gaskonzentration können somit als Änderungen des Messsignals der IR- Detektionseinrichtung ermittelt werden.
Offene Gassensorkonzepte mit frei zugänglicher Infrarot-Quelle und frei zugänglichem Detektorelement können aufgrund des guten Gasaustauschs in dem offenen Absorptionsbereich eine hohe Dynamik gewährleisten. Die optischen Komponenten, d. h. die IR-Strahlungsquelle, das IR-Detektorelement und evtl. zusätzlich verwendete Reflektoren sind jedoch der Verschmutzung ausgesetzt, so dass insbesondere eine Anwendung im Bereich von Klimaanlagen und Umluftsystemen im Kraftfahrzeug nicht sinnvoll ist.
Bei herkömmlichen Sensorsystemen wird daher zum Schutz der optischen Komponenten des Gassensors insbesondere vor Verschmutzung ein Sensorgehäuse mit einer Membran oder einem Labyrinth verwendet. Das zu
messende Gas gelangt zunächst in das Sensorgehäuse, in welchem es durch die Schutzmembran diffundiert oder durch das Labyrinth strömt. Hierdurch ist der Gasaustausch zwischen der Umgebung und dem Absorptionsbereich des Sensors im statischen Zustand relativ langsam. Für ein hinreichend dynamisches Sensorsystem ist ein schneller Gasaustausch durch die Membran oder das Labyrinth erforderlich, der nur durch ein Druckgefälle zwischen Umgebung und Sensorinneren erreicht werden kann. Hierzu werden zusätzliche Lüfter verwendet oder eine Zwangskonvektion in einem Strömungskanal erzeugt.
Derartige Sensoren weisen im Allgemeinen eine hohe Messgenauigkeit auf; sie sind jedoch im Allgemeinen in der Herstellung aufwändig und teuer, so dass sie in Massenanwendungen, wie z. B. im Automobilbereich, kaum verwendet werden.
Der erfindungsgemäße Gassensor weist demgegenüber insbesondere den Vorteil auf, dass mit relativ geringem apparativem Aufwand eine sichere De- tektion von Gaskonzentrationen bei hoher Dynamik erreicht wird. Hierbei können vorteilhafterweise ein zusätzlicher Lüfter und die Erzeugung einer Zwangskonvektion entfallen.
Erfindungsgemäß werden somit die beiden optischen Komponenten, d.h. der Infrarot-Detektor und die Infrarot-Strahlungsquelle, durch gasundurchlässige, für die Infrarot-Strahlung zumindest in einem messrelevanten Wellenlängen- bereich im Wesentlichen durchlässige Folien von dem Absorptionsbereich getrennt. Diese Trennung ermöglicht allenfalls noch den Durchtritt vernachlässigbarer Gasmengen z. B. durch Klebebereiche zu den optischen Komponenten.
Somit sind die optischen Komponenten sicher vor einer Verschmutzung geschützt, ohne dass das Gas durch eine Membran diffundieren oder ein Labyrinth geführt werden muss. Der Gasaustausch zwischen dem Absorptionsbe-
reich und einem Außenraum wird somit allenfalls geringfügig beeinträchtigt. Hierdurch ist das Ansprechverhalten bzw. die Dynamik des Gassensors bei einer Änderung der Gaskonzentration höher als bei den eingangs beschriebenen Systemen. Aufgrund des offenen Absorptionsbereiches wird weiterhin die Bildung von Gassümpfen, d. h. Gasansammlungen in für Gaszirkulation und Konvektion schwer zugänglichen Bereichen, verhindert oder zumindest erschwert. Weiterhin ist eine thermische Trennung zwischen der Infrarot- Strahlungsquelle und der Infrarot-Detektionseinrichtung möglich. Hierdurch lässt sich eine hohe Messgenauigkeit auch bei Verwendung eines thermi- sehen Strahlers als Infrarot (IR)-Quelle und eines Thermopile-Chips als De- tektionseinrichtung erreichen. Da kein zusätzlicher Lüfter oder Konvektions- erzeuger erforderlich ist, ist die Einbaulage des erfindungsgemäßen Gassensors unabhängig von der Beströmung mit Luft durch ein Lüftungssystem des Fahrzeugs. Hierbei kann der erfindungsgemäße Gassensor auch in einem Gehäuse bzw. miteinander verbundenen Gehäuseteilen für den IR-Detektor und die IR-Strahlungsquelle angeordnet werden, wenn das Gehäuse eine hinreichende thermische Entkopplung z. B. durch eine geeignete U-Form oder geschlossene Ringform ermöglicht.
Erfindungsgemäß werden vorteilhafterweise die Strahlungsquelle und die Detektionseinrichtung jeweils in gegenüber dem Absorptionsbereich geschlossenen Gehäusen oder Gehäuseteilen eines gemeinsamen Gehäuses angeordnet. Die Gehäuse bzw. Gehäuseteile weisen hierbei in der optischen Achse zwischen Strahlungsquelle und Detektionseinrichtung Öffnungen auf, die durch die gasundurchlässigen IR-transparenten Folien verschlossen sind. Hierdurch wird eine weitgehend gasdichte Abschirmung der Strahlungsquelle und der Detektionseinrichtung ohne Beeinträchtigung des Strahlengangs erreicht. Die Folien können hierbei am Gehäuse z. B. verklebt, verschweißt, geklemmt oder auf ähnliche Weise befestigt werden, wodurch eine zwar nicht absolut, jedoch hinreichend gasdichte Abschirmung erreicht wird. Ergänzend können im Absorptionsbereich Reflektoren außerhalb der optischen Achse zur Reflektion von Streustrahlung und somit zur Erhöhung des Messsignals
vorgesehen sein. Da die Reflektoren außerhalb der optischen Achse vorgesehen sind und sich somit die Strahlungsquelle und die Detektionseinrichtung direkt gegenüberstehen, beeinflussen mögliche Verschmutzungen der Reflektoren das Messsignal allenfalls gering. Die Oberflächen der Reflekto- ren können ergänzend durch schmutzabweisende Beschichtungen bzw. Lacke weitgehend gegen Verschmutzungen resistent gehalten werden.
Für die gasundurchlässigen, IR-transparenten Folien kann vorteilhafterweise ein Material mit schmutzabweisender Oberfläche verwendet werden. Erfin- dungsgemäß wurde überraschenderweise festgestellt, dass PTFE (Polytet- rafluorethylen) sehr gute Eigenschaften als Folienmaterial für den erfindungsgemäßen Sensor aufweist, da es im messrelevanten Wellenlängenbereich bei hinreichend geringer Schichtdicke der Folie eine geringe Absorption bei hoher Gasdichtigkeit gewährleistet und ein Anhaften von Schmutz, Staub und dergleichen auf seiner Oberfläche weitgehend verhindert. Relevante
Wellenlängenbereiche sind insbesondere der langwellige IR-Bereich z. B. für Kohlendioxid zwischen 4 und 5 μm. Die Belastbarkeit einer lediglich an äußeren Bereichen an einem Gehäuse befestigten PTFE-Folie mit einer Dicke von z. B. 200 bis 500 μm ist hierbei hinreichend, wobei im für Automobilanwen- düngen relevanten Temperaturbereich zwischen - 40 und 100 °C keine wesentliche optische Drift auftritt. Vorteilhafterweise verlaufen die Folien in Einbauzustand ganz oder weitgehend vertikal, so dass auch keine Schmutzoder Staubpartikel auf der Oberfläche liegen bleiben können.
Die Verwendung einer Wärmequelle, z. B. einer Glühbirne im Unterstrombetrieb, ermöglicht geringe Herstellungs-, Betriebs- und Wartungskosten bei hoher Strahlungsleistung und somit hoher Messgenauigkeit auch geringer Konzentrationen und Konzentrationsunterschiede bei Verwendung nicht allzu aufwendiger Detektoren. Hierbei ist vorteilhafterweise ein optisches Filter zur Auswahl eines oder mehrerer Wellenlängenbereiche außerhalb des Absorptionsbereichs, d. h. in der optischen Achse zwischen IR-Strahlungsquelle und erster Folie oder zweiter Folie und IR-Detektionseinrichtung vorgesehen.
Bei Verwendung eines gemeinsamen Gehäuses kann z. B. eine U-Form oder eine Ringform bzw. O-Form vorgesehen sein, wobei ein Verbindungskanal zwischen der Detektionseinrichtung und Strahlungsquelle zur Verlegung von elektrischen Leitungen verwendet werden kann, so dass der Gassensor einen gemeinsamen elektrischen Anschluss aufweist.
Die Erfindung wird im Folgenden anhand der beiliegenden Zeichnungen an einigen Ausführungsformen näher erläutert. Es zeigen:
Fig. 1 einen Schnitt durch eine Prinzipdarstellung eines erfindungsgemäßen Gassensors;
Fig. 2 eine Ausführungsform mit einem halboffenen bzw. U-förmigen Gehäuse; Fig. 3 eine weitere Ausführungsform, bei der gegenüber Fig. 2 ein
Reflektor ergänzt ist;
Fig. 4 eine weitere Ausführungsform mit einem den Absorptionsbereich umgebenden Gehäuse;
Fig. 5 eine weitere Ausführungsform, bei der gegenüber Fig. 4 ein Reflektor ergänzt ist;
Fig. 6 eine weitere Ausführungsform mit einem ringförmigen Gehäuse und einem inneren Absorptionsbereich;
Fig. 7 eine weitere Ausführungsform, bei der gegenüber Fig. 6 ein Reflektor ergänzt ist; Fig. 8 a,b einen Schnitt und eine Draufsicht auf einen Detektor des erfindungsgemäßen Gassensors.
Ein Gassensor 1 weist eine Infrarot (IR)-Strahlungsquelle 2 mit einer Glühbirne 3 und einem Reflektor 4 auf, in dessen Brennpunkt die Glühbirne 3 mit einer im Unterstrom betrieb betriebenen Glühwendel angeordnet ist. Die IR- Strahlungsquelle 2 ist in einem Strahlungsquellengehäuse 5 angeordnet, das eine durch eine Folie 6 verschlossene Öffnung 9 aufweist. Die Folie 6 ist
hierbei in z. B. durch Klebung erzeugten Montagebereichen 8 mit dem Gehäuse 5 weitgehend gasdicht verbunden. Im Inneren des Gehäuses 5 ist somit ein Strahlungsquellenraum 7 gebildet, der gegenüber einem Absorptionsbereich 11 weitgehend gasdicht abgetrennt ist.
Ein Infrarot (IR)-Detektor 10 ist derartig angeordnet, das er der IR- Strahlungsquelle 2 in einer optischen Achse A gegenüber liegt und ein direkter Strahlengang zwischen IR-Strahlungsquelle 2 und IR-Detektor 10 ohne Verwendung von Reflektoreinrichtungen in der optischen Achse A möglich ist.
Eine Ausführungsform eines IR-Detektors 10 ist in Fig. 8a, b detaillierter gezeigt. Der IR-Detektor 10 weist ein Premold-Gehäuse 10.1 auf, in dem mittels Klebstoff-Schichten 10.2 zwei Glassockelplatten 10.3 aufeinander aufgeklebt sind. Auf den Glassockelplatten 10.3 sind mittels Klebstoff-Schichten 10.2 zwei Thermopile-Chips 12a, 12b aufgeklebt, die über Drahtbonds 15a und Kontakte 15b auf einer Leiterplatte 14 montiert sind. Jeder Thermopile-Chip 42a und 12b ist mit einer Sealglasschicht 10.4 und einer Silizium-Kappe 10.5 als ein Chip ausgebildet. Auf der Silizium-Kappe 10.5 ist über eine IR- transparente Klebstoffschicht 10.6 ein optisches Filter 13 befestigt, das in einem messrelevanten Wellenlängenbereich hochtransparent ist und störende Wellenlängenbereiche ausfiltert. Eine im Premold-Gehäuse 10.1 befestigte Blende 16 lässt lediglich durch mittlere Öffnungen 16.1 Strahlung auf die optischen Filter 13 fallen.
Der Thermopile-Chip 12a dient hierbei der Messung der Gaskonzentration in einem ersten Wellenlängenbereich, der weitere Thermopile-Chip 12b dient als Referenz in einem zweiten Wellenlängenbereich, in dem keine Absorption durch ein Gas des Absorptionsbereichs 11 zu erwarten ist. Die Wellenlän- genbereiche werden durch die optischen Filter 13 ausgewählt. Hierbei können mehrere Thermopile-Chips 12a zur gleichzeitigen Messung mehrerer Gaskonzentrationen in das Gehäuse 10.1 gesetzt werden.
Der IR-Detektor 10 ist in einem Detektorgehäuse 19 angeordnet, das um die optische Achse A herum eine Öffnung 22 aufweist, die durch eine zweite Folie 18 verschlossen ist. Die Folie 18 ist hierbei in z. B. durch Klebung er- zeugten Montagebereichen 21 am Gehäuse 19 weitgehend gasdicht befestigt. Das Detektorgehäuse 19 und die zweite Folie 18 definieren hierbei einen Detektorraum 17, der gegenüber dem Absorptionsbereich 11 weitgehend gasdicht abgeschlossen ist. Ein durch Pfeile G eingezeichneter Gasaustausch zu einem Außenraum 20 ist somit in dem ganzen Absorptionsbereich 11 möglich.
Die Folien 6, 18 sind z. B. aus PTFE (Polytetrafluorethylen), einem PTFE- haltigen Material oder einem Material mit ähnlichen schmutzabweisenden Eigenschaften mit einer Dicke von z. B. 200 bis 500 μm vorgesehen. Erfin- dungsgemäß können bei entsprechender Auswahl des optischen Filters 13 vor dem Thermopile-Chip 12a insbesondere Kohlendioxid (C02), weiterhin auch Kohlenmonoxid (CO), Stickstoffmonoxid (NO), Carbonyl-Gruppen, Stickstoffdioxid (N02), Ozon (03) sowie Schwefeldioxid (S02) und/ oder weitere IR-Strahlung absorbierende Gase gemessen werden.
Bei den weiteren Ausführungsformen der Figuren 2 bis 7 sind die IR- Strahlungsquelle 2 und der IR-Detektor 10 gegenüber der ersten Ausführungsform unverändert. Bei der in Fig. 2 gezeigten Ausführungsform sind die IR-Strahlungsquelle 2 und der IR-Detektor 10 in Schenkelbereichen 23a, 23b eines gemeinsamen Sensorgehäuses 23 angeordnet, das eine halboffene
Form bzw. U-Form mit einem gemeinsamen Sensorraum 27 aufweist. In dem Sensorraum 27 können Leitungen, Stecker und Anschlüsse für den Detektor 10 und für die Strahlungsquelle 2 verlegt werden. Das Sensorgehäuse 23 weist ein Gehäuseteil 24 mit zwei Deckeln 25, 26 auf, durch die die Strah- lungsquelle 2 und der Detektor 10 eingesetzt werden können. Bei der halboffenen Form der Fig. 2 ist ein Gasaustausch des Absorptionsbereich 30 mit einem Außenraum 29 in drei Richtungen möglich. Alternativ zu der gezeigten
Ausbildung kann auch eine gemeinsame Leiterplatte vorgesehen sein, auf der Detektor und Strahlungsquelle montiert sind.
Bei der Ausführungsform der Fig. 3 ist gegenüber Fig. 2 ergänzend ein zylin- derförmiger Reflektor 34 mit spiegelnder zylindrischer Innenfläche vorgesehen, so dass der Absorptionsbereich 40 im Wesentlichen den Innenraum des Reflektors 34 umfasst. Wie durch den eingezeichneten Strahlengang ersichtlich wird hierdurch auch Infrarot-Strahlung, die von der Strahlungsquelle 2 ausgehend unter einem größeren Winkel gegenüber der optischen Achse A ausgestrahlt wird, zumindest teilweise auf den Detektor 10 reflektiert, so dass das Messsignal erhöht ist. Durch den Reflektor 34 ist der durch die Pfeile G eingezeichnete Gasaustausch des Absorptionsbereichs 40 gegenüber der zweiten Ausführungsform entsprechend etwas eingeschränkt.
Bei der Ausführungsform der Fig. 4 ist ein gemeinsames Sensorgehäuse 42 vorgesehen, in dem ein Strahlungsquellenraum 47 durch die erste Folie 6 und ein Detektorraum 48 durch die zweite Folie 18 abgetrennt ist. Der dazwischen ausgebildete Absorptionsbereich 50 ist über Öffnungen 46 mit einem Außenraum 49 verbunden. Hierbei ist vorteilhafterweise eine Vielzahl derar- tiger Öffnungen 46 über den Umfang verteilt vorgesehen, um einen guten Gasaustausch mit entsprechend hoher Messdynamik zu ermöglichen. Auch bei dieser Ausführungsform sind abnehmbare Deckel 44, 45 zum Einsetzen und zur Wartung bzw. Reparatur der Strahiungsquelle 2 und des Detektors 10 vorgesehen.
Bei der Ausführungsform der Fig. 5 ist wiederum ergänzend ein zylinderför- miger Reflektor 57 zur Erhöhung des Messsignals vorgesehen. Der Absorptionsbereich 60 ist somit gegenüber demjenigen der Fig. 4 vergrößert.
Bei der Ausführungsform der Fig. 6 sind die Strahlungsquelle 2 und der Detektor 10 in einem ringförmigen Gehäuse 62 mit ringförmigem bzw. O- förmigem Sensorraum 65 aufgenommen, der wiederum zum Verlegen von
Kabeln, Steckern und Aufnahmen verwendet werden kann; alternativ hierzu kann er auch als Raum für eine gemeinsame Leiterplatte verwendet werden. Der Absorptionsbereich 70 ist innerhalb des Gehäuses 62 vorgesehen, wobei ein Gasaustausch des Absorptionsbereichs 70 mit einem Außenraum 61 aus der Zeichenebene heraus möglich ist. Bei der Ausführungsform der Fig. 7 ist ergänzend wiederum ein zylinderförmiger Reflektor 77 vorgesehen, so dass der Absorptionsbereich 80 den Innenraum des zylinderförmigen Reflektors 77 umfasst und gegenüber dem Reflektionsraum 70 der Fig. 6 vergrößert ist.
Die gezeigten Ausführungsformen geben beispielhaft die Anordnung von Detektor 10 und Strahlungsquelle 2 mit dem erfindungsgemäßen Prinzip des optischen Schutzes vor Verschmutzungen mit einer Folie aus z. B. PTFE oder einem entsprechenden schmutzabweisenden Material dar. Bei allen gezeigten Ausführungsformen verläuft die optische Achse A geradlinig zwischen Strahlungsquelle 2 bzw. Glühbirne 3 und Detektor 10 bzw. Thermopile-Chips 12 a,b ohne Verwendung zusätzlicher Reflektoren in der optischen Achse A. Grundsätzlich ist es erfindungsgemäß auch möglich, einen Reflektor in der optischen Achse A vorzusehen und hierdurch z. B. Strahlungs- quelle 2 und Detektor 10 räumlich näher aneinander anzuordnen, oder z. B. so auf einer Leiterplatte oder einem Substrat zu montieren, dass sie sich nicht gegenüberstehen und der Strahlenverlauf zwischen Strahlungsquelle 2 und Detektor 10 erst durch den zusätzlichen Reflektor ermöglicht wird. In einem derartigen Fall ist vorteilhafterweise der Reflektor wiederum in einem Gehäuse mit einer Öffnung vorgesehen, die gegenüber dem Absorptionsbereich durch eine gasundurchlässige, für Infrarot-Strahlung im messrelevanten Wellenlängenbereich hochtransparente Folie abgeschirmt ist.
Die Reflektoren 34, 57, 77 weisen an ihrer Spiegelfläche vorteilhafterweise eine Antihaftbeschichtung auf.