WO2004097207A1 - Brennstoff-einspritzventil für brennkraftmaschinen - Google Patents

Brennstoff-einspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
WO2004097207A1
WO2004097207A1 PCT/EP2004/000929 EP2004000929W WO2004097207A1 WO 2004097207 A1 WO2004097207 A1 WO 2004097207A1 EP 2004000929 W EP2004000929 W EP 2004000929W WO 2004097207 A1 WO2004097207 A1 WO 2004097207A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrangement
fuel injection
injection valve
valve according
fuel
Prior art date
Application number
PCT/EP2004/000929
Other languages
English (en)
French (fr)
Inventor
Andreas GRÜNDL
Bernhard Hoffmann
Original Assignee
Compact Dynamics Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compact Dynamics Gmbh filed Critical Compact Dynamics Gmbh
Priority to JP2006504406A priority Critical patent/JP2006524771A/ja
Priority to EP04707203A priority patent/EP1618298B1/de
Priority to US10/554,713 priority patent/US7533834B2/en
Priority to DE502004007492T priority patent/DE502004007492D1/de
Publication of WO2004097207A1 publication Critical patent/WO2004097207A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • F02M51/0617Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature having two or more electromagnets
    • F02M51/0621Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature having two or more electromagnets acting on one mobile armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/0642Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
    • F02M51/0653Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1676Means for avoiding or reducing eddy currents in the magnetic circuit, e.g. radial slots

Definitions

  • the invention relates to a fuel injection valve for fuel injection systems of internal combustion engines, in particular for the direct injection of fuel into a combustion chamber of an internal combustion engine.
  • a fuel injection valve for fuel injection systems of internal combustion engines in particular for the direct injection of fuel into a combustion chamber of an internal combustion engine.
  • the fuel injection valve according to the invention has a fuel inlet which is set up to let fuel flow into the fuel injection valve and an electrically controllable actuating device which interacts with a valve arrangement in order to fuel in a directly or indirectly controlled manner by a fuel - Let the outlet flow out into the combustion chamber.
  • the electromagnetic actuating device has an electromagnet coil arrangement to be energized, an essentially soft-magnetic magnet yoke arrangement that interacts with it, and an essentially soft magnetic magnet armature arrangement that interacts with it.
  • a fuel injector of the type mentioned above is known in a wide variety of configurations from several manufacturers (Robert Bosch, Siemens VDO Automotive).
  • these known arrangements have the disadvantage that the number of strokes per work cycle of the internal combustion engine is very limited. In particular, it is with it It is not possible to provide the required number of multiple injections per work cycle for high-speed internal combustion engines for efficient engine management.
  • the precise variation of the stroke of the valve needle is only possible to a very limited extent with these arrangements.
  • conventional electromagnetic actuators have proven to be a limiting factor in the further development of efficient fuel injectors.
  • a known approach to overcoming this limitation is to provide a piezo linear actuator instead of the electromagnetic actuator.
  • its temperature-dependent behavior in the immediate vicinity of the combustion chamber of an internal combustion engine is also disadvantageous.
  • Piezo drives of today's design also allow only about 3 to 5 injection processes per work cycle of the internal combustion engine, opening / closing cycles of about 100 ⁇ sec being feasible.
  • this type of fuel injection valve has so far failed when used in series vehicles on a larger scale.
  • the stroke path of a piezo linear actuator is very limited for a given overall length and is currently being enlarged to approx. 100 to 200 ⁇ m by means of lever arrangements.
  • the precise modulation of the stroke of the nozzle needle by means of the piezo linear actuator is still difficult given the high dynamics and the increasingly high pressures in the combustion chamber, in particular in the case of direct diesel injection.
  • an electromagnetic injection valve for controlling an amount of fuel to be fed into an internal combustion engine with a valve body which can be actuated by an electromagnetic coil system, the valve body interacting with a magnet armature of the electromagnetic coil system.
  • the electromagnetic coil system has at least two coils which are symmetrical and concentrically arranged with respect to the central longitudinal axis and have identical characteristics, which are integrated into a magnetic circuit in such a way that a first pole body is arranged between two adjacent coils, and the inner and outer ones Coil is adjacent to a second pole body.
  • the pole bodies are dimensioned in such a way that a radial cut surface of a central first pole body corresponds to the sum of the cut surfaces of the adjacent second pole bodies.
  • the function depends significantly on the symmetry of the spatial design of the electromagnetic coil system.
  • the time delay of the electrical and magnetic field structure depends primarily on the geometry of the magnetic circuit and in particular on the field diffusion and the eddy currents that occur.
  • the structural and electrical / magnetic symmetry of the electromagnetic coil system necessary in this arrangement such as the dimensioning or the ratio of the radial cutting surfaces of the pole bodies to one another, represents a considerable restriction.
  • the achievable valve switching times, valve paths and valve closing forces are also considered in this known arrangement The requirements described at the outset may be considered insufficient.
  • the invention solves this problem in a valve arrangement of the type mentioned above in that the magnet-yoke arrangement has a plurality of pole webs which are at least partially surrounded by electromagnetic coil arrangements which are set up to lead opposite current to opposite flanks of the pole webs. Surprisingly, it has been shown that it is not necessary to switch from an electromagnetic actuating device as a valve drive to a piezo linear actuator with all of its own disadvantages and problems.
  • the fuel injection valve not only has the opening / closing forces required for Otto engines, but even the opening / closing forces required for direct diesel injection with considerably more strokes per work cycle (at least about twice as many as a piezo linear actuator of today's design) with an electromagnetic actuation device.
  • the valve arrangement according to the invention allows the realization of opening / closing cycles with approximately 40-50 ⁇ sec and less. This enables multiple injection processes for efficient engine management for both Otto engines and diesel engines.
  • the arrangement according to the invention allows a very precise control of the course of the stroke over time.
  • the prior art (for example from DE 100 05 182 AI) requires a centrally symmetrical geometry of the pad webs.
  • the outer iron rings also have a smaller cross-section than the inner ones, etc. This affects the design of the magnet armature.
  • the invention allows a free dimensioning of the magnet yoke, the magnet coil and armature arrangement, which results in the invention, for example, a relatively lightweight magnet armature with improved valve dynamics.
  • the pole webs have a grid dimension that is approximately 2 to approximately 30 times, preferably approximately 5 to approximately 20 times, and particularly preferably approximately 10 times larger than one between the magnet yoke arrangement and the magnet Anchor arrangement formed air gap in a rest position of the actuator.
  • the ratio between the grid dimension of the pad webs, that is to say a dimension which also determines the magnetically effective area of the pad webs, and the air gap is a variable which has a considerable influence on the functionality of the valve.
  • the invention is based on the assumption that the ratio should be in the range between approximately 2 and approximately 30, any ratio between these limits being in the range of the invention and primarily on the structural conditions or requirements (available installation diameter, length, required valve lift, Valve link dynamics, etc.) depends.
  • the pole webs By having the pole webs essentially asymmetrical to the central longitudinal axis of the fuel injector, it is avoided that manufacturing inaccuracies or fluctuations in the magnetic field generation or temperature fluctuations lead to undesired operating states. Rather, the design of the magnetic yoke or the magnetic coil, which is not rotationally symmetrical to the central longitudinal axis, is much less sensitive.
  • the pole webs have a shape which is spiral to the central longitudinal axis of the fuel injection valve.
  • the pole webs have an essentially polygonal, preferably quadrangular shape and are arranged next to one another with the formation of gaps for accommodating the electromagnetic coil arrangements, the pole webs preferably being arranged parallel to one another.
  • at least two adjacent pole pieces can be at least partially surrounded in a meandering manner by at least one electromagnet coil arrangement.
  • a pole piece can also be at least partially surrounded by at least one electromagnet coil arrangement. It is a property of the invention that at least one electromagnet coil arrangement at least partially includes non-circular shaped pole pieces.
  • This construction which is very efficient in terms of production, allows a current-conducting band to be arranged between two layers of sheet metal containing soft iron to form the magnet coil arrangement and a sheet metal band containing soft iron to form a stator yoke back.
  • the current-conducting strip and the sheet metal strip containing soft iron adjoin each other on one longitudinal edge, electrically insulated.
  • valve drives can be cascaded along the movement axis of the valve arrangement by the actuating device being more than one assembly, formed by the magnet coil arrangement, the magnet yoke arrangement, and the magnet -Anchor arrangement has. These modules work together on the valve arrangement - either in the same direction or in opposite directions.
  • the actuating device acts on a movable valve member in order to move it between an open position and a closed position relative to a stationary valve seat which cooperates with the valve member and is arranged downstream of the fuel inlet.
  • a direct switching valve arrangement can thus be implemented.
  • the actuating device acts on a movable valve member in order to move it between an open position and a closed position in relation to a stationary valve seat interacting with the valve member.
  • This enables a controlled discharge of fuel into a return line if a second, spring-loaded valve member together with a second valve seat is not opened by the pressure prevailing in the combustion chamber, and a controlled discharge of fuel into the combustion chamber if the second, spring-loaded Valve member is opened together with the second valve seat by the pressure prevailing in the combustion chamber.
  • An indirectly switching valve arrangement can thus be implemented.
  • the magnet-yoke arrangement and / or the magnet-armature arrangement can be arranged eccentrically or asymmetrically to a central axis of the fuel injection valve.
  • the soft magnetic magnet yoke arrangement can be formed from at least two joined shell parts with recesses, an electromagnetic coil arrangement being accommodated in each recess, which is essentially flush with the respective end face of one of the shell parts in the direction of movement , the end faces together delimiting a cavity in which the magnet armature arrangement is movably received along the central longitudinal axis.
  • the electromagnet coil arrangement can be formed on at least one side of the soft magnetic magnet armature arrangement by a plurality of electromagnet coils which are approximately flush with one of the end faces of one of the shell halves.
  • the individual ring coils can have a thickness of about 20 to about 80% of the magnetic yoke iron.
  • the individual coils on one side of the soft magnetic magnet armature arrangement can be set up to be energized in opposite directions.
  • the yoke iron can be formed between the individual coils on at least one side of the soft magnetic magnet armature arrangement by iron sheets which are insulated from one another.
  • the invention is based on the principle of orienting the electromagnet coil arrangement and the magnet armature arrangement essentially at right angles to one another.
  • the magnet coil arrangement and the magnet armature arrangement can overlap at least partially, preferably completely, in the radial direction to the central longitudinal axis. This creates a particularly efficient magnetic circuit that allows very short valve opening / closing times.
  • the magnet-yoke arrangement can be designed as an essentially cylindrical, soft-magnetic disk body with interruptions oriented radially or tangentially to the central longitudinal axis. These interruptions can be simple slits or, in order to increase the stability of the magnet yoke arrangement, can be formed by material which has a higher magnetic resistance than the material of the soft magnetic disk body.
  • the magnet armature arrangement can be formed by two or more strip-shaped soft magnetic sections which are spatially separated from one another.
  • the spatial separations can be simple slots or, to increase the stability, can be formed by material which has a higher magnetic resistance than the material of the strip-shaped soft magnetic sections.
  • the magnet armature arrangement can be designed as a soft magnetic disk with recesses, preferably radially oriented slots extending to the edge of the disk, or elongated holes.
  • the slots or slots extending to the edge of the disk can be simple recesses or, to increase the stability, can be formed by material which has a higher magnetic resistance than the material of the soft magnetic disk.
  • the magnet armature arrangement can also be constructed in multiple layers, a ceramic layer being arranged between two soft iron layers. This layer structure is attached to the valve stem. To further improve the stability, the two iron layers can also be connected to one another along the outer circumference.
  • the soft magnetic armature arrangement and the valve member can be connected to one another and biased by a spring arrangement into the open position or the closed position and can be brought into the closed position or the open position by energizing the magnet coil arrangement.
  • two of the actuating devices described above can also be provided, which act in opposite directions on the valve member and bring it into the closed position or the open position when energized.
  • the fuel injection valve according to the invention can be set up and dimensioned to protrude into the combustion chamber of an externally ignited internal combustion engine or into the combustion chamber of a self-igniting internal combustion engine.
  • Fig. 1 shows a schematic representation in longitudinal section through a fuel injection valve according to a first embodiment of the invention.
  • FIG. 2 shows a schematic plan view of a cross section of a soft magnetic armature arrangement from FIG. 1, cut along the line II-II.
  • FIG. 3 shows a schematic plan view of a cross section of a soft magnetic yoke arrangement from FIG. 1, cut along the line III-III.
  • FIG. 4 shows a schematic plan view of a soft magnetic yoke arrangement with a magnetic coil arrangement.
  • FIG. 5 shows a schematic plan view of a soft magnetic yoke arrangement and a magnetic coil arrangement according to a second embodiment of the invention.
  • FIG. 6 shows a schematic plan view of a soft magnetic yoke arrangement and a magnetic coil arrangement according to a third embodiment of the invention.
  • FIG. 7 shows a side perspective illustration of the soft magnet yoke arrangement and the magnet coil arrangement according to FIG. 6.
  • FIG. 8 shows a lateral, partially longitudinally sectioned illustration of the valve rod with an armature arrangement which has a box profile.
  • FIG. 1 shows a fuel injection valve with a valve housing 10 which is essentially rotationally symmetrical with respect to a central longitudinal axis M in a schematic longitudinal section in a half-open position.
  • a fuel injection valve is used to inject fuel directly into the combustion chamber of an internal combustion engine, which is not illustrated in any more detail.
  • the fuel injection valve 10 has a radially oriented, lateral fuel inlet 12, through which fuel which is pressurized can flow into the fuel injection valve by means of a pump or other pressure transmitter, which is not further illustrated.
  • a central fuel channel 16 extends from the fuel inlet 12 through a pipe 17 to a fuel outlet 18. At the end of the central fuel channel 16 is a valve arrangement 20 provided to allow the fuel to flow out in a controlled manner through the fuel outlet 18 into the combustion chamber of the internal combustion engine.
  • the valve arrangement 20 is formed by a valve member 20a which is located in the central fuel channel 16 and tapers conically towards the fuel outlet 18 and a valve seat 20b which interacts with the valve member 20a and is designed in accordance with the shape of the valve member 20a.
  • the valve member 20a is connected via an actuating rod 22 to an electrically controllable actuating device 24 in order to move the valve member 20a between an open position and a closed position (up and down in FIG. 1). So that coming from the fuel inlet 12 and flowing through the central fuel channel 16, pressurized fuel is ejected in a controlled manner through the fuel outlet 18 into the combustion chamber.
  • the actuating device 24 is formed by an electromagnet coil arrangement 24a, a soft magnetic magnet yoke arrangement 24b cooperating with it, and a soft magnetic magnet armature arrangement 24c interacting with it.
  • the soft magnetic magnet yoke arrangement 24b is formed from two shell halves 24b 1 and 24b ", which are joined approximately at the section line II - II and have recesses 26a, 26b.
  • the recesses 26a, 26b have a top view in the embodiment according to FIG. 1 4 and 5 and are delimited by likewise approximately trapezoidal or parallelogram-shaped pole webs 25a, 25b.
  • an electromagnetic coil arrangement 24a 'and 24a " is accommodated, which is flush with the respective End faces 27a, 27b of the shell halves 24b 'and 24b ".
  • the end faces 27a, 27b of the shell halves 24b 'and 24b "delimit a cavity 28 in which the magnet armature arrangement 24c is movably received along the central axis M.
  • the electromagnetic coil arrangements or the magnetic yoke arrangement have the configuration shown in FIG. 4, in which the pole webs 25a, 25b have a substantially square shape and are arranged next to one another with the formation of gaps for receiving the electromagnetic coil arrangements 24a ', 24a "are arranged here.
  • the pole webs 25a, 25b are preferably arranged parallel to one another.
  • the magnetic yoke arrangement here can be formed from one-piece soft iron, from which the pole webs or the intermediate spaces are formed. In such a one-piece soft iron Interruptions in the form of slots or elongated holes which are filled with electrically insulating material can be incorporated in the molded part.
  • the soft magnetic magnet armature arrangement 24c has a soft magnetic armature disk 24c which is arranged around the central axis M.
  • the armature disk 24c is provided with radially oriented interruptions 36. These interruptions take the form of slots 36 which extend to the edge 30 of the armature disk 24c. This results in radially oriented strips 25 which are connected to one another in the center of the disk 24c.
  • the magnet yoke arrangement 24b is provided with a plurality of radially oriented vertical interruptions 36 in the form of slots.
  • a material web 38 is provided between the slots 36 on the outer wall, which ensures a closed outer surface.
  • the closed lateral surface can also be arranged at the radially inner ends of the slots 36. This also has the advantage of possibly improved heat dissipation from the magnetic yoke.
  • Both shell halves 24b 'and 24b "of the magnet yoke arrangement 24b are provided with the slots 36.
  • the electromagnetic coil arrangement 24a and the radially oriented strips 25 of the soft magnetic armature disk 24c can be oriented essentially at right angles to one another. It goes without saying that this can be implemented either in the form described above with radially oriented strips 25 of the armature arrangement 24b and a spiral-shaped electromagnet coil arrangement 24a or magnet-yoke arrangement 24b, or vice versa. But also with armature parts and a star-shaped electromagnetic coil arrangement.
  • the magnet armature arrangement 24c is a circular iron-containing disk with a shape described in detail below.
  • the electromagnetic coil arrangement 24a and the magnet armature arrangement 24c overlap in the radial direction with respect to the central axis (M).
  • the electromagnet coil arrangement 24a has a smaller outer diameter than the armature disk 24c, so that the electromagnet Coil arrangement 24a caused magnetic flux penetrates into the armature disk 24c practically without any significant leakage losses. This creates a particularly efficient magnetic circuit that allows very short valve opening / closing times and high holding forces.
  • the armature disk 24c can - regardless of the design of the magnet yoke or the magnet coil arrangement - also be a closed circular disk made of soft iron, provided that the configuration of the magnet yoke or magnet coil arrangement described above ensures that the leakage losses or eddy current losses are low enough for are the respective purpose.
  • the armature disk 24c is rigidly connected to the actuating rod 22 and is accommodated in a longitudinally movable manner in the armature 34 along the central axis M in the tube 17 in an armature space delimited by the shell halves 24b 'and 24b "of the magnetic yoke arrangement 24b.
  • the armature disk 24c is loaded with the actuating rod 22 by a helical spring 40 arranged coaxially with the central axis M, so that the valve member 20a located at the end of the actuating rod 22 sits in the valve seat 20b in a fluid-tight manner, that is to say is pushed into its closed position.
  • a low-eddy current magnetic field is induced in the magnet yoke arrangement 24b, which pulls the armature disk 24c with the actuating rod 22 in the direction of the respective shell half 24b' in which the current is flowing
  • the valve member 20a thus moves away from the valve seat 20b into its open position g.
  • the valve member 20a moves into the respective other position towards the valve seat 20b in its closed position.
  • a helical spring 40 acting on the end of the actuating rod 22 remote from the valve member 20a holds the valve member 20a in its closed position when the solenoid coil arrangement 24a is not energized.
  • a refinement of the invention consists in coupling a plurality (two or more) armature disks 24c to the valve member 20a via the actuating rod 22, each of which acts on one or both sides of a coil yoke arrangement.
  • the coil arrangement 24a can be configured in several parts on both sides of the soft magnetic magnet armature arrangement 24c.
  • two or more electromagnetic coil arrangements 24a ', 24a are provided, which are essentially flush with the respective end faces 27a, 27b of the shell halves 24b' and 24b".
  • this embodiment can have an increased magnetic field Have density and thus an increased valve member holding force and valve member actuation speed.
  • the yoke iron between the individual coils 24a on one side can be formed here by iron plates which are insulated from one another.
  • the two embodiments are shown with electrically controllable actuation devices 24, in which a central actuation rod 22 is moved by a disk-shaped magnet armature arrangement 24c. It is also possible to provide a tube instead of the central actuating rod 22, on the end face of which the magnet armature is arranged.
  • each individual pole web is surrounded by a separate winding.
  • FIG. 4 not all pole pieces are shown in FIG. 4 provided with electromagnetic coil arrangements. All the solenoid coil arrangements 24a 'and 24a "are either wound in opposite directions and energized in the same direction, or in the same direction in the same direction in the opposite direction to pass electrical current directed in opposite directions on opposite flanks 25a', 25a" of the pole webs 25a, 25b.
  • the pole webs 25a, 25b (and also the recesses 26a, 26) have one towards the central longitudinal axis M of the fuel Injection valve essentially asymmetrical in shape, with at least one solenoid coil arrangement 24a ', 24a "including non-circular shaped pole pieces at least partially in such a way that electrical current directed in opposite directions is passed along their flanks.
  • an electromagnet coil arrangement 24a shown in FIGS. 6 and 7 is produced in an integrated manner with the soft magnetic yoke arrangement 24b interacting with it.
  • an elongated yoke sheet 50 containing soft iron is surrounded on both sides with a conductor strip 52 by folding it over a longitudinal edge 50 ′ of the yoke sheet 50, which is later on the inside in the finished state.
  • a sheet-metal strip 54 containing soft iron is arranged next to the conductor strip 52. is just as thick as the conductor strip 52 and is also folded over the longitudinal edge 50 'of the yoke plate 50, which is located on the inside in the finished state.
  • the sheet metal strip 54 lying next to the conductor strip 52 serves, together with the section of the yoke sheet 50 against which it lies flat, to form the back of the magnetic yoke in the finished state.
  • the conductor strip 52 projects beyond the lateral longitudinal edge 50 ′′ of the yoke plate 50, which is located on the outside in the finished state, at both ends for electrical contacting.
  • a second layer of an elongated yoke plate 56 containing a soft iron is then placed against it, so that a layer structure consisting of the The first yoke plate 50, the conductor strip 52 and the metal strip 54, and the second yoke plate 56 are formed. This layer structure is then rolled up spirally in the manner shown in Fig.
  • the first and second yoke sheets 50, 56 roll up tightly against one another and the overall structure is a cylindrical winding body It is understood that the conductor strip 52 is electrically insulated from the soft iron parts 50, 54, 56.
  • the air gap shown in FIG. 1 and coaxial to the central longitudinal axis M between the magnet yoke arrangement 24b and the magnet armature arrangement 24c in the rest position of the actuating device 24 is approximately 10 times larger than the grid dimension of the pad webs.
  • the grid dimension in this embodiment is the transverse dimension of the pad webs. 6, 7, the grid dimension is the thickness of the yoke plate 40.
  • Other geometries of the pole webs are also possible.
  • the smallest structures of the pole webs, that is to say their longitudinal dimensions, transverse dimensions, thickness, etc., are decisive for the grid dimension, which lead to a finely divided shape of the poles of the magnetic yoke acting on the magnet armature. This small grid dimension leads to high magnetic flux density and thus to high pulling or holding forces of the valve arrangement or also to a low switching time, since the electrical and magnetic losses or the induced counterforces are very low.
  • the armature disk 24c is constructed in several layers.
  • a ceramic layer 24c is arranged between two relatively thin - and therefore low eddy current - soft iron layers 24c 'and is attached to the valve rod 22. It is understood that the two soft iron layers 24c' are either complete armature disks or taken in the manner described above Several such anchor arrangements can also be arranged distributed along the valve rod 22.

Abstract

Brennstoff-Einspritzventil für Brennstoff-Einspritzanlagen von Brennkraftmaschinen, insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine mit einem Brennstoff-Einlass (12), der dazu eingerichtet ist, Brennstoff in das Brennstoff-Einspritzventil einströmen zu lassen, einer elektrisch ansteuerbaren Betätigungseinrichtung (24) die mit einer Ventilanordnung (28) zusammenwirkt, um Brennstoff in direkt oder indirekt gesteuerter Weise durch einen Brennstoff-Auslass (18) in den Brennraum ausströmen zu lassen, wobei die Betätigungseinrichtung (24) eine zu bestromende Magnet-Spulenanordnung (24a), eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet-Jochanordnung (24b), sowie eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet-Ankeranordnung (24c) aufweist, wobei die Magnet-Jochanordnung (24b) und/oder die Magnet-Ankeranordnung eine Wirbelstom verringernde Gestaltung aufweist.

Description

Brennstoff-Einspritzventil für Brennkraftmaschinen
Beschreibung
Hintergrund der Erfindung
Die Erfindung betrifft ein Brennstoff-Einspritzventil für Brennstoff-Einspritzanlagen von Brennkraftmaschinen, insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine. Grundsätzlich ist es möglich, die Erfindung sowohl bei direkt einspritzenden als auch bei konventionellen, in das Saugrohr einspritzenden Motoren zu verwenden.
Das erfindungsgemäße Brennstoff-Einspritzventil hat einen Brennstoff-Einlaß, der dazu eingerichtet ist, Brennstoff in das Brennstoff-Einspritzventil einströmen zu lassen, und eine e- lektrisch ansteuerbare Betätigungseinrichtung die mit einer Ventilanordnung zusammenwirkt, um Brennstoff in direkt oder indirekt gesteuerter Weise durch einen Brennstoff-Auslaß in den Brennraum ausströmen zu lassen. Dabei weist die elektromagnetische Betätigungseinrichtung eine zu bestromende Elektromagnet-Spulenanordnung, eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet-Jochanordnung, sowie eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet-Ankeranordnung auf.
Die KFZ-Verbrennungsmotoren-Industrie steht durch die stetig steigenden Anforderungen der Abgasgesetzgebung mit weiter sinkenden Grenzwerten vor der Herausforderung, durch eine Optimierung des Einspritzvorgangs von Kraftstoff in die Brennkammer die Entstehung von Schadstoffen am Ort ihrer Entstehung zu optimieren. Kritisch sind insbesondere NOx- und Ruß-Emissionen. Durch die Entwicklung von Einspritzsystemen mit immer höheren Einspritzdrücken und hochdynamischen Injektoren, sowie durch gekühlte Abgasrückführung und Oxidationskatalysatoren ist es zwar möglich gegenwärtige Grenzwerte einzuhalten. Allerdings scheint das Potenzial der bisherigen Maßnahmen zur Emissionsreduzierung erreicht zu sein. Damit rücken variable Einspritzverlaufformungen in den Vordergrund. Hierbei wird die Kraftstoff-Einspritzrate wahlweise durch Mehrfacheinspritzung oder durch gezieltes Modulieren des Hubes der Düsennadel variiert.
Stand der Technik
Ein Brennstoff-Einspritzventil der oben genannten Art ist in den unterschiedlichsten Ausgestaltungen von mehreren Herstellern (Robert Bosch, Siemens VDO Automotive) bekannt. Allerdings haftet diesen bekannten Anordnungen der Nachteil an, dass die Anzahl der Hübe pro Arbeitstakt der Brennkraftmaschine sehr eingeschränkt ist. Insbesondere ist es damit nicht möglich, bei hochtourigen Brennkraftmaschinen die für ein effizientes Motormanagement erforderlichen Mehrfacheinspritzungen pro Arbeitstakt in der erforderlichen Anzahl bereit zu stellen. Auch das präzise Variieren des Hubes der Ventilnadel ist bei diesen Anordnungen nur sehr eingeschränkt möglich. In beiderlei Hinsicht haben sich die konventionellen elektromagnetischen Betätigungseinrichtungen als ein begrenzender Faktor für die Weiterentwicklung effizienter Brennstoff-Einspritzventile herausgestellt.
Ein bekannter Ansatz zur Überwindung dieser Einschränkung besteht darin, anstelle der e- lektromagnetischen Betätigungseinrichtung einen Piezo-Linear-Aktor vorzusehen. Abgesehen von den hohen Kosten und dem relativ großen erforderlichen Bauraum des Piezo-Linear- Aktors ist auch deren temperaturabhängiges Verhalten in unmittelbarer Nähe zum Brennraum einer Brennkraftmaschine nachteilig. Auch erlauben Piezoantriebe heutiger Bauart nur etwa 3 bis 5 Einspritzvorgänge je Arbeitstakt des Verbrennungsmotors, wobei Öffnungs- /Schließ-Zyklen von etwa 100 μsec realisierbar sind. Insgesamt war bisher dieser Art von Brennstoff-Einspritzventilen im Einsatz von Serien-Fahrzeugen in größerem Stil versagt. Außerdem ist der Hub-Weg eines Piezo-Linear-Aktors bei vorgegebener Baulänge sehr beschränkt und wird derzeit mittels autwendiger Hebelanordnungen auf ca. 100 bis 200 μm vergrößert. Schließlich gestaltet sich nach wie vor die präzise Modulation des Hubes der Düsennadel mittels des Piezo-Linear-Aktors bei der hohen Dynamik und den zunehmend hohen Drücken in der Brennkammer, insbesondere bei der Diesel-Direkteinspritzung, als schwierig.
Aus der DE 100 05 182 AI ist ein elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge mit einem durch ein E- lektromagnetspulensystem betätigbaren Ventilkörper bekannt, wobei der Ventilkörper mit einem Magnetanker des Elektromagnetspulensystems zusammenwirkt. Das wesentliche Merkmal dieser Anordnung besteht darin, dass das Elektromagnetspulensystem wenigstens zwei zur Mittellängsachse symmetrische und konzentrisch angeordnete Spulen mit identischen Kenngrößen aufweist, die derart in einen Magnetkreis integriert sind, dass zwischen zwei benachbarten Spulen jeweils ein erster Polkörper angeordnet ist, und die innere und äußere Spule jeweils einem zweiten Polkörper benachbart ist. Weiterhin ist es wesentlich, dass die Polkörper derart dimensioniert sind, dass eine radiale Schnittfläche eines mittleren ersten Polkörpers der Summe der Schnittflächen der benachbarten zweiten Polkörper entspricht. Insgesamt hängt bei dieser Anordnung die Funktion erheblich von der Symmetrie der räumlichen Gestaltung des Elektromagnetspulensystems ab. Die Zeitverzögerung des elektrischen und des magnetischen Feldaufbaus hängt dabei vornehmlich von der Geometrie des Magnetkreises und insbesondere von der Felddiffusion und den auftretenden Wirbelströmen ab. Allerdings stellt die bei dieser Anordnung notwendige konstruktive und elektrische/ magnetische Symmetrie des Elektromagnetspulensystems wie zum Beispiel die Dimensionierung bzw. das Verhältnis der radialen Schnittflächen der Polkörper zueinander eine erhebliche Einschränkung dar. Außerdem sind auch bei dieser bekannten Anordnung die erzielbaren Ventilschaltzeiten, Ventilwege und Ventilschließkräfte angesichts der eingangs erläuterten Anforderungen allenfalls als unzureichend zu bezeichnen.
Der Erfindung zugrunde liegendes Problem
Damit besteht bei bekannten Brennstoff-Einspritzventilen das Problem, eine kompakt bauende und kostengünstige Anordnung eines Brennstoff-Einspritzventils bereitzustellen, die lang- zeitstabil und tauglich für den Einsatz in Groß-Serien ist und eine ausreichend hohe Hubzahl pro Arbeitstakt der Brennkraftmaschine mit den erforderlichen Öffnungs-/Schließ-Kräften auszuführen in der Lage ist. Die vorliegende Erfindung hat zum Ziel, solche Brennstoff- Einspritzventile bereitzustellen.
Erfindunαsqemäße Lösung
Die Erfindung löst dieses Problem bei einer Ventilanordnung der oben genannten Art dadurch, dass die Magnet-Jochanordnung mehrere Polstege aufweist, die zumindest teilweise von Elektromagnet-Spulenanordnungen umgeben sind, die dazu eingerichtet sind, an gegenüberliegenden Flanken der Polstege jeweils gegensinnig gerichteten elektrischen Strom vorbeiführen. Überraschenderweise hat sich nämlich gezeigt, dass es nicht erforderlich ist, von einer elektromagnetischen Betätigungseinrichtung als Ventilantrieb auf einen Piezo- Linear-Aktor mit allen seinen ihm eigenen Nachteilen und Problemen umzustellen. Vielmehr kann durch die erfindungsgemäße Ausgestaltung der Komponenten der elektromagnetischen Betätigungseinrichtung erreicht werden, dass das Brennstoff-Einspritzventil nicht nur die für Otto-Motoren erforderlichen Öffnungs-/Schließ-Kräfte, sondern sogar die für eine Diesel- Direkt-Einspritzung erforderlichen Öffnungs/Schließ-Kräfte bei erheblich mehr Hüben pro Arbeitstakt (mindestens etwa doppelt so viele wie ein Piezo-Linear-Aktor heutiger Bauart) mit einer elektromagnetischen Betätigungseinrichtung bereitstellen kann.
Mit anderen Worten erlaubt die erfindungsgemäße Ventilanordnung die Realisierung von Öff- nungs-/Schließ-Zyklen mit etwa 40 - 50 μsec und weniger. Damit sind Mehrfach-Einspritz- vorgänge für ein effizientes Motormanagement sowohl für Otto-Motoren, als auch für Dieselmotoren möglich. Außerdem ist es auch möglich, den Brennstoffdurchsatz durch das Brennstoff-Einspritzventil dadurch zu erhöhen, dass mit der erfindungsgemäßen Ventilanordnung der Hubweg des Ventilgliedes bei vergleichbarer Hubzeit etwa 3 bis 6 mal größer sein kann als bei einem Piezo-Linear-Aktor heutiger Bauart. Darüber hinaus erlaubt die erfindungsgemäße Anordnung eine sehr präzise Steuerung des Verlaufs des Hubweges über der Zeit. Der Stand der Technik (zum Beispiel aus der DE 100 05 182 AI) fordert eine zentralsymmetrische Geometrie der Polstege. Hierbei haben außerdem die äußeren Eisenringe einen geringeren Querschnitt als die inneren, etc. Dies wirkt sich auf die Gestaltung des Magnet-Ankers aus. Demgegenüber erlaubt die Erfindung eine insoweit freie Dimensionierung des Magnetjoches, der Magnet-Spulen- und Ankeranordnung, woraus bei der Erfindung zum Beispiel ein verhältnismäßig leichtgewichtigerer Magnetanker mit einer verbesserten Ventil-Dynamik resultiert.
Weiterbildungen und Ausgestaltungen der Erfindung
Bei einer ersten Ausgestaltung des erfindungsgemäßen Brennstoff-Einspritzventils haben die Polstege ein Rastermaß, das etwa 2 bis etwa 30 mal, vorzugsweise etwa 5 bis etwa 20 mal, und besonders vorzugsweise etwa 10 mal größer ist als ein zwischen der Magnet-Jochanordnung und der Magnet-Ankeranordnung gebildeter Luftspalt in einer Ruhestellung der Betätigungseinrichtung. Das Verhältnis zwischen dem Rastermaß der Polstege, also einer Abmessung, die die magnetisch wirksame Fläche der Polstege mitbestimmt, und dem Luftspalt ist eine die Funktionalität des Ventils erheblich beeinflussende Größe. Die Erfindung geht davon aus, dass das Verhältnis im Bereich zwischen etwa 2 und etwa 30 liegen sollte, wobei jede Verhältniszahl zwischen diesen Grenzen im Bereich der Erfindung liegt und in erster Linie von den konstruktiven Gegebenheiten oder Anforderungen (verfügbarer Einbaudurchmesser, Länge, erforderlicher Ventilhub, Ventilglied-Dynamik, etc.) abhängt.
Indem die Polstege eine zur Mittellängsachse des Brennstoff-Einspritzventils im Wesentlichen asymmetrische Gestalt aufweisen wird vermieden, dass Fertigungsungenauigkeiten oder Schwankungen bei der Magnetfelderzeugung, oder Temperaturschwankungen zu unerwünschten Betriebszuständen führen. Vielmehr stellt sich die zur Mittellängsachse nicht rota- tions-symmetrische Gestaltung des Magnetjochs bzw. der Magnetspule insofern wesentlich unempfindlicher dar.
In einer Ausführungsform der Erfindung haben dazu die Polstege eine zur Mittellängsachse des Brennstoff-Einspritzventils spiralförmige Gestalt. In einer anderen Ausführungsform der Erfindung haben die Polstege eine im Wesentlichen mehreckige, vorzugsweise viereckige Gestalt und sind nebeneinander unter Bildung von Zwischenräumen zur Aufnahme der Elektromagnet-Spulenanordnungen angeordnet, wobei die Polstege vorzugsweise parallel zueinander angeordnet sind. Im letzteren Fall können wenigstens zwei benachbarte Polstege von wenigstens einer Elektromagnet-Spulenanordnung zumindest teilweise mäanderförmig umgeben sind. Alternativ dazu kann auch jeweils ein Polsteg von wenigstens einer Elektromagnet-Spulenanordnung zumindest teilweise umgeben sein. Eine Eigenschaft der Erfindung besteht darin, dass zumindest eine Elektromagnet-Spulenanordnung nicht-kreisringförmig gestaltete Polstege zumindest teilweise einschließt. Diese, in der Herstellung sehr effiziente Bauart erlaubt es, zwischen zwei Lagen aus Weicheisen enthaltendem Blech ein Strom leitendes Band zur Bildung der Magnet-Spulenanordnung und ein Weicheisen enthaltendes Blechband zur Bildung eines Stator-Jochrückens anzuordnen. Dabei grenzen das Strom leitende Band und das Weicheisen enthaltende Blechband an jeweils einer Längskante - elektrisch isoliert - aneinander an.
Um besonders schlanke oder langgezogene Bauformen mit großen Halte- oder Schließkräften zu realisieren kann eine Kaskadierung von mehreren Ventilantrieben entlang der Bewegungsachse der Ventilanordnung erfolgen, indem die Betätigungseinrichtung mehr als eine Baugruppe, gebildet durch die Magnet-Spulenanordnung, die Magnet-Jochanordnung, und die Magnet-Ankeranordnung aufweist. Diese Baugruppen wirken dabei gemeinsam auf die Ventilanordnung - entweder gleichsinnig oder gegensinnig.
Erfindungsgemäß wirkt die Betätigungseinrichtung auf ein bewegliches Ventilglied ein, um dieses gegenüber einem mit dem Ventilglied zusammenwirkenden und stromabwärts zu dem Brennstoff-Einlaß angeordneten ortsfesten Ventilsitz zwischen einer Offen-Stellung und einer Geschlossen-Stellung zu bewegen. Damit kann eine direkt schaltende Ventilanordnung realisiert werden.
Bei einer anderen Ausgestaltung des erfindungsgemäßen Brennstoff-Einspritzventils wirkt die Betätigungseinrichtung auf ein bewegliches Ventilglied ein, um dieses gegenüber einem mit dem Ventilglied zusammenwirkenden ortsfesten Ventilsitz zwischen einer Offen-Stellung und einer Geschlossen-Stellung zu bewegen. Damit ist ein gesteuertes Ablassen von Brennstoff in eine Rückführleitung zu ermöglicht, wenn ein zweites, federbelastetes Ventilglied zusammen mit einem zweiten Ventilsitz durch den im Brennraum herrschenden Druck nicht geöffnet wird, und ein gesteuertes Ablassen von Brennstoff in den Brennraum ermöglicht, wenn das zweite, federbelastete Ventilglied zusammen mit dem zweiten Ventilsitz durch den im Brennraum herrschenden Druck geöffnet wird. Damit kann eine indirekt schaltende Ventilanordnung realisiert werden. Erfindungsgemäß können die Magnet-Jochanordnung und/oder die Magnet-Ankeranordnung exzentrisch oder asymmetrisch zu einer Mittelachse des Brennstoff-Einspritzventils angeordnet sein.
In einer bevorzugten Ausführungsform kann die weichmagnetische Magnet-Jochanordnung aus wenigstens zwei zusammengefügten Schalen-Teilen mit Ausnehmungen gebildet sein, wobei in jeder Ausnehmung jeweils eine Elektromagnet-Spulenanordnung aufgenommen ist, die in Bewegungsrichtung im Wesentlichen bündig mit der jeweiligen Stirnfläche eines der Schalen-Teile abschließt, wobei die Stirnflächen zusammen einen Hohlraum begrenzen, in dem die Magnet-Ankeranordnung längs der Mittellängsachse beweglich aufgenommen ist.
Die Elektromagnet-Spulenanordnung kann auf wenigstens einer Seite der weichmagnetischen Magnet-Ankeranordnung durch eine mehrere Elektromagnet-Spulen gebildet ist, die etwa bündig mit einer der Stirnflächen einer der Schalen-Hälften abschließen.
Dabei können die einzelnen Ring-Spulen eine Dicke von etwa 20 bis etwa 80 % des Magnetjoch-Eisens haben. Außerdem können die einzelnen Spulen auf einer Seite der weichmagnetischen Magnet-Ankeranordnung dazu eingerichtet sein, gegensinnig bestromt zu werden.
Weiterhin kann zwischen den einzelnen Spulen wenigstens auf einer Seite der weichmagnetischen Magnet-Ankeranordnung das Joch-Eisen durch gegeneinander isolierte Eisenbleche gebildet sein.
Der Erfindung liegt das Prinzip zugrunde, die Elektromagnet-Spulenanordnung und die Magnet-Ankeranordnung im Wesentlichen rechtwinkelig zueinander zu orientieren.
Erfindungsgemäß können die die Magnet-Spulenanordnung und die Magnet-Ankeranordnung sich in radialer Richtung zur Mittellängsachse zumindest teilweise, vorzugsweise vollständig überlappen. Damit wird ein besonders effizienter Magnetkreis realisiert, der sehr geringe Ventil-Öffnungs-/Schließ-Zeiten erlaubt.
Bei einer Ausführungsform des erfindungsgemäßen Brennstoff-Einspritzventils kann die Magnet-Jochanordnung als ein im Wesentlichen zylindrischer weichmagnetischer Scheibenkörper mit radial oder tangential zur Mittellängsachse orientierten Unterbrechungen gestaltet sein. Diese Unterbrechungen können einfache Schlitze sein oder zur Erhöhung der Stabilität der Magnet-Jochanordnung durch Material gebildet sein, das einen höheren magnetischen Widerstand als das Material des weichmagnetischen Scheibenkörpers hat. Bei einer anderen Ausführungsform des erfindungsgemäßen Brennstoff-Einspritzventils kann die Magnet-Ankeranordnung durch zwei oder mehr von einander räumlich getrennte streifen- förmige weichmagnetische Abschnitte gebildet sein. Auch hier können die räumlichen Trennungen einfache Schlitze sein oder zur Erhöhung der Stabilität durch Material gebildet sein, das einen höheren magnetischen Widerstand als das Material der streifenförmigen weichmagnetischen Abschnitte hat.
Die Magnet-Ankeranordnung kann eine weichmagnetische Scheibe mit Ausnehmungen, vorzugsweise radial orientierten, zum Rand der Scheibe reichenden Schlitzen, oder Langlöchern gestaltet sein. Auch hier können die zum Rand der Scheibe reichenden Schlitzen oder Langlöcher einfache Ausnehmungen sein oder zur Erhöhung der Stabilität durch Material gebildet sein, das einen höheren magnetischen Widerstand als das Material der weichmagnetischen Scheibe hat.
Die Magnet-Ankeranordnung kann auch mehrlagig aufgebaut sein, wobei zwischen zwei Weicheisenlagen eine Keramiklage angeordnet ist. Dieser Schichtaufbau ist an der Ventilstange befestigt. Zur weiteren Verbesserung der Stabilität können die beiden Eisenlagen auch entlang des Außenumfangs noch miteinander verbunden sein.
Weiterhin können die weichmagnetische Ankeranordnung und das Ventilglied miteinander verbunden und durch eine Federanordnung in die Offen-Stellung oder die Geschlossenstellung vorgespannt und durch Bestromen der Magnet-Spulenanordnung in die Geschlossen-Stellung oder die Offen-Stellung zu bringen sein.
Gemäß einer anderen Ausführungsform des erfindungsgemäßen Brennstoff-Einspritzventils können auch zwei der oben beschriebenen Betätigungseinrichtungen vorgesehen sein, die auf das Ventilglied gegensinnig wirken und dieses bei jeweiliger Bestromung in die Geschlossen-Stellung bzw. die Offen-Stellung bringen.
Das erfindungsgemäße Brennstoff-Einspritzventil kann dazu eingerichtet und dimensioniert sein, in den Brennraum einer fremd gezündeten Brennkraftmaschine, oder in den Brennraum einer selbstzündenden Brennkraftmaschine zu ragen.
Weitere Vorteile, Ausgestaltungen oder Variationsmöglichkeiten ergeben sich aus der nachfolgenden Beschreibung der Figuren in denen die Erfindung im Detail erläutert ist. Kurzbeschreibung der Figuren
Fig. 1 zeigt eine schematische Darstellung im Längsschnitt durch ein Brennstoff-Einspritzventil gemäß einer ersten Ausführungsform der Erfindung.
Fig. 2 zeigt eine schematische Draufsicht auf einen Querschnitt einer Weichmagnet- Ankeranordnung aus Fig. 1, geschnitten entlang der Linie II - II.
Fig. 3 zeigt eine schematische Draufsicht auf einen Querschnitt einer Weichmagnet- Jochanordnung aus Fig. 1, geschnitten entlang der Linie III - III.
Fig. 4 zeigt eine schematische Draufsicht auf eine Weichmagnet-Jochanordnung mit einer Magnetspulenanordnung.
Fig. 5 zeigt eine schematische Draufsicht auf eine Weichmagnet-Jochanordnung und eine Magnetspulenanordnung gemäß einer zweiten Ausführungsform der Erfindung.
Fig. 6 zeigt eine schematische Draufsicht auf eine Weichmagnet-Jochanordnung und eine Magnetspulenanordnung gemäß einer dritten Ausführungsform der Erfindung.
Fig. 7 zeigt eine seitliche perspektivische Darstellung der Weichmagnet-Jochanordnung und der Magnetspulenanordnung gemäß Fig. 6.
Fig. 8 zeigt eine seitliche teilweise längsgeschnittene Darstellung der Ventilstange mit einer Ankeranordnung, die ein Kastenprofil aufweist.
Detaillierte Beschreibung derzeitig bevorzugter Ausführungsformen In Fig. 1 ist Brennstoff-Einspritzventil mit einem zu einer Mittellängsachse M im wesentlichen rotationssymmetrischen Ventilgehäuse 10 im schematischen Längsschnitt in einer halb geöffneten Stellung gezeigt. Ein derartiges Brennstoff-Einspritzventil dient zum direkten Einspritzen von Brennstoff in den nicht weiter veranschaulichten Brennraum einer Brennkraftmaschine. Das Brennstoff-Einspritzventil 10 hat einen radial orientierten, seitlichen Brennstoff-Einlaß 12, durch den mittels einer nicht weiter veranschaulichten Pumpe oder sonstigen Druckgeber unter Druck gesetzter Brennstoff in das Brennstoff-Einspritzventil einströmen kann. Es ist jedoch auch möglich, den Brennstoff-Einlaß etwa im mit 14 angedeuteten zentralen in Fig. 1 oberen Bereich des Brennstoff-Einspritzventils vorzusehen. Von dem Brennstoff-Einlaß 12 reicht ein zentraler Brennstoff-Kanal 16 durch ein Rohr 17 zu einem Brennstoff-Auslaß 18. An Ende des zentralen Brennstoff-Kanals 16 ist eine Ventilanordnung 20 vorgesehen, um den Brennstoff in gesteuerter Weise durch den Brennstoff-Auslaß 18 in den Brennraum der Brennkraftmaschine ausströmen zu lassen.
Die Ventilanordnung 20 ist durch ein sich in dem zentralen Brennstoff-Kanal 16 be-findliches und zum Brennstoff-Auslaß 18 hin konisch verjüngendes Ventilglied 20a und einen mit dem Ventilglied 20a zusammenwirkenden Ventilsitz 20b gebildet, der entsprechend der Form des Ventilgliedes 20a gestaltet ist.
Das Ventilglied 20a ist über eine Betätigungsstange 22 mit einer elektrisch ansteuerbaren Betätigungseinrichtung 24 verbunden, um das Ventilglied 20a zwischen einer Offen-Stellung und einer Geschlossen-Stellung (in Fig. 1 auf und ab) zu bewegen. Damit wird von dem Brennstoff-Einlaß 12 kommender und durch den zentralen Brennstoff-Kanal 16 strömender, unter Druck stehender Brennstoff in gesteuerter Weise durch den Brennstoff-Auslaß 18 in den Brennraum ausgestoßen.
Die Betätigungseinrichtung 24 ist gebildet durch eine Elektromagnet-Spulenanordnung 24a, eine mit dieser zusammenwirkende weichmagnetische Magnet-Jochanordnung 24b, sowie eine mit dieser zusammenwirkende weichmagnetische Magnet-Ankeranordnung 24c. Dabei ist die weichmagnetische Magnet-Jochanordnung 24b aus zwei etwa auf Höhe der Schnittlinie II - II zusammengefügten Schalen-Hälften 24b1 und 24b" mit Ausnehmungen 26a, 26b gebildet. Die Ausnehmungen 26a, 26b haben bei der Ausführungsform nach Fig. 1 in der Draufsicht die in den Fig. 4 und 5 gezeigte Längserstreckung und sind durch ebenfalls etwa trapez- oder parallelogrammförmige Polstege 25a, 25b begrenzt. In den Ausnehmungen 26a, 26b ist jeweils eine Elektromagnet-Spulenanordnung 24a' und 24 a" aufgenommen, die bündig mit den jeweiligen Stirnflächen 27a, 27b der Schalen-Hälften 24b' und 24b" abschließen.
Die Stirnflächen 27a, 27b der Schalen-Hälften 24b' und 24b" begrenzen einen Hohlraum 28, in dem die Magnet-Ankeranordnung 24c längs der Mittelachse M beweglich aufgenommen ist.
In der in Fig. 1 gezeigten Anordnung haben die Elektromagnet-Spulenanordnungen bzw. die Magnetjochanordnung die in Fig. 4 gezeigte Konfiguration, bei der die Polstege 25a, 25b eine im Wesentlichen viereckige Gestalt haben und nebeneinander unter Bildung von Zwischenräumen zur Aufnahme der Elektromagnet-Spulenanordnungen 24a', 24 a" angeordnet sind. Dabei sind die Polstege 25a, 25b vorzugsweise parallel zueinander angeordnet. Die Magnetjochanordnung kann hier aus einstückigem Weicheisen gebildet sein, aus dem die Polstege bzw. die Zwischenräume ausgeformt sind. In ein derartiges einstückiges Weichei- sen-Formteil können Unterbrechungen in Form von Schlitzen oder Langlöchern eingearbeitet sein, die mit elektrisch isolierendem Material gefüllt sind. Es ist aber auch möglich, die Magnetjochanordnung als Formteil aus gesintertem Eisenpulver herzustellen oder aus mehreren gegeneinander isolierten Teilstücken zu montieren und zu ggf. verkleben.
Fig. 2 zeigt die weichmagnetische Magnet-Ankeranordnung 24c. Sie hat eine weichmagnetische Ankerscheibe 24c, die um die Mittelachse M herum angeordnet ist. Um die in der Ankerscheibe 24c induzierten Wirbelströme beim Betrieb des Brennstoff-Einspritzventils möglichst gering zu halten, ist die Ankerscheibe 24c mit radial orientierten Unterbrechungen 36 versehen. Diese Unterbrechungen haben die Gestalt von zum Rand 30 der Ankerscheibe 24c reichenden Schlitzen 36. Dadurch entstehen radial orientierte Streifen 25, die im Zentrum der Scheibe 24c miteinander verbunden sind.
Fig. 3 zeigt die weichmagnetische Magnet-Jochanordnung 24b im Querschnitt. Um die in der Magnet-Jochanordnung 24b induzierten Wirbelströme beim Betrieb des Brennstoff- Einspritzventils möglichst gering zu halten, ist die Magnet-Jochanordnung 24b mit einer Vielzahl von radial orientierten senkrechten Unterbrechungen 36 in Form von Schlitzen versehen. Um das Brennstoff-Einspritzventil fluiddicht zu gestalten, ist zwischen den Schlitzen 36 an der Außenwand ein Materialsteg 38 vorgesehen, der für eine geschlossene Mantelfläche sorgt. Alternativ dazu kann die geschlossene Mantelfläche auch an den radial inneren Enden der Schlitze 36 angeordnet sein. Dies hat außerdem den Vorteil einer ggf. verbesserten Wärmeableitung aus dem Magnetjoch. Dabei sind beide Schalen-Hälften 24b' und 24b" der Magnet-Jochanordnung 24b mit den Schlitzen 36 versehen.
Aus dem Vorstehenden wird deutlich, dass die Elektromagnet-Spulenanordnung 24a und die radial orientierten Streifen 25 der weichmagnetischen Ankerscheibe 24c im Wesentlichen rechtwinkelig zueinander orientiert sein können. Es versteht sich, dass dies entweder in der vorstehend beschriebenen Form mit radial orientierten Streifen 25 der Anker-Anordnung 24b und einer spiralförmigen Elektromagnet-Spulenanordnung 24a bzw. Magnet-Jochanordnung 24b realisiert werden kann, oder umgekehrt. Aber auch mit Ankerteilen und einer sternförmig gestalteten Elektromagnet-Spulenanordnung.
Die Magnet-Ankeranordnung 24c ist eine kreisrunde eisenhaltige Scheibe mit einer weiter unten im Detail beschriebenen Gestalt. Die Elektromagnet-Spulenanordnung 24a und die Magnet-Ankeranordnung 24c überlappen sich in radialer Richtung bezogen auf die Mittelachse (M). Wie in der Fig. 1 gezeigt ist, hat die Elektromagnet-Spulenanordnung 24a einen geringeren Außendurchmesser als die Ankerscheibe 24c, so dass der aus der Elektromagnet- Spulenanordnung 24a hervorgerufene magnetische Fluss praktisch ohne nennenswerte Streu-Verluste in die Ankerscheibe 24c eindringt. Damit wird ein besonders effizienter Magnetkreis realisiert, der sehr geringe Ventil-Öffnungs-/Schließ-Zeiten sowie hohe Haltekräfte erlaubt.
Die Ankerscheibe 24c kann - unabhängig von der Gestaltung des Magnetjoches bzw. der Magnet-Spulenanordnung - auch eine geschlossene Kreisscheibe aus Weicheisen sein, sofern die oben beschriebene Ausgestaltung des Magnetjoches bzw. der Magnet-Spulenanordnung sicherstellt, dass die Streuverluste bzw. Wirbelstromverluste gering genug für den jeweiligen Einsatzzweck sind.
Wie in Fig. 1 veranschaulicht, ist die Ankerscheibe 24c mit der Betätigungsstange 22 starr verbunden und in einem durch die Schalen-Hälften 24b' und 24b" der Magnet- Jochanordnung 24b begrenzten Ankerraum 34 längs der Mittelachse M in dem Rohr 17 geführt längsbeweglich aufgenommen. Dabei ist die Ankerscheibe 24c mit der Betätigungsstange 22 durch eine zur Mittelachse M koaxial angeordnete Schraubenfeder 40 belastet, so dass das am Ende der Betätigungsstange 22 befindliche Ventilglied 20a in dem Ventilsitz 20b fluiddicht sitzt, also in seine Geschlossen-Stellung gedrängt ist. Beim Bestro- men einer der Spulen (zum Beispiel 24a') der Elektromagnet-Spulenanordnung 24a wird in der Magnet-Jochanordnung 24b ein wirbelstromarmes Magnetfeld induziert, das die Ankerscheibe 24c mit der Betätigungsstange 22 in Richtung der jeweiligen Schalen-Hälfte 24b' zieht in der sich die bestromte Spule befindet. Damit bewegt sich das Ventilglied 20a von dem Ventilsitz 20b weg in seine Offen-Stellung. Beim Bestromen der anderen Spule (zum Beispiel 24a") der Elektromagnet-Spulenanordnung 24a bewegt sich das Ventilglied 20a in die jeweils andere Stellung zu dem Ventilsitz 20b hin in seine Geschlossen-Stellung. Eine am von dem Ventilglied 20a abliegenden Ende der Betätigungsstange 22 auf diese wirkende Schraubenfeder 40 hält das Ventilglied 20a bei unbestromter Elektromagnet-Spulenanordnung 24a in seiner Geschlossen-Stellung.
Eine nicht weiter im Detail veranschaulichte Ausgestaltung der Erfindung besteht darin, über die Betätigungsstange 22 mit dem Ventilglied 20a mehrere (zwei oder mehr) Ankerscheiben 24c zu koppeln, auf die jeweils von einer oder von beiden Seiten eine Spulen-Jochanordnung wirkt. Außerdem kann die Spulenanordnung 24a zu beiden Seiten der weichmagnetischen Magnet-Ankeranordnung 24c jeweils mehrteilig ausgestaltet sein. Dabei sind jeweils zwei oder mehr Elektromagnet-Spulenanordnungen 24a', 24a" vorgesehen, die im Wesentlichen bündig mit den jeweiligen Stirnflächen 27a, 27b der Schalen-Hälften 24b' und 24b" abschließen. Diese Ausführungsform kann bei gleichem Bauvolumen eine erhöhte Magnetfeld- Dichte und damit auch eine gesteigerte Ventilglied-Haltekraft und Ventilglied-Betätigungsgeschwindigkeit haben. Durch die einzelnen Spulen einer auf Seite (oberhalb bzw. unterhalb) der jeweiligen Magnet-Ankeranordnung 24c fließt dabei abwechselnd gegensinnig gerichteter Strom. Das Joch-Eisen zwischen den einzelnen Spulen 24a einer Seite kann hier durch gegeneinander isolierte Eisenbleche gebildet sein.
Die beiden Ausführungsformen sind mit elektrisch ansteuerbaren Betätigungseinrichtungen 24 gezeigt, bei denen eine zentrale Betätigungsstange 22 von einer scheibenförmigen Magnet-Ankeranordnung 24c bewegt wird. Es ist auch möglich, anstelle der zentralen Betätigungsstange 22 ein Rohr vorzusehen, an dessen Stirnfläche der Magnet-Anker angeordnet ist.
Bei der Ausführungsform des Magnet-Joches bzw. der Magnetspulen gemäß Fig. 4 ist jeder einzelne Polsteg von einer separaten Wicklung umgeben. Der besseren Übersicht wegen sind in Fig. 4 nicht alle Polstege mit Elektromagnet-Spulenanordnungen versehen dargestellt. Dabei sind alle Elektromagnet-Spulenanordnungen 24a' und 24 a" entweder gegensinnig gewickelt und gleichsinnig bestromt oder bei gleichsinniger Wicklung gegensinnig bestromt um an gegenüberliegenden Flanken 25a', 25a" der Polstege 25a, 25b jeweils gegensinnig gerichteten elektrischen Strom vorbeiführen.
Alternativ dazu ist es auch möglich, die Elektromagnet-Spulenanordnung in der in Fig. 5 gezeigten Konfiguration auszuführen, bei der eine (oder mehrere) Wicklungen mäanderförmig in die Ausnehmungen 26a, 26b zwischen die Polstege 25a, 25b der Magnet-Jochanordnung eingelegt ist (sind). Auch hier wird an gegenüberliegenden Flanken 25a', 25a" jedes der Polstege 25a, 25b jeweils gegensinnig gerichteter elektrischer Strom vorbeigeführt. Ersichtlich haben bei allen Ausführungsformen die Polstege 25a, 25b (und auch die Ausnehmungen 26a, 26) eine zur Mittellängsachse M des Brennstoff-Einspritzventils im Wesentlichen asymmetrische Gestalt, wobei zumindest eine Elektromagnet-Spulenanordnung 24a', 24 a" nicht- kreisringförmig gestaltete Polstege zumindest teilweise so einschließt, dass an deren Flanken gegensinnig gerichteter elektrischer Strom vorbeigeführt wird.
Die in den Fig. 6 und 7 gezeigte Ausführungsform einer Elektromagnet-Spulenanordnung 24a wird mit der mit ihr zusammenwirkenden weichmagnetischen Magnet-Jochanordnung 24b integriert hergestellt. Dazu wird ein Weicheisen enthaltendes, lang gestrecktes Jochblech 50 beidseitig mit einem Leiterstreifen 52 umgeben, indem dieser um eine - im späteren, fertigen Zustand innen liegende - Längskante 50' des Jochblechs 50 umgeknickt wird. Neben dem Leiterstreifen 52 wird ein Weicheisen enthaltendes Blechband 54 angeordnet, das ge- nauso dick ist wie der Leiterstreifen 52 und ebenfalls um die - im fertigen Zustand innen liegende - Längskante 50' des Jochblechs 50 umgeknickt wird. Das neben dem Leiterstreifen 52 liegende Blechband 54 dient dazu, zusammen mit dem Abschnitt des Jochbleches 50, an dem es flächig anliegt, - im fertigen Zustand - den Rücken des Magnetjoches zu bilden. Der Leiterstreifen 52 überragt die - im fertigen Zustand außen liegende - seitliche Längskante 50" des Jochblechs 50 an beiden Enden zur elektrischen Kontaktierung. Anschließend wird eine zweite Lage eines ein Weicheisen enthaltenden, lang gezogenen Jochbleches 56 dagegen gelegt, so dass ein Schichtaufbau bestehend aus dem erstem Jochblech 50, den Leiterstreifen 52 und dem Blechband 54, sowie dem zweiten Jochblech 56 entsteht. Dieser Schichtaufbau wird anschließend in der in Fig. 6 gezeigten Weise spiralförmig zusammengerollt, um das aus einer Spule und einem Joch bestehende Gesamtgebilde zu erhalten. Nach dem spiralförmigen Zusammenrollen liegen die ersten und zweiten Jochbleche 50, 56 dicht aneinander an und das Gesamtgebilde ist ein zylindrischer Wickelkörper. Es versteht sich, dass der Leiterstreifen 52 gegen die Weicheisen-Teile 50, 54, 56 elektrisch isoliert ist.
Der in Fig. 1 gezeigte, zur Mittellängsachse M koaxiale Luftspalt zwischen der Magnet- Jochanordnung 24b und der Magnet-Ankeranordnung 24c in der Ruhestellung der Betätigungseinrichtung 24 gebildete Luftspalt ist etwa 10 mal größer als das Rastermaß der Polstege. Dabei ist das Rastermaß bei dieser Ausführungsform die Querabmessung der Polstege. Bei der Ausführungsform der Magnet-Jochanordnung 24b nach den Fig. 6, 7 ist das Rastermaß die Dicke des Jochbleches 40. Es sind auch andere Geometrien der Polstege möglich. Bestimmend für das Rastermaß sind die kleinsten Strukturen der Polstege, also deren Längsabmessungen, Querabmessungen, Dicke, etc. welche zu einer feinteiligen Gestalt der auf den Magnet-Anker wirkenden Pole des Magnetjoches führen. Dieses kleine Rastermaß führt zu hoher magnetischer Flussdichte und damit zu hohen Anzugs- bzw. Haltekräften der Ventilanordnung bzw. auch zu einer niedrigen Schaltzeit, da die elektrischen und magnetischen Verluste bzw. die induzierten Gegenkräfte sehr gering sind.
In Fig. 8 ist eine weitere Alternative für eine Ausgestaltung der Ankeranordnung gezeigt. Dabei ist die Ankerscheibe 24c mehrlagig aufgebaut. Zwischen zwei relativ dünnen - und damit wirbelstromarmen - Weicheisenlagen 24c' ist zur Erhöhung der mechanischen Stabilität eine Keramiklage 24c" angeordnet und a der Ventilstange 22 befestigt. Es versteht sich, dass die beiden Weicheisenlagen 24c' entweder vollständige Ankerscheiben oder in der oben beschriebenen Art augenommene Scheiben sein können. Auch können mehrere derartige Ankeranordnungen entlang der Ventilstange 22 verteilt angeordnet sein.

Claims

Ansprüche
1. Brennstoff-Einspritzventil für Brennstoff-Einspritzanlagen von Brennkraftmaschinen, insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine mit
- einem Brennstoff-Einlaß (12) , der dazu eingerichtet ist, Brennstoff in das Brennstoff- Einspritzventil einströmen zu lassen,
- einer elektrisch ansteuerbaren Betätigungseinrichtung (24) die mit einer Ventilanordnung (20) zusammenwirkt, um Brennstoff in direkt oder indirekt gesteuerter Wiese durch einen Brennstoff-Auslaß (18) in den Brennraum ausströmen zu lassen, wobei
- die Betätigungseinrichtung (24) eine zu bestromende Magnet-Spulenanordnung (24a), eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet- Jochanordnung (24b), sowie eine mit dieser zusammenwirkende im Wesentlichen weichmagnetische Magnet-Ankeranordnung (24c) aufweist, dadurch gekennzeichnet, dass
- die Magnet-Jochanordnung (24b) mehrere Polstege () aufweist, die zumindest teilweise von Elektromagnet-Spulenanordnungen (24a1, 24 a") umgeben sind, die dazu eingerichtet sind, an gegenüberliegenden Flanken (25a', 25a") der Polstege (25a, 25b) jeweils gegensinnig gerichteten elektrischen Strom vorbeiführen.
2. Brennstoff-Einspritzventil nach Anspruch 1, dadurch gekennzeichnet dass
- die Polstege (25a, 25b) ein Rastermaß aufweisen, das 2 bis 30 mal, vorzugsweise 5 bis 20 mal, und besonders vorzugsweise etwa 10 mal größer ist als ein zwischen der Magnet- Jochanordnung (24b) und der Magnet-Ankeranordnung (24c) gebildeter Luftspalt in einer Ruhestellung der Betätigungseinrichtung (24).
3. Brennstoff-Einspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet dass
- die Polstege (25a, 25b) eine zur Mittellängsachse (M) des Brennstoff-Einspritzventils im Wesentlichen asymmetrische Gestalt aufweisen.
4. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet dass
- die Polstege (25a, 25b) eine zur Mittellängsachse des Brennstoff-Einspritzventils spiralförmige Gestalt haben.
5. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet dass
- zwischen zwei Lagen aus Weicheisen enthaltendem Blech ein Strom leitendes Band und ein Weicheisen enthaltendes Blechband angeordnet sind, wobei das Strom leitende Band und das Weicheisen enthaltende Blechband an jeweils einer Längskante aneinander angrenzen.
6. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet dass
- die Polstege (25a, 25b) eine im Wesentlichen mehreckige, vorzugsweise viereckige Gestalt haben und nebeneinander unter Bildung von Zwischenräumen zur Aufnahme der Elektromagnet-Spulenanordnungen (24a', 24 a") angeordnet sind, wobei die Polstege (25a, 25b) vorzugsweise parallel zueinander angeordnet sind.
7. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet dass
- wenigstens zwei benachbarte Polstege (25a, 25b) von wenigstens einer Elektromagnet- Spulenanordnung (24a', 24 a") zumindest teilweise mäanderförmig umgeben sind.
8. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet dass
- jeweils ein Polsteg (25a, 25b) von wenigstens einer Elektromagnet-Spulenanordnung (24a', 24 a") zumindest teilweise umgeben ist.
9. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet dass
- zumindest eine Elektromagnet-Spulenanordnung (24a', 24 a") nicht-kreisringförmig gestaltete Polstege (25a, 25b) zumindest teilweise einschließt.
10. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet dass
- die Betätigungseinrichtung (24) mehr als eine Baugruppe, gebildet durch die Magnet- Spulenanordnung (24a), die Magnet-Jochanordnung (24b), und die Magnet-Ankeranordnung (24c) aufweist, wobei diese Baugruppen gemeinsam gleichsinnig oder gegensinnig auf die Ventilanordnung (20) wirken.
11. Brennstoff-Einspritzventil nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet dass - die Betätigungseinrichtung (24) auf ein bewegliches Ventilglied (20a) der Ventilanordnung (20) einwirkt, um dieses gegenüber einem mit dem Ventilglied (20a) zusammenwirkenden und stromabwärts zu dem Brennstoff-Einlaß (12) angeordneten ortsfesten Ventilsitz (20b) zwischen einer Offen-Stellung und einer Geschlossen-Stellung zu bewegen.
12. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- die weichmagnetische Magnet-Jochanordnung (24b) wenigstens zwei zusammengefügte Schalen-Teile (24b', 24b") mit Ausnehmungen (26a, 26b) aufweist, in denen jeweils eine Elektromagnet-Spulenanordnung (24a1, 24 a") aufgenommen ist, die im Wesentlichen bündig mit der jeweiligen Stirnfläche (27a, 27b) eines der Schalen-Teile (24b', 24b") abschließt, wobei die Stirnflächen (27a, 27b) zusammen einen Hohlraum (28) begrenzen, in dem die Magnet-Ankeranordnung (24c) längs der Mittellängsachse (M) beweglich aufgenommen ist.
13. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- dass die Elektromagnet-Spulenanordnung (24a', 24 a") auf wenigstens einer Seite der weichmagnetischen Magnet-Ankeranordnung (24c) durch mehrere, Elektromagnet-Spulen- Anordnungen gebildet ist, die im Wesentlichen bündig mit einer der Stirnflächen (27a, 27b) einer der Schalen-Hälften (24b', 24b") abschließen.
14. Brennstoff-Einspritzventil nach dem vorhergehenden Anspruch, dadurch gekennzeichnet dass
- die einzelnen Spulen eine Dicke von etwa 20 bis etwa 80 % des zwischen zwei Spulen vorhandenen Magnetjoch-Eisens haben.
15. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- die einzelnen Spulen auf einer Seite der weichmagnetischen Magnet-Ankeranordnung (24c) dazu eingerichtet sind, gegensinnig bestromt zu werden.
16. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- zwischen den einzelnen Spulen auf einer Seite der weichmagnetischen Magnet-Ankeranordnung (24c) das Joch-Eisen durch gegeneinander isolierte Eisenbleche gebildet ist.
17. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- die Elektromagnet-Spulenanordnung (24a) und die Magnet-Ankeranordnung (24c) im Wesentlichen rechtwinkelig zueinander orientiert sind.
18. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- die Magnet-Spulenanordnung (24b) und die Magnet-Ankeranordnung (24c) sich in radialer Richtung zur Mittelachse (M) zumindest teilweise überlappen.
19. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- die Magnet-Jochanordnung (24b) als ein im Wesentlichen zylindrischer weichmagnetischer Scheibenkörper mit radial orientierten Unterbrechungen (36) gestaltet ist.
20. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- die Magnet-Ankeranordnung durch zwei oder mehr von einander räumlich getrennte strei- fenförmige Abschnitte (25) gebildet ist.
21. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- die Magnet-Ankeranordnung (24c) eine weichmagnetische Scheibe mit Ausnehmungen (38), vorzugsweise radial orientierten, zum Rand (30) der Scheibe reichenden Schlitzen, oder Langlöchern gestaltet ist.
22. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- die Magnet-Ankeranordnung (24c) mehrlagig aufgebaut ist, wobei zwischen zwei Weicheisenlagen (24c1) eine Keramiklage (24c") angeordnet und an der Ventilstange (22) befestigt ist.
23. Brennstoff-Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- die Magnet-Ankeranordnung (24c) und das Ventilglied (20a) miteinander verbunden sind und durch eine Federanordnung (40) in die Offen-Stellung oder die Geschlossen-Stellung vorgespannt sind und durch Bestromen der Magnet-Spulenanordnung (24a) in die Geschlossen-Stellung oder die Offen-Stellung bringbar sind.
24. Brennstoff-Einspritzventilanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass
- das Brennstoff-Einspritzventil dazu eingerichtet und dimensioniert ist, in den Brennraum einer fremdgezündeten Brennkraftmaschine zu ragen.
25. Brenstoff-Einspritzventil nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass
- das Brennstoff-Einspritzventil dazu eingerichtet und dimensioniert ist, in den Brennraum einer selbstzündenden Brennkraftmaschine zu ragen.
PCT/EP2004/000929 2003-04-29 2004-02-02 Brennstoff-einspritzventil für brennkraftmaschinen WO2004097207A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006504406A JP2006524771A (ja) 2003-04-29 2004-02-02 内燃機関用燃料噴射弁
EP04707203A EP1618298B1 (de) 2003-04-29 2004-02-02 Brennstoff-einspritzventil für brennkraftmaschinen
US10/554,713 US7533834B2 (en) 2003-04-29 2004-02-02 Fuel injection valve for combustion engines
DE502004007492T DE502004007492D1 (de) 2003-04-29 2004-02-02 Brennstoff-einspritzventil für brennkraftmaschinen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10319285.9 2003-04-29
DE2003119285 DE10319285B3 (de) 2003-04-29 2003-04-29 Brennstoff-Einspritzventil für Brennkraftmaschinen

Publications (1)

Publication Number Publication Date
WO2004097207A1 true WO2004097207A1 (de) 2004-11-11

Family

ID=32892455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/000929 WO2004097207A1 (de) 2003-04-29 2004-02-02 Brennstoff-einspritzventil für brennkraftmaschinen

Country Status (7)

Country Link
US (1) US7533834B2 (de)
EP (1) EP1618298B1 (de)
JP (1) JP2006524771A (de)
KR (1) KR20060021303A (de)
CN (1) CN1780979A (de)
DE (2) DE10319285B3 (de)
WO (1) WO2004097207A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002953A1 (de) * 2004-07-02 2006-01-12 Compact Dynamics Gmbh Brennstoff-einspritzventil

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006055088B4 (de) * 2006-11-21 2008-12-04 Vacuumschmelze Gmbh & Co. Kg Elektromagnetisches Einspritzventil und Verfahren zu seiner Herstellung sowie Verwendung eines Magnetkerns für ein elektromagnetisches Einspritzventil
DE102007028203B3 (de) * 2007-06-15 2008-12-04 Siemens Ag Magnetisches Antriebssystem für eine Schalteinrichtung
US7552719B2 (en) * 2007-12-04 2009-06-30 Caterpillar Inc. Solenoid assembly having slotted stator
DE102007062176A1 (de) * 2007-12-21 2009-06-25 Robert Bosch Gmbh Druckregelventil zur Regelung des Drucks in einem Hochdruck-Kraftstoffspeicher
DE102009038730B4 (de) 2009-08-27 2014-03-13 Vacuumschmelze Gmbh & Co. Kg Blechpaket aus weichmagnetischen Einzelblechen, elektromagnetischer Aktor und Verfahren zu deren Herstellung sowie Verwendung eines weichmagnetischen Blechpakets
KR20110029443A (ko) * 2009-09-15 2011-03-23 현대자동차주식회사 연료 분사량 편차 감소를 위한 콘트롤 밸브 및 이를 포함한 인젝터
US8807463B1 (en) * 2013-03-14 2014-08-19 Mcalister Technologies, Llc Fuel injector with kinetic energy transfer armature
DE102015218421A1 (de) * 2015-09-24 2017-03-30 Continental Automotive Gmbh Geblechter Magnetanker für eine elektromagnetische Betätigungsvorrichtung sowie Einspritzventil zum Zumessen eines Fluids
FR3084772B1 (fr) * 2018-08-01 2021-06-18 Schneider Electric Ind Sas Actionneur electromagnetique et appareil de commutation electrique comportant cet actionneur

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2194888A1 (de) * 1972-08-01 1974-03-01 Bosch Gmbh Robert
US4156506A (en) * 1977-03-26 1979-05-29 Lucas Industries, Limited Fuel injection nozzle units
US5035360A (en) * 1990-07-02 1991-07-30 The University Of Toronto Innovations Foundation Electrically actuated gaseous fuel timing and metering device
US5207410A (en) * 1992-06-03 1993-05-04 Siemens Automotive L.P. Means for improving the opening response of a solenoid operated fuel valve
JPH10335139A (ja) * 1997-05-28 1998-12-18 Denso Corp ソレノイド
US6065684A (en) * 1998-03-27 2000-05-23 General Motors Corporation Fuel injector and method
DE10005182A1 (de) 2000-02-05 2001-08-09 Bosch Gmbh Robert Elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge
US20010019085A1 (en) * 1999-12-07 2001-09-06 Masahiro Okajima Fuel injection apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155503A (en) * 1998-05-26 2000-12-05 Cummins Engine Company, Inc. Solenoid actuator assembly
DE10136808A1 (de) * 2001-07-27 2003-02-13 Bosch Gmbh Robert Brennstoffeinspritzventil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2194888A1 (de) * 1972-08-01 1974-03-01 Bosch Gmbh Robert
US4156506A (en) * 1977-03-26 1979-05-29 Lucas Industries, Limited Fuel injection nozzle units
US5035360A (en) * 1990-07-02 1991-07-30 The University Of Toronto Innovations Foundation Electrically actuated gaseous fuel timing and metering device
US5207410A (en) * 1992-06-03 1993-05-04 Siemens Automotive L.P. Means for improving the opening response of a solenoid operated fuel valve
JPH10335139A (ja) * 1997-05-28 1998-12-18 Denso Corp ソレノイド
US6065684A (en) * 1998-03-27 2000-05-23 General Motors Corporation Fuel injector and method
US20010019085A1 (en) * 1999-12-07 2001-09-06 Masahiro Okajima Fuel injection apparatus
DE10005182A1 (de) 2000-02-05 2001-08-09 Bosch Gmbh Robert Elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03 31 March 1999 (1999-03-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002953A1 (de) * 2004-07-02 2006-01-12 Compact Dynamics Gmbh Brennstoff-einspritzventil
US8028937B2 (en) 2004-07-02 2011-10-04 Compact Dynamics Gmbh Fuel injection valve

Also Published As

Publication number Publication date
US20070175436A1 (en) 2007-08-02
EP1618298B1 (de) 2008-07-02
KR20060021303A (ko) 2006-03-07
US7533834B2 (en) 2009-05-19
DE10319285B3 (de) 2004-09-23
EP1618298A1 (de) 2006-01-25
CN1780979A (zh) 2006-05-31
JP2006524771A (ja) 2006-11-02
DE502004007492D1 (de) 2008-08-14

Similar Documents

Publication Publication Date Title
EP1763630B1 (de) Brennstoff-einspritzventil
DE102007044877B4 (de) Fluid-Einspritzventil
DE19638201A1 (de) Brennstoffeinspritzventil
DE3943005C2 (de)
EP0988447B1 (de) Brennstoffeinspritzventil
WO1998013837A1 (de) Brennstoffeinspritzventil
WO2009156213A1 (de) Magnetkern, magnetbaugruppe sowie kraftstoff-injektor-magnetventil
DE102007008901B4 (de) Fluid-Einspritzventil
EP1618298B1 (de) Brennstoff-einspritzventil für brennkraftmaschinen
EP2752858B1 (de) Verfahren zur Herstellung eines Magnetsteuerventils
EP0937200B1 (de) Elektromagnetisch betätigbares ventil
DE102013219974A1 (de) Ventilbaugruppe für ein Einspritzventil
DE10055483A1 (de) Brennstoffeinspritzventil und Verfahren zur Herstellung von Ventilnadeln oder Ventilschließkörpern für Brennstoffeinspritzventile
EP1303695A1 (de) Brennstoffeinspritzventil
DE3704579A1 (de) Magnetventil fuer kraftstoffeinspritzpumpen von brennkraftmaschinen
WO2008148553A2 (de) Volumenstromsteuerventil
DE10005182A1 (de) Elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge
WO1991006109A1 (de) Elektromagnet
DE10063261B4 (de) Brennstoffeinspritzventil
EP4010582A1 (de) Sitzplatte für einen injektor und verfahren zum herstellen einer solchen sitzplatte
DE102004051138A1 (de) Druckverstärkendes Brennstoff-Einspritzventil
DE102018200245A1 (de) Aktoranordnung für einen Kraftstoffinjektor, Kraftstoffinjektor
EP1299638A1 (de) Brennstoffeinspritzventil
DE102007056988A1 (de) Fluid-Einspritzventil mit Nadellängung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004707203

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057020626

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006504406

Country of ref document: JP

Ref document number: 20048116515

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004707203

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057020626

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10554713

Country of ref document: US

Ref document number: 2007175436

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10554713

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004707203

Country of ref document: EP