WO2004094111A1 - Procede pour realiser un outil abrasif - Google Patents

Procede pour realiser un outil abrasif Download PDF

Info

Publication number
WO2004094111A1
WO2004094111A1 PCT/CH2004/000245 CH2004000245W WO2004094111A1 WO 2004094111 A1 WO2004094111 A1 WO 2004094111A1 CH 2004000245 W CH2004000245 W CH 2004000245W WO 2004094111 A1 WO2004094111 A1 WO 2004094111A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard material
layer
material grains
grains
reinforcing layer
Prior art date
Application number
PCT/CH2004/000245
Other languages
German (de)
English (en)
Inventor
Benno Zigerlig
Gregor Burkhard
Manfred Kiser
Original Assignee
Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt
Eidgenössische Technische Hochschule Zürich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt, Eidgenössische Technische Hochschule Zürich filed Critical Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt
Publication of WO2004094111A1 publication Critical patent/WO2004094111A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0018Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for by electrolytic deposition

Definitions

  • the invention relates to a method for producing an abrasive tool and an abrasive tool according to the preamble of claims 1 and 14, respectively.
  • EP-A-1'208'945 suggests sticking hard material grains to the tool surface.
  • adhesive droplets are applied to the surface of the tool in a predetermined pattern and the surface is sprinkled with the hard material grains. Only those grains that come into contact with a drop of glue stick. The non-sticky grains are removed again. This makes it possible to produce a tool with a highly precise distribution of the hard material grains.
  • the structured abrasive coating is achieved in that an electrically non-conductive mask layer is applied to the surface of the tool and the vacancies of the mask are covered with hard material grains, in particular with super hard material grains, in one or more galvanic process steps. A reinforcing layer is then preferably applied.
  • Pulse-plating is preferably used in the galvanic deposition, so that a uniform deposition can also be achieved on curved surfaces.
  • the reinforcement layer is used to deposit hard material grains, which, however, have a diameter many times smaller than the hard material grains filled in the vacancies. This reinforces this layer and supports the hard grains.
  • hard material grains with different diameters can be applied to the tool surface with a minimal number of process steps.
  • the mask layer is provided with vacancies of different sizes and the galvanic deposition is divided into several sub-steps, with each sub-step Hard grains of a kind are to be separated, starting with the kind with the largest grain diameter.
  • Figure 2a is a top view of a tool after the second manufacturing step;
  • FIG. 2b shows an enlarged detail according to FIG. 2a;
  • Figure 3a is a top view of a tool after the fifth manufacturing step
  • FIG. 3b shows an enlarged detail after the fourth manufacturing step
  • FIG. 4a shows a cross section through a schematically shown Surface of a tool with a chemically applied further layer
  • FIG. 4b shows a cross section through a schematically represented surface of a tool with an electrolytically applied further layer
  • FIG. 5a shows a cross section through a schematically represented surface of a tool according to a second variant of the method
  • Figure 5b shows the surface according to a third variant of the method
  • 5c shows the surface with a hard material layer as a mask layer
  • Figure 6 shows the surface with armor of the other layer
  • Figures 7a to 7d a schematically illustrated surface of a tool in a first to fourth manufacturing step according to a further variant of the invention.
  • a mask layer 2 is applied to a base body 1 of an abrasive tool to be produced.
  • This mask layer 2 is preferably a lacquer or color layer.
  • metal ions with or without the aid of a suitable external power source or a chemical electron donor, are extracted from aqueous deposited solution, hereinafter referred to as a galvanic process, the layer 2 must be electrically non-conductive.
  • FIGS. 2a and 2b show a surface of the tool provided with the mask layer 2.
  • the layer 2 now forms a mask with empty spaces 20.
  • the tool with its mask layer 2 is subjected to a galvanic coating process of a known type.
  • a galvanic coating process of a known type.
  • the exposed sections of the surfaces of the workpiece are activated and nickel or another suitable material is deposited together with hard material grains 4, in particular super hard material grains such as diamonds or CBN.
  • Nickel adheres to the free surfaces and forms a carrier layer 3.
  • each empty space 20 there is only one hard material grain 4.
  • the galvanic coating process i.e. the nickel plating, preferably takes place in a sulfate bath or a sulfamate bath.
  • the mask layer 2 is removed in a fourth step according to FIG. Which of the known methods of removal is used depends on the material used.
  • a fifth step according to FIG. 1f the structural height is increased and thus the anchoring of the hard material grains 4 is further reinforced by applying a further layer, hereinafter called reinforcing layer 5, to the entire surface of the tool that is now exposed. Again, this is preferably a nickel layer.
  • reinforcing layer 5 a further layer
  • This reinforcing layer 5 can be applied chemically or electrochemically.
  • the chemical method has the advantage that regardless of the profile geometry, more uniform layer thicknesses are achieved. If the electrochemical method is used, a sulfamate bath or a sulfate gloss bath is preferably used again. A chemical nickel bath is preferably used in the chemical method.
  • Figure 4a shows the result of a chemical process, Figure 4b of an electrochemical.
  • the backing layer 3 and the reinforcement slide 5 together usually have a thickness of 40% to 60% of the nominal grain size of the hard material grains 4.
  • the thickness of the mask layer 2 depends on the nominal grain size of the hard material grains to be applied.
  • the thickness of the mask layer 2 is typically 10% to 100% of the nominal grain size. Good results were achieved in the range of 20% - 60%.
  • the diameter of the vacancies 20 also depend on the nominal size of the hard material grains 4. If a single grain separation is to be achieved, the vacancies 20 should have a size which is only slightly larger than the nominal diameter of the grains. In the case of grain clusters, they are correspondingly larger. Typical diameters of the vacancies 20 are 1 ⁇ m to 1 mm.
  • nickel is preferably used both for the carrier layer 3 and for the reinforcing layer 5. However, other suitable materials can also be used.
  • a mask layer 2 can be used instead of a paint walls ⁇ res electrically non-conductive material, such as a hard material layer, a dry or wet resist, use.
  • the mask layer 2 can be structured as described above after application to the base body 1. However, it can also be structured during application, for example by spraying it on through a mask. Furthermore, it can also be structured beforehand and applied, for example, in the form of a film or a perforated plate. If the layer is structured after application, this can be done instead of with a laser. also take place thermally, mechanically or chemically.
  • a hard material layer consisting of several partial layers.
  • an electrically non-conductive, insulating partial layer and an electrically conductive partial layer the latter making it easier to overgrow the reinforcing layer.
  • a hard material layer it is not necessary, depending on the area of application, to provide the entire exposed surface of the tool with the reinforcing layer. It is sufficient if it is applied in the area of the hard material grains, in which case it can overgrow the hard material layer, as shown in FIG. 5c.
  • the structured carrier layer and the reinforcement layer visibly consist of two different layers, which is also evident in the finished tool, more precisely in a cross section. of, can be determined.
  • said egg already ⁇ ne support layer is placed in the desired final thickness up ⁇ 3 in this case, in the third step, together with the Hartstoffk ⁇ rnern. 4
  • the structured mask layer 2 is not or only partially removed, but the reinforcement layer is applied over the mask layer 2, as shown in FIG. 5b.
  • This variant is particularly suitable for relatively thin hard material layers.
  • the reinforcement layer 5 is applied only over the carrier layer 3. This is shown in Figure 5a. After the mask layer 2 has been removed, this variant has a greater free space on the tool surface than the variant lf.
  • the hard material grains are preferably applied by means of suitable current modulation with the aid of alternating anodic or cathodic current switching and also current pauses / interruptions, hereinafter referred to as pulse plating.
  • Pulse plating differs from the usual galvanic processes in that the electrical voltage is not applied constantly but in a pulsed manner. Increased voltage at the edges and unfavorable tool-electrode spacings can cause an uneven layer growth of the nickel layer. It has been shown that significantly more homogeneous support and reinforcement layers can be formed by pulsing the current.
  • the pulse plating can be used for the application of the carrier and / or the reinforcing layer 3, 5. In a further variant of the method, shown in FIG.
  • hard material grains 4, 4 ' are applied in different sizes.
  • the surface of the tool to be machined is provided with a structured mask layer 2 as described above.
  • This mask layer 2 now has empty spaces 20, 21 of different sizes.
  • hard material grains 4 of a first type which have the largest or larger diameter, are first deposited. These hard material grains 4 of the first type can only accumulate in the larger empty spaces 20. The diameters of the smaller empty spaces 21 are too small for this.
  • hard granules 4 'of a second type which now have a smaller diameter, are deposited in the second empty spaces 21.
  • the following steps correspond to the method steps 1d to 1f described above.
  • the method can also be carried out with more types of hard material grains 4, 4 'and vacancies 20, 21, as long as they start with the largest diameter and with the smallest diameter. water of the existing group of hard material grains to be applied.
  • An advantage of this method is that only a single resist layer 2 is necessary and also the masking be ⁇ relationship, the spaces in a single process step can be applied. It is also advantageous that the galvanic deposition can be carried out in successive steps, so that the transport paths of the tools can be minimized during manufacture.
  • flat surfaces are shown here in the drawings, curved or differently shaped surfaces, in particular those with complicated geometries, can also be coated with the method according to the invention.
  • the focus of the laser on the respective surface must be set in the second method step. This can be achieved by changing the position of the laser or, even more simply, by correspondingly moving the workpiece to be produced. It is also advantageous if pulse plating is used.
  • the reinforcing layer 5 and / or the carrier layer 3 can also be provided with different additives or alloy components, for example in order to increase the corrosion protection and the hardness.
  • 4 placeholders can also be separated together with the hard material grains.
  • Such placeholders are, for example, glass balls, glass powder or graphite parts. This allows the grain density in the clusters to be controlled and / or the tribological properties to be changed. If desired, the placeholders can be removed afterwards using a suitable medium. be solved.
  • the method according to the invention enables simple and inexpensive production of a high-performance abrasive tool.
  • Base body mask layer Vacancies Vacancies Carrier layer Hard material grains Hard material grains Hard material grains Reinforcing layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

L'invention concerne un procédé pour placer des grains de substance dure à la surface d'un outil selon un motif déterminé. Selon ce procédé, sur la surface est appliquée une couche de masque (2) électriquement non conductrice comportant des interstices (20). Les grains de substance dure (4) sont déposés dans ces interstices (20) par une opération galvanique, notamment par électrodéposition sous impulsions de courant, puis la surface est dotée d'une couche de renforcement (5).
PCT/CH2004/000245 2003-04-24 2004-04-23 Procede pour realiser un outil abrasif WO2004094111A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH726/03 2003-04-24
CH7262003 2003-04-24

Publications (1)

Publication Number Publication Date
WO2004094111A1 true WO2004094111A1 (fr) 2004-11-04

Family

ID=33304427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2004/000245 WO2004094111A1 (fr) 2003-04-24 2004-04-23 Procede pour realiser un outil abrasif

Country Status (1)

Country Link
WO (1) WO2004094111A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024274A1 (fr) * 2004-09-02 2006-03-09 Mtu Aero Engines Gmbh Meule et procede de fabrication de ladite meule
ITMI20081951A1 (it) * 2008-11-05 2010-05-06 North Bel Internat Srl Metodo di diamantatura superficiale delle frese per odontoiatria ad esclusione delle cave
CN107443264A (zh) * 2017-08-01 2017-12-08 华侨大学 一种基于临时覆盖层定厚制备磨粒群排布磨盘的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049165A (en) * 1989-01-30 1991-09-17 Tselesin Naum N Composite material
WO1997009469A1 (fr) * 1995-09-01 1997-03-13 Consort Precision Diamond Company Limited Fabrication de dresseurs au diamant
EP1120196A2 (fr) * 2000-01-19 2001-08-01 Mitsubishi Materials Corporation Meule abrasive galvanisée et son dispositif de fabrication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049165A (en) * 1989-01-30 1991-09-17 Tselesin Naum N Composite material
US5049165B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Composite material
WO1997009469A1 (fr) * 1995-09-01 1997-03-13 Consort Precision Diamond Company Limited Fabrication de dresseurs au diamant
EP1120196A2 (fr) * 2000-01-19 2001-08-01 Mitsubishi Materials Corporation Meule abrasive galvanisée et son dispositif de fabrication

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024274A1 (fr) * 2004-09-02 2006-03-09 Mtu Aero Engines Gmbh Meule et procede de fabrication de ladite meule
US8523966B2 (en) 2008-05-11 2013-09-03 North Bel International Srl Method for applying a powdered-diamond coating to the surface of cutters for dentistry excluding slot surfaces
ITMI20081951A1 (it) * 2008-11-05 2010-05-06 North Bel Internat Srl Metodo di diamantatura superficiale delle frese per odontoiatria ad esclusione delle cave
WO2010052744A1 (fr) * 2008-11-05 2010-05-14 North Bel International Srl Procédé permettant d'appliquer un revêtement de poudre de diamant à la surface d'instruments tranchants en dentisterie à l'exclusion de surfaces rainurées
CN107443264A (zh) * 2017-08-01 2017-12-08 华侨大学 一种基于临时覆盖层定厚制备磨粒群排布磨盘的方法

Similar Documents

Publication Publication Date Title
DE60307543T2 (de) Schleifwerkzeuge mit genau geordneter Schleifmatrix und dessen Herstellungsverfahren
DE69435041T2 (de) Verfahren zur Herstellung eines Abrasivmaterials
DE69921533T2 (de) Schleifwerkzeug und Verfahren zur Herstellung desselben
EP0393540B1 (fr) Procédé de revêtement galvanique de segments de surface, qui sont situés sur la surface d'un objet et outil fabriqué selon ce procédé, en particulier meule de rectification
DE102007059794A1 (de) Schablone für den technischen Siebdruck
DE19921506A1 (de) Metallform zur Formung einer Bienenwabenstruktur und Verfahren zur Herstellung derselben
EP1902161B1 (fr) Ensemble d'electrodes et procede de revetement electrochimique de la surface d'une piece
EP0072374B1 (fr) Procédé pour équiper des outils métalliques à brosser avec des particules abrasifs et outil métallique à brosser obtenu par ce procédé
WO2004094111A1 (fr) Procede pour realiser un outil abrasif
DE4108297C2 (de) Verfahren und Einrichtung zum galvanischen Aufbringen einer metallischen Schicht auf Halbgleitlager
DE10131668A1 (de) Verfahren zur abrasiven Bearbeitung von Oberflächen, insbesondere von Halbleiter-Wafern
EP0523331A1 (fr) Procédé de fabrication d'un matériau filtrant
EP2828025B1 (fr) Électrodes pour usinage d'une pièce ainsi que procédé pour la fabrication et l'utilisation de tels électrodes
EP3194634A1 (fr) Dispositif de retenue pour le traitement de surface de lames à barre
WO2004020696A2 (fr) Procede de fabrication d'une structure metallique alveolaire, mousse metallique et ensemble constitue d'un substrat support et d'une mousse metallique
DE2651293A1 (de) Verfahren zur feinbearbeitung optischer flaechen, werkzeug zur durchfuehrung dieses verfahrens sowie verfahren zur herstellung des bearbeitungswerkzeugs
DE19829924B4 (de) Verfahren zur Herstellung einer der spanenden Bearbeitung metallischer Werkstücke dienenden Schneidplatte
DE2048562A1 (de) Vorrichtung und Verfahren zum Elektro plattieren
DE2129946C3 (de) Verfahren zum Herstellen einer Fertigungsform
CH684249A5 (de) Verfahren zur Herstellung eines formgetreuen Negativformkörpers, Anwendung des Verfahrens sowie damit hergestellte Negativformkörper und Werkzeuge.
WO1988000871A1 (fr) Procede et dispositif d'usinage electrochimique de pieces
DE102009040632B4 (de) Halbleiter-Bauelement und Verfahren zum Herstellen eines Halbleiter-Bauelements und damit hergestelltes Halbleiter-Bauelement
DE10361119A1 (de) Verfahren zur Herstellung eines metallischen Körpers
EP0573511A1 (fr) Procede d'electrodeposition pour pieces presentant des perforations et dispositif pour la mise en oeuvre de ce procede
EP2907614A1 (fr) Procédé de fabrication de pièces usinées à partir d'une plaque de matériau

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase