WO2004093292A2 - Elektrische maschine mit gekühlten ständer- und läuferblechpaketen und wicklungen - Google Patents

Elektrische maschine mit gekühlten ständer- und läuferblechpaketen und wicklungen Download PDF

Info

Publication number
WO2004093292A2
WO2004093292A2 PCT/EP2004/003475 EP2004003475W WO2004093292A2 WO 2004093292 A2 WO2004093292 A2 WO 2004093292A2 EP 2004003475 W EP2004003475 W EP 2004003475W WO 2004093292 A2 WO2004093292 A2 WO 2004093292A2
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
rotor
core
stator
electrical machine
Prior art date
Application number
PCT/EP2004/003475
Other languages
English (en)
French (fr)
Other versions
WO2004093292A3 (de
Inventor
Bernd Pfannschmidt
Ekkehard Pittius
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN2004800126786A priority Critical patent/CN1784818B/zh
Priority to US10/553,698 priority patent/US7411323B2/en
Priority to EP04725033.7A priority patent/EP1614205B1/de
Priority to CA2522469A priority patent/CA2522469C/en
Publication of WO2004093292A2 publication Critical patent/WO2004093292A2/de
Publication of WO2004093292A3 publication Critical patent/WO2004093292A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the present invention relates to an electrical machine with two rotor laminated cores, which are arranged on a common shaft at a predetermined axial distance and each have axially extending cooling channels, and two stator laminated cores, which are assigned to the rotor laminated cores.
  • the present invention relates to an electrical machine with a housing, a stator core and a rotor core, which are arranged in the housing, of which at least one has axially extending cooling channels, and winding head spaces on the end faces of the two core.
  • the present invention relates to a corresponding method for cooling an electrical machine by axially flowing through at least one cooling channel of a rotor laminated core and / or stator laminated core with a cooling medium.
  • Electric motors are usually cooled by external or self-ventilation. With standard motors of low power, surface cooling is usually sufficient. Small and medium power traction machines require higher quality cooling in the stator and rotor.
  • axially extending cooling channels in the stator and rotor are charged on one side with a cooling medium. In medium and large capacity industrial machines, axial cooling channels are also provided in the rotor.
  • the cooling ducts are supplied with cooling air on one or both sides and the cooling air is discharged through radial cooling ducts between several laminated core packages. In order not to let the laminated core length become too long, the air gaps between the laminated core packages are only a few millimeters wide.
  • a problem with cooling with ambient air is that the air can be contaminated with particles. If there is a lot of dirt in the cooling air, however, narrow cooling slots would clog relatively quickly and impair the cooling effect.
  • a heat exchanger is usually provided for industrial machines. This ensures that only clean air circulates inside the machine. With traction machines, however, there is no installation space for a heat exchanger due to the limited space available. This heat exchanger also increases the temperature of the internal cooling air, which in turn limits performance.
  • the cooling air for the narrow cooling slots must be filtered using fine-pored air filters. In the case of large amounts of dirt, this means very frequent filter mat changes, which is undesirable and, for example, is not practical for dump trucks in opencast mines.
  • a generic electrical machine is known for example from document US 2,610,992.
  • the stator and rotor laminations described there have axially extending air cooling channels.
  • German published patent application DE 44 13 389 also describes an electrical machine which has two rotor laminated cores arranged on a common shaft at an axial distance from one another, two stator laminated cores arranged at a corresponding distance from one another and a cooling device which has an air delivery device and cooling ducts running in the axial direction , owns.
  • the axial spacing of the laminated cores the latter are each divided into two sections and connected to the air conveying device in such a way that the two sections of each cooling channel are flowed through in the opposite direction.
  • the cooling air becomes axial Directed in a radial direction or vice versa.
  • the axial spacing of the laminated cores is chosen such that the flow cross-section available in the annular space between the laminated cores for the cooling air is approximately equal to the sum of the flow cross-sections of all the cooling channels that open directly into this annular space.
  • the object of the present invention is to ensure a high degree of dirt resistance with intensive cooling of an electrical machine.
  • this object is achieved by an electrical machine with two rotor laminated core assemblies which are arranged on a common shaft at a predetermined axial distance and each have axially extending cooling channels, and two stator laminated core assemblies which are assigned to the rotor laminated core assembly, the stator laminated core assemblies likewise having axially extending cooling channels and a ring is arranged between the rotor laminated core and the stator laminated core, each ring having radially extending flow channels which are connected to the cooling channels of the respective laminated core.
  • the ring ensures the radial exit of the coolant flow in the middle of the rotor or stator with increased flow speed. The risk of dirt particles being deposited in the flow channels can thus be reduced.
  • This cooling construction makes it possible to dispense with small gaps and bores that could quickly become blocked by dirt. Furthermore, this cooling construction enables cooling on both sides. This means that cold air can be blown on both sides of the machine. This can prevent uneven cooling of the stator or rotor. The uneven cooling with one-sided air supply manifests itself in temperature differences between the two end faces of the laminated core.
  • the ring or rings between the rotor and / or stator core packages can have radially extending webs. In the rotor laminated core, such a ring then has the effect of a paddle wheel which promotes the cooling air as it rotates outwards.
  • the two rotor laminated core assemblies and the two stator laminated core assemblies are preferably pressed against one another.
  • the rings between the respective laminated cores if appropriate with the webs, prevent the laminated core from being bent into the radial cooling channel between the two laminated cores by the compressive forces during pressing or magnetic pull.
  • At least one of the laminated cores can be drawn off at the point at which the coolant flow is deflected from its axial flow direction into the radial flow direction. This reduces the flow resistance and a higher flow speed can be maintained.
  • the invention provides an electrical machine with a housing, a stator core and a rotor core, which are arranged in the housing, of which at least one has axially extending cooling channels, and winding head spaces on the end faces of the two core, with at least one of the cooling channels in one a cooling channel extension is arranged in the winding head spaces, with which a cooling medium can be discharged from the housing.
  • the high cooling capacity and low sensitivity to dirt are achieved by cooling on both sides and avoiding small gaps and bores.
  • the cooling air is blown axially and / or radially into the motor housing on both end faces (drive and non-drive side) and, after flowing through the stator winding heads or rotor short-circuit rings, enters the axial stator and rotor cooling holes.
  • the diameter of the cooling holes and the air speed are chosen so large that none Can deposit dirt.
  • the air outlet is separated from the air inlet by appropriate channels, ie cooling channel extensions.
  • stator core tubes as cooling-channel ⁇ projections guided by the bearing plate of the electric machine. This allows the exhaust air to be directed outside through the winding head space into which the coolant is introduced.
  • the cooling duct extensions on the rotor laminated core are preferably components of the rotor pressure ring or incorporated therein.
  • the coolant to be discharged can thus be transported through the winding head space to the end shield and from there through cutouts in the end shield to the outside.
  • seals should be provided between the end shield and the rotor pressure ring so that the coolant to be removed does not flow into the winding head space or into the bearing.
  • a plurality of cooling channels are distributed in the circumferential direction in the stator core and / or rotor core, and every second cooling channel has the cooling channel extension on one end face of the respective sheet stack and the other cooling channels have their cooling channel extensions on the other end faces of the respective sheet stack.
  • the laminated cores are thus flowed through alternately in both axial directions in the circumferential direction.
  • FIG. 1 shows a cross-sectional view of an asynchronous motor according to a first embodiment of the present invention
  • FIG. 2 shows a cross section through an asynchronous motor according to a second embodiment of the present invention.
  • the following exemplary embodiments represent preferred embodiments of the present invention.
  • the asynchronous machine shown in FIG. 1 has a shaft 1 which is mounted in end shields 2.
  • a housing section 3 running in the circumferential direction completes the housing of the electrical machine.
  • the stator 4 of the asynchronous machine has two laminated core assemblies 41 and 42 which are pressed against one another. In between is a ring 5 with radially extending webs 51, 52 on both sides.
  • the rotor 6 shrunk onto the shaft 1 has a similar structure. It also has two rotor laminated core assemblies 61 and 62 and an intermediate ring 7 with radial webs 71 and 72 on both sides.
  • the coolant flows on both sides of the stator core through recesses 31 and 32 into the respective winding head space. From there it flows through cooling channels 411 and 421 of the stator 4 to the gap between the stator core 41, 42, in which the ring 5 is located.
  • the webs 51 and 52 provide corresponding flow channels in the radial direction to the outside.
  • the coolant flows out of the housing of the asynchronous machine through a recess 33.
  • the axially inward coolant flows are centered by the ring 7 or its webs 71, 72 directed radially outwards.
  • the rings 5 and 7 thus have the double function of supporting the air flow and stabilizing the laminated core.
  • the webs 71, 72 leading radially straight outward convey the air through the rotary movement of the rotor Outside. If the asynchronous machine is only intended for one direction of rotation, the webs 71, 72, and possibly also the webs 51, 52, can be curved correspondingly in the circumferential direction in order to reduce noise.
  • edges 410, 420, 610, 620 can be chamfered or rounded (not shown in the drawing). This allows the radial flow velocity to be increased after the deflection.
  • a protective cover also not shown.
  • FIG. 1 The second embodiment of the present invention is shown in FIG.
  • the components that correspond to those of the first embodiment are identified by the same reference numerals. In this regard, reference is made to the description of FIG. 1.
  • the one-piece stator core 43 is provided with an axially extending cooling channel 431.
  • the cooling channel 431 is continued through a tube 81 as a cooling channel extension.
  • the tube 81 penetrates the bearing plate 2 at its other end.
  • the tube 82 runs through the right winding head space and the right bearing plate 2.
  • the coolant thus flows in the upper half of FIG. 2 Cooling channel, not shown (shown in the lower half) to the right and via the tube 82 to the outside.
  • the coolant flows to the left and through the tube 81 to the outside.
  • the one-piece rotor laminated core 63 has an axial cooling channel 631.
  • the rotor laminated core 63 is held together by rotor pressure rings 91, 92.
  • a flow channel 911 is incorporated in the left rotor pressure ring 91.
  • the flow channel 911 opens into a recess 21 in the bearing plate 2. This results in a flow for the coolant from the outside through the recess 32 into the housing of the asynchronous machine, through the right winding head space past the winding heads and the short-circuit ring past into the cooling channel 631, through the Flow channel 911 as a cooling channel extension and finally through the recess 21 in the end shield to the outside.
  • a seal not shown, e.g. a labyrinth seal was installed to prevent part of the cooling air from escaping directly outside.
  • the axially extending cooling channels both in the embodiment according to FIG. 1 and in that according to FIG. 2 can be arranged radially and in the circumferential direction as desired in the rotor and stator laminated core.
  • the direction of flow of the cooling channels in particular in the embodiment of FIG. 2, can be chosen as desired. It should only be ensured that the distribution of the cooling channels with different flow directions in the circumferential direction is approximately equally distributed. This prevents uneven cooling of the laminated cores and the windings.
  • An electrical machine according to the invention can be used in particular in environments where the cooling air contains a comparatively high proportion of dirt.
  • Heat exchangers cannot be used on traction machines due to the limited space available. These heat exchangers raise the temperature of the internal cooling air, which reduces the performance of the traction machine.
  • An electrical machine according to the invention is therefore also particularly suitable for driving dump trucks in open-cast mining.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Elektrische Maschinen großer Leistung müssen intensiv gekühlt werden. Darüber hinaus ist häufig gleichzeitig ein hohes Maß an Schmutzunempfindlichkeit zu gewährleisten. Hierzu sind für beidseitige Belüftung zweigeteilte Ständer- und Läuferblechpakete (41,42,61,62), die in der Mitte jeweils durch einen Ring (5,7) beabstandet sind, vorgesehen. Der Ring (5,7) besitzt Stege (51,52,71,72), so dass zwischen den Teilblechpaketen (41,42,61,62) radiale Strömungskanäle entstehen, die eine adäquate Strömungsgeschwindigkeit gewährleisten. Alternativ können bei einteiligen Blechpaketen an den axialen Kühlkanälen in Umfangsrichtung abwechselnd Kühlkanalfortsätze an der einen oder anderen Seite des Blechpakets vorgesehen werden, die das erwärmte Kühlmittel in jeweils entgegengesetzten Richtungen nach außen transportieren.

Description

Elektrische Maschine mit gekühlten Ständer- und Läuferblechpaketen und Wicklungen
Die vorliegende Erfindung betrifft eine elektrische Maschine mit zwei Läuferblechpaketen, die auf einer gemeinsamen Welle in einem vorgegebenen axialen Abstand angeordnet sind und jeweils axial verlaufende Kühlkanäle besitzen, und zwei Ständerblechpaketen, die den Läuferblechpaketen zugeordnet sind. Darüber hinaus betrifft die vorliegende Erfindung eine elektrische Maschine mit einem Gehäuse, einem Ständerblechpaket und einem Läuferblechpaket, die in dem Gehäuse angeordnet sind, wovon mindestens eines axial verlaufende Kühlkanäle besitzt, sowie Wickelkopfräumen an den Stirnseiten der beiden Blechpakete. Ferner betrifft die vorliegende Erfindung ein entsprechendes Verfahren zum Kühlen einer elektrischen Maschine durch axiales Durchströmen mindestens eines Kühlkanals eines Läuferblechpakets und/oder Ständerblechpakets mit einem Kühlmedium.
Elektromotoren, insbesondere Asynchronmaschinen, werden üblicherweise durch Fremd- oder Eigenbelüftung gekühlt. Bei Normmotoren kleiner Leistung genügt in der Regel eine Oberflächenkühlung. Traktionsmaschinen kleiner und mittlerer Leistung erfordern eine hochwertigere Kühlung im Ständer und Läufer. Hierzu werden axial verlaufende Kühlkanäle im Ständer und Läufer einseitig mit einem Kühlmedium beschickt. Bei Industriemaschinen mittlerer und großer Leistung sind ebenfalls im Läufer axiale Kühlkanäle vorgesehen. Die Kühlkanäle werden einseitig oder beidseitig mit Kühlluft versorgt und der Austritt der Kühlluft erfolgt durch radiale Kühlkanäle zwischen mehreren Teilblechpaketen. Um die Blechpaketlänge nicht zu groß werden zu lassen, sind die Luftspalte zwischen den Teilblechpaketen nur wenige Millimeter breit. Ein Problem bei der Kühlung mit Umgebungsluft besteht darin, dass die Luft mit Partikeln verschmutzt sein kann. Bei starkem Schmutzanteil in der Kühlluft würden sich jedoch schmale Kühlschlitze verhältnismäßig rasch zusetzen und die Kühlwirkung beeinträchtigen. Um dies zu vermeiden, ist bei Industriemaschinen meist ein Wärmetauscher vorgesehen. Damit ist gewährleistet, dass nur saubere Luft im Inneren der Maschine zirkuliert. Bei Traktionsmaschinen hingegen steht wegen der beengten Platzverhältnisse kein Einbauraum für einen Wärmetauscher zur Verfügung. Außerdem erhöht dieser Wärmetauscher die Temperatur der inneren Kühlluft, was wiederum die Leistungsfähigkeit einschränkt.
Wenn der Wärmetauscher nicht eingesetzt werden kann, muss die Kühlluft für die schmalen Kühlschlitze mittels feinporiger Luftfilter gefiltert werden. Bei großem Schmutzanfall bedeutet dies sehr häufige Filtermattenwechsel, was unerwünscht und beispielsweise bei Muldenkippern im Tagebau nicht praktikabel ist.
Eine gattungsgemäße elektrische Maschine ist beispielsweise aus dem Dokument US 2,610,992 bekannt. Die dort beschriebenen Ständer- und Läuferblechpakete weisen axial verlaufende Luftkühlkanäle auf.
In der deutschen Offenlegungsschrift DE 44 13 389 ist ferner eine elektrische Maschine beschrieben, die mit zwei auf einer gemeinsamen Welle in axialem Abstand voneinander angeordneten Rotorblechpaketen, zwei in entsprechendem Abstand voneinander angeordneten Statorblechpaketen und einer Kühleinrichtung, die eine Luftfördereinrichtung sowie in axialer Richtung verlaufende Kühlkanäle aufweist, besitzt. Letztere sind infolge des axialen Abstands der Blechpakete je in zwei Abschnitte unterteilt und derart mit der Luftfördereinrichtung verbunden, dass die beiden Abschnitte jedes Kühlkanals in entgegengesetzter Richtung durchströmt werden. In dem Ringraum zwischen den Blechpaketen wird die Kühlluft aus einer axialen Richtung in eine radiale Richtung oder umgekehrt umgelenkt. Der axiale Abstand der Blechpakete ist dabei so gewählt, dass der im Ringraum zwischen den Blechpaketen für die Kühlluft zur Verfügung stehende Strömungsquerschnitt etwa gleich der Summe der Strömungsquerschnitte aller in diesen Ringraum unmittelbar mündenden Kühlkanäle ist.
Die Aufgabe der vorliegenden Erfindung besteht darin, bei intensiver Kühlung einer elektrischen Maschine ein hohes Maß an Schmutzunempfindlichkeit zu gewährleisten.
Erfindungsgemäß wird diese Aufgabe gelöst durch eine elektrische Maschine mit zwei Läuferblechpaketen, die auf einer gemeinsamen Welle in einem vorgegebenen axialen Abstand angeordnet sind und jeweils axial verlaufende Kühlkanäle besitzen, und zwei Ständerblechpaketen, die den Läuferblechpaketen zugeordnet sind, wobei die Ständerblechpakete ebenfalls axial verlaufende Kühlkanäle besitzen und jeweils ein Ring zwischen den Läuferblechpaketen und den Ständerblechpaketen angeordnet ist, wobei jeder Ring radial verlaufende Strömungskanäle besitzt, die mit den Kühlkanälen des jeweiligen Blechpakets in Verbindung stehen.
Durch den Ring wird das radiale Austreten des Kühlmittelstroms in der Mitte des Rotors beziehungsweise Stators mit erhöhter Strömungsgeschwindigkeit gewährleistet. Somit kann die Gefahr reduziert werden, dass sich in den Strömungskanä- len Schmutzpartikel niederschlagen. Diese Kühlkonstruktion ermöglicht es, auf kleine Spalte und Bohrungen zu verzichten, die durch Verschmutzungen rasch verstopft werden könnten. Ferner ermöglicht diese Kühlkonstruktion eine beidseitige Kühlung. Dies bedeutet, dass beiden Seiten der Maschine mit kalter Kühlluft beblasen werden können. Hierdurch kann eine ungleichmäßige Kühlung des Ständers beziehungsweise Läufers verhindert werden. Die ungleichmäßige Kühlung bei einseitiger Luftzufuhr äußert sich in Temperaturunterschieden zwischen beiden Stirnseiten des Blechpakets. Der oder die Ringe zwischen den Läufer- und/oder Ständerblechpaketen können radial verlaufende Stege aufweisen. Im Läuferblechpaket hat ein derartiger Ring dann die Wirkung eines Schaufelrads, der die Kühlluft bei seiner Drehung nach außen fördert.
Die beiden Läuferblechpakete und die beiden Ständerblechpakete sind vorzugsweise jeweils gegeneinander verpresst. Die Ringe zwischen den jeweiligen Blechpaketen gegebenenfalls mit den Stegen verhindern, dass durch die Druckkräfte beim Pressen oder magnetischen Zug Bleche des Blechpakets in den radialen Kühlkanal zwischen beiden Blechpaketen gebogen werden.
Mindestens eines der Blechpakete kann an der Stelle, an der der Kühlmittelstrom von seiner axialen Strömungsrichtung in die radiale Strömungsrichtung umgelenkt wird, abgefasst sein. Hierdurch wird der Strömungswiderstand reduziert und es kann eine höhere Strömungsgeschwindigkeit aufrechterhalten werden.
Darüber hinaus ist erfindungsgemäß vorgesehen eine elektrische Maschine mit einem Gehäuse, einem Ständerblechpaket und einem Läuferblechpaket, die in dem Gehäuse angeordnet sind, wovon mindestens eines axial verlaufende Kühlkanäle besitzt, und Wickelkopfräumen an den Stirnseiten der beiden Blechpakete, wobei an mindestens einem der Kühlkanäle in einem der Wickelkopfräume ein Kühlkanalfortsatz angeordnet ist, mit dem ein Kühlmedium aus dem Gehäuse ableitbar ist.
Auch hier wird die hohe Kühlleistung und geringe Schmutzempfindlichkeit durch beidseitige Kühlung und Vermeidung kleiner Spalte und Bohrungen erreicht. Die Kühlluft wird auf beiden Stirnseiten (Antriebs- und Nicht-Antriebsseite) axial und/ oder radial in das Motorgehäuse geblasen und tritt nach dem Strömen über die Ständerwickelköpfe beziehungsweise Läuferkurzschlussringe in die axialen Ständer und Läuferkühllöcher ein. Dabei sind auch hier die Durchmesser der Kühllöcher und die Luftgeschwindigkeit so groß gewählt, dass sich kein Schmutz ablagern kann. Der Luftaustritt ist durch entsprechende Kanäle, d. h. Kuhlkanalfortsatze, vom Lufteintritt getrennt .
Vorzugsweise sind am Ständerblechpaket Rohre als Kühlkanal- fortsätze durch das Lagerschild der elektrischen Maschine geführt. Damit kann die Abluft durch den Wickelkopfräum, in den das Kühlmittel eingeführt wird, nach außen geleitet werden.
Am Läuferblechpaket sind die Kuhlkanalfortsatze vorzugsweise Bestandteile des Läuferdruckrings beziehungsweise in diesen eingearbeitet. Damit kann das abzuführende Kühlmittel durch den Wickelkopfraum bis zum Lagerschild transportiert werden und von dort durch Aussparungen im Lagerschild nach außen gelangen. Hierzu sollten zwischen dem Lagerschild und dem Läuferdruckring Dichtungen vorgesehen sein, so dass das abzuführende Kühlmittel nicht in den Wickelkopfraum beziehungsweise in das Lager strömt.
Vorteilhafterweise sind in dem Ständerblechpaket und/oder Läuferblechpaket in Umfangsrichtung mehrere Kühlkanäle verteilt und jeder zweite Kühlkanal besitzt an der einen Stirnseite des jeweiligen Blechpakets den Kühlkanalfortsatz und die anderen Kühlkanäle weisen ihre Kuhlkanalfortsatze an den anderen Stirnseiten des jeweiligen Blechpakets auf. Damit werden die Blechpakete in Umfangsrichtung abwechselnd in beiden axialen Richtungen durchströmt.
Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:
FIG 1 eine Querschnittsansicht eines Asynchronmotors gemäß einer ersten Ausführungsform der vorliegenden Erfindung; und
FIG 2 einen Querschnitt durch einen Asynchronmotor gemäß einer zweiten Ausführungsform der vorliegenden Erfindung. Die nachfolgenden Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar. Die in FIG 1 dargestellte Asynchronmaschine besitzt eine Welle 1, die in Lagerschilden 2 gelagert ist. Ein in Umfangsrichtung verlaufender Gehäuseabschnitt 3 vervollständigt das Gehäuse der e- lektrischen Maschine.
Der Ständer 4 der Asynchronmaschine besitzt zwei Teilblechpakete 41 und 42, die gegeneinander verpresst sind. Dazwischen befindet sich ein Ring 5 mit radial verlaufenden Stegen 51, 52 an beiden Seiten.
Der auf die Welle 1 aufgeschrumpfte Läufer 6 ist ähnlich aufgebaut. Auch er besitzt zwei Läuferblechpakete 61 und 62 sowie einen dazwischenliegenden Ring 7 mit radial verlaufenden Stegen 71 und 72 an beiden Seiten.
Das Kühlmittel strömt an beiden Seiten des Ständerblechpakets durch Aussparungen 31 und 32 in den jeweiligen Wickelkopfraum. Von dort strömt es durch Kühlkanäle 411 und 421 des Ständers 4 zu dem Spalt zwischen den Ständerblechpaketen 41, 42, in dem sich der Ring 5 befindet. Die Stege 51 und 52 sorgen für entsprechende Strömungskanäle in radialer Richtung nach außen. Durch eine Aussparung 33 strömt das Kühlmittel aus dem Gehäuse der Asynchronmaschine.
Ein Anteil des in die Aussparungen 31, 32 einströmenden Kühlmittels strömt an den Wickelköpfen und Kurzschlussringen vorbei in Kühlkanäle 611 und 621 der Läuferblechpakete 61, 62. Auch hier werden die axial nach innen verlaufenden Kühlmittelströme in der Mitte durch den Ring 7 beziehungsweise dessen Stege 71, 72 radial nach außen gelenkt.
Die Ringe 5 und 7 besitzen damit die doppelte Funktion der Unterstützung der Luftführung und der Stabilisierung des Blechpakets. Die radial gerade nach außen führenden Stege 71, 72 fördern die Luft durch die Drehbewegung des Läufers nach außen. Falls die Asynchronmaschine nur für eine Drehrichtung vorgesehen ist, können die Stege 71, 72, gegebenenfalls auch die Stege 51, 52 in Umfangsrichtung entsprechend geschwungen sein, um Störgeräusche zu vermindern.
Zur Reduzierung des Strömungswiderstands können die Kanten 410, 420, 610, 620 abgephast oder abgerundet sein (in der Zeichnung nicht dargestellt) . Hierdurch lässt sich die radiale Strömungsgeschwindigkeit nach dem Umlenken erhöhen.
Zum Schutz vor Abrasion sind die im Spalt liegenden Teile der Ständerspulen mit einer Schutzhülle (ebenfalls nicht dargestellt) umgeben.
Die zweite Ausführungsform der vorliegenden Erfindung ist in FIG 2 dargestellt. Die Bauteile, die denen der ersten Ausführungsform entsprechen, sind mit den gleichen Bezugsziffern gekennzeichnet. Diesbezüglich wird auf die Beschreibung von FIG 1 verwiesen.
Das einteilige Ständerblechpaket 43 ist mit einem axial verlaufenden Kühlkanal 431 versehen. Im linken Wickelkopfräum (bezogen auf die zeichnerische Darstellung) wird der Kühlkanal 431 durch ein Röhrchen 81 als Kühlkanalfortsatz weitergeführt. Das Röhrchen 81 durchdringt an seinem anderen Ende das Lagerschild 2. Bei dem in Umfangsrichtung nächsten axialen Kühlkanal durch das Ständerblechpaket 43 verläuft das Röhrchen 82 durch den rechten Wickelkopfraum und das rechte Lagerschild 2. Damit strömt das Kühlmittel in dem in der oberen Hälfte von FIG 2 nicht dargestellten Kühlkanal (in der unteren Hälfte dargestellt) nach rechts und über das Röhrchen 82 nach außen. In dem in Umfangsrichtung davor liegenden, in FIG 2 geschnittenen Kühlkanal 431 dagegen, strömt das Kühlmittel nach links und durch das Röhrchen 81 nach außen.
Hinsichtlich der Kühlung des Läuferblechpakets ergibt sich ein ähnliches Bild. Das einteilige Läuferblechpaket 63 weist einen axialen Kühlkanal 631 auf. Das Läuferblechpaket 63 wird von Läuferdruckringen 91, 92 zusammengehalten. In den linken Läuferdruckring 91 ist ein Strömungskanal 911 eingearbeitet. Der Strömungskanal 911 mündet in eine Aussparung 21 im Lagerschild 2. Somit ergibt sich für das Kühlmittel ein Strömungsverlauf von außen durch die Aussparung 32 in das Gehäuse der Asynchronmaschine, durch den rechten Wickelkopfräum an den Wickelköpfen und dem Kurzschlussring vorbei in den Kühlkanal 631, durch den Strömungskanal 911 als Kühlkanalfortsatz und schließlich durch die Aussparung 21 im Lagerschild nach außen. In dem in Umfangsrichtung nächsten Kühlkanal des Läuferblechpakets 63 erfolgt die Strömung in entgegengesetzter Richtung. Hierzu ist in dem Läuferdruckring 92 ein entsprechender Strömungskanal (nicht dargestellt) vorgesehen, der das Kühlmittel aus der Aussparung 22 im rechten Lagerschild führt .
Zwischen dem Läuferdruckring 91, 92 und dem Lagerschild 2 ist eine nicht dargestellte Dichtung, z.B. eine Labyrinthdichtung angeordnet, um zu verhindern, dass ein Teil der Kühlluft direkt wieder nach außen tritt.
Die axial verlaufenden Kühlkanäle sowohl in der Ausführungsform gemäß FIG 1 als auch in der gemäß FIG 2 können radial und in Umfangsrichtung in dem Läufer- und Ständerblechpaket beliebig angeordnet sein. Der Einfachheit halber sind in den Zeichnungen lediglich Kühlkanäle im Ständer- und Läuferblechpaket auf jeweils einer U fangsflache mit konstantem Radius dargestellt. Darüber hinaus kann die Strömungsrichtung der Kühlkanäle, insbesondere in der Ausführungsform von FIG 2, beliebig gewählt werden. Es sollte lediglich darauf geachtet werden, dass die Verteilung der Kühlkanäle mit unterschiedlichen Strömungsrichtungen in Umfangsrichtung etwa gleich verteilt ist. Somit lässt sich eine ungleichmäßige Kühlung der Blechpakete und der Wicklungen verhindern. Eine erfinddungsgemäße elektrische Maschine ist insbesondere in Umgebungen einsetzbar, wo die Kühlluft einen vergleichsweise hohen Schmutzanteil enthält.
Wärmetauscher sind aufgrund der beengten Platzverhältnisse bei Traktionsmaschinen nicht einsetzbar. Diese Wärmetauscher erhöhen die Temperatur der inneren Kühlluft, was die Leistungsfähigkeit der Traktionsmaschine verringert.
Ohne Wärmetauscher ist bei schmalen Schlitzen zwischen den Teilblechpaketen ein feinporiger Luftfilter erforderlich.
Bei großem Schmutzanteil in der Kühlluft bedeutet dies sehr häufige Filtermattenwechsel.
Deshalb eignet sich eine erfindungsgemäße elektrische Maschine insbesondere auch für den Antrieb von Muldenkippern im Tagebau.

Claims

Patentansprüche
1. Elektrische Maschine mit
- zwei Läuferblechpaketen (61,62), die auf einer gemeinsamen Welle (1) in einem vorgegebenen axialen Abstand angeordnet sind und jeweils axial verlaufende Kühlkanäle (611,621) besitzen, und zwei Ständerblechpaketen (41,42), die den Läuferblechpaketen (61,62) zugeordnet sind, d a d u r c h g e k e n n z e i c h n e t , dass
- die Ständerblechpakete (41,42) ebenfalls axial verlaufende Kühlkanäle (411,421) besitzen und
- jeweils ein Ring (5,7) zwischen den Läuferblechpaketen (61,62) und den Ständerblechpaketen (41,42) angeordnet ist, wobei jeder Ring (5,7) radial verlaufende Strömungskanäle besitzt, die mit den Kühlkanälen des jeweiligen Blechpakets in Verbindung stehen.
2. Elektrische Maschine nach Anspruch 1, wobei der Ring (5, 7) radial verlaufende Stege (51,52,71,72) aufweist.
3. Elektrische Maschine nach Anspruch 1 oder 2, wobei die beiden Läuferblechpakete (61,62) und die beiden Ständerblechpakete (41,42) jeweils gegeneinander verpresst sind.
4. Elektrische Maschine nach einem der Ansprüche 1 bis 3, wobei mindestens eines der Blechpakete (41,42,61,62) an der Stelle (410,420,610,620), an der die Kühlmittelströmung vom axialen Verlauf in den radialen Verlauf umgelenkt wird, abge- fasst ist.
5. Elektrische Maschine mit einem Gehäuse (2,3), einem Ständerblechpaket (43) und einem Läuferblechpaket (63), die in dem Gehäuse (2,3) angeordnet sind, wovon mindestens eines axial verlaufende Kühlkanäle (431,631) besitzt, und - Wickelköpfräumen an den Stirnseiten der beiden Blechpakete (43,63), d a d u r c h g e k e n n z e i c h n e t , dass an mindestens einem der Kühlkanäle (431,631) in einem der Wickelkopfräume ein Kühlkanalfortsatz (81,82) angeordnet ist, mit dem ein Kühlmedium aus dem Gehäuse (2,3) ableitbar ist.
6. Elektrische Maschine nach Anspruch 5, wobei die Kuhlkanalfortsatze (81,82) an dem Ständerblechpaket (43) Rohre sind, die durch ein Lagerschild (2) der elektrischen Maschine geführt sind.
7. Elektrische Maschine nach Anspruch 5 oder 6, wobei die Kuhlkanalfortsatze an dem Läuferblechpaket (63) Bestandteil eines Läuferdruckrings (91,92) sind, in den Strömungskanäle (911) eingearbeitet sind.
8. Elektrische Maschine nach Anspruch 7, wobei die Strömungskanäle (911) in dem Läuferdruckring (91,92) das Kühlmittel durch das Lagerschild (2) führen und zwischen dem Läuferdruckring (91,92) und dem Lagerschild (2) eine entsprechende Dichtung angeordnet ist.
9. Elektrische Maschine nach einem der Ansprüche 5 bis 8, wobei in dem Ständerblechpaket (43) und/oder Läuferblechpaket
(63) in Umfangsrichtung mehrere Kühlkanäle (431, 631) verteilt sind und jeder zweite Kühlkanal an der einen Stirnseite des jeweiligen Blechpakets (43, 63) an einen der Kuhlkanalfortsatze (81, 82) angeschlossen ist und die anderen Kühlkanäle an der anderen Stirnseite des jeweiligen Blechpakets an Kuhlkanalfortsatze angeschlossen sind.
10. Verfahren zum Kühlen einer elektrischen Maschine mit Gehäuse (2,3) mit den Schritten axiales Durchströmen mindestens eines Kühlkanals (431, 631) eines Läuferblechpakets (63) und/oder Ständerblechpakets (43) mit einem Kühlmedium, g e k e n n z e i c h n e t d u r c h
- ■ Ableiten des Kühlmediums aus dem mindestens einen Kühlkanal (431,631) mittels eines Kühlkanalfortsatzes (81,82) durch einen Wickelkopfräum aus dem Gehäuse (2,3) .
11. Verfahren nach Anspruch 10, wobei Kühlkanäle des Läuferblechpakets (63) und/oder des Ständerblechpakets (43) in Umfangsrichtung abwechselnd von dem Kühlmedium in entgegengesetzten Richtungen durchströmt werden.
PCT/EP2004/003475 2003-04-16 2004-04-01 Elektrische maschine mit gekühlten ständer- und läuferblechpaketen und wicklungen WO2004093292A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2004800126786A CN1784818B (zh) 2003-04-16 2004-04-01 带有被冷却的定子叠片铁心和转子叠片铁心及绕组的电机
US10/553,698 US7411323B2 (en) 2003-04-16 2004-04-01 Electrical machine having cooled laminated stator and rotor cores and windings
EP04725033.7A EP1614205B1 (de) 2003-04-16 2004-04-01 Elektrische maschine mit gekühlten ständer- und läuferblechpaketen und wicklungen
CA2522469A CA2522469C (en) 2003-04-16 2004-04-01 Electrical machine having cooled laminated stator and rotor cores and windings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10317593.8 2003-04-16
DE10317593A DE10317593A1 (de) 2003-04-16 2003-04-16 Elektrische Maschine mit gekühlten Ständer- und Läuferblechpaketen und Wicklungen

Publications (2)

Publication Number Publication Date
WO2004093292A2 true WO2004093292A2 (de) 2004-10-28
WO2004093292A3 WO2004093292A3 (de) 2005-03-03

Family

ID=33185677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003475 WO2004093292A2 (de) 2003-04-16 2004-04-01 Elektrische maschine mit gekühlten ständer- und läuferblechpaketen und wicklungen

Country Status (6)

Country Link
US (1) US7411323B2 (de)
EP (1) EP1614205B1 (de)
CN (1) CN1784818B (de)
CA (1) CA2522469C (de)
DE (1) DE10317593A1 (de)
WO (1) WO2004093292A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101131534B1 (ko) * 2009-03-23 2012-04-04 에이비비 오와이 전기 기계를 냉각시키기 위한 장치 및 방법
WO2012080566A1 (en) * 2010-12-15 2012-06-21 The Switch Drive Systems Oy An electrical machine
WO2014042949A3 (en) * 2012-09-13 2015-03-26 Siemens Industry, Inc. Induction motors including vent spacers, rotor core assemblies including vent spacers, and methods of operating same
EP3041113A1 (de) * 2014-12-31 2016-07-06 Ingersoll-Rand Company Elektrische maschine und verfahren zur herstellung
EP2592721A3 (de) * 2006-11-24 2016-07-13 Hitachi, Ltd. Rotierende elektrische Permanentmagnet-Maschine, Windkrafterzeugungssystem und Verfahren zur Magnetisierung eines Permanentmagneten

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335141B4 (de) * 2003-07-31 2006-09-21 Siemens Ag Elektrische Maschine mit Kühlmittelführungskanal
DE102004013133A1 (de) * 2004-03-17 2005-10-13 Siemens Ag Elektrische Maschine mit verbesserter Kühlung und entsprechendes Kühlverfahren
US20050235672A1 (en) * 2004-04-26 2005-10-27 Hsu John S Motor frame cooling with hot liquid refrigerant and internal liquid
JP2006101672A (ja) * 2004-09-30 2006-04-13 Hitachi Industrial Equipment Systems Co Ltd 流体流路を内蔵する回転電機
DE102005044327B4 (de) * 2005-09-16 2008-04-17 Siemens Ag Elektrische Maschine mit Permanentmagneten
DE102006014499A1 (de) * 2006-03-29 2007-10-04 Robert Bosch Gmbh Elektrische Maschine
DE102006049188B3 (de) * 2006-10-14 2008-03-27 Antriebstechnik Katt Hessen Gmbh Kühlsystem für hochausgenutzte elektrische Maschinen
DE102007021720B4 (de) * 2007-05-09 2014-01-23 Siemens Aktiengesellschaft Verdichtersystem für den Unterwassereinsatz im Offshore-Bereich
DE102007061597B4 (de) * 2007-12-20 2010-01-14 Siemens Ag Elektrische Maschine mit Doppelaxiallüfter
JP4483948B2 (ja) * 2008-01-17 2010-06-16 トヨタ自動車株式会社 回転電機
DE102008036124A1 (de) * 2008-08-01 2010-02-11 Siemens Aktiengesellschaft Elektrische Maschine in hoher Schutzart mit verbesserter Läuferkühlung
US8148858B2 (en) * 2008-08-06 2012-04-03 Hpev, Inc. Totally enclosed heat pipe cooled motor
DE102009043959A1 (de) 2008-11-10 2010-05-20 Antriebstechnik Katt Hessen Gmbh Ständerkühlsystem für eine gehäuselose rotierende elektrische Maschine
US20110266896A1 (en) * 2010-04-30 2011-11-03 Alstom Hydro France Rotating electric machine
DE102010029986A1 (de) * 2010-06-11 2011-12-15 Siemens Aktiengesellschaft Dynamoelektrische Maschine mit Luft-Flüssigkeitskühlung
BR112012033662A2 (pt) * 2010-06-30 2016-11-29 Abb Research Ltd máquina síncrina de retulância que usa barreiras de fluxo do rotor como canais de resfriamento
DE102010038529A1 (de) * 2010-07-28 2012-02-02 Siemens Aktiengesellschaft Fluidgekühlte elektrische Maschine
JP4737341B1 (ja) * 2010-08-10 2011-07-27 株式会社安川電機 回転電機および風力発電システム
US8466589B2 (en) 2010-09-23 2013-06-18 General Electric Company Stator and method of assembly
EP2434618B1 (de) * 2010-09-24 2014-03-19 Siemens Aktiengesellschaft Segmentläufer einer elektrischen Maschine
EP2434617A1 (de) * 2010-09-24 2012-03-28 Siemens Aktiengesellschaft Generator für eine elektrische Maschine
EP2509195A1 (de) * 2011-04-07 2012-10-10 Siemens Aktiengesellschaft Statoranordnung
DE102011053299A1 (de) 2011-09-06 2013-03-07 Antriebstechnik Katt Hessen Gmbh Kühlsystem für eine hochausgenutzte hochtourige rotierende elektrische Synchronmaschine
DE102011085786A1 (de) 2011-11-04 2013-05-08 Siemens Aktiengesellschaft Rutschkupplung mit automatischem Lösen bei anhaltender Überlast
CN103138488A (zh) * 2011-11-24 2013-06-05 苏州贝得科技有限公司 一种半封闭制冷压缩机用三相异步电机复合性冷却系统
CN102570652A (zh) * 2012-01-17 2012-07-11 重庆軎门特机电制造有限公司 一种电机
US9203284B2 (en) * 2012-02-14 2015-12-01 GM Global Technology Operations LLC Rotor cooling structures
EP2645544B1 (de) * 2012-03-28 2020-10-07 Siemens Aktiengesellschaft Elektrische Maschine mit effizienter Innenkühlung
US9130413B2 (en) * 2012-07-25 2015-09-08 Nidec Motor Corporation Electric motor having a partially sealed housing
CN103580422A (zh) * 2012-07-25 2014-02-12 成都联腾动力控制技术有限公司 永磁同步电机定子的风冷散热结构
US9657747B2 (en) 2012-09-06 2017-05-23 Carrier Corporation Motor rotor and air gap cooling
CN103780022A (zh) * 2012-10-18 2014-05-07 上海汉钟精机股份有限公司 压缩机马达的冷却结构
DE102013203911B3 (de) * 2013-03-07 2014-08-28 Siemens Aktiengesellschaft 1Elektrische Maschine mit Frischluftkühlung der Abluftseite
US9755482B2 (en) * 2013-03-12 2017-09-05 Regal Beloit America, Inc. Electric machine with liquid cooling and method of assembling
JP6086224B2 (ja) * 2013-03-15 2017-03-01 アイシン精機株式会社 超伝導回転機
US9973049B2 (en) 2013-03-15 2018-05-15 Techtronic Industries Co. Ltd. Electric motor
US9653967B2 (en) 2013-03-15 2017-05-16 Techtronic Power Tools Technology Limited Cooling arrangement for an electric motor
JP2014193011A (ja) * 2013-03-27 2014-10-06 Toshiba Mitsubishi-Electric Industrial System Corp 回転電機
NO335892B1 (no) * 2013-04-10 2015-03-16 Smartmotor As Undervanns elektromekanisk energiomformer
ES2547454T3 (es) 2013-04-15 2015-10-06 Siemens Aktiengesellschaft Máquina eléctrica con carcasa sobre una porción de su circunferencia
US9653954B2 (en) * 2013-09-18 2017-05-16 Siemens Industry, Inc. Electric machine rotor with rotor vent and axial slot fluid communication
EP2860852A1 (de) * 2013-10-14 2015-04-15 Siemens Aktiengesellschaft Einrichtung zum Ablenken von zumindest einem Teil eines axial in einem zwischen einem Rotor und einem Stator einer rotierenden elektrischen Maschine angeordneten Zwischenraum strömenden Kühlfluids
DE202013011351U1 (de) 2013-10-16 2015-01-19 Liebherr-Components Biberach Gmbh Antriebsvorrichtung
US20150288231A1 (en) * 2014-04-04 2015-10-08 Solar Turbines Incorporated Electric motor with symmetric cooling
US10253900B2 (en) * 2014-05-27 2019-04-09 Continental Automotive Systems, Inc. Latching valve assembly having position sensing
JP6079733B2 (ja) * 2014-09-03 2017-02-15 トヨタ自動車株式会社 回転電機のロータ
JP5897682B1 (ja) * 2014-10-10 2016-03-30 ファナック株式会社 固定子の通気路、またはファンを清掃可能な電動機、および電動機の清掃システム
EP3207617B1 (de) * 2014-10-13 2018-09-19 BITZER Kühlmaschinenbau GmbH Verdichter
EP3020611A1 (de) 2014-11-14 2016-05-18 Siemens Aktiengesellschaft Bahnantrieb mit Bremseinrichtung
US10443619B2 (en) * 2014-12-31 2019-10-15 Hamilton Sundstrand Corporation Motor housing assembly for a cabin air compressor
US9793767B2 (en) 2015-03-19 2017-10-17 Hamilton Sundstrand Corporation Method and assembly for cooling an electric machine
EP3079229A1 (de) * 2015-04-09 2016-10-12 Siemens Aktiengesellschaft Kühlung einer elektrischen maschine
CN104810949A (zh) * 2015-04-29 2015-07-29 上海优耐特斯压缩机有限公司 高速电机用离心压缩机或鼓风机的电机冷却结构
CN104953766B (zh) 2015-06-17 2018-11-13 北京金风科创风电设备有限公司 电机径向通风冷却结构
EP3136549A1 (de) * 2015-08-24 2017-03-01 Siemens Aktiengesellschaft Synchrone reluktanzmaschine
DE102015223462A1 (de) * 2015-11-26 2017-06-01 Siemens Aktiengesellschaft Rotor, flüssigkeitsgekühlte, elektrische Maschine sowie Fahrzeug
JP6472765B2 (ja) * 2016-03-04 2019-02-20 東芝三菱電機産業システム株式会社 回転電機
JP6589733B2 (ja) * 2016-04-15 2019-10-16 株式会社デンソー 回転電機
DE102017211135A1 (de) * 2017-06-30 2019-01-03 Audi Ag Elektrische Maschine und Kraftfahrzeug
CN107508415B (zh) * 2017-09-11 2020-01-10 珠海格力电器股份有限公司 电机
JP6594401B2 (ja) * 2017-12-19 2019-10-23 本田技研工業株式会社 回転電機
DE102018101640B4 (de) * 2018-01-25 2020-11-26 ATE Antriebstechnik und Entwicklungs GmbH & Co. KG Elektrische Antriebsvorrichtung
WO2019234771A1 (en) * 2018-06-07 2019-12-12 Mavel S.R.L. Rotor for an electrical machine comprising air cooling elements an electrical machine comprising said rotor
KR20200140063A (ko) * 2019-06-05 2020-12-15 한화파워시스템 주식회사 회전 기기
JP2020202705A (ja) * 2019-06-12 2020-12-17 本田技研工業株式会社 回転電機
US11387712B2 (en) * 2019-09-13 2022-07-12 GM Global Technology Operations LLC Method to reduce oil shear drag in airgap
WO2021193039A1 (ja) * 2020-03-25 2021-09-30 日本電産株式会社 モータ
CN111614184A (zh) * 2020-05-22 2020-09-01 康富科技有限公司 一种带风机的发电机
DE102020127829A1 (de) * 2020-10-22 2022-04-28 Valeo Siemens Eautomotive Germany Gmbh Elektrische Maschine, Getriebemotor mit einer elektrischen Maschine und Fahrzeug mit einer elektrischen Maschine
EP4016803A1 (de) * 2020-12-18 2022-06-22 Wobben Properties GmbH Generator einer windenergieanlage, statorsegment und stator sowie rotorsegment und rotor eines generators, windenergieanlage, verfahren zur kühlung eines generators
DE102021211919A1 (de) * 2021-10-22 2023-04-27 Zf Friedrichshafen Ag Stator für eine elektrische Maschine
KR20230081436A (ko) * 2021-11-30 2023-06-07 현대자동차주식회사 유도모터의 회전자 냉각구조
DE102022106516A1 (de) 2022-03-21 2023-09-21 Bayerische Motoren Werke Aktiengesellschaft Stator für eine elektrische Maschine für ein Kraftfahrzeug sowie Verfahren zum Herstellen eines Stators für eine elektrische Maschine
WO2023215797A2 (en) * 2022-05-03 2023-11-09 Toyon Research Corporation Torque dense electric motor
CN115037070A (zh) * 2022-05-10 2022-09-09 小米汽车科技有限公司 电机定子及油冷电机
EP4280426A1 (de) * 2022-05-17 2023-11-22 GE Energy Power Conversion Technology Ltd Synchrone elektrische maschine und damit verbundene antriebsorientierte antriebsvorrichtung, boot und verfahren zum kühlen einer solchen maschine
DE102022121843A1 (de) 2022-08-30 2024-02-29 Bayerische Motoren Werke Aktiengesellschaft Stator für eine elektrische Maschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB230137A (en) 1923-11-06 1925-03-06 George Herbert Fletcher Improvements in dynamo electric machines
US2610992A (en) 1950-05-16 1952-09-16 Westinghouse Electric Corp Construction of dynamoelectric machines
FR2349228A1 (fr) 1976-04-21 1977-11-18 Sabev Todor Moteur a rotor a cage
DE4413389A1 (de) 1993-04-20 1994-12-01 Elektra Faurndau Elektro Masch Elektrische Maschine
DE19742255C1 (de) 1997-09-25 1998-11-26 System Antriebstechnik Dresden Gehäuselose Drehstrommaschine mit achsparallelen Kühlmittelrohren im Ständerblechpaket
JP2000278914A (ja) 1999-03-26 2000-10-06 Mitsubishi Electric Corp 回転電機

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE528381C (de) 1931-06-30 Siemens Schuckertwerke Akt Ges Elektrische Maschine mit radialen Luftkanaelen im Laeufer und Staender
US1196345A (en) * 1913-08-02 1916-08-29 Westinghouse Electric & Mfg Co Ventilating means for dynamo-electric machines.
DE680039C (de) 1936-07-18 1939-08-21 Aeg Durch radiale Luftschlitze unterteilter und mit Laengskanaelen fuer die Kuehlluft versehener Blechkoerper fuer elektrische Maschinen oder Apparate
US3241331A (en) * 1963-04-17 1966-03-22 Carrier Corp Apparatus for and method of motor cooling
JPS4925561B1 (de) * 1968-11-25 1974-07-02
DE2423853B2 (de) 1974-05-16 1976-12-23 Siemens AG, 1000 Berlin und 8000 München Geschlossene elektrische maschine
SU873332A1 (ru) * 1979-02-15 1981-10-15 Предприятие П/Я Р-6794 Статор криогенной электрической машины
US4286182A (en) * 1979-11-16 1981-08-25 General Electric Company Laminated rotor for a dynamoelectric machine and method of making same
US4322646A (en) * 1980-02-29 1982-03-30 Electro-Craft Corporation Flux focussed DC motor and method for assembly
JPS56125941A (en) 1980-03-10 1981-10-02 Toshiba Corp Manufacture of spacing plate
JPS5749344A (en) * 1980-09-09 1982-03-23 Fanuc Ltd Cooler for motor
US4352034A (en) * 1980-12-22 1982-09-28 General Electric Company Stator core with axial and radial cooling for dynamoelectric machines wth air-gap stator windings
FR2525830A1 (fr) * 1982-04-23 1983-10-28 Renault Machine electrodynamique refroidie par un liquide
DE3460120D1 (en) 1983-03-10 1986-06-12 Bbc Brown Boveri & Cie Gas-cooled alternating current machine
JPH0652977B2 (ja) 1985-03-25 1994-07-06 株式会社日立製作所 回転電機のエアダクト
FR2644642B1 (fr) * 1989-03-16 1995-04-14 Cegelec Moteurs Moteur electrique ferme a refroidissement par air et son procede de fabrication
DE3925337A1 (de) * 1989-07-31 1991-02-07 Loher Ag Elektromotor
US5122704A (en) * 1990-10-25 1992-06-16 Sundstrand Corporation Composite rotor sleeve
EP0522210B1 (de) 1991-07-12 1995-09-27 Siemens Aktiengesellschaft Verfahren zum Kühlen einer umlaufenden elektrischen Maschine und elektrische Maschine zur Durchführung des Verfahrens
JP2823412B2 (ja) * 1992-02-21 1998-11-11 ファナック株式会社 電動機の冷却装置
US5365132A (en) * 1993-05-27 1994-11-15 General Electric Company Lamination for a dynamoelectric machine with improved cooling capacity
DE4320559A1 (de) 1993-06-21 1994-12-22 Siemens Ag Elektrische Maschine mit einem innengekühlten Läufer
DE19514592A1 (de) 1995-04-20 1996-10-24 Abb Patent Gmbh Elektrische Maschine
JPH09182374A (ja) * 1995-12-21 1997-07-11 Aisin Aw Co Ltd モータの冷却回路
DE19736785A1 (de) * 1997-08-23 1999-02-25 Abb Research Ltd Turbogenerator
JP2000308311A (ja) * 1999-04-14 2000-11-02 Hitachi Ltd 回転電機
JP2001086679A (ja) * 1999-09-17 2001-03-30 Hitachi Ltd 回転電機
DE10027246C1 (de) * 2000-05-31 2001-10-31 Mannesmann Sachs Ag Elektrische Maschine mit einer Kühleinrichtung
DE10054338C2 (de) 2000-11-02 2003-11-27 Antriebstechnik Katt Hessen Gm Kühlsystem für trägheitsarme rotierende elektrische Maschine
JP3806303B2 (ja) * 2000-12-11 2006-08-09 三菱重工業株式会社 発電機における冷却構造
US6727609B2 (en) * 2001-08-08 2004-04-27 Hamilton Sundstrand Corporation Cooling of a rotor for a rotary electric machine
US6847140B2 (en) * 2002-02-28 2005-01-25 Standex International Corp. Fluid barrier for motor rotor
EP1490946A1 (de) * 2002-04-01 2004-12-29 Nissan Motor Company, Limited Stator-kühlungsanordnung für einen mehrschicht-elektromotor mit mehreren achswellen
US6954010B2 (en) * 2002-05-06 2005-10-11 Aerovironment, Inc. Lamination cooling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB230137A (en) 1923-11-06 1925-03-06 George Herbert Fletcher Improvements in dynamo electric machines
US2610992A (en) 1950-05-16 1952-09-16 Westinghouse Electric Corp Construction of dynamoelectric machines
FR2349228A1 (fr) 1976-04-21 1977-11-18 Sabev Todor Moteur a rotor a cage
DE4413389A1 (de) 1993-04-20 1994-12-01 Elektra Faurndau Elektro Masch Elektrische Maschine
DE19742255C1 (de) 1997-09-25 1998-11-26 System Antriebstechnik Dresden Gehäuselose Drehstrommaschine mit achsparallelen Kühlmittelrohren im Ständerblechpaket
JP2000278914A (ja) 1999-03-26 2000-10-06 Mitsubishi Electric Corp 回転電機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592721A3 (de) * 2006-11-24 2016-07-13 Hitachi, Ltd. Rotierende elektrische Permanentmagnet-Maschine, Windkrafterzeugungssystem und Verfahren zur Magnetisierung eines Permanentmagneten
KR101131534B1 (ko) * 2009-03-23 2012-04-04 에이비비 오와이 전기 기계를 냉각시키기 위한 장치 및 방법
WO2012080566A1 (en) * 2010-12-15 2012-06-21 The Switch Drive Systems Oy An electrical machine
WO2014042949A3 (en) * 2012-09-13 2015-03-26 Siemens Industry, Inc. Induction motors including vent spacers, rotor core assemblies including vent spacers, and methods of operating same
US9013075B2 (en) 2012-09-13 2015-04-21 Siemens Industry, Inc. Induction motors including vent spacers, rotor core assemblies including vent spacers, and methods of operating same
EP3041113A1 (de) * 2014-12-31 2016-07-06 Ingersoll-Rand Company Elektrische maschine und verfahren zur herstellung
US10483812B2 (en) 2014-12-31 2019-11-19 Ingersoll-Rand Company Electrical machine and method of manufacture

Also Published As

Publication number Publication date
CN1784818A (zh) 2006-06-07
EP1614205B1 (de) 2017-03-01
WO2004093292A3 (de) 2005-03-03
CN1784818B (zh) 2010-06-23
CA2522469C (en) 2013-01-22
US7411323B2 (en) 2008-08-12
DE10317593A1 (de) 2004-11-18
EP1614205A2 (de) 2006-01-11
CA2522469A1 (en) 2004-10-28
US20070024129A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
EP1614205A2 (de) Elektrische maschine mit gekühlten ständer- und läuferblechpaketen und wicklungen
DE102008022105B4 (de) Flüssigkeitsgekühlte elektrische Maschine sowie Verfahren zur Kühlung einer solchen elektrischen Maschine
DE2704189C2 (de) Rückströmungsgekühlte dynamoelektrische Maschine
EP3079229A1 (de) Kühlung einer elektrischen maschine
DE3047141A1 (de) Fluessigkeitsgekuehlte dynamomaschine
DE112016002202T5 (de) Elektrische Rotationsmaschine
EP3878080A1 (de) Elektrische maschine mit einer fluid-kühleinrichtung
EP0118802A1 (de) Gasgekühlte Wechselstrommaschine
DE102014018223A1 (de) Elektrische Maschine, insbesondere Asynchronmaschine
EP4022748A1 (de) Elektrische maschine
WO2019072489A1 (de) Rotorhohlwelle mit integriertem pumpenelement
DE4229395A1 (de) Oberflächengekühlte, geschlossene elektrische Maschine
DE102004013133A1 (de) Elektrische Maschine mit verbesserter Kühlung und entsprechendes Kühlverfahren
EP3611828A1 (de) Dynamoelektrische rotatorische maschine mit einer luftspaltkapselung
EP4042546A1 (de) Elektrische maschine mit bypass-kühlkanal
DE102020212945A1 (de) Rotierende, elektrische maschine
DE102017103631A1 (de) Elektrische Maschine hoher Leistungsdichte sowie Kraftfahrzeug
DE102019217510A1 (de) Rotor, Elektromaschine und Kraftfahrzeug
WO2016005082A1 (de) Strömungsgekühlte elektrische maschine mit einem scheibenläufer
DE102022107108A1 (de) Rotierende elektrische maschine
DE102010003246B4 (de) Transversalflussmaschine
DE102021212153B4 (de) Elektrische Maschine
DE1814431A1 (de) Zwischenwand fuer den Statorkern einer dynamoelektrischen Maschine
DE102023117610B3 (de) Rotor eines Elektromotors mit Statorkühlung
EP3211761B1 (de) Luftgekühlte elektrische maschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2004725033

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004725033

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2522469

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20048126786

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004725033

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007024129

Country of ref document: US

Ref document number: 10553698

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10553698

Country of ref document: US