WO2004089193A1 - カプセル内視鏡システム - Google Patents

カプセル内視鏡システム Download PDF

Info

Publication number
WO2004089193A1
WO2004089193A1 PCT/JP2004/004147 JP2004004147W WO2004089193A1 WO 2004089193 A1 WO2004089193 A1 WO 2004089193A1 JP 2004004147 W JP2004004147 W JP 2004004147W WO 2004089193 A1 WO2004089193 A1 WO 2004089193A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule endoscope
magnetic field
endoscope system
field generating
generating means
Prior art date
Application number
PCT/JP2004/004147
Other languages
English (en)
French (fr)
Inventor
Kazuya Matsumoto
Hiroshi Suzushima
Noriyuki Fujimori
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Publication of WO2004089193A1 publication Critical patent/WO2004089193A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe

Definitions

  • the present invention relates to a capsule endoscope system including a tablet-type capsule endoscope in which an observation unit and the like are integrally incorporated.
  • an endoscope apparatus has been put to practical use and has been widely used, for example, when inspecting a body cavity or the like.
  • the endoscope device is configured by combining various devices such as an endoscope, a light source device, an image processing device, and a display device.
  • the endoscope includes, for example, a tubular insertion portion having an imaging element or the like at the distal end, and an operation portion connected to the insertion portion.
  • the universal cord extending from the insertion portion is connected to the light source device and the image processing device. Then, a desired portion can be observed by inserting the insertion portion into the body cavity of the subject from, for example, the oral cavity or the like.
  • the force pusher endoscope system disclosed in Japanese Patent Application Laid-Open No. 7-289504 is mainly composed of a small endoscope, a so-called capsule endoscope, and a receiving and recording device.
  • the capsule endoscope has, for example, a tablet-shaped capsule shape, and includes an imaging unit including a photographing optical system, an illumination unit, a communication unit, a power supply unit, and the like inside the capsule.
  • the reception recording device includes a communication unit that performs wireless communication with the forcepsell type endoscope, a recording unit that records a received signal, and the like.
  • a capsule endoscope system 101 disclosed in Japanese Unexamined Patent Publication No. Hei 7-289504 is composed of a capsule endoscope 102, an examination table 103, and a bed.
  • the examination table 103 is supported by the support table 110.
  • the examinee 100 who has introduced the capsule endoscope 102 into the body cavity is placed on the examination table 103, for example, in a supine position.
  • the bed drive unit 104 is interposed between the support table 110 and the examination table 103 so that the examination table 103 can be tilted in any of the front-rear direction and the left-right direction. I'm familiar.
  • the receiving device 105 is provided integrally with the examination table 103 and receives a signal from the capsule endoscope 102.
  • the image processing unit 106 receives an image signal output from the receiving device 105 and performs predetermined signal processing or the like.
  • the gravitational direction detecting unit 107 receives a signal output from a gravitational sensor (not shown) provided inside the capsule endoscope 102 via the receiving device 105, and receives the received signal. The direction of gravity is detected based on.
  • the arithmetic unit 108 performs a predetermined arithmetic process based on the signals output from the image processing unit 106 and the gravitational direction detecting unit 107, and performs a tilt direction (also described as a posture) of the examination table 103.
  • the bead drive control unit 109 receives the predetermined signal including the information on the posture of the examination table 103 output from the arithmetic unit 108 and receives the predetermined signal. Drive 04.
  • the movement of the capsule endoscope 102 is The test is performed using the peristaltic motion of the examiner's 100 internal organs and the gravity generated by changing the inclination of the examination table 103 by the pad drive unit 104. .
  • the capsule endoscope 102 introduced into the body cavity of the subject is ultimately spontaneously discharged by peristalsis by organs in the body cavity.
  • the gravitational direction is detected by the gravitational direction detector 107 in a predetermined direction.
  • the capsule endoscope 102 can be guided to a desired position in the body cavity of the subject 100 by utilizing gravity generated by tilting the table 103.
  • the examination table when gravity is used to move the capsule endoscope, the examination table may be tilted in a direction in which the subject is in an inverted state, depending on the direction of travel. In such a case, a problem arises in that a burden is imposed on the subject lying on the examination table while lying on the table.
  • the capsule endoscope since the capsule endoscope is moved by peristalsis and gravity, the examiner cannot sufficiently observe a target site such as an affected part desired to be observed. After passing through the target site, you cannot go back and observe. In other words, there is a problem that the same part cannot be observed again using one capsule endoscope.
  • the forcepsell endoscope is moved by peristalsis, gravity, etc. Then, it is clear that it is difficult to expect a certain effect for each task.
  • the present invention secures a larger amount of moving propulsion than conventional ones when moving the capsule endoscope introduced into the body cavity of the subject by remote control from the outside.
  • the purpose of the present invention is to provide a capsule endoscope system capable of reliably transmitting the capsule endoscope to the capsule endoscope and moving the capsule endoscope in the body cavity more reliably and quickly. Disclosure of the invention
  • the capsule endoscope system includes a force-type endoscope controlled to move by an external magnetic field, and a method of locally generating a magnetic field locally at a single point and in the body cavity of the subject on the examination table.
  • Magnetic field generating means for controlling the movement of the introduced capsule endoscope;
  • Moving means for relatively moving either the observation table or the magnetic field generating means.
  • the magnetic field is locally generated at one point by the magnetic field generating means, and either the examination table or the magnetic field generating means is relatively moved by the moving means. It controls the movement of the capsule endoscope introduced into the body cavity.
  • the capsule endoscope introduced into the body cavity of the subject is forcibly and safely moved with a large moving force.
  • the capsule endoscope system of the present invention is provided with a magnetic field generating member in at least a part of the capsule endoscope. This ensures that the movement of the capsule endoscope is controlled in the magnetic field by the magnetic field generating means.
  • FIG. 1 is a block diagram illustrating the overall configuration of a conventional capsule endoscope system
  • FIG. 2 and subsequent figures are diagrams illustrating the best mode.
  • FIG. 2 is a block diagram illustrating the overall configuration of the capsule endoscope system of the present invention.
  • Fig. 3 is a block diagram showing a part of the capsule endoscope system when viewed from the top side
  • Fig. 4 is a part of a force-pussel type endoscope used in the force-pussel endoscope system.
  • FIG. 5 is a diagram showing a first arrangement example of a magnetic body formed in a capsule endoscope.
  • FIG. 5 shows a second arrangement example of a magnetic body formed in a part of a capsule endoscope used in a capsule endoscope system.
  • FIG. 1 is a block diagram illustrating the overall configuration of a conventional capsule endoscope system
  • FIG. 2 and subsequent figures are diagrams illustrating the best mode.
  • FIG. 2 is a block diagram illustrating the overall configuration of the capsule
  • FIG. 6 is a block diagram illustrating the overall configuration of a force capsule endoscope system according to a modification of the above-described embodiment.
  • FIG. 7 is a block diagram illustrating a power capsule endoscope system according to another modification of the embodiment.
  • a block diagram illustrating the overall configuration, and FIG. 8 is used in a force-pusel endoscope system.
  • FIG. 9 is a diagram showing a first arrangement example of an electromagnetic coil arranged in a part of a capsule endoscope.
  • FIG. 6 is a diagram showing a second arrangement example of the electromagnetic coils.
  • the capsule endoscope system 1 of the present embodiment is provided with a magnetic field generating means for locally generating a magnetic field at one point by applying a magnetic force from the outside. Then, the capsule endoscope 2 after being introduced into the body cavity of the subject, It is configured to use a magnetic field generated by the magnetic field generating means to guide the subject to a desired position in a body cavity, and to observe a desired site such as a lesion at the desired position. is there.
  • the capsule endoscope system 1 includes a capsule endoscope 2, an examination table 3, a receiving device 4, an image processing unit 5, a pair of magnetic field generating units 6 and 7 as magnetic field generating means, It mainly comprises a position detection unit 8, a calculation unit 9, a bed drive control unit 10, a pad drive unit 11 as a moving means, and a display device 12.
  • Examination table 3 is supported by support table 13.
  • An imaging unit, a lighting unit, a communication unit, a power supply unit, and the like are housed inside the capsule endoscope 2.
  • the capsule endoscope 2 is configured to be controlled to move by an external magnetic field.
  • a subject 100 into which the capsule endoscope 2 has been introduced into the body cavity lies, for example, in a supine position.
  • the receiving device 4 is provided integrally with the examination table 3, and receives a predetermined electric signal transmitted from the forcepsell type endoscope 2.
  • the image processing unit 5 receives the electric signal output from the receiving device 4 and performs predetermined signal processing and the like.
  • the pair of magnetic field generation units 6 and 7 are a first magnetic field generation unit 6 and a second magnetic field generation unit 7, and are arranged so as to face each other.
  • the first magnetic field generator 6 and the second magnetic field generator 7 locally generate a magnetic field at one point.
  • the position detector 8 detects which position of the center of the magnetic field is relative to the subject 100 based on the output signals from the magnetic field generators 6 and 7.
  • the calculation unit 9 performs a predetermined calculation process based on the signal output from the image processing unit 5 or the position detection unit 8.
  • the bed drive control section 10 receives a predetermined signal including information on the position of the examination table 3 output from the arithmetic section 9 and drives the bed drive section 11. As a result, the relative position of the subject 100 on the examination table 3 with respect to the position of the capsule endoscope 2 is set and introduced into the body cavity of the subject 100. The movement of the capsule endoscope 2 is controlled.
  • the bed drive 11 is interposed between the support 13 and the examination table 3.
  • the bed drive unit 11 moves the examination table 3 with respect to the magnetic field generation units 6 and 7 in a direction along the arrow Z or the arrows X and Y in FIG.
  • the display device 12 has information on the position of the capsule endoscope 2 based on the output signal from the image processing unit 5 or the position detection unit 8 or the endoscope observation acquired by the capsule endoscope 2. An image or the like is displayed.
  • any one of the devices 4 and 5 that handle the image signal acquired by the imaging means of the forcepsell endoscope 2 such as the receiving device 4 or the image processing unit 5
  • a predetermined recording unit or device is provided to record the acquired image signal in a predetermined form.
  • the capsule endoscope 2 Various components such as the above-described imaging unit, illumination unit, communication unit, and power supply unit are housed inside the capsule endoscope 2, but the internal configuration is not directly related to the present embodiment. It is. For this reason, the detailed illustration and description thereof are omitted, and the capsule endoscope 2 has a small force-pussel shape similar to a conventional one, for example, a form in which the subject 100 can swallow from the mouth or the like. Applies.
  • the first magnetic field generating unit 6 and the second magnetic field generating unit 7 are arranged to face each other so as to locally generate a magnetic field at one point.
  • a subject 100 having the capsule endoscope 2 introduced into a body cavity can be arranged.
  • the magnetic field generators 6 and 7 in the present embodiment are configured to generate a magnetic field from the examination table 3 and the sides of the subject 100.
  • the movement of the capsule endoscope 2 in the present embodiment is controlled by the magnetic force applied by the magnetic field generators 6 and 7. That is, a magnetic material, which is a magnetic field generating member, or an electromagnetic coil or the like is disposed on at least a part of the capsule at least on a part of the capsule so as to be attracted to the applied magnetic field, for example.
  • a magnetic material which is a magnetic field generating member, or an electromagnetic coil or the like is disposed on at least a part of the capsule at least on a part of the capsule so as to be attracted to the applied magnetic field, for example.
  • FIG. 4 shows an example of a configuration in which a magnetic body 2a is arranged as a magnetic field generating member at a predetermined position on the outer peripheral surface of the torso on the outer surface of the forcepsell type endoscope 2.
  • a soft magnetic material such as permalloy, ferrite, or NiFe is used.
  • Symbols N and S in FIG. 4 indicate the polarity of the magnetic field applied from the outside. Is shown.
  • FIG. 5 shows a configuration example in which magnetic bodies 2b and 2c are arranged as magnetic field generating members at predetermined positions on the outer surface or the inner wall surface of the forcepsell type endoscope 2.
  • a plurality of magnetic bodies 2b and 2c are provided at two places opposed to each other.
  • C As the magnetic bodies 2b and 2c, a samarium control (C Use a hard magnetic material such as o s S m) or neodymium iron boron (Nd 2 F eWB) or a soft magnetic material such as permalloy, ferrite, or Ni Fe.
  • the symbols N and S indicate the polarities of the magnetic field applied from the outside.
  • the magnetic material may be magnetized in advance.
  • the symbols N and S shown in FIG. 5 indicate the polarities to be magnetized in advance.
  • the forcepsell endoscope 2 is renewed. There is an advantage that it is not necessary to supply energy for imparting magnetism to the arrangement.
  • the examination table 3 is movably moved in the arrow Z direction or the arrow X and Y directions shown in FIGS. 2 and 3 by the bed drive unit 11 controlled by the pad drive control unit 10. / Going o
  • the subject 100 into which the capsule endoscope 2 is introduced is placed in the body cavity in the magnetic field applied by the magnetic field generators 6 and 7, and then the magnetic field generators 6 and 7
  • the generated magnetic field is locally concentrated at one point where the capsule endoscope 2 is located, and then the consultation table 3 is moved in a predetermined direction to move the capsule endoscope 2.
  • the capsule endoscope 2 can be temporarily held at a desired position in a body cavity by using the action of a magnetic field generated by the magnetic field generators 6 and 7, or inside an organ such as a stomach having a large internal volume.
  • Various controls on the capsule endoscope 2 can be performed, for example, by holding the capsule endoscope 2 temporarily suspended at a predetermined position in the space inside the organ. ing.
  • the display device 12 displays an endoscope still image or an endoscope moving image based on an image signal acquired by the capsule endoscope 2 and transmitted to the outside, or a position detection unit.
  • the center position of the magnetic field generated by the magnetic field generators 6 and 7 based on the output signal from 8, that is, information on the position of the force-pressed endoscope 2 and the like are displayed.
  • the position detecting unit 8 detects a magnetic field generated by the hard magnetic body, and detects the magnetic field generated by the magnetic body. The information about the position of 2 is obtained.
  • the electric signal photoelectrically converted by the imaging unit of the capsule endoscope 2 is input to the image processing unit 5 via the communication unit (not shown) of the capsule endoscope 2 and the receiving device 4. Then, after being processed into a predetermined image signal by the image processing unit 5, the image signal is output through the arithmetic unit 9, the blade drive control unit 10, and the like, and input to the display device 12. By receiving the image signal, the display device 12 displays the endoscope still image or the endoscope moving image.
  • an electric signal output from the position detection unit 8 is also input to the display device 12 in a predetermined case.
  • the output signal from the position detection unit 8 is the center position of the magnetic field generated by the magnetic field generation units 6 and 7, that is, information on the position of the subject 100 of the capsule endoscope 2 in the body cavity. It is an electrical signal consisting of Then, the display device 12 also displays information based on the electric signal.
  • the examiner obtains information on the position of the capsule endoscope 2 introduced into the body cavity of the subject 100 by the display device 12 and obtains the information by the capsule endoscope 2. It is possible to observe an endoscope image based on the received image signal. In a predetermined case, the examiner performs a predetermined operation to change the relative positions of the magnetic field generators 6 and 7 and the examination table 3 while observing the endoscope image and the information. Let it. Thus, the movement of the capsule endoscope 2 is controlled.
  • the examination table 3 is connected to a pair of magnetic field generators 6, 7 At a predetermined position in the space sandwiched between the.
  • the subject 100 introduces the capsule endoscope 2 into the body cavity by, for example, swallowing it from the oral cavity.
  • a magnetic field is generated by the magnetic field generators 6 and 7.
  • the subject 100 and the capsule endoscope 2 introduced into the body cavity are in a state where they are present in the magnetic field generated by the magnetic field generators 6 and 7.
  • the display device 12 displays a predetermined image based on a signal from the position detection unit 8 or the image processing unit 5.
  • the examiner moves the examination table 3 in a predetermined direction by the head drive unit 11 by, for example, manually operating an operation member (not shown) while observing the display screen of the display device 12. Then, the capsule endoscope 2 introduced into the body cavity is moved and guided to a desired site.
  • the capsule endoscope 2 uses the magnetic force, which is a remote force from the outside of the subject 100, as the propulsion means, and more quickly and reliably moves to a desired site in the body cavity. Is done.
  • the guidance of the forcepsell-type endoscope 2 may be performed by manual operation or by, for example, a calculation result calculated by the calculation unit 9 based on a signal from the position detection unit 8 or the like. 0, and the bed drive control unit 10 controls the bed drive unit 11 to automatically move the examination table 3 so that the capsule endoscope 2 is moved to a desired position. You may make it guide
  • the position of the examination table 3 is controlled, thereby observing the inside of the body cavity while controlling the movement of the forcepsell type endoscope 2.
  • the position of the capsule endoscope 2 is itself controlled by the magnetic field generated by the magnetic field generating units 6 and 7. Therefore, it is possible to observe the capsule endoscope 2 by controlling the movement of the capsule endoscope 2 so as to return, for example, in a direction opposite to the peristaltic movement.
  • the capsule endoscope 2 is spontaneously discharged by peristalsis by the organs in the body cavity.
  • the capsule endoscope 2 can be guided to the oral cavity side. That is, the capsule endoscope 2 may be taken out of the body from the oral cavity.
  • the capsule endoscope 2 is inserted from the anal side, The capsule endoscope 2 may be guided from the anal side to a desired site by the relative movement of the generating units 6 and 7 and the examination table 3.
  • the magnetic body is arranged on at least a part of the capsule endoscope 2, the magnetic field generators 6 and 7 are provided, and the examination table 3 is configured to be movable.
  • the capsule endoscope 2 introduced into the body cavity of the subject 100 can be forcibly moved in an arbitrary direction by the amount of propulsion by the action of the magnetic force without depending on gravity or peristaltic motion. it can. .
  • the examiner can easily observe a desired site.
  • fixed-point observation can be performed while the position of the forcepsel endoscope 2 in the body cavity is temporarily held, or the part that has passed once in the body cavity returns to the Repeated observation can be easily performed.
  • the capsule endoscope 2 can be guided by the magnetic force from the magnetic field generators 6 and 7 and can be quickly and reliably discharged out of the body cavity.
  • the discharge of the capsule endoscope 2 can be shifted to natural discharge.
  • the capsule endoscope 2 can be introduced from the oral side or the anal side, it is possible to more quickly reach the observation target site.
  • the force-pussel endoscope 2 can be discharged from the oral cavity or the anus after the observation is completed, it can contribute to shortening the examination time.
  • the image provided by the imaging unit provided inside the capsule endoscope 2 It becomes easy to improve the signal capturing capability.
  • the image quality of a moving image is determined by the frame rate of an image signal per unit time.
  • the frame rate increases, the power consumed also increases. It will increase many.
  • the observation time can be shortened as compared with the conventional case, and accordingly, the frame rate of the imaging unit can be set higher.
  • an image signal representing a higher-definition endoscopic image can be obtained, so that more accurate examination and diagnosis can be performed.
  • the discharge of the capsule endoscope 2 to the outside of the body cavity after the observation is completed is due to spontaneous discharge due to gravity or peristalsis.
  • an unexpected situation such as the capsule endoscope becoming clogged in the body cavity at the time of the discharge may occur.
  • the only option is to take the capsule endoscope 2 out of the body by, for example, a surgical technique. This was a heavy burden on the subjects.
  • the capsule endoscope 2 can be more reliably and safely ejected by forcibly controlling the posture of the capsule endoscope 2 or performing the movement control.
  • the magnetic force is applied by the magnetic field generation units 6 and 7 from the sides of the examination table 3 and the subject 100, but the application of the magnetic force is limited to the side.
  • the magnetic field generating units 6A and 7A are arranged in the up-down direction so that the examination table 3 and the subject 100
  • a magnetic force may be applied from above and below.
  • a configuration including a pair of magnetic field generating units that is, a first magnetic field generating unit 6 and a second magnetic field generating unit 7 is shown.
  • the configuration of the magnetic field generating means is not limited to this.
  • a substantially semi-cylindrical, cylindrical or toroidal magnetic field generating ring 6B similar to that employed in the device or the like may be formed. In such a case, a more stable magnetic field can be generated, so that the movement of the forcepsell endoscope 2 can be more reliably controlled. Swell.
  • a magnetic field includes applying a magnetic field from the left and right as shown in Fig. 2 and applying a magnetic field from the top and bottom as shown in Fig. 6, that is, applying magnetic fields from four locations: up, down, left, and right
  • the system may be used.
  • the location where the highest magnetic field is applied is narrowed down to one point, and the magnetic field is locally concentrated at one point. It is composed of magnetic field generators 6 and 7.
  • each of the two magnetic field generators 6 and 7 may be configured so as to be freely movable in the directions indicated by arrows X and Z shown in FIG. With this configuration, it is possible to control so that a magnetic field can always be generated at a position close to the capsule endoscope 2. As a result, it is possible to always appropriately control the amount of magnetic field required for operation of the system and perform efficient operation, and to contribute to miniaturization of the magnetic field generator as a device. it can.
  • the unit 10 is provided.
  • the configuration of the examination table 3 and the head drive unit 11 and the head drive control unit 10 is not limited to this, and the examination table 3 and the magnetic field generation units 6 and 7 are relatively configured. Any configuration that moves to is possible.
  • a configuration in which the examination table 3 is fixed and the magnetic field generating units 6 and 7 can move in the arrow Z direction or the arrow X direction or the arrow Y direction may be employed.
  • moving means for moving the magnetic field generating units 6 and 7 in a predetermined direction instead of the bed driving unit 11 for moving the examination table 3 and the pad driving control unit 10 thereof, and The drive control unit is provided.
  • the subject 100 lies on the examination table 3 while lying on his / her back.
  • the required amount of magnetic force to be applied may be different depending on the physique and the like of the subject 100. Therefore, it is conceivable to adopt a configuration in which the intensity of the magnetic field is varied by controlling the intensity of the magnetic field generated by the magnetic field generators 6 and 7. With such a configuration, the magnetic field can be appropriately adjusted according to the subject 100 of various physiques. ⁇ ⁇ By controlling the amount of generation, more efficient operation is possible, and the effect of magnetic fields is minimized.
  • a magnetic body is provided in a part of the capsule endoscope 2 so that the force capsule endoscope 2 can be operated by a magnetic force. Therefore, it can be guided to a desired position.
  • a hard magnetic material for the example shown in FIG. 5 and controlling the polarity of the magnetic field generated by the magnetic field generators 6 and 7, the posture of the capsule endoscope 2 can be further controlled. can do.
  • the capsule endoscope is controlled. Control for rotating the mirror 2 in, for example, the direction of the arrow R shown in FIG. 5 can also be performed.
  • the capsule endoscope 2 has a configuration in which a magnetic material is disposed in a part of the capsule endoscope 2.
  • the configuration is not limited to the configuration in which the magnetic material is arranged.
  • a configuration in which a magnetic field is generated using the action of an electromagnet as shown in FIGS. 8 and 9 may be used.
  • This is a configuration example in which an electromagnetic coil is arranged as a magnetic field generating member at a predetermined position of the endoscope 2.
  • at least one electromagnetic coil may be arranged, and a plurality of electromagnetic coils may be arranged.
  • a plurality of electromagnetic coils 2 d, 2 e, 2 f,... Are arranged at predetermined positions, that is, at predetermined positions on the outer peripheral surface of the capsule endoscope 2, at equal intervals. I have.
  • FIG. 9 shows a configuration example in which an electromagnetic coil is disposed as a magnetic field generating member at a predetermined position on the outer surface or the inner wall surface of the capsule endoscope 2.
  • the arrangement positions of the electromagnetic coils 2 g, 2 h, and 2 i are aligned with three planes including axes x, y, and z, which are three axes orthogonal to each other. Place it in the corresponding predetermined position.
  • the electromagnetic coil 2 g at a position corresponding to the surface including the X axis on the outer peripheral surface of the torso portion of the capsule endoscope 2, and each axis orthogonal to the electromagnetic coil 2 g y,
  • the electromagnetic coils 2h and 2i at predetermined positions corresponding to the plane including the y axis and the plane including the z axis on the outer surface along the plane including z.
  • the capsule endoscope 2 configured as described above is used, current supply control is performed to a predetermined electromagnetic coil among a plurality of electromagnetic coils. As a result, the capsule endoscope 2 itself also generates a magnetic field. When the capsule endoscope 2 is in the magnetic field generated by the magnetic field generating units 6 and 7, the action of the magnetic field is given. Thus, the posture control and the movement control of the capsule endoscope 2 can be easily performed by remote control.
  • the power supply to the electromagnetic coil in this case is usually performed by a power supply unit provided inside the capsule endoscope 2.
  • a power supply unit provided inside the capsule endoscope 2.
  • an external power supply device (not shown) or the like is separately provided, and a predetermined wireless communication means such as a reception device 4 or a power transmission device (not shown) provided separately from the power supply device is provided.
  • a so-called wireless power supply system in which power is supplied to the capsule endoscope 2 by using a power source.
  • the power supply unit (not shown) provided inside the forceps type endoscope 2 serves to control the power supply to the internal circuit of the capsule endoscope 2 and at the same time, the external power supply described above. It also serves as a power receiving means for the power supplied from the device or the like.
  • an electromagnetic coil is provided in a part of the capsule endoscope 2, and at a predetermined time, an electric current is supplied to the electromagnetic coil so that the force-pressed endoscope 2 itself generates a magnetic field.
  • the position of the capsule-type endoscope 2 can be detected from the outside. Has become.
  • the position of the capsule endoscope 2 is detected in this way, not only the electromagnetic coil but also a hard magnetic material is used in the force-pussel endoscope 2 in the embodiment shown in FIG. 5 described above. In the former form, the position can be similarly detected by generating a magnetic field by itself.
  • the capsule endoscope 2 equipped with an electromagnetic coil it is conceivable to use the power generation effect by applying a strong magnetic field from the outside, and supply electric power for operating the forcepsell endoscope 2 It is also possible to do.
  • the external magnetic field applied to the capsule endoscope 2 is configured to apply a pulse signal including a high-frequency pulse, that is, an AC magnetic field, the movement of the capsule endoscope 2 is controlled.
  • the capsule endoscope 2 can be moved or power can be generated at the time when the magnetic force is being applied, while the magnetic force can be reduced.
  • the position can be detected only by the action of the electromagnetic coil of the capsule endoscope 2 itself.
  • a drug administration, a treatment or collection of cells or the like can be provided.
  • a treatment or collection of cells or the like can be provided.
  • the capsule endoscope system can control the guidance or movement of the capsule endoscope or the like in a state introduced into the body cavity more quickly by external remote control. It is also suitable for conducting observations with certainty.

Abstract

被検者の体腔内に導入されたカプセル型内視鏡の移動を、外部からの遠隔操作によって、より確実かつ迅速に移動させて、目的の観察等を行えるカプセル内視鏡システムである。外部からの磁界により移動制御されるカプセル型内視鏡2と、磁界を一点に局所的に集中発生させて、診察台3上の被検者100の体腔内に導入されているカプセル型内視鏡2を移動制御する磁界発生部6、7と、診察台3と磁界発生部6、7とを相対的に移動させるベッド駆動部11とを具備してカプセル内視鏡システムは構成される。

Description

明 細 書
カプセル内視鏡システム 技術分野
この発明は、 観察部等を一体に組み込み込んだ錠剤カプセル形状のカプセル型 内視鏡を備えたカプセル内視鏡システムに関する。 背景技術
従来より、 例えば体腔内等の検査等を行うのに際して内視鏡装置が実用化され、 広く普及している。 内視鏡装置は、 内視鏡、 光源装置、 画像処理装置、 表示装置 等の各種装置を組み合わせて構成されている。
内視鏡は、 例えば先端に撮像素子等を備えた管状の挿入部と、 この揷入部に連 設される操作部とを備えている。 この挿入部から延出するユニバーサルコードは、 光源装置及び画像処理装置に接続される。 そして、 揷入部を被検者の例えば口腔 等から体腔内へ挿入することによつて所望の部位の観察を行えるように構成され ている。
このような従来の内視鏡装置においては、 体腔内に導入される挿入部の長さ等 の制約から、 観察や検査等を行い得る範囲が限られていた。
そのため、 近年においては、 例えば特開平 7— 2 8 9 5 0 4号公報等によって、 カプセル内視鏡システムについて、 種々の提案がなされている。
特開平 7— 2 8 9 5 0 4号公報の力プセル内視鏡システムは、 小型の内視鏡、 いわゆるカプセル型内視鏡と、 受信記録装置とで主に構成されている。 カプセル 型内視鏡は、 例えば錠剤力プセル形状であり、 カプセル内部に撮影光学系を含む 撮像手段、 照明手段、 通信手段、 電源手段等を収納している。 受信記録装置は、 力プセル型内視鏡との間で無線通信を行う通信手段及び受信した信号を記録する 記録手段等を備えている。
図 1に示すように、 特開平 7— 2 8 9 5 0 4号公報のカプセル内視鏡システム 1 0 1は、 カプセル型内視鏡 1 0 2と、 診察台 1 0 3と、 べヅド駆動部 1 0 4と、 受信装置 1 0 5と、 画像処理部 1 0 6と、 重力方向検出部 1 0 7と、 演算部 1 0 8と、 べヅド駆動制御部 1 0 9とで主に構成されている。 診察台 1 0 3は支持台 1 1 0によって支持されている。
カプセル型内視鏡 1 0 2の内部には撮像手段、 照明手段、 通信手段、 電源等が 収納されている。 診察台 1 0 3には、 カプセル型内視鏡 1 0 2を体腔内に導入し た被検者 1 0 0が例えば仰臥した状態で載るようになつている。 べヅド駆動部 1 0 4は、 支持台 1 1 0と診察台 1 0 3との間に介在し、 診察台 1 0 3を前後方向 及び左右方向の任意の方向に対して傾けられるようになつている。 受信装置 1 0 5は診察台 1 0 3と一体に設けられ、 カプセル型内視鏡 1 0 2からの信号を受信 する。 画像処理部 1 0 6は、 受信装置 1 0 5から出力される画像信号を受けて所 定の信号処理等を施す。 重力方向検出部 1 0 7は、 カプセル型内視鏡 1 0 2の内 部に設けられている重力センサ (不図示) から出力される信号を受信装置 1 0 5 を介して受け、 その受信信号に基づいて重力方向の検出を行う。 演算部 1 0 8は、 画像処理部 1 0 6及び重力方向検出部 1 0 7から出力された信号に基づき、 所定 の演算処理を行って、 診察台 1 0 3の傾き方向 (姿勢とも記載する) を設定する c べヅド駆動制御部 1 0 9は、 演算部 1 0 8から出力される診察台 1 0 3の姿勢に 関する情報等を含む所定の信号を受けてべッド駆動部 1 0 4を駆動させる。
このような構成からなる従来のカプセル内視鏡システム 1 0 1では、 カプセル 型内視鏡 1 0 2が被検者によって嚥下された後、 カプセル型内視鏡 1 0 2の移動 は、 その被検者 1 0 0自身の体腔内臓器による蠕動運動と、 ぺヅド駆動部 1 0 4 によって診察台 1 0 3の傾きを変化させることによって生じる重力とを利用して 行われるようになつている。
そして、 被検者の体腔内に導入されたカプセル型内視鏡 1 0 2は、 最終的に、 体腔内臓器による蠕動運動によって自然排出される。
このように、 カプセル内視鏡システム 1 0 1においては、 被検者の体腔内臓器 による蠕動運動に加えて、 重力方向検出部 1 0 7によって重力方向を検出しなが ら所定の方向に診察台 1 0 3を傾けることで生じる重力を利用して、 カプセル型 内視鏡 1 0 2を被検者 1 0 0の体腔内における所望の位置へ誘導できる構成にな つている。
しかしながら、 上記特開平 7— 2 8 9 5 0 4号公報では、 カプセル型内視鏡の 移動を蠕動運動及び重力により行っているので、 その推進力量が弱い。 このため、 カプセル型内視鏡を体腔内における所望の位置まで移動させるのに多くの時間を 要とするという問題がある。 このことは、 カプセル内視鏡システムを利用して行 われる診察に要する時間、 言い換えれば、 被検者の体腔内にカプセル型内視鏡が 導入されている総時間、 が長くなつてしまうことである。 これにより、 被検者を 束縛する時間も長くなつて、 被検者の負担が大きくなるという問題が生じる。 また、 カプセル型内視鏡を移動させるのに重力を利用する場合、 その進行方向 によっては、 被検者が倒立した状態になる方向に診察台を傾けることが考えられ る。 このような場合、 診察台上に仰臥した状態で横たわつている被検者に負担が 生じるという問題が発生する。
さらに、 カプセル型内視鏡の移動を蠕動運動及び重力によって行っているので、 検査者が観察を所望する患部等の目的部位を十分に観察することができなかった り、 カプセル型内視鏡がその目的部位を通過した後は、 後戻りさせて観察するこ とができない。 つまり、 1つのカプセル型内視鏡を用いて、 再度同じ部位の観察 を行うことができないという問題がある。
又、 カプセル型内視鏡に、 薬剤投与、 体腔内細胞の採取、 又は治療等の諸機能 を備えるように構成した場合、 力プセル型内視鏡を蠕動運動や重力等による移動 させていたのでは、 各作業について確実な効果を期待することが難しいことは明 白である。
したがって、 本発明は、 被検者の体腔内に導入されたカプセル型内視鏡の移動 を外部からの遠隔操作によって行う際、 従来のものに比べ、 より大きな移動推進 力量を確保し、 かっこれを確実にカプセル型内視鏡へ伝え、 カプセル型内視鏡の 体腔内における移動をより確実かつ迅速に行い得るカプセル内視鏡システムを提 供することを目的としている。 発明の開示
本発明のカプセル内視鏡システムは、 外部からの磁界により移動制御される力 プセル型内視鏡と、 磁界を一点に局所的に集中発生させて診察台上の被検者の体 腔内に導入された上記カプセル型内視鏡を移動制御する磁界発生手段と、 上記診 察台若しくは上記磁界発生手段のいずれかを相対的に移動させる移動手段とを具 備している。 このことによって、 磁界発生手段によって磁界を一点に局所的に集 中発生させて、 移動手段によって診察台若しくは磁界発生手段のいずれかを相対 的に移動させることで、 診察台上の被検者の体腔内に導入されているカプセル型 内視鏡を移動制御する。 これにより、 被検者の体腔内に導入されているカプセル 型内視鏡を大きな移動力量で強制的に確実かつ安全に移動される。
また、 本発明のカプセル内視鏡システムは、 上記カプセル型内視鏡の少なくと も一部に磁界発生部材を設けている。 このことによって、 カプセル型内視鏡は、 磁界発生手段による磁界中において確実に移動が制御される。 図面の簡単な説明
図 1は従来のカプセル内視鏡システムの全体構成を説明するプロック図、 図 2 以降は最良の形態を説明する図であって、 図 2は本発明のカプセル内視鏡システ ムの全体構成を説明するプロヅク図、 図 3はカプセル内視鏡システムの一部を上 面側から見た際の構成図、 図 4は力プセル内視鏡システムで使用される力プセル 型内視鏡の一部に形成される磁性体の第 1の配置例を示す図、 図 5はカプセル内 視鏡システムで使用されるカプセル型内視鏡の一部に形成される磁性体の第 2の 配置例を示す図、 図 6は上記一実施形態の変形例である力プセル内視鏡システム の全体構成を説明するブロック図、 図 7は上記一実施形態の別変形例である力プ セル内視鏡システムの全体構成を説明するプロック図、 図 8は力プセル内視鏡シ ステムで使用されるカプセル型内視鏡の一部に配置される電磁コイルの第 1の配 置例を示す図、 図 9は力プセル内視鏡システムで使用される力プセル型内視鏡の 一部に配置される電磁コイルの第 2の配置例を示す図である。 発明を実施するための最良の形態
本発明を図面にしたがって説明する。
図 2に示すように本実施形態のカプセル内視鏡システム 1は、 外部から磁力を 印加することにより磁界を一点に局所的に集中発生させるための磁界発生手段を 備えている。 そして、 被検者の体腔内に導入された後のカプセル型内視鏡 2を、 磁界発生手段により生じる磁界を利用して、 被検者の体腔内における所望の位置 へと誘導し、 その所望の位置において、 病変部等の所望の部位を観察し得るよう に構成されるものである。
そのため、 本カプセル内視鏡システム 1は、 カプセル型内視鏡 2と、 診察台 3 と、 受信装置 4と、 画像処理部 5と、 磁界発生手段である一対の磁界発生部 6、 7と、 位置検出部 8と、 演算部 9と、 べッド駆動制御部 1 0と、 移動手段である ぺッド駆動部 1 1と、 表示装置 1 2とで主に構成されている。 診察台 3は支持台 1 3によって支持されている。
カプセル型内視鏡 2の内部には図示しない撮像部、 照明部、 通信部、 電源部等 が収納されている。 カプセル型内視鏡 2は、 外部からの磁界により移動制御され るように構成されている。
診察台 3にはカプセル型内視鏡 2を体腔内に導入した被検者 1 0 0が例えば仰 臥した状態で横たわるものである。
受信装置 4は診察台 3に一体的に設けられ、 力プセル型内視鏡 2から送信され る所定の電気信号を受信する。
. 画像処理部 5は、 受信装置 4から出力される電気信号を受けて所定の信号処理 等を施す。
一対の磁界発生部 6、 7は、 第 1磁界発生部 6及び第 2磁界発生部 7であり、 互いが対向するように配置されている。 これら第 1磁界発生部 6及び第 2磁界発 生部 7は、 磁界を一点に局所的に集中発生させる。
位置検出部 8は、 磁界発生部 6、 7からの出力信号に基づいて、 磁界の中心位 置が被検者 1 0 0に対していずれの位置であるかを検出する。
演算部 9は、 画像処理部 5又は位置検出部 8から出力された信号に基づいて所 定の演算処理を行う。
べッド駆動制御部 1 0は、 演算部 9から出力される診察台 3の位置に関する情 報等を含む所定の信号を受け、 ベッド駆動部 1 1を駆動させる。 このことによつ て、 カプセル型内視鏡 2の位置に対する診察台 3上の被検者 1 0 0の相対的な位 置が設定されて、 被検者 1 0 0の体腔内に導入されているカプセル型内視鏡 2が 移動制御される。 べッド駆動部 1 1は支持台 1 3と診察台 3との間に介在する。 このべッド駆動 部 1 1は、 診察台 3を磁界発生部 6、 7に対して図 2の矢印 Zあるいは矢印 X、 Yに沿う方向へ移動させる。
表示装置 1 2には、 画像処理部 5又は位置検出部 8からの出力信号に基づいて、 カプセル型内視鏡 2の位置に関する情報或いは、 カプセル型内視鏡 2により取得 された内視鏡観察画像等が表示される。
なお、 図 2において、 特に図示していないが、 受信装置 4又は画像処理部 5等、 力プセル型内視鏡 2の撮像手段によつて取得された画像信号を扱う装置 4、 5の いずれか又はこれら装置 4、 5とは別に、 取得した画像信号を所定の形態で記録 すべく、 所定の記録部又は記録装置が設けられている。
また、 カプセル型内視鏡 2の内部には上述した撮像部、 照明部、 通信部、 電源 部等の各種構成部材が収納されているが、 その内部構成については本実施形態に 直接関連しない事項である。 このため、 その詳細な図示及び説明は省略し、 カブ セル型内視鏡 2は、 従来のものと同様に例えば被検者 1 0 0がその口腔等から嚥 下し得る形態の小型力プセル形状のものが適用される。
図 3に示すように第 1磁界発生部 6及び第 2磁界発生部 7は、 磁界を一点に局 所的に集中発生させるベく、 互いに対向して配置されている。 第 1磁界発生部 6 と第 2磁界発生部 7との間の空間には、 カプセル型内ネ見鏡 2を体腔内に導入した 被検者 1 0 0が配置され得るようになつている。 具体的に、 本実施形態における 磁界発生部 6、 7では、 診察台 3及び被検者 1 0 0の側方から磁界を発生させ得 る構成になっている。
本実施形態におけるカプセル型内視鏡 2は、 磁界発生部 6、 7によって印加さ れる磁力によって移動制御が行われる。 つまり、 印加される磁界に対して、 例え ば引き寄せられるように、 その外表面或いは内部に、 少なくともカプセルの一部 に磁界発生部材である磁性体ある ヽは電磁コィル等が配置されている。
図 4は力プセル型内視鏡 2の外表面上における、 胴部周面の所定の位置に磁界 発生部材として磁性体 2 aを配置した構成例である。 この第 1の配置の場合にお ける磁性体 2 aとしては、 パーマロイ、 フェライト、 N i F e等の軟磁性体材料 を用いる。 なお、 図 4における符号 N及び符号 Sは外部から与える磁界の極性を 示している。
図 5は力プセル型内視鏡 2の外表面上又は内部壁面等の所定の位置に、 磁界発 生部材として磁性体 2 b、 2 cを配置した構成例である。 この第 2の配置の場合 においては、 互いに対向する二箇所等に、 複数の磁性体 2 b、 2 cを設けている c この磁 '性体 2 b、 2 cとしては、 サマリウムコノ ルト (C os S m) 、 ネオジム 鉄ボロン (N d2F e wB ) 等の硬磁性体やパーマロイ、 フェライト、 N i F e 等の軟磁性体を用いる。
なお、 図 5においても符号 N及び符号 Sは外部から与える磁界の極性を示して いる。 また、 ここで硬磁性体を用いる場合には、 予めそれらの磁性体を着磁して おくようにしてもよい。 つまり、 ここで硬磁性体を用いた場合、 図 5に示した符 号 N及び符号 Sは予め着磁される極性が示されている。
図 4及び図 5に示すようにカプセル型内視鏡 2の一部に、 磁性体 2 a又は磁性 体 2 b、 2 cを配置することによって、 力プセル型内視鏡 2に対して、 改めて配 置させたものに対して磁性を付与するためのエネルギーの供給を必要としないと いう利点がある。
診察台 3は、 ぺヅド駆動制御部 1 0によって制御されるべッド駆動部 1 1によ つて、 図 2及び図 3に示す矢印 Z方向あるいは矢印 X、 Y方向に向けて移動自在 に/よつている o
したがって、 まず、 磁界発生部 6、 7によって印加される磁界中に、 体腔内に カプセル型内視鏡 2を導入した被検者 1 0 0を配置させ、 次に、 磁界発生部 6、 7により発生される磁界をカプセル型内視鏡 2が存在している位置の一点に局所 的に集中発生させ、 次いで、 診察台 3を所定の方向へ移動させることにより、 力 プセル型内視鏡 2を例えば、 患部或いは病変部等、 体腔内の所望する任意の位置 近傍へ誘導し得ることができるようになつている。
また、 磁界発生部 6、 7による磁界の作用を利用して、 カプセル型内視鏡 2を 体腔内における所望の位置において一時的に保持することや、 内容積の大きな胃 などの臓器の内部において、 当該カプセル型内視鏡 2を、 その臓器内部の空間の 所定位置に一時的に浮遊させた状態に保持すること等、 カプセル型内視鏡 2に対 する各種の制御を行い得るようになつている。 表示装置 1 2には、 カプセル型内視鏡 2によって取得され、 外部に向けて送信 'された画像信号に基づいた、 内視鏡静止画像又は内視鏡動画像が表示されたり、 位置検出部 8からの出力信号に基づいた、 磁界発生部 6、 7による磁界の中心位 置、 即ち力プセル型内視鏡 2の位置に関する情報等が表示される。
なお、 位置情報等を表示する場合において、 位置検出部 8は、 カプセル型内視 鏡 2に設けられる磁性体が硬磁性体であるとき、 それにより生じる磁界を検出し、 そのカプセル型内視鏡 2の位置に関する情報を得るようになつている。
つまり、 カプセル型内視鏡 2の撮像部により光電変換された電気信号は、 当該 カプセル型内視鏡 2の通信部 (不図示) 及び受信装置 4を介して画像処理部 5に 入力される。 そして、 画像処理部 5で所定の画像信号に処理された後、 演算部 9、 べヅド駆動制御部 1 0等を介して出力されて、 表示装置 1 2に入力される。 表示 装置 1 2では、 この画像信号を受けることによって、 内視鏡静止画像又は内視鏡 動画像が表示される。
また、 これとは別に、 表示装置 1 2には所定の場合において、 位置検出部 8か ら出力される電気信号も入力されるようになっている。 この位置検出部 8からの 出力信号は、 磁界発生部 6、 7によって発生される磁界の中心位置、 即ち、 カブ セル型内視鏡 2の被検者 1 0 0の体腔内における位置に関する情報等からなる電 気信号である。 そして、 表示装置 1 2にはこの電気信号に基づく情報も表示され る。
したがって、 検査者は、 表示装置 1 2によって、 被検者 1 0 0の体腔内に導入 されているカプセル型内視鏡 2の位置に関する情報の取得や、 このカプセル型内 視鏡 2によって取得された画像信号に基づく内視鏡画像を観察することができる ようになつている。 そして、 所定の場合において、 検査者は、 これらの内視鏡画 像や情報等を観察しながら、 所定の操作を行って磁界発生部 6、 7と診察台 3と の相対的な位置を変化させる。 このことで、 カプセル型内視鏡 2の移動制御が行 われるようになっている。
上述のように構成したカプセル内視鏡システムの作用を簡単に説明する。
カプセル内視鏡システム 1を利用するに際して、 まず、 被検者 1 0 0は診察台 3の台上に仰臥した状態となる。 このため、 診察台 3を一対の磁界発生部 6、 7 に挟まれた空間の所定の位置に配置する。
次に、 被検者 1 0 0は、 カプセル型内視鏡 2を例えば口腔から嚥下することに よって、 体腔内に導入する。 また、 磁界発生部 6、 7によって磁界を発生させる。 このことによって、 被検者 1 0 0及び体腔内に導入されたカプセル型内視鏡 2が、 磁界発生部 6、 7による磁界中に存在した状態になる。
表示装置 1 2には、 位置検出部 8又は画像処理部 5からの信号に基づく所定の 画像が表示される。 検査者は、 この表示装置 1 2の表示画面を観察しながら例え ば図示しない操作部材を手動操作することによって、 ぺヅ ド駆動部 1 1によって 診察台 3を所定の方向へと移動させる。 すると、 体腔内に導入されたカプセル型 内視鏡 2が移動されて、 所望の部位に誘導されていく。
つまり、 カプセル型内視鏡 2は、 被検者 1 0 0の外部からの遠隔的な力量であ る磁力を推進手段に利用して、 体腔内における所望の部位に、 より迅速かつ確実 に移動される。
なお、 力プセル型内視鏡 2の誘導は、 手動操作によるもののほかに、 例えば位 置検出部 8からの信号に基づいて、 演算部 9が算出した演算結果等をべッド駆動 制御部 1 0に出力し、 このべヅド駆動制御部 1 0がべッド駆動部 1 1を制御して 診察台 3を自動的に移動させるようにして、 カプセル型内視鏡 2を所望する位置 に誘導するようにしてもよい。
力プセル型内視鏡 2が所望の部位に到達したなら、 診察台 3の位置の制御を行 うことによって、 力プセル型内視鏡 2の移動を制御しながら、 体腔内の観察を行 う。 このとき、 カプセル型内視鏡 2は、 磁界発生部 6、 7による磁界によって自 在にその位置が制御される。 したがって、 カプセル型内視鏡 2を、 例えば蠕動運 動とは逆方向に戻るように移動制御しての観察等も可能になっている。
そして、 体腔内における所望の部位に対する観察が終了した後、 磁界発生部 6、 7による磁力の印加を停止させる。 このことによって、 この後、 カプセル型内視 鏡 2は体腔内臓器による蠕動運動によって自然排出されることになる。
なお、 観察終了後に、 診察台 3の位置制御を行うことで、 例えばカプセル型内 視鏡 2を口腔側へと誘導することも可能である。 つまり、 カプセル型内視鏡 2を 口腔から体外に取り出すようにしてもよい。 また、 カプセル型内視鏡 2を被検者 1 0 0の体腔内に導入させる際、 上述した ように口腔から嚥下する方法に代えて、 カプセル型内視鏡 2を肛門側から挿入し、 磁界発生部 6、 7及び診察台 3の相対的な移動によって、 カプセル型内視鏡 2を 肛門側から所望の部位に誘導するようにしてもよい。
以上説明したように、 本実施形態によれば、 カプセル型内視鏡 2の少なくとも 一部に磁性体を配置すると共に、 磁界発生部 6、 7を備え、 診察台 3を移動自在 に構成したことによって、 被検者 1 0 0の体腔内に導入されたカプセル型内視鏡 2を、 重力や蠕動運動によらず、 磁力の作用による推進力量で、 強制的に任意の 方向に移動させることができる。.
このことによって、 カプセル型内視鏡 2を重力や蠕動運動によって移動させて 観察及び診察をするのに比較して、 観察時間及び診察時間を大幅に短縮すること が容易になる。 したがって、 被検者 1 0 0の束縛時間が短縮されて、 被検者 1 0 0への負担を軽減することができる。
また、 体腔内に導入された後のカプセル型内視鏡 2の体腔内における位置を、 能動的に制御することができるので、 検査者は容易に所望の部位について観察す ることができる。 つまり、 力プセル型内視鏡 2の体腔内における位置を一時的に 保持させてた状態での定点観測を行うことや、 体腔内において一度通過してしま つた部位に再び戻って、 同一部位の繰り返し観察をも容易に行える。
さらに、 所望の部位の診察終了後、 磁界発生部 6、 7からの磁力によってカブ セル型内視鏡 2を誘導して、 迅速かつ確実に体腔外へ排出させることができる。 その一方で、 磁界発生部 6、 7からの磁力の印加を停止させることによってカブ セル型内視鏡 2の排出を自然排出に移行することもできる。
加えて、 カプセル型内視鏡 2の導入を、 口腔側からでも肛門側からでも行うこ とができるので、 より迅速に観察目的部位に到達させることが可能になる。 また、 観察終了後における力プセル型内視鏡 2の排出も、 口腔又は肛門のいずれからで も行えるので診察時間の短縮化に寄与することができる。
さらに、 上述したように総合的な観察時間の短縮を実現し得ることから、 カブ セル型内視鏡 2の電源容量を考慮した上で、 カプセル型内視鏡 2の内部に設ける 撮像部による画像信号の取り込み能力を向上させることが容易となる。 つまり、 通常の撮像素子等の撮像部においては、 単位時間の画像信号のフレー ムレ一トによって、 動画像の画質が決定されるが、 このフレームレートが高くな る程、 消費される電力もまた多くなつてしまう。 しかし、 本実施形態によれば、 従来のものにくらべて、 観察時間の短縮化を実現し得るので、 その分、 撮像部の フレームレートを高く設定することが可能になる。
したがって、 より高精細な内視鏡画像を表す画像信号を取得することができる ので、 より精度の高い検査及び診断を行える。
なお、 従来のカプセル内視鏡システムにおいては、 観察終了後のカプセル型内 視鏡 2の体腔外への排出が重力や蠕動運動による自然排出によるものであった。 このため、 その排出時に、 例えば体腔内においてカプセル型内視鏡が詰まってし まう等の不測の事態が生じることも考えられた。 そして、 このような不測の事態 が発生した場合においては、 例えば外科的手法等によってカプセル型内視鏡 2を 体外に取り出すほかなかった。 このことは、 被検者の負担として大きなものであ つた。 しかし、 本実施形態によれば、 強制的にカプセル型内視鏡 2の姿勢制御を 行ったり、 或いは移動制御を行うことによって、 より確実かつ安全にカプセル型 内視鏡 2排出させることができる。
また、 上述した実施形態においては、 診察台 3及び被検者 1 0 0の側方から磁 界発生部 6、 7による磁力を印加する構成としているが、 磁力の印加は側方に限 定されるものではなく、 例えば図 6に示す本実施形態の変形例のように、 磁界発 生部 6 A、 7 Aを上下方向に配設して、 診察台 3及ぴ被検者 1 0 0に対して上下 方向から磁力を印加させるようにしてもよい。
さらに、 上述した実施形態においては、 外部からの磁界を印加するための磁界 発生手段として、 一対の磁界発生部、 即ち、 第 1磁界発生部 6及び第 2磁界発生 部 7による構成を示している。 しかし、 磁界発生手段の構成はこれに限定される ものではなく、 例えば被検者 1 0 0、 若しくは診察台 3の周囲を覆い得る形状、 即ち、 図 7に示すように、 MR Iや C Tスキャン装置等において採用されている のと同様な略半円筒形状、 円筒形状又は円環形状の磁界発生リング 6 Bを形成す るようしてもよい。 このような形態の場合、 より安定した磁界を発生させること ができるので、 より確実に力プセル型内視鏡 2の移動を制御することができるよ うになる。
その他の磁界印加方式としては、 図 2に示すように左右から磁界を印加し、 か つ図 6に示すように上下から磁界を印加する方式、 つまり、 上下左右の四箇所か ら磁界を印加する方式にしてもよい。 この印加方式とした場合にも、 最も高強度 な磁界が印加される箇所は一点に絞られ、 磁界が一点に局所的に集中発生される 一方、 上述した実施形態における磁界発生手段は、 一対の磁界発生部 6、 7に よって構成されている。 この場合において、 さらに二つの磁界発生部 6、 7のそ れそれを、 図 3に示す矢印 X方向及び矢印 Z方向に対して自在に移動し得るよう に構成することもできる。 そして、 本構成とすることによって、 常に、 カプセル 型内視鏡 2に近接する位置に磁界を発生させ得るように制御することができる。 このことにより、 当該システムの運用に必要となる磁界の発生量を常に適切に制 御して効率的な運用を行うことができると共に、 磁界発生部の装置としての小型 化にも寄与することができる。
また、 上述した実施形態においては、 診察台 3を磁界発生部 6、 7に対して、 図 2、 図 3の矢印 Z方向に移動させるベッド駆動部 1 1及びこれを制御するべッ ド駆動制御部 1 0を設けている。 しかし、 診察台 3とぺッド駆動部 1 1及ぴぺヅ ド駆動制御部 1 0との構成はこれに限定されるものではなく、 診察台 3と磁界発 生部 6、 7とが相対的に移動する構成であればよい。
つまり、 例えば診察台 3が固定されて、 磁界発生部 6、 7が矢印 Z方向若しく は矢印 X方向あるいは矢印 Y方向に移動し得る構成であってもよい。 この場合に おいては、 診察台 3を移動させるべッド駆動部 1 1及びそのぺッド駆動制御部 1 0に代えて、 磁界発生部 6、 7を所定の方向に移動させる移動手段及びその駆動 制御部を配設する。 このことにより、 上述の実施形態と同様の効果を得ることが できる。
通常、 被検者 1 0 0は、 診察台 3上に仰臥して横たわることになる。 このとき、 被検者 1 0 0の体格等の違いによって印加する磁力の必要発生量が異なることが ある。 したがって、 磁界発生部 6、 7によって発生される磁界の強度を制御する ことによって、 磁界の発生量を可変させる構成にすることも考えられる。 このよ うな構成にすれば、 様々な体格の被検者 1 0 0に応じて、 適切となるように磁界 の発生量を調節して、 より効率的な運用を行い、 磁界による影響を最小限に抑え られる ό
さらにまた、 上述の実施形態のおいては、 図 4及び図 5に示すようにカプセル 型内視鏡 2の一部に磁性体を設けることによって、 力プセル型内視鏡 2を磁力の 作用によつて所望の位置へと誘導することができるようにしている。 この場合に おいて、 図 5に示した一例に対して硬磁性体を用い、 磁界発生部 6、 7により発 生させる磁界の極性を制御すれば、 さらにカプセル型内視鏡 2の姿勢を制御する ことができる。
具体的に言えば、 カプセル型内視鏡 2に設けた硬磁性体の極性に応じて、 一対 の磁界発生部 6、 7によって発生される磁界の極性を制御することにより、 カブ セル型内視鏡 2を例えば図 5に示す矢印 R方向等に回転させる制御を行うことも できる。
上述した実施形態におけるカプセル型内視鏡 2では、 図 4、 図 5で説明したよ うに、 その一部に磁性体を配置する構成としているが、 本実施形態におけるカブ セル型内視鏡 2は磁性体を配置する構成に限定されるものではなく、 例えば図 8 及び図 9で示すように電磁石の作用を用いて磁界を発生させる構成にしてもよい c 具体的に、 図 8における力プセル型内視鏡 2の所定位置に磁界発生部材として 電磁コイルを配置した構成例である。 電磁コイルの第 1の配置例においては、 配 置する電磁コィルの数は少なくとも一個あればよく、 複数配設するようにしても よい。 図 8では複数の電磁コイル 2 d、 2 e、 2 fヽ …をそれそれ所定の位置、 即ちカプセル型内視鏡 2の外表面における胴部周面上の所定位置に等間隔で配置 している。
一方、 図 9においては、 カプセル型内視鏡 2の外表面上又は内部壁面等の所定 の位置に磁界発生部材として電磁コィルを配置した構成例である。 電磁コイルの 第 2の配置例においては、 電磁コイル 2 g、 2 h、 2 iの配置位置を、 互いに直 交する三軸である軸 x、 軸 y、 軸 zを含む三面にそれぞれ沿う面に対応する所定 位置に配置させる。
即ち、 図 9に示すようにカプセル型内視鏡 2の外表面の胴部周面上の X軸を含 む面に対応する位置の電磁コイル 2 gと、 これに対して互いに直交する各軸 y、 zを含む面に沿う外表面上の y軸を含む面及び z軸を含む面に対応する所定の位 置の電磁コイル 2 h、 2 iとである。
このように構成したカプセル型内視鏡 2を用いる際、 複数の電磁コイルのうち、 所定の電磁コイルに対して電流の供給制御を行う。 このことにより、 カプセル型 内視鏡 2自身も磁界を発生することになる。 そして、 カプセル型内視鏡 2が、 磁 界発生部 6、 7による磁界内にあるときには、 その磁界の作用が与えられる。 こ のことによって、 カプセル型内視鏡 2の姿勢制御及び移動制御を、 遠隔操作によ つて容易に行い得るようになつている。
なお、 この場合における電磁コイルへの給電は、 通常、 カプセル型内視鏡 2の 内部に設けられている電源部により行われる。 しかし、 これとは別に、 例えば外 部電源装置 (不図示) 等を別に設け、 この電源装置等から例えば受信装置 4や、 これとは別に設ける送電装置 (不図示) 等の所定の無線通信手段を用いてカプセ ル型内視鏡 2に対して給電する、 いわゆる無線給電方式を採用することも可能で ある。
この場合には、 力プセル型内視鏡 2の内部に設けられる電源部 (不図示) を、 カプセル型内視鏡 2の内部回路への給電制御を行う役目をさせると同時に、 上述 の外部電源装置等から給電される電力の受電手段としての役目もさせる。
また、 カプセル型内視鏡 2の一部に電磁コイルを配設し、 この電磁コイルには 所定のとき、 電流を供給して力プセル型内視鏡 2自身が磁界を発生するようにも なっているので、 この場合においては、 被検者の体腔内に力プセル型内視鏡 2が 導入された後、 このカプセル型内視鏡 2の位置の検出を、 その外部から行うこと が可能になっている。
なお、 このようにカプセル型内視鏡 2の位置検出を行う場合においては、 電磁 コィルばかりでなく、 上述した図 5に示した実施形態における力プセル型内視鏡 2において、 硬磁性体を用いた形態のものでも、 自身が磁界を発生することによ つて、 同様にその位置を検出することができる。
また、 電磁コイルを備えたカプセル型内視鏡 2においては、 外部から強力な磁 界を与えることによる発電作用の利用が考えられ、 力プセル型内視鏡 2を動作さ せるための電力を供給することも可能になる。 さらに、 当該カプセル型内視鏡 2に対して与える外部からの磁界を、 高周波パ ルスを含むパルス信号、 即ち交流磁界を印加する構成にすれば、 当該カプセル型 内視鏡 2の移動制御を行うと同時に、 発電作用を実現し内部電気回路への電力供 給を行い得るような構成にすることもできる。 この場合においては、 高周波パル スを印加しているときに発電作用を行い、 高周波パルスが印加されていないとき に移動制御が行われるように構成できる。
又、 外部からの磁界をパルス信号として印加するようにすれば、 磁力を印加し ている時点においてカプセル型内視鏡 2の移動を行ったり、 発電を行うことがで き、 その一方で磁力を印加していない時においてはカプセル型内視鏡 2自身の電 磁コィルの作用のみによつて位置の検出を行うことができる。
したがって、 位置検出精度の向上に寄与することができると共に、 消費電力の 効率化を図ることができ、 よつて省電力化に寄与することができる。
本実施形態の力プセル内視鏡システムにおけるカプセル型内視鏡自体に、 さら に加えて、 例えば薬剤投与、 細胞等の治療或いは採集機能を具備することもでき る。 このように構成される場合においては、 受動的にカプセル型内視鏡 2の移動 を蠕動運動等に頼るのではなく、 磁力による制御によつて正確な治療や採集等を 行うことが期待でき、 本発明によれば、 より確実に、 かつより安全に実施するこ とができる。 産業上の利用可能性
以上のように、 本発明にかかるカプセル内視鏡システムは、 体腔内に導入され ている状態のカプセル型内視鏡等の誘導又は移動制御を、 外部からの遠隔操作に よって、 より迅速に、 かつ確実に行って、 目的の観察等を行うのに適している。

Claims

請 求 の 範 囲
1 . 外部からの磁界により移動制御される力プセル型内視鏡と、
磁界を一点に局所的に集中発生させて、 診察台上の被検者の体腔内に導入され た上記カプセル型内視鏡の移動を制御する磁界発生手段と、
上記診察台と上記磁界発生手段とを相対的に移動させる移動手段と、
を具備することを特徴とするカプセル内視鏡システム。
2 . 上記カプセル型内視鏡の少なくとも一部に磁界発生部材を設けていることを 特徴とする請求の範囲第 1項記載の力プセル内視鏡システム。
3 . 上記磁界発生部材は磁性体であることを特徴とする請求の範囲第 2項記載の カプセル内視鏡システム。
4 . 上記磁性体は硬磁性体であることを特徴とする請求の範囲第 3項記載の力プ セル内視鏡システム。
5 . 上記磁性体は軟磁性体であることを特徴とする請求の範囲第 3項記載のカブ セル内視鏡システム。
6 . 上記磁界発生部材は上記カプセル型内視鏡の内部に配設される電磁コイルで あることを特徴とする請求の範囲第 2項記載の力プセル内視鏡システム。
7 . 上記電磁コイルは複数個具備され、 これら複数のコイルのうちの少なくとも
1つに時系列的、 かつ選択的に電流が流される構成であることを特徴とする請求 の範囲第 6項記載の力プセル内視鏡システム。
8 . 上記磁界発生手段は磁界を電気的に発生させ、 その磁界の調節が可能な構成 であることを特徴とする請求の範囲第 1項記載のカプセル内視鏡システム。
9 . 上記磁界発生手段は、 磁界が間欠的に印加されるように調節されることを特 徴とする請求の範囲第 8項記載の力プセル内視鏡システム。
1 0 . 上記磁界発生手段によって発生する磁界は交流磁界であることを特徴とす る請求の範囲第 9項記載の力プセル内視鏡システム。
1 1 . 上記磁界発生手段から発生される磁界を、 被検者に対して左右方向より印 加することを特徴とする請求の範囲第 1項記載のカプセル内視鏡システム。
1 2 . 上記磁界発生手段から発生される磁界を、 被検者に対して上下方向より印 加することを特徴とする請求の範囲第 1項記載のカプセル内視鏡システム。
1 3 . 上記磁界発生手段から発生される磁界を、 被検者の周囲から環状に印加す ることを特徴とする請求の範囲第 1項記載のカプセル内視鏡システム。
1 4 . 上記カプセル型内視鏡による観察部位の観察終了後、 上記磁界発生手段か ら発生される磁界の印加が停止されることを特徴とする請求の範囲第 1項記載の カプセル内視鏡システム。
1 5 . 上記移動手段によって、 上記診察台と上記磁界発生手段とを相対的に移動 させて、 上記カプセル型内視鏡を口腔又は肛門より観察目的部位に誘導すること を特徴とする請求の範囲第 1項記載のカプセル内視鏡システム。
1 6 . 上記移動手段によって、 上記診察台と上記磁界発生手段とを相対的に移動 させて、 上記カプセル型内視鏡を口腔又は肛門より体外に取り出すことを特徴と する請求の範囲第 1項記載のカプセル内視鏡システム。
1 7 . さらに、 上記カプセル型内視鏡の位置を表示する表示装置を備えることを 特徴とする請求の範囲第 1項記載の力プセル内視鏡システム。
PCT/JP2004/004147 2003-04-01 2004-03-25 カプセル内視鏡システム WO2004089193A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003098219A JP2004298560A (ja) 2003-04-01 2003-04-01 カプセル内視鏡システム
JP2003-98219 2003-04-01

Publications (1)

Publication Number Publication Date
WO2004089193A1 true WO2004089193A1 (ja) 2004-10-21

Family

ID=32959555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004147 WO2004089193A1 (ja) 2003-04-01 2004-03-25 カプセル内視鏡システム

Country Status (3)

Country Link
US (1) US20040181127A1 (ja)
JP (1) JP2004298560A (ja)
WO (1) WO2004089193A1 (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542326B2 (ja) * 2003-09-30 2010-09-15 オリンパス株式会社 カプセル型医療装置誘導システム
JP4150663B2 (ja) * 2003-12-25 2008-09-17 オリンパス株式会社 被検体内位置検出システム
US7751866B2 (en) * 2004-03-08 2010-07-06 Olympus Corporation Detecting system of position and posture of capsule medical device
JP4054319B2 (ja) * 2004-03-29 2008-02-27 オリンパス株式会社 電力供給装置
JP4520198B2 (ja) * 2004-04-07 2010-08-04 オリンパス株式会社 被検体内位置表示システム
KR100615881B1 (ko) * 2004-06-21 2006-08-25 한국과학기술연구원 캡슐형 내시경 조종 시스템
US9968290B2 (en) * 2004-06-30 2018-05-15 Given Imaging Ltd. Apparatus and methods for capsule endoscopy of the esophagus
JP4624768B2 (ja) * 2004-11-29 2011-02-02 オリンパス株式会社 被検体内導入装置および被検体内導入システム
JP2006212051A (ja) * 2005-02-01 2006-08-17 Yamaha Corp 錠剤型撮像装置、体内撮像システム及び体内撮像方法
US7530948B2 (en) 2005-02-28 2009-05-12 University Of Washington Tethered capsule endoscope for Barrett's Esophagus screening
DE102005019281A1 (de) * 2005-04-03 2007-04-19 Schreiber, Hans, Dr. Dr. Elektronisch steuerbarer Endoskopbausatz
CN100435713C (zh) * 2005-04-07 2008-11-26 中国科学院合肥智能机械研究所 一种体内微机器人的外磁场驱动系统
DE102005056560A1 (de) * 2005-05-09 2006-12-07 Thiel, Christian, Dr. Steuerbare Optrone II
DE102005032289B4 (de) * 2005-07-11 2011-06-30 Siemens AG, 80333 Endoskopiesystem
JP2007082816A (ja) * 2005-09-22 2007-04-05 Hitachi Metals Ltd 電子機器部材、カプセル型内視鏡および医療システム
DE102005053759B4 (de) * 2005-11-10 2010-04-29 Siemens Ag Verfahren und Einrichtung zur drahtlosen Energieübertragung von einem Magnetspulensystem zu einer Arbeitskapsel
CN101351141B (zh) * 2005-12-27 2011-07-13 奥林巴斯株式会社 胶囊型医疗装置引导系统
CN103462581B (zh) * 2005-12-28 2015-11-04 奥林巴斯医疗株式会社 被检体内导入系统
WO2007077895A1 (ja) * 2005-12-28 2007-07-12 Olympus Medical Systems Corp. 被検体内導入システムおよび被検体内導入装置の誘導方法
JP4814647B2 (ja) * 2006-02-06 2011-11-16 Hoya株式会社 内視鏡の画像信号記録装置
DE102006014044B4 (de) * 2006-03-27 2012-04-05 Siemens Ag Verfahren und Einrichtung zur drahtlosen Fernsteuerung der Kapselfunktionen einer eine HF-Sendespule aufweisenden Arbeitskapsel
DE102006014040B4 (de) * 2006-03-27 2012-04-05 Siemens Ag Verfahren und Einrichtung zur drahtlosen Fernsteuerung der Kapselfunktionen einer Arbeitskapsel eines Magnetspulensystems
DE102006014045B4 (de) * 2006-03-27 2012-04-05 Siemens Ag Verfahren und Einrichtung zur drahtlosen Fernsteuerung der Kapselfunktionen einer Ortungsspulen aufweisenden Arbeitskapsel
WO2008004497A1 (en) 2006-07-05 2008-01-10 Olympus Corporation System for guiding medical device
US20090318761A1 (en) * 2006-08-10 2009-12-24 Elisha Rabinovitz System and method for in vivo imaging
JP5084200B2 (ja) * 2006-08-29 2012-11-28 オリンパスメディカルシステムズ株式会社 カプセル誘導システム
AU2006347875B2 (en) * 2006-09-06 2010-10-28 Olympus Corporation Medical device control system
CN101516249B (zh) * 2006-09-12 2011-06-15 奥林巴斯医疗株式会社 胶囊型内窥镜系统、被检体内信息获取装置以及胶囊型内窥镜
US20080139884A1 (en) * 2006-12-06 2008-06-12 Myers William D Medical examination system with endoscopic probe
DE102006060421B4 (de) * 2006-12-20 2016-12-22 Siemens Healthcare Gmbh Medizinisches System zur bildgestützten Diagnose oder Therapie des Körpers eines Patienten sowie von dem System durchgeführtes Verfahren
JP2008178544A (ja) * 2007-01-24 2008-08-07 Olympus Corp 無線給電システム、カプセル内視鏡、及びカプセル内視鏡システム
WO2008095003A2 (en) * 2007-01-31 2008-08-07 Hadasit Medical Research Services And Development Ltd. Magnetic levitation based devices, systems and techniques for probing and operating in confined space, including performing medical diagnosis and surgical procedures
CN101605492B (zh) 2007-02-05 2011-08-17 奥林巴斯医疗株式会社 显示装置以及使用了该显示装置的被检体内信息获取系统
DE102007013773A1 (de) 2007-03-22 2008-09-25 Siemens Ag Magnetisch führendes System, insbesondere medizinisches System, insbesondere Kapselendoskopsystem mit Vorhersage
JP4542560B2 (ja) * 2007-04-05 2010-09-15 オリンパス株式会社 カプセル型医療装置誘導システム
TWI342199B (en) * 2007-07-06 2011-05-21 Univ Nat Taiwan Endoscope and magnetic field control method thereof
US20100268025A1 (en) * 2007-11-09 2010-10-21 Amir Belson Apparatus and methods for capsule endoscopy of the esophagus
JP5112018B2 (ja) * 2007-11-19 2013-01-09 オリンパス株式会社 無線給電システム
JP5385034B2 (ja) * 2008-07-08 2014-01-08 オリンパスメディカルシステムズ株式会社 誘導システムおよび誘導方法
JP5329891B2 (ja) * 2008-09-29 2013-10-30 オリンパス株式会社 無線給電システムおよびその駆動方法
JP5522924B2 (ja) * 2008-10-29 2014-06-18 オリンパス株式会社 生体観察システム及び生体観察システムの作動方法
DE102008064379A1 (de) * 2008-12-22 2010-07-15 Siemens Aktiengesellschaft Magnetspulenanordnung mit festen und beweglichen Spulen
EP2351513B1 (en) 2009-11-09 2016-12-28 Olympus Corporation Capsule medical device guidance system
EP2509492A4 (en) 2009-12-08 2015-04-15 Yehoshua Shachar THERAPEUTIC AND DIAGNOSTIC MAGNETIC PROPULSION CAPSULE, AND METHOD OF USE THEREOF
IT1402844B1 (it) 2010-12-13 2013-09-27 Scuola Superiore Di Studi Universitari E Di Perfez Dispositivo robotico a guida magnetica per procedure di endoscopia
US20130303878A1 (en) * 2011-01-20 2013-11-14 Enav Medical Ltd. System and method to estimate location and orientation of an object
US8900142B2 (en) 2012-08-16 2014-12-02 Rock West Solutions, Inc. System and methods for locating a radiofrequency transceiver in the human body
US10045713B2 (en) 2012-08-16 2018-08-14 Rock West Medical Devices, Llc System and methods for triggering a radiofrequency transceiver in the human body
WO2015061343A1 (en) * 2013-10-22 2015-04-30 Rock West Solutions, Inc. System to localize swallowable pill sensor with three transmitting elements
CN106963324B (zh) * 2017-03-28 2019-05-14 重庆金山医疗器械有限公司 一种胶囊内镜位置的推定方法及装置
CN111432773B (zh) * 2017-12-18 2021-12-28 卡普索影像公司 利用胶囊相机进行胃部检查的装置
CN112336292A (zh) * 2019-08-08 2021-02-09 上海安翰医疗技术有限公司 磁性胶囊内窥镜控制系统的控制方法和装置、及存储介质
CN211460130U (zh) * 2019-12-06 2020-09-11 深圳市资福医疗技术有限公司 一种胶囊内镜磁控设备
CN111110284A (zh) * 2020-02-01 2020-05-08 上海众仁生物医药科技有限公司 胶囊内窥镜病理活检电磁舱

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048342A (ja) * 1990-04-25 1992-01-13 Olympus Optical Co Ltd 被検体内挿入装置
WO2001050941A2 (en) * 2000-01-13 2001-07-19 Capsule View Inc. Encapsulated medical imaging device and method
JP2002000556A (ja) * 2000-06-26 2002-01-08 Nonomura Tomosuke 内視鏡

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681260A (en) * 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
US6690963B2 (en) * 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
DE60216846T3 (de) * 2001-05-28 2011-12-29 Esaote S.P.A. Vorrichtung zur Bildgebung des Körperinneren
US6707300B2 (en) * 2002-05-17 2004-03-16 Ge Medical Systems Global Technology Co., Llc Gradient non-linearity compensation in moving table MRI

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048342A (ja) * 1990-04-25 1992-01-13 Olympus Optical Co Ltd 被検体内挿入装置
WO2001050941A2 (en) * 2000-01-13 2001-07-19 Capsule View Inc. Encapsulated medical imaging device and method
JP2002000556A (ja) * 2000-06-26 2002-01-08 Nonomura Tomosuke 内視鏡

Also Published As

Publication number Publication date
US20040181127A1 (en) 2004-09-16
JP2004298560A (ja) 2004-10-28

Similar Documents

Publication Publication Date Title
WO2004089193A1 (ja) カプセル内視鏡システム
JP5134972B2 (ja) 被検体内医療システム
JP4740515B2 (ja) 患者体内で最低侵襲診断を実施するための装置
US8740774B2 (en) Capsule-type medical apparatus, guidance system and guidance method therefor, and intrasubject insertion apparatus
EP2057931B1 (en) Capsule endoscope guiding system
US9492061B2 (en) Endoscopy system
JP4578740B2 (ja) カプセル型医療装置
JP4542326B2 (ja) カプセル型医療装置誘導システム
US20070173691A1 (en) Capsule-type medical device
JPH07289504A (ja) カプセル内視鏡装置
JP2005192632A (ja) 被検体内移動状態検出システム
EP1964504B1 (en) Body-insertable apparatus and power supplying method therefor
US20110213205A1 (en) Capsule guidance system
WO2006030772A1 (ja) 被検体内導入システム、受信装置および被検体内導入装置
JP2959723B2 (ja) 内視鏡用被検体内挿入装置
WO2005087079A1 (ja) 被検体内導入装置
KR101256409B1 (ko) 캡슐형 내시경 구동 제어 시스템
JP2948861B2 (ja) 被検体内挿入装置
Kusuda A further step beyond wireless capsule endoscopy
KR20220099092A (ko) 캡슐 내시경 제어 장치 및 시스템
CN113229770A (zh) 医疗装置引导和控制系统及方法
CN113440086A (zh) 磁控和无线充电系统
JP7352996B2 (ja) カプセル内視鏡システム
CN216135841U (zh) 磁控和无线充电系统
US20210353135A1 (en) Modular capsule endoscope reconfigurable in digestive organ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase