WO2004086005A1 - 分析装置および分析装置におけるセルカウント方法 - Google Patents

分析装置および分析装置におけるセルカウント方法 Download PDF

Info

Publication number
WO2004086005A1
WO2004086005A1 PCT/JP2004/003894 JP2004003894W WO2004086005A1 WO 2004086005 A1 WO2004086005 A1 WO 2004086005A1 JP 2004003894 W JP2004003894 W JP 2004003894W WO 2004086005 A1 WO2004086005 A1 WO 2004086005A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
cell
size
cells
data
Prior art date
Application number
PCT/JP2004/003894
Other languages
English (en)
French (fr)
Inventor
Ryosuke Yamada
Masatake Hyoudou
Yoshiyuki Fujii
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003080295A external-priority patent/JP2004287939A/ja
Priority claimed from JP2003116411A external-priority patent/JP3955273B2/ja
Priority claimed from JP2003365383A external-priority patent/JP2005127929A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/550,100 priority Critical patent/US20060182329A1/en
Priority to EP04722440A priority patent/EP1612538A1/en
Publication of WO2004086005A1 publication Critical patent/WO2004086005A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1493Particle size

Definitions

  • the present invention belongs to the technology of analyzing cells in the medical device field, injects a sample containing cells of various sizes into and from a disc, irradiates the disc with light, and reflects or transmits the light.
  • the present invention relates to an analysis apparatus for determining and counting the cell size of cells in a specimen from light, and a cell counting method in the analysis apparatus.
  • an analyzer using an optical disc is used as a conventional technique 1 for discriminating and counting the cell size of cells in a sample.
  • the light source is a disk track.
  • the specimen injected on the disc is irradiated with light while tracing over it, and the detector detects the reflected light or transmitted light.
  • the detected signal passes through the AD converter and is stored in the buffer memory.
  • There is a calibration mark on the disk indicating the reference in the direction of rotation, and the data detected by the detector is aligned based on the calibration mark.
  • the intensity of the light detected by the detector is constant, whereas in places where there are cells, detection occurs when the level detected by the detector decreases due to light interference. It recognizes changes in the level of the organ and determines the presence or absence of cells.
  • this method determines the presence or absence of cells in one dimension (on one track).
  • the method for determining cells in two dimensions is shown in Figs. 1 and 2. Will be described.
  • FIG. 1 is a diagram illustrating an analysis method of a conventional analyzer
  • FIG. 2 is a diagram illustrating a method of analyzing cells having different sizes in the conventional analyzer.
  • the presence or absence of cells is determined in one dimension. If it is determined that there are cells, one is stored in memory for each cell, and if it is determined that there are no cells, 0 is stored in memory. Store at regular sampling intervals.
  • Figure 1 shows the internal state of the memory at that time.
  • One-dimensional cell recognition data of cells 104 present on track 102 of the disc is stored in specimen memory 101, with each track 102 corresponding to each bit of the data bus. .
  • an m-row x n-column window 103 corresponding to the size of the cell 104 is arranged on the specimen memory 101, and the memory is shifted by 1 bit each in the axial direction and the track direction. Scan over 101.
  • Figure 11 is an explanatory diagram of the cell detection method in the conventional cell counting method.
  • Fig. 11 (a) is an explanatory diagram of the positional relationship between the cell to be measured on the analysis disk, the track and the laser beam in the conventional cell counting method
  • Fig. 11 (b) is the conventional cell counting method.
  • FIG. 6 is an explanatory diagram of a method of determining a cell size by using a window in the cell counting method and counting by size.
  • reference numeral 201 denotes a cell as a measurement object injected onto the analysis disk
  • reference numeral 202 denotes a track on the analysis disk
  • reference numeral 203 denotes a laser beam relatively moving on the analysis disk. It is.
  • a conventional analyzer injects a sample into an analysis disk and analyzes a specific number of cells 201 among cells 201 of various sizes existing in the sample.
  • a track 202 is engraved in a spiral like an optical disk such as a CD-ROM. When the analysis disk rotates, the laser beam 20 3 is controlled to move.
  • cell 201 which is the object to be measured, is larger than the width of track 202, and extends over a plurality of tracks 202.
  • a signal change occurs in the laser-light receiving unit depending on whether or not the cell 201 is on the track 202.
  • By processing this signal change if it is determined that there is a cell 201, "1" is stored in the memory, otherwise "0” is stored in the memory.
  • the size of multiple cells is determined, and the number is counted by size.
  • a square window is used as a cell counting method for determining the cell size and counting cells according to the size.
  • a method is used in which the window is switched for each desired size and cells to be measured are detected and counted by size.
  • FIG. First, as shown in (b), using a window of size 6XXI, scanning is performed while shifting one by one in the X direction, and the number of locations where "1" is included in each line of the window is determined. Count.
  • the number of cells existing over six or more tracks and the number of cells existing over seven or more tracks can be obtained, and the number of cells with the size of six tracks can be obtained from the difference. it can.
  • XI is an integer value larger than the displacement range of “1” due to disc rotation unevenness and signal detection variation. Even if a displacement of “1” occurs in each track, the same value is assumed. It can be detected as "1" detected from the cell.
  • an isolated point is detected by applying an isolated point detection filter FD to image data, and the image data is determined by the number of isolated points detected in a predetermined area. It conforms to the halftone image discrimination method of discriminating whether or not it is a halftone image and outputting the discrimination result, and performs window scanning in a memory to handle image data.
  • Figure 16 shows the method of storing data in memory during cell recognition.
  • the data of the cell 3 11 to be measured is taken for each track 3 12 of the disk, and the binarized data is made to correspond to the bit of the data bus, and is transferred to the memory area 3 13 in the order of sampling. It will be stored.
  • a cell is recognized on the passed track 3 1 2, it is stored as “1”, and when no cell is recognized, “0” is stored.
  • a X b ' is stored in the memory storing the cell data as described above (for example, 3 X 8 ) Scan window 3 14 fixed in size.
  • a corresponds to the fact that the size of the cell to be measured is approximately a track
  • b is the cell recognition data even if the sample position in the track is shifted due to jitter. Evening “1” is based on the fact that if the cell is the same, the search can be performed within consecutive b samples.
  • the scanning method the window is shifted by one sample in the address direction, and the window is shifted down by one bit in the bit direction. If “1” is continuous for a bit in the bit direction in the window, it is recognized as one cell and counted, and all “1” s in that window are replaced with “0”. And repeated these operations.
  • cells 105 to be detected and cells 106 not to be detected which are twice as large as cells 105, are mixed in the specimen. If the sample memory 101 is scanned with a window 107 corresponding to the size of the cell 105 to be detected, the cell 106 that you do not want to detect is the cell 1052 that you want to detect. It is counted as one. For example, if there are 100 cells that you want to detect and 50 cells that you do not want to detect, b
  • the number of cells 106 not to be detected In order to determine the number of cells 105 to be detected, the number of cells 106 not to be detected must be determined and subtracted from the total. Therefore, this time, the sample memory 101 is scanned with a window 108 that matches the size of the cell 106 that you do not want to detect. However, the data in the sample memory 101 cannot be used because it has already been scanned in the window 107 and rewritten. Therefore, it is necessary to retake the night. However, it not only doubles the analysis time, but also has the problem that analysis errors may increase because the analysis conditions are not the same.
  • a cell having a size of six tracks when trying to detect a cell having a size of six tracks, a cell having a size of seven or more is detected again in the window scanning of the next row, even if the cell is detected once.
  • the present invention eliminates the need to re-measure the presence or absence of a cell on a track a plurality of times, and can quickly and accurately adjust the cell size by one data acquisition. It is an object of the present invention to provide an analyzer and a cell counting method in the analyzer, which can discriminate and count, improve the counting accuracy of desired cells, and shorten the measurement time. .
  • the analyzer according to claim 1 of the present invention is an analyzer that injects a sample containing cells onto a disk, irradiates the disk with light, and determines the number of cells in the sample from the reflected or transmitted light of the light.
  • a one-dimensional cell recognition unit that performs one-dimensional cell recognition based on a change in reflected light or transmitted light of the light, and a bit corresponding to each track of a disc based on the recognition result of the one-dimensional cell recognition unit.
  • a sample memory for storing first data indicating the presence / absence of cells in the sample memory; andscanning the sample memory in units of windows of an arbitrary size to confirm the first data.
  • the analyzer according to claim 2 of the present invention injects a sample containing cells onto a disk, irradiates the disk with light, and counts the number of cells in the sample from the reflected light or transmitted light.
  • a two-dimensional cell recognizing unit for recognizing an object, a window switching unit for arbitrarily changing the size of the window during scanning of the sample memory, and one or more windows in the two-dimensional cell recognizing unit.
  • a cell size discriminating unit for discriminating the size of the cell recognized from the scanning result of the cell size, and a data erasing unit for erasing the first data after the discrimination by the cell size discriminating unit.
  • the analyzer according to claim 3 of the present invention is the analyzer according to claim 1 or claim 2, wherein the sampling cycle is variable according to the size of cells in the sample. It is characterized by having such a configuration.
  • the analyzer according to claim 4 of the present invention is the analyzer according to claim 1, wherein, when the sample memory is scanned in the window, an interval between cells is stored.
  • a memory jump control unit that has a cell interval memory to store, and scans only an area where cells are present based on the information from the cell interval memory when switching the window size and running the sample memory again It is characterized by having. As described above, the desired number of cells can be obtained by one data acquisition, and the analysis can be performed with high accuracy in a short time.
  • the binary data of “0” or “1” obtained based on the presence or absence of a plurality of size cells injected on the analysis disk is used.
  • the size is expressed in the row XX with the X direction of the data array as a row, and in the horizontal direction X and the vertical direction Y
  • the data array in the area is read by a scanning window capable of moving the cell, the presence or absence of the cell is determined by calculating based on the data, and the cell size is determined by determining the cell size.
  • a cell counting method in an analyzer for counting the number of cells, wherein the scanning window has a size of 1 XX 1 (XI: a constant in an integer range) and the entire area is “0”.
  • XX 1 a constant in an integer range
  • the entire area is “0”.
  • the cell counting method in the analyzer according to claim 6 of the present invention is the cell counting method in the analyzer according to claim 5, wherein X 1 is a value larger than a displacement range due to variation in the sampling start point.
  • the method is characterized in that:
  • the first window and the third window determine data using X1 which is larger than the displacement range as X, the position of "1" can be detected even if the sampling start point is displaced.
  • the cell counting method in the analyzer according to claim 8 of the present invention is the cell counting method in the analyzer according to any one of claims 5 to 7, wherein the presence or absence of a cell
  • the method is characterized by irradiating a track on an analysis disk into which a laser beam has been injected with a laser beam and making a determination based on a change in the amount of light when received by a photodetector.
  • the presence or absence of a cell on a track is determined by irradiating a laser beam.
  • the binary data of “0” or “1” obtained based on the presence or absence of cells having a plurality of sizes injected on the analysis disk is used.
  • the size is expressed in row XX with the X direction of the data array as a row and moved in the horizontal direction X and the vertical direction Y described above.
  • the above-mentioned data array in the area is read by a scanning window capable of performing the calculation, the presence or absence of the cell is determined by calculating based on the data, the cell size is determined, and the cell size is determined for each cell size. What is claimed is: 1.
  • a cell counting method in an analyzer for counting the number of cells wherein the scanning window has a size of 1 XX 1 (where XI is an integer variable) and all the values in the area are “0”.
  • Judge A first window which is located at the center of the first window in the X direction in a row next to the first window and has a size of 1 X 1 and whether or not the area is "1" Window, and at least one row in the area having the size of Y 1 XX 1 (Y 1 is an integer variable) located on the next row of the second window, and “1”
  • a third window for determining whether or not IXXI (X1 is an integer variable) located on the next line to the third window.
  • a scanning window including a fourth window for determining whether or not the cell size is satisfied, and a method for determining the cell size using the scanning window.
  • the cell counting method in the analyzer according to claim 10 of the present invention is the cell counting method in the analyzer according to claim 9, wherein X 1 is smaller than the displacement range due to the variation of the sampling start point. It is characterized in that the method is set to a large value.
  • the first window and the third window determine the data using X1 which is larger than the displacement range as X, the position of "1" can be detected even if the sampling start point is displaced.
  • the cell counting method is a cell counting method in the analyzer according to claim 9 or 10, wherein the presence or absence of a cell is determined by irradiating a track on the analysis disk into which the cell is injected with laser light,
  • the feature is that the method is based on the change in light quantity when light is received by the detector.
  • the presence or absence of a cell on a track is determined based only on the change in the amount of light when the photodetector receives light by irradiating laser light. Is stored in the memory, so that the complexity of data processing when there are multiple "1" s per cell can be avoided.
  • the analyzer according to claim 12 of the present invention is an analyzer which irradiates a detection disk onto an analysis disk into which a cell has been injected with detection light, and counts the cell from data received by a photodetector.
  • a memory for assigning and storing binarized cell information obtained for each track on the analysis disk for each bit of the data bus, a window movable in the memory area,
  • a window movement control unit for controlling movement of a window; a cell size determination unit for recognizing a cell from the array of “1” in the window and determining the size; and incrementing the count after the recognition of the cell. It has a cell count section and a memory rewrite section that rewrites “1” to “0” after the cell recognition.
  • An analyzer is the analyzer according to claim 12, wherein a 1 ⁇ 1 size window is provided in the memory area in the window movement control unit.
  • a window scanning unit for scanning in the address direction; a ⁇ 1 '' determining unit for determining the presence or absence of 1 J during the window scanning; and a counting unit for counting ⁇ 1 '' each time the determining unit detects ⁇ 1 ''
  • a cell size counter a window control unit that expands the window to the position of “1” found by the determination unit, and a “1” in the bit direction each time the determination unit detects “1”.
  • a shift section that shifts a scanning section, and a search section control section that limits a window scanning range in the shifted scanning section are provided.
  • the window size for one cell can be obtained.
  • the size of the cell in the track direction can be determined, and there is no need to change the window size for recognizing large-sized cells.Therefore, there is no need to reuse the memory. Cell size discrimination and control are possible.
  • the analyzer according to claim 14 of the present invention is the analyzer according to claim 12 or claim 13, wherein the search interval control unit expands the desired cell size in the address direction.
  • the feature is that the size is determined and that is used as the mining section of the next level.
  • the cell counting method in the analyzer according to claim 15 of the present invention is directed to an analyzer that irradiates a detection disk into which cells are injected with detection light and counts the cells from data received by a photodetector.
  • a 1-size window is scanned in the memory area in the address direction to detect a "1”, and a window 1XX6 (1XX6) is centered on the detected "1".
  • X6 a constant of the integer range), and a window of the above 1XX6 is provided in the next stage, and if there is "1" in the window, the window to the next stage is obtained.
  • Step 3 of enlarging the window Step 4 of repeating Steps 2 and 3 until no "1" is detected in the window, and if no "1" is detected in the window. Said If the window enlargement is completed and the size of the window in the Y direction is a predetermined value, a step 5 of counting as cells and rewriting all “1” in the enlarged window to “0”, It is characterized in that it is a method consisting of step 6 which is repeated from the processing of step 1.
  • the present invention even if cells of different sizes are mixed by optimizing the amount of window movement so that the same bit does not run repeatedly during scanning.
  • the desired number of cells can be obtained with a single data acquisition, and analysis can be performed in a short time with high accuracy.
  • the size of the cells can be determined, and even if cells of different sizes are mixed, one time The desired number of cells can be obtained by data acquisition, and analysis can be performed in a short time with high accuracy.
  • the size of cells can be obtained.
  • a desired number of cells can be obtained by one data acquisition, and high-level analysis can be performed in a short time.
  • a judgment window for detecting 0 provided on the first line of the ⁇ . ⁇ window and a 1 ⁇ 1 judgment window for detecting 1 provided on the second line of the scanning window ' ⁇ are provided.
  • FIG. 1 is a diagram illustrating an analysis method of a conventional analyzer
  • Figure 2 is a diagram explaining the method of analyzing cells of different sizes in a conventional analyzer
  • FIG. 3 is a block diagram of the analyzer according to Embodiment 1 of the present invention
  • FIG. 4 is a diagram showing a procedure for scanning a window of the present invention
  • FIG. 5 is a block diagram of an analyzer according to Embodiment 2 of the present invention
  • FIG. 6 is a block diagram of an analyzer according to Embodiment 3 of the present invention
  • FIG. 7 is a cell count of Embodiment 4 of the present invention. Illustration of the cell detection method in the method,
  • FIG. 8 is an explanatory diagram of window scanning in Embodiment 4.
  • FIG. 9 is an explanatory diagram of a cell detection method in the cell counting method according to the fifth embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of window scanning in the fifth embodiment
  • FIG. 11 is an explanatory diagram of a cell detection method in a conventional cell counting method
  • FIG. 12 is a diagram of the sixth embodiment of the present invention.
  • FIG. 13 is a block diagram illustrating an analyzer
  • FIG. 13 is a diagram illustrating a cell size determination and counting method in the analyzer according to the sixth embodiment
  • FIG. 14 is a diagram showing a cell size discrimination and counting method in the analyzer of Embodiment 6;
  • FIG. 15 is a diagram showing a cell size discrimination and counting method in the analyzer according to Embodiment 6;
  • FIG. 16 is a diagram showing a method for storing data in memory in the conventional analyzer and in the analyzer according to the sixth embodiment of the present invention.
  • Fig. 17 is a diagram showing the cell size discrimination and counting method in the conventional analyzer.
  • FIG. 18 is a diagram showing a cell size discrimination and force measurement method in the conventional analyzer.
  • FIG. 19 is a diagram showing a cell size determination and counting method in the analyzer according to the seventh embodiment of the present invention.
  • FIG. 20 is a diagram showing a cell size determination and counting method in the analyzer of Embodiment 7;
  • FIG. 21 is a diagram showing a cell size discrimination and counting method in the analyzer according to the seventh embodiment.
  • FIG. 3 is a block diagram of the analyzer according to Embodiment 1 of the present invention
  • FIG. 4 is a view showing a procedure for scanning a window of the present invention.
  • 109 is a translucent optical disk
  • 110 is an optical pickup for irradiating the optical disk with one laser beam
  • 111 is one laser beam emitted from the optical pickup 110
  • 1 1 2 is a photodetector A that receives the laser beam 1 11 transmitted through the disc 109 and converts it into an electric signal
  • 113 is a polarizing prism
  • 114 is a laser beam reflected on the optical disc 109.
  • Photodetector B which receives light 1 1 1 and converts it into an electric signal, 1 1 5 is photodetector A 1 12.
  • One-dimensional cell recognition unit for one-dimensionally recognizing cells based on signals from photodetector B114, 116 is information from windows 107 and 108
  • a two-dimensional cell recognizing unit that recognizes cells two-dimensionally on the basis of the reference numeral 118 denotes a window 107
  • a window moving amount calculating unit that calculates the next moving amount of the window 108
  • 119 denotes a window moving amount calculating unit.
  • a window memory for storing the window movement amount, 117 is a result determination unit for determining whether the result determined by the two-dimensional cell recognition unit 116 from the contents of the window memory 119 is correct, 1
  • Reference numeral 20 denotes a window movement control unit that controls movement of the windows 107 and 108.
  • a specimen (not shown) is injected into the optical disc 109.
  • the optical disc 109 rotates at a constant speed, and during that time, the optical pickup 110 constantly irradiates the optical disc 109 with one laser beam.
  • a part of the laser beam 1 111 passes through the optical disk 1 09 and is received by the photodetector A 1 1 2.
  • Part of the light is reflected by the optical disk 109, and the reflected light is refracted by the deflecting prism 113 and received by the photodetector B114.
  • the signal ratio of the photodetector A112 and the photodetector B114 is always constant, but there is no cell in the specimen.
  • the one-dimensional cell recognition unit 115 determines the presence or absence of a one-dimensional cell from the change in the signal ratio. Here, if it is determined that there are cells, set the bit corresponding to each track on the disk to '1' for each cell and set the other bits to '0'. 2 ⁇
  • the '1' '0' signal of is stored in the sample memory at a fixed sampling interval.
  • the window movement amount calculation unit 118 the window movement amount is set so that the windows to be scanned do not overlap and there is no non-scanning area according to the window size at each window movement. Is calculated. In this case, if the size of window 107 is 3 rows x 3 columns, the same cell is not counted twice, so the next location where window 107 moves is 3 bits in the tangential direction from the current location. Or it is a 3 bit point in the track direction.
  • This movement amount is stored in window memory 1 19. Specifically, the window memory 1 1
  • the amount of movement in the track direction is stored in the window memory 119 at a position corresponding to the evening position of the sample memory 101. Then, as in the evening part, the value is decremented to 1 by moving 1 bit in the direction of the win H ⁇ track, and becomes 2, and becomes 0 by moving 3 bit. Next, adjust the size of the window 105 to the size of the cell 105 to be detected.
  • Scanning is performed from one end of 101 to the other, and then the scanning is performed by 1 bit in the track direction.
  • the two-dimensional cell recognition unit 1 16 always checks whether or not '1' is present in any bit of the window 107 during scanning of the window 107 in the tangential direction. It is determined that there are cells in two dimensions.
  • the result determination unit 117 refers to the contents of the window memory 119, and when the data in the window memory corresponding to the current position of the window is '0', that is, when the cell is once recognized as the region where the cell has been recognized. Only when the window moves to a non-overlapping area, the result that the two-dimensional recognition unit 116 determines that there is a cell is determined to be correct.
  • the window memory may be provided in an empty area of the sample memory.
  • the same information is stored in the window memory by optimally controlling the window movement by storing information indicating that the window has been moved by a distance corresponding to the window size. It is possible to prevent duplicate detection of cells and eliminate the need to retake data every time the window size is changed. Thus, it is possible to obtain a desired cell number by acquiring the data, and it is possible to provide an analyzer for performing highly accurate analysis in a short time.
  • FIG. 5 is a block diagram of an analyzer according to Embodiment 2 of the present invention.
  • reference numeral 1 2 denotes a data addition unit for adding data to a portion determined to have cells by the two-dimensional cell recognition unit 1 16, and 1 2 1 denotes data added by the data addition unit 1 2 2
  • the difference from the configuration of the first embodiment is that the window movement amount calculation unit 118 and the window memory 119 are abolished, and the data addition unit 122 and the cell size determination unit 121 are added. It is.
  • the data adding unit 122 adds data to the bit of the sample memory 101, which recognizes that a cell is present, for each scanned window. For example, when window 107 recognizes that there is a cell, data is added to the left of '1,' in window 107 to be '1 1', and window 108 recognizes that there is a cell. In this case, add data to the left side of '1' in window 108 and set it to '101'. If both cells 107 and 8 are recognized as having cells by this method, the value is set to '1 1 1'. In addition, by confirming the presence or absence of this data in the window movement control unit 120, the window movement amount is adjusted so that the windows to be scanned do not overlap and there is no area to be scanned. Moving window Control.
  • the cell size discriminating unit 121 checks the data for each window size added by the data adding unit 122, and judges the actual cell size based on the data. For example, it is assumed that a portion that has been recognized as having cells during scanning in window 108 is a portion that has already been determined to have cells in window 107. In this case, there is actually one cell having a size corresponding to window ⁇ ⁇ 108. However, since the window 107 scanned earlier has the size of 1Z2 of the window 108, this cell should be recognized as two cells corresponding to the window 107. is there. Therefore, the count of two cells recognized in the window 107 must be reduced by one or two.
  • the amount of window movement is controlled so as not to perform overlapping scanning.
  • specific data is stored in the sample memory by detecting cells in each window. Has been added. This prevents duplicate scans and allows counting the number of cells of different sizes.
  • the memory jump control unit controls to scan only the area where cells are present, and when rescanning, accesses the sample memory information at the tangential position where cells do not exist and performs 2D recognition. Doing so can save waste.
  • FIG. 6 is a block diagram of an analyzer according to Embodiment 3 of the present invention.
  • reference numeral 123 denotes a window switching unit for switching the window ⁇ for scanning the sample memory 101 during scanning.
  • the difference from the configuration of the second embodiment is that a window switching unit 123 is added and that a data adding unit 122 is replaced with a data erasing unit 124.
  • the window 107 scans the specimen memory 101 in the tangential direction one bit at a time. Then, when the two-dimensional cell recognition unit 116 recognizes a cell at a certain point, the window switching unit 123 switches the window 107 to the window 108, and then returns to the two-dimensional cell recognition unit 1. 16 performs cell recognition. At this time, if a cell is recognized in both the window 107 and the window 108, the cell size discriminating unit 121 is a cell having a size corresponding to the window 108. Judge. On the other hand, when a cell is recognized only in the window 107, the cell size discriminating unit 121 displays the cell in the window 107.
  • the window to be scanned first is window 107, but this may be window 108. However, in this case, it is necessary to switch windows sequentially at a point where no cells are recognized by the two-dimensional cell recognition unit 116, contrary to the above processing.
  • the number of cells detected in each window is changed by switching the window size and rescanning before rewriting the data in the sample memory during the window scanning. Therefore, there is no need to retake data every time the window size is changed.Therefore, it is possible to obtain a desired number of cells with one data acquisition, and to provide an analyzer for performing high-speed and high-accuracy analysis. Can be.
  • a cell counting method according to the fourth embodiment of the present invention will be described.
  • FIG. 7 is an explanatory diagram of a cell detection method in the cell counting method of the fourth embodiment
  • FIG. 7 (a) shows a cell to be measured on an analysis disk in the cell counting method of the fourth embodiment.
  • FIG. 7 (b) is an explanatory view of a positional relationship between a track and a laser beam
  • FIG. 7 (b) is an explanatory view of a method of determining a cell size using a window and counting by size in the cell counting method according to the fourth embodiment. It is.
  • reference numeral 201 denotes a cell which is an object to be measured injected onto the analysis disk
  • 202 denotes a track on the analysis disk
  • 203 denotes a laser moving relative to the analysis disk.
  • the analyzer 4 injects the sample into the analysis disk and analyzes the number of specific cells among the cells 201 of various sizes existing in the sample.
  • tracks 202 are engraved in a spiral like an optical disk such as a CD—R0M, and when the analysis disk rotates, the tracks 202 are relatively recorded on the analysis disk.
  • the light 203 is controlled to move.
  • the cell 201 which is the object to be measured, is larger than the width of the track 202, and extends over a plurality of tracks 202, and the laser beam 203 moves on the track 202.
  • a signal change occurs in the laser light receiving portion depending on whether or not the cell 201 is on the track 202.
  • the run window in the cell counting method of the fourth embodiment is basically represented by a row XX with the X direction of the data array of the memory 204 as a row, and FIG.
  • the data array of the memory 204 has a first window for determining whether or not all the area becomes “0” with a size of 1 XX 1 (X 1 is an integer constant).
  • Window 205 B to determine whether or not the area is the area of the size of Y XX 1 (Y is an integer variable) located on the line next to the second window ⁇ 205 B
  • a scanning window 205 consisting of a third window 205C for determining whether each line in the table contains at least one "1". ing.
  • Such a scanning window 205 can be moved in the horizontal direction X and the vertical direction Y of the data array, and the scanning window 205 allows scanning from the upper left of the data array which is the sampling start point. Start, shift one by one to the right, move to the end of the line, move the window starting from the left end of the next line, and shift one by one from left to right to meet the conditions in each window. A method of searching for a matching part is used.
  • Fig. 8 shows the procedure for detecting cells with a size of six tracks as an example.
  • the detection result by the scanning window 205 when all the search ranges are completed indicates the number of cells equal to or more than six tracks.
  • the size of the window 205C is set to 6XX1, and the positions that satisfy the condition are searched for one by one from the left in the same manner as above. In this way, the detection result by the scanning window 205 when all the search ranges have been completed indicates the number of cells of seven or more tracks.
  • Fig. 8 (c) As shown in, two locations are detected as locations satisfying the condition, and there are two cells of seven or more.
  • the number of cells existing over six or more tracks and the number of cells existing over seven or more tracks are obtained, and the difference between them is used to determine the number of cells having the size of six tracks.
  • X 1 is an integer value larger than the variation range of the data array.
  • the detection conditions of each of the windows 205A, 205B and 205C of the scanning window 205 are not satisfied. In this way, there is no need to erase the data so as not to read the data again and again, and it is not necessary to repeat the measurement.
  • a cell counting method according to a fifth embodiment of the present invention will be described.
  • FIG. 9 is an explanatory diagram of a cell detection method in the cell counting method of the fifth embodiment.
  • FIG. 9 (a) shows a cell and a track, which are objects to be measured, on an analysis disk in the cell counting method of the fifth embodiment.
  • FIG. 9 (b) is an explanatory diagram of a cell counting method according to the fifth embodiment, in which a cell size is determined using a window and counting is performed for each size. is there.
  • reference numeral 201 denotes a cell which is an object to be measured injected onto the analysis disk
  • 202 denotes a track on the analysis disk
  • 203 denotes a laser moving relative to the analysis disk. It is one light.
  • the memory 20 Up to the point where the data array is stored in 4, the description is omitted here because it is the same as in the fourth embodiment.
  • the size of the scan window in the cell counting method of the fifth embodiment is basically represented by row XX with the X direction of the data array of the memory 204 as a row, as shown in FIG. 9 (b).
  • the first window 206 which determines whether or not all the data in the area is “0” with the size of 1XX1 (XI is an integer variable) A, in the line following the first window 206 A, the size of 1 X 1 located at the center in the X direction of the first window 206 A, and whether the area is "1"
  • the second window 206B to determine whether or not it exists, and the size of YlXXI (Y1 is an integer variable) located in the next row of the second window 206B 3rd window 206C to determine whether each line contains at least one "1", and 1XXI (XI is an integer) located on the next line of the 3rd window 206C Variable)
  • a scanning window 206 including a fourth window 206D for determining whether or not all
  • Such a scanning window 206 can be moved in the horizontal direction X and the vertical direction Y of the data array, and the scanning window 206 allows the upper left of the data array which is the sampling start point to be moved. Start scanning from the right, shift one by one to the right, move to the end of the line, move the window starting from the left end of the next line, and shift from left to right one by one in each window. The method of searching for a part that meets the condition of is used.
  • the size of the window 206C in the vertical direction Y differs depending on the cell size to be obtained.
  • FIG. 10 shows a procedure for detecting a cell having a size of six tracks as an example.
  • the window 206 is scanned from the upper left to the right in the data array, and when it reaches the end of the line, the window is moved from the left end of the next line to the top and shifted one by one from left to right. Search for places that meet the conditions.
  • the detection result by the scanning window 206 when all the search ranges are completed indicates the number of cells for six tracks.
  • one of the run windows 206 shown in Fig. 10 (b) is regarded as a location that satisfies the conditions. , And there is one cell for six cells.
  • the cell size on the track can be determined and counted quickly and accurately without the need to re-measure the presence or absence of the cell a plurality of times.
  • a cell counting method according to the sixth embodiment of the present invention will be described.
  • the method of storing data in the memory area 3 13 as shown in FIG. 16 uses the same method as the conventional method.
  • the size of the window ⁇ that can be moved in the memory area first is set to 1 ⁇ 1, and the window 301 is set in the memory area.
  • Window scanning unit The window scanning method in the window scanning unit is as follows: starting from the first row and first column in the memory area, moving in the address direction in order, and scanning in all areas in the address direction is completed. Then, it is shifted one step in the bit direction, and scanning is performed sequentially from the first column. The scanning is performed while the presence / absence of “1” is determined by the “1” determination unit. If the data in the passing area is “0”, the data passes as it is, and if “1” is found, it stops there once. At this time, a cell size counter is set up, and every time a "1" is found, the count is incremented.
  • the section to search for the next “1” is shifted one step in the bit direction based on the “1” found here (step change section).
  • a size to be expanded in the address direction from a desired cell size is determined, and is set as a search section for the next bit (search section control unit).
  • the size of the search section to be expanded in the address direction is fixed to a range of m samples (the value of m depends on the desired cell size) in the address direction based on the first “1”. However, if the value of m is set too large, another cell nearby may be recognized as the same cell, so it is necessary to determine an appropriate value of m for the target cell size. There is.
  • a window scanning section scans the section 3 0 3 determined in the manner described above by the window scanning section, and searches for another “1” by the “1” determination section. If there is a “1”, the window size control unit expands the window to the place where the “1” is present 30 2 (Fig. 14), and another “1” is searched in the search section of the next bit of the window. Look for.
  • the cell size is determined from the value of the cell size counter at that time (cell size determination unit), and if it is the target cell size, it is counted from the cell count unit (Fig. 15).
  • the “1” in the window at the end of the count is changed to “0” by the memory rewrite unit, and the “1” is searched for in the 1 ⁇ 1 window. Start from where.
  • this memory rewriting unit can rewrite only “1” of cell data at a specific size to “0” or leave it as “1”.
  • window scanning in the memory area is completed, and the number of target cells is counted.
  • the size of a cell can be determined when recognizing a cell, counting can be performed for each cell size, or only a cell having a desired size can be counted.
  • the method of storing data in the memory area 3 13 as shown in FIG. 16 uses the same method as the conventional method.
  • the size of the window ⁇ movable in the memory area is set to 1 XI, and the window 305 is scanned into the memory area.
  • the window scanning method in the window scanning unit is as follows: starting from the 1st row and 1st column in the memory area, moving in the address direction in order, and completing the scanning in all the areas in the address direction. For example, it shifts one step in the bit direction and scans sequentially from the first column. The scanning is performed while judging the presence or absence of '1' by the '1' judging unit. If the data in the passing area is '0', the scan passes as it is. At this time, a cell size counter is set up, and every time a '1' is found, the counter is incremented in the evening.
  • the size to be expanded in the address direction from the desired cell size is determined, and the window ⁇ 2005 is expanded by that size to make the bit direction search window 303 .
  • the size of the search section to be expanded in the address direction is fixed to a range of m samples (the value of m depends on the desired cell size) in the address direction based on the first '1'. However, if the value of m is set too large, another cell nearby may be recognized as the same cell, so it is necessary to determine a value of m suitable for the target cell size. is there.
  • the section to search for the next '1' is shifted one step in the bit direction. If '1' exists in the shifted window, the window is shifted one step further to the next bit, and this operation is continued. When '1' disappears, the shift of the window 306 in the bit direction is finished, and the passing portion of the window 306 so far is combined into one window 307. In other words, the window 307 is in a state where each bit contains '1'.
  • the cell size is determined from the bit size of window 307, and if the cell size is the target cell size, it is counted from the cell count section.
  • '1' in the window where the count has ended Are all rewritten to '0' by the memory rewrite unit, and start by searching for '1' in the 1 X 1 window 3 05.
  • this memory rewriting unit can rewrite only '1' of cell data at a specific size to '0' or leave it as '1'.
  • its size when recognizing a cell, its size can also be determined, so that it is possible to count for each cell size or to count only cells of a desired size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

ウィンドウメモリに、ウィンドウサイズに応じた距離だけ移動したことを示す情報を格納することにより、ウィンドウ移動を最適に制御することによって、同じ細胞の重複した検出の防止が可能となり、ウィンドウサイズを変更する毎にデータを取り直すといった必要がなくなるため、1回のデータ取得で所望の細胞数を求めることができ、短時間で高精度に分析する細胞分析装置を提供することができる。

Description

明 細 書 分析装置および分析装置におけるセルカウント方法 技術分野
本発明は、 医療機器分野の中でもセルを分析する技術に属し、 ディスク上に大小様々の大きさからなる細胞を含有した検体を注入 し、 このディスクに光を照射してその光の反射又は透過光から、 検 体中における細胞のセルサイズ判別とカウントを行うための分析装 置および分析装置におけるセル力ゥント方法に関するものである。 背景技術
医療機器分野の中でも、 検体中における細胞のセルサイズ判別と カウントを行うための分析装置の従来技術 1 として、 光ディスクを 利用した分析装置が利用されており、 この分析装置では、 光源が ディスクのトラック上を トレースしながらディスク上に注入された 検体に対して光を照射し、 検出器がその反射光又は透過光を検出す る。 検出された信号は A D変換器を通りバッファメモリに保存され る。 ディスク上には回転方向の基準を示す較正マークが存在し、 検 出器により検出されたデータは較正マークを基準に整列される。 検 体内に細胞が存在しない場所は、 検出器が検出する光の強度は一定 であるのに対し、 細胞が存在する場所は、 光の干渉により、 検出器 が検出するレベルが低下するといつた検出器のレベル変化を認識し て細胞の有無を判断している。
また、 この方法は 1次元 ( 1つの トラック上) での細胞の有無を 判断するものだが、 2次元で細胞を判断する方法を図 1, 図 2 を用 いて説明する。
図 1 は従来の分析装置の分析方法を説明する図、 図 2 は従来の分 析装置における大きさの違う細胞を分析する方法を説明する図であ る。
まず、 1次元で細胞の有無を判断し、 細胞が有ると判断された場 合はメモリに細胞 1つにつき 1つ ' 1 ' を、 細胞がないと判断され た場合はメモリに ' 0 ' を一定のサンプリ ング間隔で格納する。 そ のときのメモリ内部の状態が図 1 に示される。 ディスクの トラック 1 0 2上に存在する細胞 1 0 4の 1次元細胞認識データが検体メモ リ 1 0 1上に各トラック 1 0 2をデータバスの各 b i t に対応させ た形で格納されている。 このとき、 検体メモリ 1 0 1上に細胞 1 0 4の大きさに対応した m行 X n列のウィ ンドウ 1 0 3を配置し、 夕 ンジェンシャル方向、 トラック方向にそれぞれ 1 b i tずつずらし ながら前記メモリ 1 0 1上を走査する。 走査する際、 ウィ ンドウ 1 0 3内のすべての行に ' 1 ' が存在するとき 2次元的に細胞が有る と判断される。 このとき、 ウィ ンドウ内に存在する全ての ' 1 ' を ' 0 ' に書き換え、 以後、 同じ細胞を重複して検出するのを防ぐた めの処理を行う。 この場合、 検出対象となる細胞の大きさはウィ ン ドウサイズによって決まってくる。 検出したい細胞の大きさを変え たい場合は、 それに合わせてウイ ンドウ 1 0 3のサイズを変更する。
また、 分析装置の従来技術 2 として、 分析ディスク上に注入した 大小様々の大きさからなるセルに対して、 一定範囲の大きさのセル をサイズ別にカウン トするための従来のセルカウント方法について、 図面を用いて説明する。
図 1 1 は従来のセルカウン ト方法におけるセル検出方法の説明図 であり、 図 1 1 ( a ) は従来のセルカウント方法における分析ディ スク上の測定対象物であるセルと トラックおよびレーザー光との位 置関係の説明図、 図 1 1 ( b ) は従来のセルカウント方法でウィ ン ドウを用いてセルのサイズを判別してサイズ別にカウントする方法 の説明図である。
図 1 1 ( a ) において、 2 0 1 は分析ディスク上に注入した測定 対象物であるセル、 2 0 2は分析ディスク上のトラック、 2 0 3は 相対的に分析ディスク上を移動するレーザー光である。 従来の分析 装置は、 検体を分析ディスクに注入し、 検体内に存在する大小様々 の大きさからなるセル 2 0 1のうち、 特定のセルの個数を分析する ものであり、 このような分析装置において、 分析ディスク上には、 C D— R O Mなどの光ディスクと同じように、 らせん状に トラック 2 0 2が刻まれており、 分析ディスク回転時、 トラック 2 0 2上を 相対的にレーザー光 2 0 3が移動するように制御されている。
—方、 測定対象物であるセル 2 0 1 はトラック 2 0 2の幅よりも 大きく、 トラック 2 0 2を複数本またがって存在しており、 トラッ ク 2 0 2上をレ一ザ一光 2 0 3が移動する際、 トラック 2 0 2上に セル 2 0 1があるか否かにより レーザ一光受光部に信号変化が生じ る。 この信号変化を処理することで、 セル 2 0 1があると判定され た場合は " 1 " を、 それ以外の場合は " 0 " をメモリ に格納し、 そ れらのデ一夕配列を基に " 1 " の縦方向への長さを検出することで、 複数のセルに対して、 サイズ判別し、 サイズ別に個数カウン トを 行っている。
このようにしてセルのサイズ判別を行い、 そのサイズ別にセルを カウントするセルカウント方法としては、 四角形のウィ ンドウを用 いて求めたいサイズごとにウィ ンドウを切り替えて、 測定対象物で あるセルをサイズ別に検出してカウントする方法が用いられる。 以上のようなセルカウント方法において、 例えば、 トラック 1〜 1 1本分の大きさの複数のセルの中から、 トラック 6本分の大きさ のセルの個数を検出しょうとした場合、 図 1 1 ( b ) に示すように、 まず、 6 XX I の大きさのウィ ンドウを用いて、 X方向へ 1つずつ ずらしながら走査を行い、 ウィ ンドウの各行すべてに " 1 " が含ま れる箇所の数をカウントする。
次に、 7 XX 1 の大きさのウィ ンドウを用いて、 X方向へ 1つず つずらしながら走査を行い、 ウィ ンドウの各行すべてに " 1 " が含 まれる箇所の数をカウントする。
これによ り、 トラック 6本以上にまたがって存在するセルと ト ラック 7本以上にまたがって存在するセルの個数が求まり、 差分か ら トラック 6本分の大きさのセルの個数を求めることができる。
なお、 ここで X I は、 ディスク回転ムラや信号検出ばらつきによ る " 1 " の位置ずれ範囲より も大きい整数値とし、 各トラックにお いて " 1 " の位置ずれが発生しても、 同一のセルから検出された " 1 " として検出することができる。
また、 分析装置の従来技術 3 としては、 画像データに対し孤立点 検出フィル夕 F Dを適用して孤立点を検出し、 所定の領域内におい て検出された孤立点の個数によつて画像データが網点画像であるか 否かを判別してその判別結果を出力する網点画像判別方法に準じて おり、 画像データを扱うのにメモリ内のウイ ンドウ走査を行ってい る。 ·
図 1 6はセル認識時のメモリ内へのデ一夕格納の方法を示してい る。 図 1 6 において、 測定対象のセル 3 1 1 のデータをディスクの トラック 3 1 2 ごとにとり、 その二値化したデータをデータバスの ビッ トに対応させて、 サンプリングした順にメモリ領域 3 1 3へ格 納していく。 こ こで、 通過したトラック 3 1 2上にセルが認識され ると 「 1」 として、 セルが認識されないと 「 0」 として格納される。 図 1 7 に示すように、 この時のセルサイズ判別及びカウント方式 としては、 まず、 先述のようにしてセルデ一夕を格納したメモリ内 に a X b' (例として図中には 3 X 8 ) サイズに固定したウィ ンドウ 3 1 4を走査させる。 ここで、 aは測定対象のセルの大きさがおよ そ a トラック分であるというのに対応しており、 bはジッ夕により トラック内のサンプル位置がずれている場合でも、 セルの認識デー 夕 「 1」 が同一セルなら連続した bサンプル内で探索できるという ことに基づいている。 また、 走査方法としては、 アドレス方向には 1 サンプル分ずつウイ ン ドウをずら していき、 ビッ ト方向には 1 ビッ ト分ずつウィ ンドウを下へずらしていく。 ウィ ンドウ内のビッ 卜方向に 「 1」 が aビッ ト分連続していれば、 それを一個のセルと 認識してカウン トし、 そのウィ ンドウ内の 「 1」 をすベて 「 0」 に 置き換えてこれらの操作を繰り返すといった方法であった。
しかし上記のような従来技術 1では、 図 2に示すように、 検体内 に検出したい細胞 1 0 5 と大きさが細胞 1 0 5の 2倍ある検出した くない細胞 1 0 6が混在していた場合、 検出したい細胞 1 0 5の大 きさに合わせたウィ ンドウ 1 0 7で検体メモリ 1 0 1 を走査したと き、 検出したくない細胞 1 0 6は検出したい細胞 1 0 5の 2つ分と して数えられてしまう。 例えば、 検出したい細胞 1 0 5が 1 0 0個、 検出したくない細胞 1 0 6が 5 0個存在していた場合、 ウィ ンドウ b
1 0 7で検出すると 1 0 0個 + 5 0個 X 2 = 2 0 0個という結果と なる。
検出したい細胞 1 0 5 の数を求めるためには、 検出したくない細 胞 1 0 6の数を求めて合計から引く必要がある。 そのため、 今度は 検体メモリ 1 0 1内を検出したくない細胞 1 0 6の大きさに合わせ たウィ ンドウ 1 0 8で走査する。 しかし、 検体メモリ 1 0 1 内デー 夕は既に前記ウィ ンドウ 1 0 7で走査した後、 書き換えられている ため利用することができない。 このためデ一夕を再度取り直す必要 がある。 しかし、 それは分析時間が倍増するだけでなく、 分析条件 が同一でなくなるため、 分析誤差が拡大する恐れがあるといった課 題を有している。
また、 従来技術 2のセル力ゥント方法による測定方法においては、 カウン トした後のウィ ンドウ移動において、 X Iが大きく、 かつ各 トラックにおける " 1 " の位置ずれが小さい場合、 一度検出した配 列を重複して読み取ってしまう可能性がある。
また、 例えばトラック 6本分の大きさのセルを検出しょう とした 場合、 7本分以上の大きさのセルは、 一度検出したセルでも、 次の 行のウィ ンドウ走査において再度検出されてしまう。
そこで、 従来のセルカウント方法においては、 ウィ ンドウで検出 され一度カウントした箇所に関しては、 " 1 " を " 0 " に変換する ことで、 重複して " 1 " として読み取らないようにしている力 そ のためにウィ ンドウの大きさを切り替えて検出を行う際には、 再度、 すべての行のウイ ンドウ走査により トラック上にセルがあるか否か の測定をやり直す必要があり、 測定に時間を要するという問題点を 有していた。 また、 従来技術 3の方法では、 目標のセルサイズに固定したウイ ンドウ 3 1 4を用い、 セル検出毎にメモリ内を 「 0」 に書き換えて いたため、 サイズの大きいセルには図 1 8に示すようにウィ ンドウ サイズ変更 3 1 5が必要で、 その場合メモリを再利用することがで きないために再キヤプチャをしなければならない。 それゆえ測定条 件が同一でなくなるため、 カウン ト誤差が拡大する可能性があり、 測定時間もかかるという課題を有していた。
そこで、 本発明は、 トラック上のセルに対して、 複数回、 そのセ ルがあるか否かを測定し直す必要もなく、 1回のデータ取得で短時 間にかつ高精度にセルサイズを判別してカウン トすることができ、 所望の細胞のカウント精度を向上するとと'もに、 測定時間を短縮す ることができる分析装置および分析装置におけるセルカウント方法 を提供することを目的とする。
発明の開示
本発明の請求項 1 に記載の分析装置は、 ディスク上に細胞を含有 した検体を注入し、 このディスクに光を照射してその光の反射又は 透過光から検体中の細胞数を求める分析装置であって、 前記光の反 射光又は透過光の変化から 1次元的に細胞認識を行う 1次元細胞認 識部と、 前記 1次元細胞認識部の認識結果からディスクの各トラッ クに対応する b i t に細胞の有無を示す第 1のデータを格納するた めの検体メモリ と、 前記検体メモリ上を任意のサイズのウィ ンドウ 単位で走査して前記第 1 のデ一夕を確認することにより細胞を 2次 元的に認識する 2次元細胞認識部と、 前記 2次元細胞認識により認 識した細胞の有無を示す第 2のデータをウイ ン ドウ単位毎に前記検 体メモリに付加するデータ付加部と、 前記第 2 のデータを用いて細 胞の大きさを判別する細胞サイズ判別部と、 前記ウインドウの移動 を制御するウィ ンドウ移動制御部とを有し、 ウィ ンドウ毎の細胞の 有無を示す第 2のデータを前記検体メモリに付加することにより、 一度のデータ取得で細胞の大きさとその個数を求める構成としたこ とを特徴とする。
また、 本発明の請求項 2に記載の分析装置は、 ディスク上に細胞 を含有した検体を注入し、 このディスクに光を照射してその光の反 射又は透過光から検体中の細胞数を求める分析装置であって、 前記 光の反射光又は透過光の変化から 1次元的に細胞認識を行う 1次元 細胞認識部と、 前記 1次元細胞認識部の認識結果からディスクの各 トラックに対応する b i t に細胞の有無を示す第 1 のデータを格納 するための検体メモリと、 前記検体メモリ上を任意のサイズのウイ ンドウ単位で走査して前記第 1 のデータを確認することにより細胞 を 2次元的に認識する 2次元細胞認識部と、 前記検体メモリの走査 中に前記ウイ ンドウの大きさを任意に切り替えるウィンドウ切り替 え部と、 前記 2次元細胞認識部にて 1 または 2以上のウィ ンドウサ ィズでの走査結果から認識した細胞のサイズを判別する細胞サイズ 判別部と、 前記細胞サイズ判別部での判別後に前記第 1 のデータを 消去するデータ消去部とを有し、 前記検体メモリの走査にて細胞が 確認された時に、 ウィ ン ドウサイズを変更して再走査することによ り細胞の大きさを判別し、 一度のデータ取得で細胞の大きさとその 個数を求める構成としたことを特徴とする。
また、 本発明の請求項 3に記載の分析装置は、 請求項 1 または請 求項 2 に記載の分析装置であって、 前記検体中の細胞の大きさに合 わせてサンプリ ング周期が可変なように構成したことを特徴とする。 また、 本発明の請求項 4に記載の分析装置は、 請求項 1記載の分 析装置であって、 前記ウィ ンドウで前記検体メモリを走査した際、 細胞と細胞が存在する間隔を格納しておく細胞間隔メモリを有し、 前記ウイ ンドウサイズを切り替えて再度検体メモリを走查する際、 前記細胞間隔メモリからの情報を基にして細胞が存在している領域 のみを走査するメモリ飛び越し制御部を有することを特徴とする。 以上により、 1回のデータ取得で所望の細胞数を求めることがで き、 短時間で高精度に分析することができる。
また、 本発明の請求項 5に記載の分析装置におけるセルカウント 方法は、 分析ディスク上に注入した複数サイズからなるセルの有無 に基づいて得られた " 0 " あるいは " 1 " の 2値データが横方向 X および縦方向 Yとして面配列されたデ一夕配列を格納するメモリか ら、 前記データ配列の X方向を行として行 X Xで大きさが表され前 記横方向 Xおよび縦方向 Yへの移動が可能な走査ウィ ンドウにより、 その領域内の前記データ配列をリー ドし、 それらのデータを基に演 算して前記セルの有無を判断し、 そのセルサイズを判別してセルサ ィズ別に前記セルの個数をカウントする分析装置におけるセルカウ ン ト方法であって、 前記走査ウィ ン ドウを、 1 X X 1 ( X I : 整数 範囲の定数) の大きさでその領域内が全て " 0 " となるか否かを判 定する第 1 ウィ ンドウと、 前記第 1 ウィ ンドウの次の行で前記第 1 ウイ ンドウの X方向の中央に位置する 1 X I の大きさでその領域内 が " 1 " であるか否かを判定する第 2ウィ ンドウと、 前記第 2 ウイ ン ドウの次の行に位置する Y X X 1 ( Y : 整数範囲の変数) の大き さでその領域内の各行が最低 1つ " 1 " を含んでいるか否かを判定 する第 3 ウィ ンドウとからなる走査ウィ ンドウとし、 この走査ウイ ンドウを用いて前記セルサイズを判別する方法としたことを特徴と する。
以上により、 走査ウィ ンドウでデータ配列を走査してリードした 際に、 第 2ウィ ン ドウは、 行 X X = 1 X 1 の大きさの領域で " 1 " であるか否かを判定するため、 同じ箇所のデータを判定することが ないので、 トラック上のセルに対して、 同じデータを重複して判定 することなくセルサイズを判別してサイズ別の個数をカウン卜する ことができる。
また、 本発明の請求項 6に記載の分析装置におけるセルカウント 方法は、 請求項 5記載の分析装置におけるセルカウント方法であつ て、 X 1 はサンプリ ング起点のばらつきによる位置ずれ範囲より も 大きい値とする方法としたことを特徴とする。
以上により、 第 1 ウィ ンドウおよび第 3ウィ ンドウは、 Xとして 位置ずれ範囲より も大きい X 1でデータ判定するため、 サンプリン グ起点がずれても " 1 " の位置を検出することができる。
また、 本発明の請求項 7に記載の分析装置におけるセルカウント 方法は、 請求項 5 または請求項 6記載の分析装置におけるセルカウ ント方法であって、 検出するセルのサイズを Y 2 〜 Y 3 ( Υ 2 、 Υ 3 は整数、 Υ 2 < Υ 3 ) の範囲とし、 Υ = Υ 2 — 1 として、 走査 ウィ ンドウによりその領域内の前記デ一夕配列に対するリードを開 始し、 走査ウィ ンドウの条件と一致した場合、 一致した位置にて、 Υを Υ 2 、 Υ 2 + 1、 · · · と順次変更し、 前記 Υの範囲条件と一 致するか判定を行い、 条件が一致しなくなるか、 もしくは、 Υ = Υ 3 となるまで、 その領域内の前記データ配列に対するリードを実行 する方法としたことを特徴とする。 以上により、 第 3 ウィ ンドウは、 走査ウィ ンドウの切り替え時に 空白範囲を読み取る必要がなく、 検出にかかる時間を短縮すること ができる。
また、 本発明の請求項 8 に記載の分析装置におけるセルカウント 方法は、 請求項 5から請求項 7のいずれかに記載の分析装置におけ るセルカウン ト方法であって、 セルの有無は、 セルを注入した分析 用ディスク上のトラックにレーザ一光を照射し、 フォ トディテクタ で受光したときの光量変化により判断する方法としたことを特徴と する。
以上により 、 トラック上のセルの有無を、 レーザ一光の照射によ
Όフォ トディテク夕で受光したときの光量変化のみにより判断する ため、 卜ラック上にセルが存在する場合には、 1つだけ " 1 " をメ モ U に格納することになるので、 1つのセルにつき複数の " 1 " が 存在した場合におけるデータ処理の複雑さを回避することができる。
また 、 本発明の請求項 9に記載の分析装置におけるセルカウント 方法は 、 分析ディスク上に注入した複数サイズからなるセルの有無 に基づいて得られた " 0 " あるいは " 1 " の 2値データが横方向 X および縦方向 Yとして面配列されたデータ配列を格納するメモリか ら、 前記データ配列の X方向を行として行 X Xで大きさが表され前 記横方向 Xおよび縦方向 Yへの移動が可能な走査ウイ ンドウにより、 その領域内の前記デ一夕配列をリードし、 それらのデータを基に演 算して前記セルの有無を判断し、 そのセルサイズを判別してセルサ ィズ別に前記セルの個数をカウン トする分析装置におけるセルカウ ン ト方法であって、 前記走査ウィ ンドウを、 1 X X 1 ( X I は整数 の変数) の大きさでその領域内が全て " 0 " となるか否かを判定す る第 1 ウィ ンドウと、 前記第 1 ウィ ンドウの次の行で前記第 1 ウイ ン ドウの X方向の中央に位置する 1 X 1 の大きさでその領域内が " 1 " であるか否かを判定する第 2ウィ ンドウと、 前記第 2ウィ ン ドウの次の行に位置する Y 1 X X 1 ( Y 1 は整数の変数) の大きさ でその領域内の各行が最低 1つ " 1 " を含んでいるか否かを判定す る第 3 ウィ ンドウと、 前記第 3ウィ ンドウの次の行に位置する I X X I ( X 1 は整数の変数) の大きさでその領域内が全て " 0 " とな るか否かを判定する第 4ウィ ンドウとからなる走査ウィ ンドウとし、 この走査ウィ ンドウを用いて前記セルサイズを判別する方法とした ことを特徴とする。
以上により、 走査ウイ ンドウでデータ配列を走査してリードした 際に、 第 2ウィ ンドウは、 行 X X = 1 X I の大きさの領域で " 1 " であるか否かを判定するため、 同じ箇所のデータを判定することが ないので、 トラック上のセルに対して、 同じデータを重複して判定 することなく、 求める検出サイズ一つにつき一度ウィ ンドウを走査 するだけで、 セルサイズを判別してサイズ別の個数をカウントする ことができる。
また、 本発明の請求項 1 0に記載の分析装置におけるセルカウン ト方法は、 請求項 9記載の分析装置におけるセルカウン ト方法で あって、 X 1 はサンプリ ング起点のばらつきによる位置ずれ範囲よ り も大きい値とする方法としたことを特徴とする。
以上により、 第 1 ウィ ンドウおよび第 3ウィ ンドウは、 Xとして 位置ずれ範囲よりも大きい X 1でデータ判定するため、 サンプリ ン グ起点がずれても " 1 " の位置を検出することができる。
また、 本発明の請求項 1 1 に記載の分析装置におけるセルカウン ト方法は、 請求項 9 または請求項 1 0 に記載の分析装置におけるセ ルカウン ト方法であって、 セルの有無は、 セルを注入した分析用 ディスク上の トラックにレーザー光を照射し、 フォ トディテクタで 受光したときの光量変化により判断する方法としたことを特徵とす る。
以上により、 トラック上のセルの有無を、 レーザー光の照射によ り フォ トディテクタで受光したときの光量変化のみにより判断する ため、 トラック上にセルが存在する場合には、 1つだけ " 1 " をメ モリ に格納することになるので、 1つのセルにつき複数の " 1 " が 存在した場合におけるデータ処理の複雑さを回避することができる。
また、 本発明の請求項 1 2 に記載の分析装置は、 セルを注入した 分析用ディ スクに検出光を照射し、 フォ トディテクタで受光した データから前記セルをカウン卜する分析装置において、 前記分析用 ディスク上の トラックごとに得られた二値化したセル情報をデータ バスの 1 ビッ トごとに割り当てて貯えておくためのメモリ と、 前記 メモリ領域内を移動可能なウィ ンドウと、 前記ウィ ンドウを移動制 御するウィ ンドウ移動制御部と、 前記ウィ ン ドウ内の 「 1」 の配列 からセルを認識し大きさを決定するセルサイズ決定部と、 前記セル 認識後にそのカウントをインク リメントするセルカウント部と、 前 記セル認識後に 「 1」 を 「 0」 に書き換えるメモリ書き換え部を備 えたことを特徴とする。
以上により、 セルサイズ判別及びそのカウントを行うのに、 メモ リ上ウィ ンドウの走査が一回で済むため、 すべてのセルの認識が同 一条件で行え、 カウント精度の向上や測定時間の短縮につながり、 大きいサイズのセルを認識するためのウィ ン ドウサイズの変更が必 要でなくなるため、 メモリの再利用も必要でなく、 一回のキヤプ チヤ及びメモリ内走査でセルサイズ判別及びカウントが可能である。
また、 本発明の請求項 1 3 に記載の分析装置は、 請求項 1 2 に記 載の分析装置であって、 ウィ ンドウ移動制御部の中に、 メモリ領域 内で 1 X 1サイズのウィンドウをア ドレス方向に走査させるウィ ン ドウ走查部と、 前記ウィンドウ走査中に 「 1 J の有無を判定する 「 1」 判定部と、 前記判定部で 「 1」 検出毎にその数をカウン トし ていくセルサイズ用カウンタと、 前記判定部で見つけられた 「 1」 のところまでウィ ンドウを拡大するウィ ンドウ制御部と、 前記判定 部で 「 1」 検出毎にビッ ト方向に 「 1」 の走査区間をシフ トさせる 段代え部と、 シフ トした走査区間の中でウィ ン ドウを走査させる範 囲を制限する探索区間制御部を備えたことを特徴とする。
以上によ り、 最初に 「 1 」 を見つけ、 そこから ビッ ト方向へ 「 1」 がある所にウィ ンドウの大きさを順次広げていく ことによつ て、 一つのセルに対するウイ ンドウサイズ、 .つまり トラック方向の セルの大きさが決定でき、 大きいサイズのセルを認識するための ウィンドウサイズの変更が必要でなくなるため、 メモリの再利用も 必要でなく、 一回のキヤプチヤ及びメモリ内走査でセルサイズ判別 及び力ゥン卜が可能である。
また、 本発明の請求項 1 4に記載の分析装置は、 請求項 1 2 また は請求項 1 3に記載の分析装置であって、 探索区間制御部において、 所望のセルサイズからアドレス方向に広げるサイズを割り出し、 そ れを次の段の採索区間とする構成としたことを特徴とする。
以上により、 最初に見つけた 「 1」 から指定の範囲だけを探索す ることにより、 他のセルを同一セルと誤認識するのを防ぐことがで、 大きいサイズのセルを認識するためのウイ ン ドウサイズの変更が必 要でなく なるため、 メモリの再利用も必要でなく、 一回のキヤプ チヤ及びメモリ内走査でセルサイズ判別及びカウントが可能である。
また、 本発明の請求項 1 5 に記載の分析装置におけるセルカウン ト方法は、 セルを注入した分析用ディスクに検出光を照射し、 フォ トディテク夕で受光したデータから前記セルをカウントする分析装 置におけるセルカウン 卜方法であって、 メモリ領域内で 1 X Iサイ ズのウィ ンドウをアドレス方向に走査させ 「 1」 を検出する工程 1 と、 検出した 「 1」 を中心としてウィ ンドウを 1 X X 6 ( X 6 : 整 数範囲の定数) のサイズに広げる工程 2 と、 前記 1 X X 6のウィ ン ドウを次の段に設け、 そのウィ ンドウ内に 「 1」 があれば、 前記次 の段までウイ ンドウを拡大する工程 3 と、 前記工程 2 と前記工程 3 の処理を、 ウィ ンドウ内に 「 1」 の検出がなくなるまで繰り返すェ 程 4 と、 前記ウィ ンドウ内に 「 1」 の検出がなくなれば前記ウィン ドウの拡大を終了し、 そのウィ ンドウの Y方向のサイズが所定値で あれば、 セルとしてカウントする工程 5 と、 前記拡大ウィ ンドウ内 の 「 1」 を全て 「 0」 に書き換え、 前記工程 1 の処理から繰り返す 工程 6 とからなる方法としたことを特徴とする。
以上により、 トラック上のセルに対して、 複数回、 そのセルがあ るか否かを測定し直す必要もなく、 1回のデータ取得で短時間にか つ高精度にセルサイズを判別してカウントすることができる。
以上のように本発明によれば、 走査中に同一 b i t を重複して走 查しないように、 ウィ ンドウの移動量を最適化することにより、 異 なる大きさの細胞が混在していても、 1 回のデ一夕取得で所望の細 胞数を求めることができ、 短時間で高精度に分析することができる。 また、 走査するウィ ンドウサイズ毎に、 細胞認識結果を検体メモ リ に付加することにより、 細胞の大きさを判別することができ、 異 なる大きさの細胞が混在していても、 1 回のデータ取得で所望の細 胞数を求めることができ 、 短時間で高精度に分析することができる さらに、 走査中に自由にゥィ ンドウサイズを変更しながら走査す ることにより 、 細胞の大きさを判別することができ、 異なる大きさ の細胞が混在していても 、 1回のデータ取得で所望の細胞数を求め ることがでさ 、 短時間で高 度に分析することができる。
よた、 λέ.查ウィ ンドウの一行目に設けた 0 を検出する判定ゥィ ン ドウ、 および走査ウイ ンド'ゥの二行目に設けた 1 を検出する 1 X 1 の判定ウイ ン ドウにより 、 卜ラック上のセルに対して、 データの開 始位置を確実に検出する とにより、 ウィンドウ内のデータを消去 せずとも同じデ一夕を重複して判定することなく、 セルサイズを判 別してカウン トすることができる。
そのため、 トラック上のセルに対して、 複数回、 そのセルがある か否かを測定し直す必要もなく、 短時間にかつ正確にセルサイズを 判別してカウントすることができる。
また、 大きいサイズのセルを認識するためのウイ ンドウサイズの 変更が必要でなくなるため、 メモリの再利用も必要でなく、 一回の キヤプチャ及びメモリ内走査でセルサイズ判別及びカウントを可能 にすることができる。
そのため、 一回のメモリ内走査で多数のセルのカウントができる ため、 カウン ト精度の向上や測定時間の短縮を可能にする。 また、 セルのサイズが正確に判定できるので、 サイズごとのセル数を知る ことができるだけでなく、 いらないサイズのセルを取り除いて画像 等を表示することもできる。
図面の簡単な説明
図 1 は、 従来の分析装置の分析方法を説明する図、
図 2は、 従来の分析装置における大きさの違う細胞を分析する方法 を説明する図、
図 3は、 本発明の実施の形態 1 における分析装置のブロック図、 図 4は、 本発明のウィ ンドウの走査手順を示す図、
図 5は、 本発明の実施の形態 2における分析装置のブロック図、 図 6は、 本発明の実施の形態 3 における分析装置のブロック図、 図 7は、 本発明の実施の形態 4のセルカウン ト方法におけるセル検 出方法の説明図、
図 8は、 同実施の形態 4におけるウィ ンドウ走査の説明図、
図 9は、 本発明の実施の形態 5のセルカウント方法におけるセル検 出方法の説明図、
図 1 0は、 同実施の形態 5におけるウィ ン ドウ走査の説明図、 図 1 1 は、 従来のセルカウント方法におけるセル検出方法の説明図、 図 1 2は、 本発明の実施の形態 6の分析装置を示すブロック図、 図 1 3は、 同実施の形態 6の分析装置におけるセルサイズ判別及び カウント方式を示した図、
図 1 4は、 同実施の形態 6の分析装置におけるセルサイズ判別及び カウント方式を示した図、
図 1 5は、 同実施の形態 6の分析装置におけるセルサイズ判別及び カウント方式を示した図、
図 1 6 は、 従来および本発明の実施の形態 6の分析装置におけるメ モリ内のデータ格納方法を示した図、 図 1 7 は、 同従来例の分析装置におけるセルサイズ判別及びカウン ト方式を示した図、
図 1 8 は、 同従来例の分析装置におけるセルサイズ判別及び力ゥン ト方式を示した図、
図 1 9 は、 本発明の実施の形態 7の分析装置におけるセルサイズ判 別及びカウント方式を示した図、
図 2 0は、 同実施の形態 7の分析装置におけるセルサイズ判別及び カウン 卜方式を示した図、
図 2 1 は、 同実施の形態 7の分析装置におけるセルサイズ判別及び カウント方式を示した図である。
発明を実施するための最良の形態
以下、 本発明の実施の形態を示す分析装置および分析装置におけ るセルカウント方法について、 図面を参照しながら具体的に説明す る。
(実施の形態 1 )
まず、 実施の形態 1 における分析装置について、 図 3 , 図 4を用 いて説明する。
図 3は本発明の実施の形態 1 における分析装置のブロック図, 図 4は本発明のウイ ンドウの走査手順を示す図である。 図 3 において、 1 0 9 は半透明な光ディスク、 1 1 0は光ディスクにレーザ一光を 照射するための光ピックアップ、 1 1 1 は光ピックアップ 1 1 0力 ら照射されるレーザ一光、 1 1 2 はディスク 1 0 9 を透過したレー ザ一光 1 1 1 を受光し電気信号に変換する光検出器 A、 1 1 3は偏 向プリズム、 1 1 4は光ディスク 1 0 9に反射したレーザ一光 1 1 1 を受光し電気信号に変換する光検出器 B、 1 1 5 は光検出器 A 1 1 2、 光検出器 B 1 1 4からの信号を基に細胞を 1次元的に認識す る 1次元細胞認識部、 1 1 6はウィ ンドウ 1 0 7、 ウィ ンドウ 1 0 8からの情報を基に 2次元的に細胞を認識する 2次元細胞認識部、 1 1 8はウィ ンドウ 1 0 7、 ウィ ンドウ 1 0 8の次の移動量を算出 するウィ ンドウ移動量算出部、 1 1 9はウィ ンドウ移動量を格納し ておくためのウィ ンドウメモリ、 1 1 7はウィ ンドウメモリ 1 1 9 の内容から 2次元細胞認識部 1 1 6 で判断された結果が正しいかど うか判定する結果判定部、 1 2 0はウィ ンドウ 1 0 7、 ウィ ンドウ 1 0 8の移動を制御するウインドウ移動制御部である。
以上のように構成された分析装置について、 以下その動作、 作用 を説明する。
まず、 図示しない検体が光ディスク 1 0 9に注入される。 注入後、 光ディスク 1 0 9は一定速度で回転し、 その間光ピックアップ 1 1 0 は常時光ディスク 1 0 9 にレーザ一光 1 1 1 を照射する。 レー ザ一光 1 1 1 の一部は光ディスク 1 0 9を透過し光検出器 A 1 1 2 で受光される。 また、 一部は光ディスク 1 0 9で反射され、 その反 射光が偏向プリズム 1 1 3で屈折し、 光検出器 B 1 1 4で受光され る。 特開 2 0 0 2 — 2 2 6 5 1 に記載されているように、 光検出器 A 1 1 2、 光検出器 B 1 1 4の信号比は常に一定となるが、 検体内 に細胞が存在する場合、 透過光が細胞の干渉を受けて変化し、 それ により光検出器 A 1 1 2、 光検出器 B 1 1 4の信号比に変化が生じ る。 1次元細胞認識部 1 1 5ではこの信号比の変化から、 1次元的 に見た細胞の有無を判断する。 ここで、 細胞が有ると判断された場 合は、 ディスクの各卜ラックに対応する b i t に細胞 1つにつき 1 つ ' 1 ' を立てると共に、 それ以外の b i t に ' 0 ' を立てて、 こ 2Ό
の ' 1 ' ' 0 ' 信号を一定のサンプリング間隔で検体メモリに格納 する。
次に、 2次元細胞認識について述べる。 ここでは、 検出したい細 胞 1 0 5 とその 2倍の大きさの検出したくない細胞 1 0 6が同じ検 体内に存在すると仮定する (図 2参照) 。
まず、 ウィ ンドウ移動量算出部 1 1 8において、 ウィ ンドウ移動 毎にそのときのウイ ンドウサイズに応じて、 走査するウイ ンドウが 重ならず、 かつ、 走査しない領域がないようにウィ ンドウ移動量を 算出する。 今回、 ウィ ンドウ 1 0 7のサイズを 3行 X 3列とすると、 同じ細胞を重複してカウントしないため、 次にウィ ンドウ 1 0 7が 移動する場所は、 現在地からタンジェンシャル方向に 3 b i t 、 ま たはトラック方向に 3 b i t の地点になる。 この移動量はウイ ンド ウメモリ 1 1 9 に格納される。 具体的には、 ウィ ン ウメモリ 1 1
9のタンジェンシャル部分には、 3が格納される。 そして次にウイ
ンドウが夕ンン ェンシャル方向に 1 b i t移動したときこの値が一
1 されて 2 となる 。 そして 3 b i t移動したときには 0 となる。 一 方、 卜ラック方向の移動量は、 ウィ ンドウメモリ 1 1 9上の検体メ モリ 1 0 1の夕ンジェンシャル位置に対応した位置に 3が格納され 。 し ら 夕ンジェンシャル部分と同様、 ウィ ン Hゥカ 卜ラック 方向に 1 b i t移 ί¾したとき値が一 1 されて 2 とな Ό 、 3 b i t移 動したときには 0 となる。 次に、 検出したい細胞 1 0 5 の大きさに合わせたゥイ ンドウ 1 0
7で検体メモ U 1 0 1上を走査する。 このとき、 ゥィ ンドウ移動制 御咅 15 1 2 0の制御によりタンジェンシャル方向、 トラック方向それ ぞれにウィ ン ドウの走査を行うが、 ここでは、 図 4に示すように、 テレビの走査線の如く、 まず、 タンジェンシャル方向へ検体メモリ
1 0 1 の端から端まで走査を行い、 次に、 トラック方向へ 1 b i t ずらすといった手順で行う こととする。
2次元細胞認識部 1 1 6はウィ ンドウ 1 0 7 のタンジェンシャル 方向への走査中常にウィ ンドウ 1 0 7のいずれかの b i t に ' 1 ' が存在するか否かを調べ、 存在する場合は 2次元的に細胞が有ると 判断される。 次に結果判定部 1 1 7がウィ ンドウメモリ 1 1 9の内 容を参照し、 ウィ ンドウの現在地に該当するウイ ンドウメモリ内の データが ' 0 ' のとき、 つまり、 一度細胞が認識された領域と重複 しない領域にウィ ンドウが移動したときに限り、 2次元認識部 1 1 6で細胞有り と判断された結果が正しいと判断する。
ここで、 ウィンドウメモリを検体メモリの空領域に設けることも できる。
またここでは、 検体メモリの内容を可逆圧縮したり、 検体メモリ に格納するためのサンプリ ング間隔を大きく取ることで検体メモリ 容量を節約することも可能である。
さ らに、 移動量が 3 b i t の場合、 ウィ ンドウを 1 b i tずつず らしながらウィ ンドウメモリの内容を確認するといつた走査を説明 したが、 一気に 3 b i tずつ跳び越して走査を行うという ことも可 能である。
以上のように、 本実施の形態においては、 ウィ ンドウメモリに、 ウィ ンドウサイズに応じた距離だけ移動したことを示す情報を格納 することによ り、 ウィ ンドウ移動を最適に制御することによって、 同じ細胞の重複した検出の防止が可能となり、 ウィ ンドウサイズを 変更する毎にデータを取り直すといった必要がなくなるため、 1 回 のデータ取得で所望の細胞数を求めることができ、 短時.間で高精度 に分析する分析装置を提供することができる。
(実施の形態 2 )
次に、 実施の形態 2における分析装置について、 図 5 を用いて説 明する。
図 5は本発明の実施の形態 2 における分析装置のブロック図であ る。 図 5において、 1 2 2は 2次元細胞認識部 1 1 6で細胞が有る と判断された部分にデータを付加するデータ付加部で、 1 2 1 は データ付加部 1 2 2 によって付加されたデータを基に細胞サイズを 判別する細胞サイズ判別部である。 実施の形態 1の構成と異なると ころは、 ウィ ンドウ移動量算出部 1 1 8 とウィ ンドウメモリ 1 1 9 を廃止し、 データ付加部 1 2 2 と細胞サイズ判別部 1 2 1 を追加し た点である。
以下その動作、 作用を説明する。
まず、 実施の形態 1 と同様に 2次元細胞認識を行う。 この時、 データ付加部 1 2 2 にて、 走査したウィ ンドウ毎に、 細胞が有るこ とを認識した検体メモリ 1 0 1 の b i t にデー夕を付加する。 例え ば、 ウィ ンドウ 1 0 7が細胞有り と認識した場合、 ウィ ンドウ 1 0 7 内の ' 1 , の左側にデータを付加し ' 1 1 ' とし、 ウィ ンドウ 1 0 8が細胞有り と認識した場合、 ウィ ンドウ 1 0 8内の ' 1 ' の 2 つ左側にデータを付加し ' 1 0 1 , とする。 また、 この方法でウイ ン ドウ 1 0 7 、 8共に細胞有りと認識した場合は ' 1 1 1 ' とする。 また、 ウィ ンドウ移動制御部 1 2 0 にて、 このデータの有無を確認 することにより、 走査するウィ ンドウが重ならず、 かつ、 走査しな い領域がないようにウイ ンドウ移動量を調整してウイ ンドウの移動 を制御する。
次に、 細胞サイズ判別部 1 2 1 にて、 データ付加部 1 2 2で付加 されたウィ ンドウサイズ毎のデータを確認し、 それを基に実際の細 胞サイズを判別する。 例えば、 ウィ ンドウ 1 0 8で走査中に細胞有 り と認識された箇所が既にウィ ンドウ 1 0 7でも細胞有り と判断さ れていた部分だとする。 この場合、 実際に存在する細胞はウィ ンド ゥ 1 0 8 に対応するサイズの細胞 1個である。 しかし、 先に走査し たウィ ンドウ 1 0 7はウィ ンドウ 1 0 8の 1 Z 2のサイズであるた め、 この細胞をウインドウ 1 0 7 に対応する細胞が 2個と認識して いるはずである。 そのため、 ウィ ンドウ 1 0 7で認識されていた細 胞 2個分のカウント数は一 2されなければならない。
実施の形態 1では、 重複して走査しないように、 ウィ ンドウの移 動量を制御していたが、 実施の形態 2では、 各ウィ ンドウで細胞が 検出されたことにより検体メモリに特定のデータを付加している。 このことにより、 重複した走査を防ぐとともに、 異なるサイズの細 胞数をカウントすることができる。
また、 先にメモリ を走査する際、 各 トラックの同一タンジェン シャル位置に ' 1 , が 1つでも存在する場合は ' 1 ' を、 それ以外 は ' 0 , を図示しない細胞間隔メモリに格納しておく ことで、 メモ リ飛び越し制御部により細胞が存在している領域のみを走査するよ うに制御し、 再走査する場合に細胞が存在しないタンジェンシャル 位置の検体メモリ情報にアクセスして 2次元認識を行うといつた無 駄を省く ことも可能である。
以上のように、 本実施の形態においては、 データを付加すること でどのウィ ンドウで 2次元細胞認識を行ったか履歴を残すことがで き、 それによつて同じ細胞の重複した検出の防止が可能である。 こ れによ り、 ウィ ン ドウサイズを変更する毎にデ一夕を取り直すと いった必要がなくなるため、 1回のデータ取得で所望の細胞数を求 めることができ、 短時間で高精度に分析する分析装置を提供するこ とができる。
(実施の形態 3 )
次に、 実施の形態 3 における分析装置について、 図 6 を用いて説 明する。
図 6は本発明の実施の形態 3における分析装置のブロック図であ る。 図 6 において、 1 2 3は検体メモリ 1 0 1 を走査するウィ ンド ゥを、 走査途中に切り替えるためのウイ ンドウ切り替え部である。 実施の形態 2の構成と異なるところは、 ウィ ンドウ切り替え部 1 2 3 を追加した点とデータ付加部 1 2 2をデ一夕消去部 1 2 4に置き 換えた点である。
以下その動作、 作用を説明する。
まず、 実施の形態 1, 実施の形態 2 と同様に 2次元細胞認識を行 う。 次に、 検体メモリ 1 0 1 上をウィ ン ドウ 1 0 7がタンジェン シャル方向に 1 b i tずつ走査する。 そして、 ある地点で 2次元細 胞認識部 1 1 6が細胞を認識したとき、 ウィ ンドウ切り替え部 1 2 3がウィ ンドウ 1 0 7 をウィ ンドウ 1 0 8 に切り替えて再度 2次元 細胞認識部 1 1 6が細胞認識を行う。 このとき、 ウィ ンドウ 1 0 7 とウィ ンドウ 1 0 8の両方で細胞が認識された場合、 細胞サイズ判 別部 1 2 1 はその細胞がウィ ンドウ 1 0 8 に対応する大きさの細胞 であると判断する。 一方、 ウィン ドウ 1 0 7でのみ細胞が認識され た場合、 細胞サイズ判別部 1 2 1 はその細胞がウイ ンドウ 1 0 7 に 対応する大きさの細胞であると判断する。 その後、 従来技術と同様、 データ消去部 1 2 4が検出したウィ ン ドウ内のすべての ' 1 ' を ' 0 ' に書き換え、 今後同じ細胞を重複して検出することを防ぐ処 理を行う。 また今回の説明では最初に走査するウイ ンドウをウィ ン ドウ 1 0 7 としたが、 これはウィ ンドウ 1 0 8でも構わない。 しか し、 その場合は先の処理とは反対に 2次元細胞認識部 1 1 6で細胞 が認識されない地点で逐次ウイ ン ドウを切り替える必要がある。
以上のように、 本実施の形態においては、 ウィ ンドウの走査中、 検体メモリ内のデータを書き換える前にウィ ンドウサイズを切り替 えて再走査することにより、 個々のウィ ンドウで検出された細胞数 が分かるため、 ウイ ンドウサイズを変更する毎にデータを取り直す といった必要がなくなるため、 1 回のデータ取得で所望の細胞数を 求めることができ、 短時間で高精度に分析する分析装置を提供する ことができる。
(実施の形態 4 )
本発明の実施の形態 4のセルカウント方法を説明する。
図 7 は本実施の形態 4のセル力ゥント方法におけるセル検出方法 の説明図であり、 図 7 ( a ) は本実施の形態 4のセルカウン ト方法 における分析ディスク上の測定対象物であるセルと トラックおよび レーザー光との位置関係の説明図、 図 7 ( b ) は本実施の形態 4の セルカウン ト方法でウィ ンドウを用いてセルのサイズを判別してサ ィズ別にカウントする方法の説明図である。
図 7 ( a ) において、 2 0 1 は分析ディスク上に注入した測定対 象物であるセル、 2 0 2は分析ディスク上のトラック、 2 0 3は相 対的に分析ディスク上を移動するレーザー光である。 本実施の形態 4の分析装置は、 検体を分析ディスクに注入し、 検体内に存在する 大小様々の大きさからなるセル 2 0 1 のうち、 特定のセルの個数を 分析するものであり、 このような分析装置において、 分析ディスク 上には、 C D— R 0 Mなどの光ディスクと同じように、 らせん状に トラック 2 0 2が刻まれており、 分析ディスク回転時、 トラック 2 0 2上を相対的にレ一ザ一光 2 0 3が移動するように制御されてい る。
一方、 測定対象物であるセル 2 0 1 はトラック 2 0 2の幅よりも 大きく、 トラック 2 0 2 を複数本またがって存在しており、 トラッ ク 2 0 2上をレーザー光 2 0 3が移動する際、 トラック 2 0 2上に セル 2 0 1があるか否かにより レーザー光受光部に信号変化が生じ る。 この信号変化を処理することで、 セル 2 0 1があると判定され た場合は " 1 " を、 それ以外の場合は " 0 " を、 図 7 ( b ) に示す ように、 データ配列としてメモリ 2 0 4に格納する。
また、 本実施の形態 4のセルカウント方法における走查ウィ ンド ゥは、 基本的にメモリ 2 0 4のデータ配列の X方向を行として行 X Xで大きさが表され、 図 7 ( b ) に示すように、 メモリ 2 0 4の データ配列に対して、 1 XX 1 (X 1 は整数の定数) の大きさでそ の領域内が全て " 0 " となるか否かを判定する第 1 ウィ ンドウ 2 0 5 Aと、 第 1 ウィ ンドウ 2 0 5 Aの次の行で第 1 ウィ ンドウ 2 0 5 Aの X方向の中央に位置する 1 X 1 の大きさでその領域内が " 1 " であるか否かを判定する第 2ウィ ンドウ 2 0 5 Bと、 第 2ウィ ンド ゥ 2 0 5 Bの次の行に位置する Y XX 1 (Yは整数の変数) の大き さでその領域内の各行が最低 1つ " 1 " を含んでいるか否かを判定 する第 3 ウィ ンドウ 2 0 5 Cとからなる走査ウィ ンドウ 2 0 5 とし ている。
このような走査ウィ ンドウ 2 0 5を、 データ配列の横方向 Xおよ び縦方向 Yへ移動可能とし、 この走査ウィ ンドウ 2 0 5 により、 サ ンプリ ング起点であるデータ配列の左上から走査を開始し、 右方向 へ一つずつずらし、 行の最後までいったら次の行の左端を先頭とし てウィ ンドウ移動し、 また左から右へ順に一つずつずらしながら、 各ウィ ンドウ内の条件に合致した箇所を検索していく方法をとる。
また、 求めるセルサイズによりウィ ンドウ 2 0 5 Cの縦方向 Yの 大きさは異なる。 図 8 に例としてトラック 6本分の大きさのセルを 検出する場合についての手順を示す。
まず、 走査ウィンドウ 2 0 5内のウィ ン ドウ 2 0 5 Cの大きさを 5 X X 1 (図 8 ( a ) では X l = 7 ) とし、 図 8 ( a ) に示すよう に、 ウィ ンドウを右へ走査していき、 その行の最後までいったら次 の行の左端を先頭としてウィ ンドウ移動し、 また左から右へ順に一 つずつずらしていき、 条件を満たす箇所を検索する。
全ての検索範囲を終了したときの走査ウィンドウ 2 0 5 による検 出結果は、 トラック 6本分以上のセルの個数を表すことになる。 図 8 におけるデータ配列においては、 上記の走査ウイ ンドウ 2 0 5で 検索した場合には、 図 8 ( b ) に示すとおり、 条件を満たす箇所と して 3箇所で検出され、 6本分以上のセルは 3個あることになる。 次に、 ウィ ンドウ 2 0 5 Cの大きさを 6 X X 1 とし、 上記と同様 に、 左から順に一つずつずらしていき、 条件を満たす箇所を検索す る。 このようにして、 全ての検索範囲を終了したときの走査ウィ ン ドウ 2 0 5による検出結果は、 トラック 7本分以上のセルの個数を 表すことになる。 図 8におけるデータ配列においては、 図 8 ( c ) に示すとおり、 条件を満たす箇所として 2箇所で検出され、 7本分 以上のセルは 2個あることになる。
以上から、 トラック 6本分以上にまたがって存在するセルと、 ト ラック 7本分以上にまたがって存在するセルの個数が求まり、 それ らの差分から トラック 6本分の大きさのセルの個数を求めることが できる。 これにより、 図 8のデータ配列においては、 6本分の大き さのセルは 1個存在するという ことが分かる。 ここで、 X 1 は、 デ一タ配列のばらつき範囲よりも大きい整数値とする。
図 8 ( b ) 、 ( c ) で示した検出位置以外では、 走査ウィ ンドウ 2 0 5の各ウィ ンドウ 2 0 5 A、 2 0 5 B、 2 0 5 Cの検出条件を 満たさないので、 従来のように、 重複してデ一夕を読み取ってしま わないようにデータを消す必要がなく、 再デ一夕測定を行わないで 済む。
(実施の形態 5 )
本発明の実施の形態 5のセルカウント方法を説明する。
図 9は本実施の形態 5のセルカウント方法におけるセル検出方法 の説明図であり、 図 9 ( a ) は本実施の形態 5のセルカウント方法 における分析ディスク上の測定対象物であるセルと トラックおよび レーザー光との位置関係の説明図、 図 9 ( b ) は本実施の形態 5の セルカウント方法でウイ ンドウを用いてセルのサイズを判別してサ ィズ別にカウントする方法の説明図である。
図 9 ( a ) において、 2 0 1 は分析ディスク上に注入した測定対 象物であるセル、 2 0 2は分析ディスク上のトラック、 2 0 3は相 対的に分析ディスク上を移動するレーザ一光である。
なお、 本実施の形態 5のセルカウント方法において、 メモリ 2 0 4にデータ配列を格納するところまでは、 実施の形態 4と同様であ るので、 ここでの説明は省略する。
本実施の形態 5のセルカウン ト方法における走査ウィ ンドウは、 基本的にメモリ 2 0 4のデータ配列の X方向を行として行 XXで大 きさが表され、 図 9 ( b ) に示すように、 メモリ 2 0 4のデータ配 列に対して、 1 XX 1 (X I は整数の変数) の大きさでその領域内 が全て " 0 " となるか否かを判定する第 1 ウィ ンドウ 2 0 6 Aと、 第 1 ウィ ンドウ 2 0 6 Aの次の行で第 1 ウィ ンドウ 2 0 6 Aの X方 向の中央に位置する 1 X 1 の大きさでその領域内が " 1 " であるか 否かを判定する第 2ウィ ンドウ 2 0 6 Bと、 第 2ウィ ンドウ 2 0 6 Bの次の行に位置する Y l XX I (Y 1は整数の変数) の大きさで その領域内の各行が最低 1つ " 1 " を含んでいるか否かを判定する 第 3ウィ ンドウ 2 0 6 Cと、 第 3ウィ ンドウ 2 0 6 Cの次の行に位 置する 1 XX I (X I は整数の変数) の大きさでその領域内が全て " 0 " となるか否かを判定する第 4ウィ ンドウ 2 0 6 Dとからなる 走査ウィ ンドウ 2 0 6 としている。
このような走査ウィ ンドウ 2 0 6 を、 デ一夕配列の横方向 Xおよ び縦方向 Yへ移動可能とし、 この走查ウィ ンドウ 2 0 6 により、 サ ンプリ ング起点であるデータ配列の左上から走査を開始し、 右方向 へ一つずつずらし、 行の最後までいったら次の行の左端を先頭とし てウィ ンドウ移動し、 また左から右へ順に一つずつずらしながら、 各ウィ ンドウ内の条件に合致した箇所を検索していく方法をとる。
また、 求めるセルサイズによりウィ ンドウ 2 0 6 Cの縦方向 Yの 大きさは異なる。 図 1 0に例としてトラック 6本分の大きさのセル を検出する場合についての手順を示す。 まず、 走査ウィ ンドウ 2 0 6内のウィ ンドウ 2 0 6 Cの大きさを 5 X X 1 (図 1 0 ( a ) では X l = 7 ) とし、 図 1 0 ( a ) に示す ように、 走査ウィ ンドウ 2 0 6をデ一夕配列左上から右へ走査して いき、 その行の最後までいったら次の行の左端を先頭としてウイ ン ドウ移動し、 また左から右へ順に一つずつずらしていき、 条件を満 たす箇所を検索する。
全ての検索範囲を終了したときの走査ウィ ンドウ 2 0 6による検 出結果は、 トラック 6本分のセルの個数を表すことになる。 図 1 0 におけるデータ配列においては、 上記の走查ウィ ンドウ 2 0 6で検 索した場合には、 条件を満たす箇所として図 1 0 ( b) で示した走 查ウイ ンドウ 2 0 6の 1箇所で検出され、 6本分のセルは 1個ある ことになる。
図 1 0 ( b ) で示した走査ウィ ンドウ 2 0 6による検出位置以外 では、 走査ウィ ンドウ 2 0 6 の検出条件を満たさないので、 重複し てデータを読み取ってしまわないようにデータを消す必要がなく、 再度のデータ測定を行わないで済む。
その結果、 卜ラック上のセルに対して、 複数回、 そのセルがある か否かを測定し直す必要もなく、 短時間にかつ正確にセルサイズを 判別してカウントすることができる。
(実施の形態 6 )
本発明の実施の形態 6のセルカウント方法を説明する。
図 1 6に示しているようなメモリ領域 3 1 3内への 'データの格納 方法は、 従来の方式と同じものを用いている。
図 1 3 に示すように、 最初にメモリ領域内を移動可能なウィ ン ド ゥのサイズを 1 X 1 として、 そのウィ ンドウ 3 0 1 をメモリ領域内 に走査させる (ウィ ン ドウ走査部) 。 ウィ ン ドウ走査部における ウィ ン ドウの走査方法としては、 メモリ領域内での 1行 1列目から スター 卜して順にァ ドレス方向に移動していき、 ァ ドレス方向の領 域がすべて走査終了すればビッ ト方向に一段シフ トして、 また最初 の列から順に走査していく。 その走査は 「 1」 判定部より 「 1」 の 有無を判定しながら行われ、 通過領域のデータが 「 0」 の場合はそ のまま通過し、 「 1」 が見つかるとそこで一旦止める。 この時にセ ルサイズ用カウン夕を設けておき、 「 1」 を見つけるたびにカウン 夕にイ ンクリメントしていく。
ここで見つけた 「 1」 を基準として、 次の 「 1」 を探索する区間 をビッ ト方向に一段シフ トさせる (段代え部) 。 ここで、 所望のセ ルサイズからア ドレス方向に広げるサイズを割り出しておき、 それ を次ビッ トの探索区間とする (探索区間制御部) 。 また、 ア ドレス 方向に広げる探索区間のサイズは、 最初の 「 1」 を基準としてアド レス方向に士 mサンプル分 ( mの値は所望のセルサイズによる) の 範囲に固定する。 しかし、 mの値をあまり大きく設定しすぎると、 近くの別のセルまでも同一のセルと認識してしまう可能性があるの で、 目標のセルサイズに適した mの値を決めておく必要がある。
以上のようにして決定した採索区間内 3 0 3 をウィ ンドウ走査部 により走査させ、 「 1」 判定部により別の 「 1」 を探す。 「 1」 が あれば、 ウィ ン ドウサイズ制御部により 「 1」 のあるところまで ウィ ンドウを拡大 3 0 2させ (図 1 4 ) 、 そのウィ ンドウの次ビッ 卜の探索区間でまた別の 「 1」 を探す。
これらの作業を繰り返していき、 次ビッ トの採索区間に 「 1」 が なくなったところでウィ ンドウの拡大を終了する。 ここまでがウイ ンドウ移動制御部内の機能である。
その時のセルサイズ用カウン夕の値からセルサイズを決定して (セルサイズ決定部) 、 セルカウント部より、 目標のセルサイズの ものであれば、 それをカウントする (図 1 5 ) 。 カウン トが終わつ た部分のウィ ンドウ 3 0 4内の 「 1」 はメモリ書き換え部によりす ベて 「 0」 に書き換え られ、 また 1 X 1 のウィ ン ドウ 3 0 1 で 「 1」 を探すところから始める。 このメモリ書き換え部では、 用途 によっては、 特定のサイズにおけるセルデータの 「 1 」 だけを 「 0」 に書き換えたり、 「 1」 のまま残しておいたりすることがで きる。
これらの操作を繰り返すと、 メモリ領域内のウイ ンドウ走査が一 '通り終了し、 目標セルの数もカウントされている。
また、 本実施の形態 6では、 セルを認識する際に、 その大きさも 決定できるため、 セルサイズごとにカウン トしたり、 欲しい大きさ のセルのみカウントしたりすることもできる。
(実施の形態 7 )
本発明の実施の形態 7のセルカウント方法を図 1 9〜 2 1 を用い て説明する。
図 1 6に示しているようなメモリ領域 3 1 3内へのデータの格納 方法は、 従来の方式と同じものを用いている。
図 1 9に示すように、 最初にメモリ領域内を移動可能なウィ ンド ゥのサイズを 1 X I として、 そのウィ ンドウ 3 0 5をメモリ領域内 に走査させる。 ウィ ンドウ走査部におけるウィ ンドウの走査方法と しては、 メモリ領域内での 1行 1列目からスタートして順にァ ドレ ス方向に移動していき、 ア ドレス方向の領域がすべて走査終了すれ ばビッ ト方向に一段シフ トして、 また最初の列から順に走査してい く。 その走査は ' 1 ' 判定部より ' 1 ' の有無を判定しながら行わ れ、 通過領域のデータが ' 0 ' の場合はそのまま通過し、 ' 1 , が 見つかるとそこで一旦止める。 この時にセルサイズ用カウンタを設 けておき、 ' 1 ' を見つけるたびにカウン夕にインクリメントして いく。
ここで見つけた ' 1 ' を基準として、 所望のセルサイズからアド レス方向に広げるサイズを割り出しておき、 そのサイズ分ウイ ンド ゥ 3 0 5を広げ、 ビッ ト方向探索ウィ ンドウ 3 0 6 とする。 また、 ア ドレス方向に広げる探索区間のサイズは、 最初の ' 1 ' を基準と してァ ドレス方向に士 mサンプル分 (mの値は所望のセルサイズに よる) の範囲に固定する。 しかし、 mの値をあまり大きく設定しす ぎると、 近くの別のセルまでも同一のセルと認識してしまう可能性 があるので、 目標のセルサイズに適した mの値を決めておく必要が ある。
そして次の ' 1 ' を探索する区間をビッ ト方向に一段シフ トさせ る。 シフ トさせたウィ ン ドウ内に ' 1 ' が存在すれば、 また次の ビッ 卜にウィ ンドウ 3 0 6 を一段シフ トさせ、 この操作を続ける。 ' 1 ' がなくなればウィ ンドウ 3 0 6のビッ ト方向へのシフ トを終 了し、 ここまでのウィ ンドウ 3 0 6の通過部分を一つのウィ ンドウ 3 0 7 にまとめる。 つまり、 ウィ ンドウ 3 0 7内は各ビッ トに一つ ずつ ' 1 ' を含んだ状態である。
ウィ ンドウ 3 0 7のビッ トサイズからセルサイズを決定して、 セ ルカウント部より、 目標のセルサイズのものであれば、 それをカウ ン 卜する。 カウン トが終わった部分のウィ ンドウ 3 0 7内の ' 1 ' はメモリ書き換え部によりすベて ' 0 ' に書き換えられ、 また 1 X 1 のウィ ンドウ 3 0 5で ' 1 ' を探すところから始める。 このメモ リ書き換え部では、 用途によっては、 特定のサイズにおけるセル データの ' 1 , だけを ' 0 , に書き換えたり、 ' 1 , のまま残して おいたりすることができる。
' これらの操作を繰り返すと、 メモリ領域内のウィンドウ走査が一 通り終了し、 目標セルの数もカウントされている。
また、 本実施の形態では、 セルを認識する際に、 その大きさも決 定できるため、 セルサイズごとにカウントしたり、 欲しい大きさの セルのみカウントしたりすることもできる。

Claims

請 求 の 範 囲
1 . ディスク上に細胞を含有した検体を注入し、 このディスクに光 を照射してその光の反射又は透過光から検体中の細胞数を求める分 析装置であって、 前記光の反射光又は透過光の変化から 1次元的に 細胞認識を行う 1次元細胞認識部と、 前記 1次元細胞認識部の認識 結果からディスクの各トラックに対応する b i t に細胞の有無を示 す第 1 のデータを格納するための検体メモリ と、 前記検体メモリ上 を任意のサイズのウィンドウ単位で走査して前記第 1のデータを確 認することにより細胞を 2次元的に認識する 2次元細胞認識部と、 前記 2次元細胞認識により認識した細胞の有無を示す第 2のデータ をウィ ンドウ単位毎に前記検体メモリに付加するデ一夕付加部と、 前記第 2のデータを用いて細胞の大きさを判別する細胞サイズ判別 部と、 前記ウィ ンドウの移動を制御するウィ ンドウ移動制御部とを 有し、 ウイ ンドウ毎の細胞の有無を示す第 2のデータを前記検体メ モリ に付加することにより、 一度のデータ取得で細胞の大きさとそ の個数を求めることを特徴とする分析装置。
2 . ディスク上に細胞を含有した検体を注入し、 このディスクに光 を照射してその光の反射又は透過光から検体中の細胞数を求める分 析装置であって、 前記光の反射光又は透過光の変化から 1次元的に 細胞認識を行う 1次元細胞認識部と、 前記 1次元細胞認識部の認識 結果からディスクの各トラックに対応する b i t に細胞の有無を示 す第 1 のデータを格納するための検体メモリ と、 前記検体メモリ上 を任意のサイズのウィ ンドウ単位で走査して前記第 1のデータを確 認することにより細胞を 2次元的に認識する 2次元細胞認識部と、 前記検体メモリの走査中に前記ウイ ンドウの大きさを任意に切り替 えるウィ ンドウ切り替え部と、 前記 2次元細胞認識部にて 1 または 2以上のウィ ンドウサイズでの走査結果から認識した細胞のサイズ を判別する細胞サイズ判別部と、 前記細胞サイズ判別部での判別後 に前記第 1のデータを消去するデータ消去部とを有し、 前記検体メ モリの走査にて細胞が確認された時に、 ウィ ンドウサイズを変更し て再走査することにより細胞の大きさを判別し、 一度のデータ取得 で細胞の大きさとその個数を求めることを特徴とする分析装置。
3 . 前記検体中の細胞の大きさに合わせてサンプリング周期が可変 なことを特徴とする請求項 1 または請求項 2に記載の分析装置。
4 . 前記ウィ ンドウで前記検体メモリを走査した際、 細胞と細胞が 存在する間隔を格納しておく細胞間隔メモリを有し、 前記ウィ ンド ゥサイズを切り替えて再度検体メモリを走査する際、 前記細胞間隔 メモリからの情報を基にして細胞が存在している領域のみを走査す るメモリ飛び越し制御部を有することを特徴とする請求項 1記載の 分析装置。
5 . 分析ディスク上に注入した複数サイズからなるセルの有無に基 づいて得られた " 0 " あるいは " 1 " の 2値データが横方向 Xおよ び縦方向 Yとして面配列されたデータ配列を格納するメモリから、 前記データ配列の X方向を行として行 X Xで大きさが表され前記横 方向 Xおよび縦方向 Yへの移動が可能な走査ウイ ン ドウにより、 そ の領域内の前記デ一夕配列をリードし、 それらのデータを基に演算 して前記セルの有無を判断し、 そのセルサイズを判別してセルサイ ズ別に前記セルの個数をカウントする分析装置におけるセルカウン 卜方法であって、 前記走査ウィ ンドウを、 1 XX 1 (X I : 整数範 囲の定数) の大きさでその領域内が全て " 0 " となるか否かを判定 する第 1 ウィ ン ドウと、 前記第 1 ウィ ン ドウの次の行で前記第 1 ウィ ン ドウの X方向の中央に位置する 1 X 1 の大きさでその領域内 が " 1 " であるか否かを判定する第 2ウィ ンドウと、 前記第 2ウイ ンドウの次の行に位置する Y XX 1 (Y : 整数範囲の変数) の大き さでその領域内の各行が最低 1つ " 1 " を含んでいるか否かを判定 する第 3ウィ ンドウとからなる走査ウィ ンドウとし、 この走查ウイ ンドウを用いて前記セルサイズを判別することを特徴とする分析装 置におけるセルカウント方法。
6. X 1 はサンプリ ング起点のばらつきによる位置ずれ範囲より も 大きい値であることを特徴とする請求項 5記載の分析装置における セルカウント方法。
7. 検出するセルのサイズを Y 2〜Y 3 (Υ 2、 Υ 3は整数、 Υ 2 < Υ 3 ) の範囲とし、 Υ = Υ 2 — 1 として、 走査ウィ ンドウにより その領域内の前記データ配列に対するリードを開始し、 走查ウィ ン ドウの条件と一致した場合、 一致した位置にて、 Υを Υ 2、 Υ 2 + 1、 · · ' と順次変更し、 前記 Υの範囲条件と一致するか判定を行 い、 条件が一致しなくなるか、 もしくは、 Υ = Υ 3 となるまで、 そ の領域内の前記データ配列に対するリードを実行することを特徴と する請求項 5または請求項 6記載の分析装置におけるセルカウン 卜 方法。
8 . セルの有無は、 セルを注入した分析用ディスク上の トラックに レーザ光を照射し、 フォ トディテクタで受光したときの光量変化に より判断することを特徴とする請求項 5から請求項 7のいずれかに 記載の分析装置におけるセルカウン ト方法。
9 . 分析ディスク上に注入した複数サイズからなるセルの有無に基 づいて得られた " 0 " あるいは " 1 " の 2値データが横方向 Xおよ び縦方向 Yとして面配列されたデータ配列を格納するメモリから、 前記データ配列の X方向を行として行 X Xで大きさが表され前記横 方向 Xおよび縦方向 Yへの移動が可能な走査ウイ ンドウにより、 そ の領域内の前記データ配列をリードし、 それらのデータを基に演算 して前記セルの有無を判断し、 そのセルサイズを判別してセルサイ ズ別に前記セルの個数をカウントする分析装置におけるセルカウン ト方法であって、 前記走査ウィ ンドウを、 1 X X 1 ( X I は整数の 変数) の大きさでその領域内が全て " 0 " となるか否かを判定する 第 1 ウィ ンドウと、 前記第 1 ゥィ ンドウの次の行で前記第 1 ウイ ン ドウの X方向の中央に位置する 1 X 1 の大きさでその領域内が
" 1 " であるか否かを判定する 2ウイ ンドウと、 前記第 2ウィ ン ドウの次の行に位置する Y 1 X X 1 ( Y 1 は整数の変数) の大きさ でその領域内の各行が最低 1つ 1 " を含んでいるか否かを判定す る第 3ウィ ン ドウと、 前記第 3ゥィ ンドゥの次の行に位置する 1 X
X 1 ( X I は整数の変数) の大きさでその領域内が全て " 0 " とな るか否かを判定する第 4ウイ ン Fクとからなる走査ウィ ンドウとし この走査ウイ ンドウを用いて前記セルサイズを判別することを特徴 とする分析装置におけるセルカウント方法。
1 0 . X 1はサンプリ ング起点のばらつきによる位置ずれ範囲より も大きい値であることを特徴とする請求項 9記載の分析装置におけ るセルカウン ト方法。
1 1 . セルの有無は、 セルを注入した分析用ディスク上の トラック にレーザ光を照射し、 フォ トディテク夕で受光したときの光量変化 により判断することを特徴とする請求項 9または請求項 1 0に記載 の分析装置におけるセルカウント方法。
1 2 . セルを注入した分析用ディスクに検出光を照射し、 フォ ト ディテクタで受光したデータから前記セルをカウントするセル分析 装置において、 前記分析用ディスク上の トラックごとに得られた二 値化したセル情報をデータバスの 1 ビッ トごとに割り当てて貯えて おくためのメモリ と、 前記メモリ領域内を移動可能なウィ ンドウと、 前記ウイ ンドウを移動制御するウイ ンドウ移動制御部と、 前記ウイ ンドウ内の 「 1」 の配列からセルを認識し大きさを決定するセルサ ィズ決定部と、 前記セル認識後にそのカウントをインクリメントす るセルカウン ト部と、 前記セル認識後に 「 1」 を 「 0」 に書き換え るメモリ書き換え部を備えたことを特徴とする分析装置。
1 3 . ウィ ン ドウ移動制御部の中に、 メモリ領域内で 1 X 1サイズ のウィ ンドウをア ドレス方向に走査させるウィ ンドウ走査部と、 前 記ウイ ンドウ走査中に 「 1」 の有無を判定する 「 1」 判定部と、 前 記判定部で 「 1」 検出毎にその数をカウントしていくセルサイズ用 カウン夕と、 前記判定部で見つけられた 「 1」 のところまでウィ ン ドウを拡大するウィ ンドウ制御部と、 前記判定部で 「 1」 検出毎に ビッ ト方向に 「 1」 の走査区間をシフ トさせる段代え部と、 シフ ト した走査区間の中でウィ ンドウを走査させる範囲を制限する探索区 間制御部を備えたことを特徴とする請求項 1 2 に記載の分析装置。
1 4. 探索区間制御部において、 所望のセルサイズからアドレス方 向に広げるサイズを割り出し、 それを次の段の探索区間とすること を特徴とする請求項 1 2 または請求項 1 3に記載の分析装置。
1 5 . セルを注入した分析用ディスクに検出光を照射し、 フォト ディテクタで受光したデータから前記セルをカウントする分析装置 におけるセルカウント方法であって、 メモリ領域内で 1 X 1サイズ のウイ ンドウをァ ドレス方向に走査させ 「 1」 を検出する工程 1 と、 検出した 「 1」 を中心としてウィ ンドウを 1 XX 6 (X 6 : 整数範 囲の定数) のサイズに広げる工程 2 と、 前記 1 XX 6のウィ ンドウ を次の段に設け、 そのウィ ンドウ内に 「 1」 があれば、 前記次の段 までウィ ンドウを拡大する工程 3 と、 前記工程 2 と前記工程 3の処 理を、 ウィ ンドウ内に 「 1」 の検出がなくなるまで繰り返す工程 4 と、 前記ウィ ンドウ内に 「 1」 の検出がなくなれば前記ウィ ンドウ の拡大を終了し、 そのウィ ン ドウの Y方向のサイズが所定値であれ ば、 セルとしてカウン トする工程 5 と、 前記拡大ウィ ン ドウ内の 「 1」 を全て 「 0」 に書き換え、 前記工程 1 の処理から繰り返すェ 程 6 とからなる分析装置におけるセルカウント方法。
PCT/JP2004/003894 2003-03-24 2004-03-22 分析装置および分析装置におけるセルカウント方法 WO2004086005A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/550,100 US20060182329A1 (en) 2003-03-24 2004-03-22 Analysis device and method for cell count in the analysis device
EP04722440A EP1612538A1 (en) 2003-03-24 2004-03-22 Analysis device and method for cell count in the analysis device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003080295A JP2004287939A (ja) 2003-03-24 2003-03-24 分析装置
JP2003-080295 2003-03-24
JP2003116411A JP3955273B2 (ja) 2003-04-22 2003-04-22 セルカウント方法
JP2003-116411 2003-04-22
JP2003365383A JP2005127929A (ja) 2003-10-27 2003-10-27 細胞分析装置
JP2003-365383 2003-10-27

Publications (1)

Publication Number Publication Date
WO2004086005A1 true WO2004086005A1 (ja) 2004-10-07

Family

ID=33101947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003894 WO2004086005A1 (ja) 2003-03-24 2004-03-22 分析装置および分析装置におけるセルカウント方法

Country Status (3)

Country Link
US (1) US20060182329A1 (ja)
EP (1) EP1612538A1 (ja)
WO (1) WO2004086005A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564552B2 (en) * 2004-05-14 2009-07-21 Kla-Tencor Technologies Corp. Systems and methods for measurement of a specimen with vacuum ultraviolet light
US7359052B2 (en) * 2004-05-14 2008-04-15 Kla-Tencor Technologies Corp. Systems and methods for measurement of a specimen with vacuum ultraviolet light
US7408641B1 (en) 2005-02-14 2008-08-05 Kla-Tencor Technologies Corp. Measurement systems configured to perform measurements of a specimen and illumination subsystems configured to provide illumination for a measurement system
US9508165B1 (en) * 2015-06-30 2016-11-29 General Electric Company Systems and methods for peak tracking and gain adjustment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055741A (ja) * 1990-10-09 1993-01-14 Idemitsu Petrochem Co Ltd 免疫学的定量分析方法
JPH10504397A (ja) * 1994-09-21 1998-04-28 ザ ユニバーシティ コート オブ ザ ユニバーシティ オブ グラスゴー サンプル分析実施用装置及び方法
JP2000515632A (ja) * 1997-02-28 2000-11-21 バースタイン ラボラトリーズ,インコーポレイティド ディスク、アッセイを実施するための装置、アッセイ要素、及びアッセイコンポーネント

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026131B2 (en) * 2000-11-17 2006-04-11 Nagaoka & Co., Ltd. Methods and apparatus for blood typing with optical bio-discs
US20030082544A1 (en) * 2001-07-11 2003-05-01 Third Wave Technologies, Inc. Methods and systems for validating detection assays, developing in-vitro diagnostic DNA or RNA analysis products, and increasing revenue and/or profit margins from in-vitro diagnostic DNA or RNA analysis assays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055741A (ja) * 1990-10-09 1993-01-14 Idemitsu Petrochem Co Ltd 免疫学的定量分析方法
JPH10504397A (ja) * 1994-09-21 1998-04-28 ザ ユニバーシティ コート オブ ザ ユニバーシティ オブ グラスゴー サンプル分析実施用装置及び方法
JP2000515632A (ja) * 1997-02-28 2000-11-21 バースタイン ラボラトリーズ,インコーポレイティド ディスク、アッセイを実施するための装置、アッセイ要素、及びアッセイコンポーネント

Also Published As

Publication number Publication date
US20060182329A1 (en) 2006-08-17
EP1612538A1 (en) 2006-01-04

Similar Documents

Publication Publication Date Title
US6509966B2 (en) Optical system for detecting surface defect and surface defect tester using the same
US6617603B2 (en) Surface defect tester
JP2842358B2 (ja) 光ディスクのトラックカウント装置
US7256897B2 (en) Three-dimensional measurement apparatus and three-dimensional measurement method
US4955008A (en) Prewritten data storage medium and optical scanning device therefor
WO2004086005A1 (ja) 分析装置および分析装置におけるセルカウント方法
JP4498082B2 (ja) 光学分析装置およびその粒子カウント方法
US7974790B2 (en) Particulate determination method
JP3955273B2 (ja) セルカウント方法
JP2005127929A (ja) 細胞分析装置
JP4606833B2 (ja) 粒状物判別方法
JP2004287939A (ja) 分析装置
JP4833582B2 (ja) 光情報記録装置及び光情報記録装置の制御方法
JP2004309288A (ja) 分析装置
KR100532759B1 (ko) 광 기록 매체 및 그것을 이용한 편심량 검출 장치
JPH05322539A (ja) 読出し装置および距離測定装置
US20240094387A1 (en) Optical sensing system, optical sensing device, and optical sensing method
JP2006132987A (ja) 超音波探傷装置
JP4765817B2 (ja) 光ディスク検査装置及び光ディスク検査方法
US6331888B1 (en) Method and apparatus for surface inspection
KR0124608B1 (ko) 리어 비디오 촛점 시스템의 줌 트랙킹 방법
US7755981B2 (en) Method and system for recording data by a plurality of laser beams on an optical disc
JP4873922B2 (ja) 標尺領域検出方法およびその装置
JP2005337738A (ja) 信号解析装置、信号解析方法、並びに信号解析システム
SU736102A1 (ru) Устройство дл контрол последовательности импульсов

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004807270X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006182329

Country of ref document: US

Ref document number: 10550100

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004722440

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004722440

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10550100

Country of ref document: US