WO2004085499A2 - Metallocene catalysts and preparation of polyolefins therewith - Google Patents
Metallocene catalysts and preparation of polyolefins therewith Download PDFInfo
- Publication number
- WO2004085499A2 WO2004085499A2 PCT/EP2004/003112 EP2004003112W WO2004085499A2 WO 2004085499 A2 WO2004085499 A2 WO 2004085499A2 EP 2004003112 W EP2004003112 W EP 2004003112W WO 2004085499 A2 WO2004085499 A2 WO 2004085499A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bis
- polymerisation
- metallocene
- dibenzyl
- sir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F17/00—Metallocenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/642—Component covered by group C08F4/64 with an organo-aluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
Definitions
- the present invention relates to a process for producing an olefin polymer using a particular metallocene catalyst as well as to certain metallocene compounds themselves.
- the invention relates to the use of a metallocene procatalyst having sigma ligands which do not have beta-hydrogen atoms and the use of this procatalyst in a multistage, preferably slurry phase followed by gas phase polymerisation, reaction for the manufacture of polyethylenes .
- the use of metallocene catalysts in olefin polymerisation has been known for many years.
- Metallocene compounds/procatalysts are conventionally activated using a cocatalyst such as an aluminoxane, borate or other activating agent known from the literature to form the active metallocene catalyst species.
- a cocatalyst such as an aluminoxane, borate or other activating agent known from the literature to form the active metallocene catalyst species.
- metallocene compounds comprise optionally bridged ⁇ -ligands (e.g. cyclopentadienyl ligands) coordinating to a group 4 to 6 metal having two sigma chloride ligands.
- ⁇ -ligands e.g. cyclopentadienyl ligands
- Such metallocene dichlorides are conventionally directly activated with aluminoxanes to bring about a polymerisation active species which starts a polymerisation process with an alpha olefin.
- certain metallocene compounds in particular certain hafnium based metallocenes like n-BuCp 2 HfCl 2 (where Cp denotes cyclopentadienyl) the use of this activation process has not afforded metallocene catalysts with high activity.
- the life spans of certain metallocene dichlorides such as the hafnium complex mentioned above are short causing a drastic decrease in the productivity especially in a two stage process.
- the life span of the catalyst is long enough for the active species to persist in the second reactor, e.g. in the latter stage of a loop/gas phase continuous polymerisation process. This is not achieved using various metallocene dichloride compounds.
- the loop reactor in order to achieve a suitable productivity in the gas phase reactor when using certain metallocene dichloride compounds, the loop reactor is run in a non-optimal fashion and the residence time therein is shortened so that an active catalyst persists into the gas phase reactor.
- a potentially expensive high diluent flush is used to transfer material quickly from the loop to gas phase causing a lot of catalyst which remains unreacted or only partially reacted with ethylene to be transferred into the gas phase reactor. This causes a decrease in particle homogeneity as well as further problems in the processing of target polymer products into films, injection moulds, etc.
- Some metallocene compounds comprising sigma ligands which do not comprise beta-hydrogen atoms are generically known in the prior art but have not been suggested for use in the process claimed below or not been explicitly identified as having the claimed advantageous properties.
- 099/29737 describes a process for the polymerisation of monomers utilizing a bulky ligand hafnium transition metal metallocene-type catalyst compound.
- Preferred sigma ligands on the metallocenes described therein are hydrides, hydrocarbyls, halogens, alkoxides, aryloxides, amides, phosphides but no specific mention is made of ligands which have no beta hydrogen atoms .
- EP-A-481480 describes a process for producing propylene based oligomers using an unbridged bis- cyclopentadienyl hafnium or zirconium catalyst which may comprise a benzyl sigma ligand.
- Preferred compounds comprises a bispentamethylcyclopentadienyl structure but the document describes only propylene oligomerisation in a single reaction stage, preferably solution polymerisation.
- 097/36937 describes the use of boratabenzene cocatalysts for use with a wide variety metallocenes including a number of dibenzyl species.
- O00/40620 concerns the preparation of bimodal film compositions prepared using a single site catalyst which may be a biscyclopentadienyl hafnium species. Whilst the possibility of the sigma ligands being other than chloride is generically mentioned, preferred single site catalysts are dihalide complexes.
- EP-A-294942 describes a solid catalyst for the polymerisation of olefins comprising a metallocene and aluminoxane on a support .
- Many potential metallocene compounds are listed in the specification including a number of species comprising benzyl sigma ligands.
- various metallocenes are known in the art it is clear that never before have the particular advantages of the process claimed been realised.
- the invention provides a process for the preparation of an olefin homopolymer; or copolymer comprising polymerising at least one C 2 _ 20 - ⁇ - olefin in slurry phase in the presence of
- Cp is an optionally substituted and/or optionally fused homo- or heterocyclopentadienyl ligand, (e.g. a substituted or unsubstituted cyclopentadienyl, substituted or unsubstituted indenyl or substituted or unsubstituted fluorenyl ligand) ;
- Cp" is a cyclopentadienyl substituted by at least one group;
- R is a bridge of 1-7 bridging atoms
- M is a group 4 to 6 transition metal, preferably, Hf or Zr
- each X is -CH 2 -Y, wherein Y is C 6 . 20 -aryl, C 6 . 20 - heteroaryl, C 1 _ 20 -alkoxy, C 6 _ 20 -aryloxy, -NR' 2 -SR 1 , -PR' 3 , -SiR' 3 , -OSiR' 3 or halogen;
- R 1 is C 1 _ 20 -hydrocarbyl, e.g. C ⁇ - 20 -alkyl , C 2 _ 20 - alkenyl, C 2 _ 20 -alkynyl, C 3 _ 12 -cycloalkyl or C 6 . 2 o ⁇ ar Yl; or in case of -NR' 2 , the two substituents R 1 can form a ring, e.g. five- or six-membered ring, together with the nitrogen atom wherein they are attached to; and each non-cyclopentadienyl ring moiety (i.e. substituents on Cp, or ring moieties forming R' or X etc) can further be substituted e.g. with C 1 _ 20 -alkyl which may contain Si and/or 0 atoms; n is 0 or 1; and
- (II) an aluminoxane cocatalyst Viewed from another aspect the invention provides polymers obtained by a process as hereinbefore described.
- Said optional substituent (s) present on the Cp group are independently selected from halogen, hydrocarbyl (e.g. C 1 _ 20 -alkyl, C 2 _ 20 -alkenyl, C 2 _ 20 -alkynyl , C 3 _ 12 -cycloalkyl, C 6 .
- each R" is independently a hydrogen or hydrocarbyl, e.g. C 1 _ 20 -alkyl, C 2 _ 20 -alkenyl, C 2 . 20 -alkynyl, C 3 .
- the two substituents R" can form a ring, e.g. five- or six-membered ring, together with the nitrogen atom wherein they are attached to.
- the bridging group R between Cp groups is preferably a bridge of 1-4 bridging C-atoms and 0-3 bridging heteroatoms, wherein the heteroatom(s) can be e.g. Si, Ge and/or 0 atom(s), whereby each of the bridge atoms may bear independently substituents, such as hydrogen, C 1 _ 20 -alkyl, tri (C 1 . 20 -alkyl) silyl, tri (C 1-20 - alkyl) siloxy, C 6 . 20 -aryl or C 6 . 20 -arylalkyl substituents; or a bridge of 1-3, e.g.
- each R 1 is independently Ci.j Q -alkyl, C 6 _ 20 -aryl ' or tri (C ⁇ o-alkyl) silyl- residue, such as trimethylsilyl- .
- Cp preferably denotes cyclopentadienyl, indenyl , tetrahydroindenyl or fluorenyl optionally substituted as defined above.
- the Cp group may further bear a fused ring of 3 to 7 atoms, e.g. 4, 5 or 6 atoms, which ring may be aromatic, saturated or partially saturated such as a benzindenyl (such as 4, 5-benzindenyl) .
- Cp denotes cyclopentadienyl.
- the Cp group remains unsubstituted or independently bears 1, 2, 3, 4 or 5 substituents as defined above, more preferably 1, 2, 3 or 4, e.g. l or 2 substituents.
- Preferred substituents include C 1 . 20 -alkyl or -OSi (C ⁇ Q - hydrocarbyl ) 3 .
- the Cp group carries 1 to 5 Ci.g-alkyl substituents such as methyl, ethyl, isopropyl or n-butyl or -OSi (C 1 _ 20 -alkyl) 3 such as -OSidimethyltertbutyl .
- the Cp" group preferably the Cp group carries 1 to 5, e.g. 2 or 3, Cj.g-alkyl substituents such as methyl, ethyl, isopropyl or n-butyl. If two susbtituents are present, it is preferred if these are on adjacent carbon atoms. Where three substituents are present a preferred substitution pattern is 1,2,4 if no bridge is present or 2,3,5 for bridged cyclopentadienyls (the bridge bonding at the 1-position) .
- n is preferably 0 or 1 , i.e. the metallocene is either bridged or unbridged.
- the bridge between the Cp groups should preferably be between the 1-positions on the Cp and Cp" rings.
- R a methylene, ethylene or a silyl bridge, whereby the silyl can be substituted as defined above.
- R, if present, is a dimethylsilyl or ethylene bridge.
- the metallocene is unbridged.
- Suitable metallocenes therefore include bis (1,2,4- trimethylcyclopentadienyl) Zr dibenzyl, bis (1,2,4- trimethylcyclopentadienyl) Zr (CH 2 SiMe 3 ) 2 .
- M is preferably Ti, Zr or Hf, especially Hf .
- each Y is independently selected from C 6 _ 20 -aryl, NR' 2/ -SiR' 3 or -OSiR' 3 wherein R' is as defined above.
- R' is as defined above.
- -CH 2 -Y is benzyl or -CH 2 - SiR' 3 .
- Preferred R' or R" groups are Ci.g-alkyl, e.g. methyl, ethyl, isopropyl, n-butyl, isobutyl, t-butyl or C 6 - ⁇ o-aryl.
- more preferred metallocene compounds of use in the process of the invention are of formula (II)
- each R 3 is a or siloxy substituent (e.g. as described above), and each R 4 is and both X' groups are either benzyl (Bz) or CH 2 SiR' 3 wherein R' is as hereinbefore defined.
- R 3 and R 4 are methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, preferably n-butyl or n-propyl and 1 or 2 substituents are present on each Cp ring, e.g. 1 substituent.
- X 1 is benzyl or CH 2 SiR' 3 wherein R' is preferably especially methyl.
- each Cp ' denotes a mono or di substituted cyclopentadienyl
- X 1 is benzyl or CH 2 SiR' 3 in which R' is a C 1 . 20 hydrocarbyl group.
- R' is C x- g-alkyl, e.g. methyl.
- any alkyl, alkenyl or alkynyl residue (with up to 20 C-atoms) referred to above alone or as a part of a moiety may be linear or branched, and preferably contains up to 9, e.g. up to 6, carbon atoms.
- C 6 _ 20 -aryl is preferably phenyl or naphthyl, preferably phenyl. includes C 1 . 20 -alkyl, C 6 _ 20 -aryl, C 2 . 20 -alkenyl or C 2 _ 20 -alkynyl .
- Halogen means F, Cl , Br or I , preferably Cl .
- the term C 5 _ 20 -heteroaryl may contain e.g.
- Bridged metallocenes may exist is rac or meso forms or mixtures thereof and can be separated using conventional techniques known in the art. Viewed from another aspect the invention provides use of a metallocene of formula (III) as an olefin polymerisation catalyst.
- the preparation of the metallocenes of the invention can be carried out according or analogously to the methods known from the literature and is within skills of a person skilled in the field.
- examples of compounds wherein the metal atom bears a -NR" 2 ligand see inter alia WO-A-9856831 and WO-A-0034341.
- examples of compounds wherein the metal atom bears a -NR" 2 ligand see inter alia WO-A-9856831 and WO-A-0034341.
- For the preparation see also e.g. in EP-A-260 130, WO-A-9728170 , WO-A-
- Metallocene procatalysts are generally used as part of a catalyst system which also includes an ionic cocatalyst or catalyst activator (herein generally cocatalyst) .
- Alumoxanes are well known in the art and can be made by conventional methods. Traditionally, the most widely used aluminoxane is methylalumoxane (MAO) , an alumoxane compound in which the R groups are methyls. For aluminoxanes with higher alkyl groups reference is made to hexaisobutylalumoxane (HIBAO) .
- the olefin polymerisation catalyst system of the invention comprises (i) a procatalyst formed from a metallated compound of formula (I) and (ii) a cocatalyst.
- the cocatalyst compound is preferably an aluminoxane, most preferably an MAO, isobutylalumoxane, eg TIBAO (tetraisobutylalumoxane) or HIBAO (hexaisobutylalumoxane) .
- the metallocene procatalyst and cocatalyst may be introduced into the polymerization reactor separately or together or, more preferably they are pre-reacted and their reaction product is introduced into the polymerization reactor.
- the procatalyst, procatalyst/cocatalyst mixture or a procatalyst/cocatalyst reaction product may be used in unsupported form or it may be solidified together with other catalyst forming components and used as such.
- the metallocene procatalyst or its reaction product with the cocatalyst can be introduced into the polymerization reactor in supported form, e.g. impregnated into a porous particulate support .
- the particulate support material may be an organic or inorganic material, e.g. an organic polymer or pseudo metal oxide such as silica, alumina, titania or zirconia or a mixed oxide such as silica-alumina, silica-titania in particular silica, alumina or silica-alumina.
- organic polymer or pseudo metal oxide such as silica, alumina, titania or zirconia
- a mixed oxide such as silica-alumina, silica-titania in particular silica, alumina or silica-alumina.
- the support is a porous material so that the metallocene may be loaded into the pores of the support, e.g. using a process analogous to those described in W094/14856 (Mobil), W095/12622 (Borealis) , W096/32923 (Borealis) and WO96/00243 (Exxon) .
- the particle size is not critical but is preferably in the range 5 to 200 ⁇ m, more preferably 20 to 80 ⁇ m.
- further catalyst forming components e.g. further activators
- organoaluminium alkylating agent this is preferably used in a quantity sufficient to provide a loading of at least 0.1 mmol Al/g carrier, especially at least 0.5 mmol Al/g, more especially at least 0.7 mmol Al/g, more preferably at least 1.4 mmol Al/g carrier, and still more preferably 2 to 3 mmol Al/g carrier.
- the surface area of the carrier is particularly high, higher aluminium loadings may be needed.
- particularly preferred aluminium loadings with a surface area of 300-400 m 2 /g carrier may range from 0.5 to 3 mmol Al/g carrier while at surface areas of 700-800 m 2 /g carrier the particularly preferred range will be lower.
- the active metal ie. the metal of the procatalyst
- the active metal is preferably loaded onto the support material at from 0.1 to 4%, preferably 0.1 to 1.0%, especially 0.1 to
- metallocene compounds and the cocatalyst are within the skills of the artisan.
- the quantities employed may vary depending on the particular loading conditions and may be chosen in a manner well known to the skilled person.
- the mole ratio of the cocatalyst to the metallocene can be from 0.1:1 to 10000:1, especially 1:1 to 50:1, particularly 1:2 to 30:1. More particularly, where an alumoxane cocatalyst is used, then for an unsupported catalyst the aluminium:metallocene metal (M) molar ratio is conveniently 2:1 to 10000:1, preferably 50:1 to 1000:1. Where the catalyst is supported the A1:M molar ratio is conveniently 2:1 to 10000:1, preferably 50:1 to 400:1. If desired the catalyst may be prepolymerised before the main polymerisation step.
- M aluminium:metallocene metal
- the olefin polymerized in the method of the invention is preferably ethylene or an alpha-olefin or a mixture of ethylene and an alpha-olefin or a mixture of alpha olefins, for example C 2 _ 20 olefins, e.g. ethylene, propene, but-1-ene, hex-1-ene, 4 -methyl -pent-1-ene, oct- 1-ene etc.
- the olefins polymerized in the method of the invention may include any compound which includes unsaturated polymerizable groups.
- unsaturated compounds such as C 6 _ 20 olefins (including cyclic and polycyclic olefins (e.g. norbornene) ) , and polyenes, especially C 6 _ 20 dienes, may be included in a comonomer mixture with lower olefins, e.g. C 2 . 5 -olefins .
- Diolefins ie. dienes
- dienes are suitably used for introducing long chain branching into the resultant polymer. Examples of such dienes include linear dienes such as 1, 5-hexadiene, 1, 6-heptadiene, 1 , 8-nonadiene, 1,9- decadiene, etc.
- the polymer produced by the process of the invention is an ethylene homopolymer or an ethylene copolymer with a C 3 _ 8 - ⁇ - olefin, e.g. propylene, 1-butene or 1-hexene.
- Comonomer can be added in one or more of the reactors used in the process of the invention and where two or more reactors are employed it is possible to use different comonomers in each reactor.
- the polymer being produced is a homopolymer it will preferably be polyethylene or polypropylene. Where the polymer being produced is a copolymer it will likewise preferably be an ethylene or propylene copolymer with ethylene or propylene making up the major proportion (by number and more preferably by weight) of the monomer residues.
- Comonomers such as C 4 _ g alkenes, will generally be incorporated to contribute to the mechanical strength of the polymer product .
- metallocene catalysts yield relatively narrow molecular weight distribution polymers; however, if desired, the nature of the monomer/monomer mixture and the polymerization conditions may be changed during the polymerization process so as to produce a broad bimodal or multimodal molecular weight distribution
- MWD molecular weight distribution
- the higher molecular weight component contributes to the strength of the end product while the lower molecular weight component contributes to the processability of the product, e.g. enabling the product to be used in extrusion and blow moulding processes, for example for the preparation of tubes, pipes, containers, etc .
- the polymerisation process of the invention comprises at least one slurry phase polymerisation which may be carried out in a loop reactor or stirred tank reactor.
- the process of the invention may also comprise further polymerisation steps such as a prepolymerisation step, further slurry polymerisation steps or gas phase polymerisation steps.
- Polymerization in the process of the invention may be effected in one or more, e.g. 1, 2 or 3, polymerization reactors, using conventional polymerization techniques, e.g. gas phase, solution phase, slurry or bulk polymerization.
- conventional polymerization techniques e.g. gas phase, solution phase, slurry or bulk polymerization.
- the process of the invention comprises at least two reaction stages, a first slurry phase stage followed by a gas phase stage in series.
- a process is conveniently carried out in a loop reactor followed by a gas phase reactor.
- the process is preferably carried out continuously and a flash step used to transfer polymer and catalyst from the loop reactor to the gas phase reactor.
- a further gas phase reactors i.e. a process comprising slurry phase polymerisation followed by two gas phase polymerizations .
- the split between the slurry phase and gas phase is such that the ratio by weight of the polymer is 60:40 to 40:60 slurry vs gas phase .
- the reaction temperature will generally be in the range 60 to 110°C (e.g. 85-110°C)
- the reactor pressure will generally be in the range 5 to 80 bar (e.g. 50-65 bar)
- the residence time will generally be in the range 0.3 to 5 hours (e.g. 0.5 to 2 hours)
- the diluent used will generally be an aliphatic hydrocarbon having a boiling point in the range -70 to +100°C. In such reactors, polymerization may if desired be effected under supercritical conditions.
- the reaction temperature used will generally be in the range 60 to 115°C (e.g. 70 to 110°C)
- the reactor pressure will generally be in the range 10 to 25 bar
- the residence time will generally be 1 to 8 hours.
- the gas used will commonly be a non-reactive gas such as nitrogen or low boiling point hydrocarbons such as propane together with monomer
- the gas phase may also be run in gas phase condensed mode as is well known in the art.
- Bimodal polymerisations were performed in 5.2 L reactor. Comonomer and hydrogen are added continuously.
- Polymerisation was performed according to polymerisation procedure presented in table 2 by performing all steps and by using 560 mg of catalyst prepared according to example 3.
- the yield on polymer was 881 g.
- Example 12 Polymerisation was performed according to polymerisation procedure presented in table 1 by using 197.3 mg of catalyst prepared according to example 5. The yield on polymer was 364 g.
- Polymerisation was performed according to polymerisation procedure presented in table 2 by performing steps 1-7 and by using 210 mg of of catalyst prepared according to example 5.
- the yield on polymer was 888 g.
- Polymerisation was performed according to polymerisation procedure presented in table 2 by performing all steps and by using 504 mg of catalyst prepared according to example 7.
- the yield on polymer was 1019 g.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP04722852A EP1606327A2 (en) | 2003-03-25 | 2004-03-24 | Metallocene catalysts and preparation of polyolefins therewith |
| BRPI0408714-3A BRPI0408714A (pt) | 2003-03-25 | 2004-03-24 | processo |
| US10/550,237 US20070037939A1 (en) | 2003-03-25 | 2004-03-24 | Process |
| JP2006504840A JP2006521436A (ja) | 2003-03-25 | 2004-03-24 | 方法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP03251855A EP1462464A1 (en) | 2003-03-25 | 2003-03-25 | Metallocene catalysts and preparation of polyolefins therewith |
| EP03251855.7 | 2003-03-25 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2004085499A2 true WO2004085499A2 (en) | 2004-10-07 |
| WO2004085499A3 WO2004085499A3 (en) | 2005-01-20 |
Family
ID=32799070
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2004/003112 Ceased WO2004085499A2 (en) | 2003-03-25 | 2004-03-24 | Metallocene catalysts and preparation of polyolefins therewith |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20070037939A1 (enExample) |
| EP (2) | EP1462464A1 (enExample) |
| JP (1) | JP2006521436A (enExample) |
| KR (1) | KR20050109582A (enExample) |
| CN (1) | CN1764676A (enExample) |
| BR (1) | BRPI0408714A (enExample) |
| WO (1) | WO2004085499A2 (enExample) |
Cited By (92)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2072589A1 (en) | 2007-12-20 | 2009-06-24 | Borealis Technology Oy | Process for coating a pipe with high throughput using multimodal ethylene copolymer, and coated pipes obtained thereof |
| EP2072586A1 (en) | 2007-12-20 | 2009-06-24 | Borealis Technology Oy | Coated pipes having improved mechanical properties and a method of production thereof |
| EP2072587A1 (en) | 2007-12-20 | 2009-06-24 | Borealis Technology Oy | Coated pipes having improved mechanical properties at elevated temperatures and a method of production thereof |
| EP2072588A1 (en) | 2007-12-20 | 2009-06-24 | Borealis Technology Oy | Process for coating a pipe with high throughput using multimodal ethylene copolymer, and coated pipes obtained thereof |
| EP2130862A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | Polymer compositions and pressure-resistant pipes made thereof |
| EP2130859A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | Polymer compositions having improved homogeneity and odour, a method for making them and pipes made thereof |
| EP2130863A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | High density polymer compositions, a method for their preparation and pressure-resistant pipes made therefrom |
| EP2182524A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and Polymer composition comprising a multimodal ethylene copolymer |
| EP2182526A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and polymer composition comprising an multimodal ethylene copolymer |
| EP2182525A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and polymer composition comprising a multimodal ethylene copolymer |
| WO2011023440A1 (en) | 2009-08-26 | 2011-03-03 | Borealis Ag | Cable and polymer composition |
| EP2322568A1 (en) | 2009-11-13 | 2011-05-18 | Borealis AG | Process for producing an olefin polymerization catalyst |
| WO2011058091A1 (en) | 2009-11-13 | 2011-05-19 | Borealis Ag | Process for olefin polymerization |
| WO2011058088A1 (en) | 2009-11-13 | 2011-05-19 | Borealis Ag | Process for recovering a transition metal compound |
| WO2011058089A1 (en) | 2009-11-13 | 2011-05-19 | Borealis Ag | Process for producing a polymerization catalyst |
| EP2330135A1 (en) | 2009-12-02 | 2011-06-08 | Borealis AG | Process for producing polyolefins |
| WO2011069888A1 (en) | 2009-12-07 | 2011-06-16 | Borealis Ag | Process for the preparation of an unsupported, solid metallocene catalyst system and its use in polymerization of olefins |
| EP2495037A1 (en) | 2011-03-02 | 2012-09-05 | Borealis AG | High throughput reactor assembly for polymerization of olefins |
| EP2495038A1 (en) | 2011-03-02 | 2012-09-05 | Borealis AG | Flexible reactor assembly for polymerization of olefins |
| EP2520625A1 (en) | 2011-05-06 | 2012-11-07 | Borealis AG | Coating composition |
| JP2012232292A (ja) * | 2011-04-18 | 2012-11-29 | Ihi Corp | 吸収塔及びそれを用いた生物脱臭装置 |
| WO2014032794A1 (en) | 2012-08-29 | 2014-03-06 | Borealis Ag | Reactor assembly and method for polymerization of olefins |
| EP2740748A1 (en) | 2012-12-07 | 2014-06-11 | Borealis AG | Method of polymerizing olefins in slurry reactors |
| EP2745927A1 (en) | 2012-12-21 | 2014-06-25 | Borealis AG | Fluidized bed reactor with internal moving bed reaction unit |
| EP2745926A1 (en) | 2012-12-21 | 2014-06-25 | Borealis AG | Gas phase polymerization and reactor assembly comprising a fluidized bed reactor and an external moving bed reactor |
| EP3023450A1 (en) | 2014-11-21 | 2016-05-25 | Borealis AG | Process for producing pellets of soft copolymers |
| WO2016184812A1 (en) | 2015-05-20 | 2016-11-24 | Borealis Ag | Process for producing polyethylene composition |
| EP3103818A1 (en) | 2015-06-12 | 2016-12-14 | Borealis AG | Method and apparatus for polymerising olefins in gas phase |
| US9539556B2 (en) | 2014-02-28 | 2017-01-10 | Borealis Ag | Process for polymerizing olefins in a fluidized bed |
| EP3173443A1 (en) | 2015-11-27 | 2017-05-31 | Borealis AG | Semiconductive polyethylene composition |
| EP3173442A1 (en) | 2015-11-27 | 2017-05-31 | Borealis AG | Semiconductive polyethylene composition |
| EP3178853A1 (en) | 2015-12-07 | 2017-06-14 | Borealis AG | Process for polymerising alpha-olefin monomers |
| EP3184166A1 (en) | 2015-12-22 | 2017-06-28 | Borealis AG | A method for withdrawing agglomerates from a fluidised bed reactor |
| EP3184167A1 (en) | 2015-12-22 | 2017-06-28 | Borealis AG | A method for returning polymer to a fluidised bed reactor |
| US9790290B2 (en) | 2014-02-28 | 2017-10-17 | Borealis Ag | Gas phase polymerization process |
| EP3243622A1 (en) | 2016-05-13 | 2017-11-15 | Borealis AG | Process for producing and transporting of flowable pellets of soft copolymers |
| EP3257895A1 (en) | 2016-06-17 | 2017-12-20 | Borealis AG | Bi- or multimodal polyethylene terpolymer with enhanced rheological properties |
| EP3257879A1 (en) | 2016-06-17 | 2017-12-20 | Borealis AG | Bi- or multimodal polyethylene with low unsaturation level |
| WO2017216096A1 (en) | 2016-06-17 | 2017-12-21 | Borealis Ag | Bi- or multimodal polyethylene with low unsaturation level |
| WO2017216095A1 (en) | 2016-06-17 | 2017-12-21 | Borealis Ag | Bi- or multimodal polyethylene terpolymer with enhanced rheological properties |
| WO2017216094A1 (en) | 2016-06-17 | 2017-12-21 | Borealis Ag | Bi- or multimodal polyethylene with enhanced rheological properties |
| EP3418308A1 (en) | 2017-06-20 | 2018-12-26 | Borealis AG | A method, an arrangement and use of an arrangement for olefin polymerisation |
| EP3418309A1 (en) | 2017-06-20 | 2018-12-26 | Borealis AG | A method, an arrangement and use of an arrangement of preparing polymer |
| EP3418310A1 (en) | 2017-06-23 | 2018-12-26 | Borealis AG | Process and apparatus for removing polymer material from a gas-solids olefin polymerization reactor |
| WO2019081611A1 (en) | 2017-10-24 | 2019-05-02 | Borealis Ag | MULTILAYER POLYMER FILM |
| EP3479896A1 (en) | 2017-11-03 | 2019-05-08 | Borealis AG | Polymerization reactor system comprising at least one withdrawal valve |
| EP3483189A1 (en) | 2017-11-14 | 2019-05-15 | Borealis AG | Automated method for terminating an olefin polymerization reaction under emergency conditions |
| EP3486261A1 (en) | 2017-11-17 | 2019-05-22 | Borealis AG | Method for improving the cooling capacity of a gas solids olefin polymerization reactor |
| EP3486260A1 (en) | 2017-11-17 | 2019-05-22 | Borealis AG | Method of splitting the return fluidization gas in a gas solids olefin polymerization reactor |
| US10385194B2 (en) | 2014-11-26 | 2019-08-20 | Borealis Ag | Polyethylene composition for a film layer |
| WO2019166652A1 (en) | 2018-03-02 | 2019-09-06 | Borealis Ag | Process |
| WO2019180166A1 (en) | 2018-03-21 | 2019-09-26 | Borealis Ag | Bi- or multimodal polyethylene composition |
| US10494465B2 (en) | 2014-11-26 | 2019-12-03 | Borealis Ag | Film layer |
| WO2019238428A1 (en) | 2018-06-14 | 2019-12-19 | Borealis Ag | Process for polymerizing olefin in a gas phase reactor with improved thermal homogeneity |
| WO2020025757A1 (en) | 2018-08-02 | 2020-02-06 | Borealis Ag | Process for polymerizing ethylene in a multi-stage polymerization process |
| WO2020094347A1 (en) | 2018-11-07 | 2020-05-14 | Borealis Ag | Polyolefin composition with improved impact and whitening resistance |
| WO2020099564A1 (en) | 2018-11-15 | 2020-05-22 | Abu Dhabi Polymers Co. Ltd (Borouge) L.L.C. | Polymer composition for blow molding applications |
| WO2020109563A1 (en) | 2018-11-29 | 2020-06-04 | Borealis Ag | Process to produce a polymer and polymer |
| WO2020109452A1 (en) | 2018-11-30 | 2020-06-04 | Borealis Ag | Washing process |
| WO2020244833A1 (en) | 2019-06-04 | 2020-12-10 | Name: Borealis Ag | A process and a multi-stage reactor assembly for the production of polyolefins |
| WO2020244834A1 (en) | 2019-06-04 | 2020-12-10 | Borealis Ag | Process and reactor assembly for the enhancement of hydrodynamics in a gas-solids fluidized bed reactor |
| WO2020260021A1 (en) | 2019-06-24 | 2020-12-30 | Borealis Ag | Process for preparing polypropylene with improved recovery |
| WO2021013552A1 (en) | 2019-07-22 | 2021-01-28 | Abu Dhabi Polymers Co. Ltd (Borouge) L.L.C. | Single site catalysed multimodal polyethylene composition |
| US10982019B2 (en) | 2016-06-23 | 2021-04-20 | Borealis Ag | Process for catalyst deactivation |
| EP3838984A1 (en) | 2019-12-20 | 2021-06-23 | Borealis AG | Polymer composition and article |
| EP3868793A1 (en) | 2020-02-24 | 2021-08-25 | Borealis AG | Process for producing alpha-olefin polymers in a multistage polymerization process |
| WO2021191018A1 (en) | 2020-03-24 | 2021-09-30 | Borealis Ag | Polyethylene composition for a film layer |
| WO2021191019A1 (en) | 2020-03-24 | 2021-09-30 | Borealis Ag | Polyethylene composition for a film layer |
| WO2021234042A1 (en) | 2020-05-20 | 2021-11-25 | Borealis Ag | Polymer for power cable insulation |
| WO2021234040A1 (en) | 2020-05-20 | 2021-11-25 | Borealis Ag | Polymer for cable jacket |
| WO2022018239A1 (en) | 2020-07-23 | 2022-01-27 | Borealis Ag | Multimodal ethylene copolymer |
| EP4029914A1 (en) | 2021-01-14 | 2022-07-20 | Borealis AG | Heterophasic polyolefin composition |
| WO2022268960A1 (en) | 2021-06-24 | 2022-12-29 | Borealis Ag | Utilization of 1-hexene in multi-stage polyolefin production |
| WO2022268959A1 (en) | 2021-06-24 | 2022-12-29 | Borealis Ag | Improving catalyst performance in multi-stage polyolefin production |
| WO2022268957A1 (en) | 2021-06-24 | 2022-12-29 | Borealis Ag | Method for determining compressive character of olefin polymerisation catalysts |
| WO2022268951A1 (en) | 2021-06-24 | 2022-12-29 | Borealis Ag | Use of a swelling agent in multi-stage polyolefin production |
| EP4116091A1 (en) | 2021-07-07 | 2023-01-11 | Borealis AG | Multilayer film |
| WO2023280997A1 (en) | 2021-07-08 | 2023-01-12 | Borealis Ag | Polyethylene for use in the production of crosslinked polyethylene (pex) |
| EP4144435A1 (en) | 2021-09-01 | 2023-03-08 | Borealis AG | Gas phase polymerization process with improved gas recycling |
| EP4163309A1 (en) | 2021-10-07 | 2023-04-12 | Borealis AG | Hdpe |
| EP4163334A1 (en) | 2021-10-10 | 2023-04-12 | Borealis AG | Polyethylene composition for a film layer |
| EP4257640A1 (en) | 2022-04-04 | 2023-10-11 | Borealis AG | Pipe comprising a polypropylene composition |
| EP4317216A1 (en) | 2022-08-03 | 2024-02-07 | Abu Dhabi Polymers Co. Ltd (Borouge) LLC | Low density ethylene terpolymer composition |
| EP4389414A1 (en) | 2022-12-19 | 2024-06-26 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Multilayer collation shrink film |
| EP4389418A1 (en) | 2022-12-19 | 2024-06-26 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Multilayer collation shrink film |
| EP4455170A1 (en) | 2023-04-28 | 2024-10-30 | Borealis AG | Cable compositions comprising a multimodal ethylene-butene-hexene terpolymer |
| WO2024223775A1 (en) | 2023-04-26 | 2024-10-31 | Borealis Ag | Layer element suitable as integrated backsheet for a bifacial photovoltaic module |
| WO2024223777A1 (en) | 2023-04-26 | 2024-10-31 | Borealis Ag | Layer element suitable as integrated backsheet for a bifacial photovoltaic module |
| EP4541583A1 (en) | 2023-10-18 | 2025-04-23 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Multilayer film |
| WO2025125458A1 (en) | 2023-12-12 | 2025-06-19 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Modified polyethylene having improved hydrostatic pressure resistance and slow crack growth resistance |
| EP4574848A1 (en) | 2023-12-19 | 2025-06-25 | Borealis AG | Polypropylene copolymer composition having high molecular weight |
| WO2025219499A1 (en) | 2024-04-18 | 2025-10-23 | Borealis Gmbh | Processes for polymerising olefins |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB0423212D0 (en) * | 2004-10-19 | 2004-11-24 | Borealis Tech Oy | Polymer |
| CN101102189B (zh) * | 2006-07-05 | 2011-06-22 | 华为技术有限公司 | 一种实现多种媒体接入的网关系统和方法 |
| EP2119732A1 (en) | 2008-05-16 | 2009-11-18 | Borealis Technology Oy | Metallocene catalyst compositions with improved properties, process for its preparation and use for preparing polyolefin homo- or copolymers |
| EP2528970B1 (en) | 2010-01-29 | 2015-07-29 | Borealis AG | Improving homogeneity in polyethylene blends |
| EP2354184B1 (en) | 2010-01-29 | 2012-08-22 | Borealis AG | Polyethylene moulding composition with improved stress crack/stiffness relationship and impact resistance |
| EP2354183B1 (en) | 2010-01-29 | 2012-08-22 | Borealis AG | Moulding composition |
| EP2753659B1 (en) * | 2011-09-09 | 2021-10-27 | Chevron Phillips Chemical Company LP | Polyethylene additive compositions and articles made from same |
| RU2529020C2 (ru) | 2012-10-17 | 2014-09-27 | ЭлДжи КЕМ, ЛТД. | Новое металлоценовое соединение, содержащая его каталитическая композиция и способ получения полимеров на основе олефинов с ее применением |
| CN104837848B (zh) | 2012-12-11 | 2017-09-22 | 株式会社Lg化学 | 新的配体化合物及其制备方法,包括该配体化合物的过渡金属化合物及其制备方法 |
| KR20140075589A (ko) | 2012-12-11 | 2014-06-19 | 주식회사 엘지화학 | 신규한 리간드 화합물, 이의 제조방법, 전이금속 화합물, 및 이의 제조방법 |
| WO2015190831A1 (ko) * | 2014-06-10 | 2015-12-17 | 주식회사 엘지화학 | 프로필렌계 엘라스토머 |
| KR101580591B1 (ko) | 2014-06-10 | 2015-12-28 | 주식회사 엘지화학 | 프로필렌계 엘라스토머 |
| CN107112071A (zh) | 2014-12-19 | 2017-08-29 | 博里利斯股份公司 | 包含热塑性塑料并且具有有利性质的电力缆线聚合物组合物 |
| FI3234954T3 (fi) | 2014-12-19 | 2025-10-17 | Borealis Gmbh | Edulliset sähköominaisuudet omaava polymeerikoostumus johto- & kaapelisovelluksiin (W&C) |
| EP3887411A1 (en) | 2018-11-29 | 2021-10-06 | Borealis AG | Polymer composition and process for making the same |
| CN114402003B (zh) * | 2019-07-17 | 2023-04-18 | 博里利斯股份公司 | 制备聚合物组合物的方法 |
| WO2021009190A1 (en) * | 2019-07-17 | 2021-01-21 | Borealis Ag | Process for producing a polymer composition |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2538595B2 (ja) * | 1987-05-13 | 1996-09-25 | 三井石油化学工業株式会社 | オレフイン重合用固体触媒 |
| EP0474391B1 (en) * | 1990-08-21 | 1995-10-25 | Nippon Oil Co. Ltd. | Polyolefins |
| US5171919A (en) * | 1990-10-17 | 1992-12-15 | Idemitsu Kosan Co., Ltd. | Process for producing propylene based oligomers |
| FI96216C (fi) * | 1994-12-16 | 1996-05-27 | Borealis Polymers Oy | Prosessi polyeteenin valmistamiseksi |
| US5767208A (en) * | 1995-10-20 | 1998-06-16 | Exxon Chemical Patents Inc. | High temperature olefin polymerization process |
| EP0889911B1 (en) * | 1996-03-29 | 2000-11-02 | The Dow Chemical Company | Metallocene cocatalyst |
| FI990003L (fi) * | 1999-01-04 | 2000-07-05 | Borealis Polymers Oy | Polymeerikoostumus, menetelmä sen valmistamiseksi ja siitä valmistetut kalvot |
| US20020107344A1 (en) * | 2000-12-07 | 2002-08-08 | Peterson Thomas Henry | Supprt materials for use with polymerization catalysts |
-
2003
- 2003-03-25 EP EP03251855A patent/EP1462464A1/en not_active Withdrawn
-
2004
- 2004-03-24 KR KR1020057017314A patent/KR20050109582A/ko not_active Withdrawn
- 2004-03-24 CN CNA200480007915XA patent/CN1764676A/zh active Pending
- 2004-03-24 US US10/550,237 patent/US20070037939A1/en not_active Abandoned
- 2004-03-24 BR BRPI0408714-3A patent/BRPI0408714A/pt not_active IP Right Cessation
- 2004-03-24 JP JP2006504840A patent/JP2006521436A/ja not_active Withdrawn
- 2004-03-24 EP EP04722852A patent/EP1606327A2/en not_active Withdrawn
- 2004-03-24 WO PCT/EP2004/003112 patent/WO2004085499A2/en not_active Ceased
Cited By (140)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8361578B2 (en) | 2007-12-20 | 2013-01-29 | Borealis Technology Oy | Process for coating a pipe with high throughput using multimodal ethylene copolymer, and coated pipes obtained thereof |
| EP2072586A1 (en) | 2007-12-20 | 2009-06-24 | Borealis Technology Oy | Coated pipes having improved mechanical properties and a method of production thereof |
| EP2072587A1 (en) | 2007-12-20 | 2009-06-24 | Borealis Technology Oy | Coated pipes having improved mechanical properties at elevated temperatures and a method of production thereof |
| EP2072588A1 (en) | 2007-12-20 | 2009-06-24 | Borealis Technology Oy | Process for coating a pipe with high throughput using multimodal ethylene copolymer, and coated pipes obtained thereof |
| US8623482B2 (en) | 2007-12-20 | 2014-01-07 | Borealis Technology Oy | Coated pipe with high throughput using multimodal ethylene copolymer |
| EP2072589A1 (en) | 2007-12-20 | 2009-06-24 | Borealis Technology Oy | Process for coating a pipe with high throughput using multimodal ethylene copolymer, and coated pipes obtained thereof |
| EP2130863A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | High density polymer compositions, a method for their preparation and pressure-resistant pipes made therefrom |
| EP2130859A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | Polymer compositions having improved homogeneity and odour, a method for making them and pipes made thereof |
| EP2130862A1 (en) | 2008-06-02 | 2009-12-09 | Borealis AG | Polymer compositions and pressure-resistant pipes made thereof |
| EP2182526A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and polymer composition comprising an multimodal ethylene copolymer |
| EP2182525A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and polymer composition comprising a multimodal ethylene copolymer |
| EP2182524A1 (en) | 2008-10-31 | 2010-05-05 | Borealis AG | Cable and Polymer composition comprising a multimodal ethylene copolymer |
| US8461266B2 (en) | 2008-10-31 | 2013-06-11 | Borealis Ag | Cable and polymer composition comprising a multimodal ethylene copolymer |
| US10087296B2 (en) | 2008-10-31 | 2018-10-02 | Boreaus Ag | Method of producing a cable comprising a multimodal ethylene copolymer |
| WO2011023440A1 (en) | 2009-08-26 | 2011-03-03 | Borealis Ag | Cable and polymer composition |
| US8907218B2 (en) | 2009-08-26 | 2014-12-09 | Borealis Ag | Cable and polymer composition |
| EP2322568A1 (en) | 2009-11-13 | 2011-05-18 | Borealis AG | Process for producing an olefin polymerization catalyst |
| WO2011058089A1 (en) | 2009-11-13 | 2011-05-19 | Borealis Ag | Process for producing a polymerization catalyst |
| WO2011058088A1 (en) | 2009-11-13 | 2011-05-19 | Borealis Ag | Process for recovering a transition metal compound |
| US8501881B2 (en) | 2009-11-13 | 2013-08-06 | Borealis Ag | Process for olefin polymerization |
| WO2011058091A1 (en) | 2009-11-13 | 2011-05-19 | Borealis Ag | Process for olefin polymerization |
| WO2011066892A1 (en) | 2009-12-02 | 2011-06-09 | Borealis Ag | Process for producing polyolefins |
| EP2330135A1 (en) | 2009-12-02 | 2011-06-08 | Borealis AG | Process for producing polyolefins |
| US8476383B2 (en) | 2009-12-02 | 2013-07-02 | Borealis Ag | Process for producing polyolefins |
| WO2011069888A1 (en) | 2009-12-07 | 2011-06-16 | Borealis Ag | Process for the preparation of an unsupported, solid metallocene catalyst system and its use in polymerization of olefins |
| US9192905B2 (en) | 2011-03-02 | 2015-11-24 | Borealis Ag | Flexible reactor assembly for polymerization of olefins |
| US9192903B2 (en) | 2011-03-02 | 2015-11-24 | Borealis Ag | High throughput reactor assembly for polymerization of olefins |
| WO2012116845A1 (en) | 2011-03-02 | 2012-09-07 | Borealis Ag | Flexible reactor assembly for polymerization of olefins |
| EP2495038A1 (en) | 2011-03-02 | 2012-09-05 | Borealis AG | Flexible reactor assembly for polymerization of olefins |
| EP2495037A1 (en) | 2011-03-02 | 2012-09-05 | Borealis AG | High throughput reactor assembly for polymerization of olefins |
| WO2012116844A1 (en) | 2011-03-02 | 2012-09-07 | Borealis Ag | High throughput reactor assembly for polymerization of olefins |
| JP2012232292A (ja) * | 2011-04-18 | 2012-11-29 | Ihi Corp | 吸収塔及びそれを用いた生物脱臭装置 |
| WO2012152421A1 (en) | 2011-05-06 | 2012-11-15 | Borealis Ag | Coating composition |
| EP2520625A1 (en) | 2011-05-06 | 2012-11-07 | Borealis AG | Coating composition |
| US8912276B2 (en) | 2011-05-06 | 2014-12-16 | Borealis Ag | Coating composition |
| WO2014032794A1 (en) | 2012-08-29 | 2014-03-06 | Borealis Ag | Reactor assembly and method for polymerization of olefins |
| US9382359B2 (en) | 2012-08-29 | 2016-07-05 | Borealis Ag | Reactor assembly and method for polymerization of olefins |
| WO2014086648A1 (en) | 2012-12-07 | 2014-06-12 | Borealis Ag | Method of polymerizing olefins in slurry reactors |
| US9260547B2 (en) | 2012-12-07 | 2016-02-16 | Borealis Ag | Method of polymerizing olefins in slurry reactors |
| EP2740748A1 (en) | 2012-12-07 | 2014-06-11 | Borealis AG | Method of polymerizing olefins in slurry reactors |
| EP2745926A1 (en) | 2012-12-21 | 2014-06-25 | Borealis AG | Gas phase polymerization and reactor assembly comprising a fluidized bed reactor and an external moving bed reactor |
| EP2745927A1 (en) | 2012-12-21 | 2014-06-25 | Borealis AG | Fluidized bed reactor with internal moving bed reaction unit |
| US9539556B2 (en) | 2014-02-28 | 2017-01-10 | Borealis Ag | Process for polymerizing olefins in a fluidized bed |
| US9790290B2 (en) | 2014-02-28 | 2017-10-17 | Borealis Ag | Gas phase polymerization process |
| EP3023450A1 (en) | 2014-11-21 | 2016-05-25 | Borealis AG | Process for producing pellets of soft copolymers |
| US10494465B2 (en) | 2014-11-26 | 2019-12-03 | Borealis Ag | Film layer |
| US10385194B2 (en) | 2014-11-26 | 2019-08-20 | Borealis Ag | Polyethylene composition for a film layer |
| WO2016184812A1 (en) | 2015-05-20 | 2016-11-24 | Borealis Ag | Process for producing polyethylene composition |
| WO2016198631A1 (en) | 2015-06-12 | 2016-12-15 | Borealis Ag | Method and apparatus for polymerising olefins in gas phase |
| EP3103818A1 (en) | 2015-06-12 | 2016-12-14 | Borealis AG | Method and apparatus for polymerising olefins in gas phase |
| WO2017089250A1 (en) | 2015-11-27 | 2017-06-01 | Borealis Ag | Semiconductive polyethylene composition |
| EP3173442A1 (en) | 2015-11-27 | 2017-05-31 | Borealis AG | Semiconductive polyethylene composition |
| EP3173443A1 (en) | 2015-11-27 | 2017-05-31 | Borealis AG | Semiconductive polyethylene composition |
| WO2017097577A1 (en) | 2015-12-07 | 2017-06-15 | Borealis Ag | Process for polymerising alpha-olefin monomers |
| EP3178853A1 (en) | 2015-12-07 | 2017-06-14 | Borealis AG | Process for polymerising alpha-olefin monomers |
| EP3184167A1 (en) | 2015-12-22 | 2017-06-28 | Borealis AG | A method for returning polymer to a fluidised bed reactor |
| US11111324B2 (en) | 2015-12-22 | 2021-09-07 | Borealis Ag | Method for withdrawing agglomerates from a fluidized bed polymerization reactor |
| EP3184166A1 (en) | 2015-12-22 | 2017-06-28 | Borealis AG | A method for withdrawing agglomerates from a fluidised bed reactor |
| EP3243622A1 (en) | 2016-05-13 | 2017-11-15 | Borealis AG | Process for producing and transporting of flowable pellets of soft copolymers |
| WO2017194488A1 (en) | 2016-05-13 | 2017-11-16 | Borealis Ag | Process for hydraulic conveying of polyolefin pellets |
| EP3257895A1 (en) | 2016-06-17 | 2017-12-20 | Borealis AG | Bi- or multimodal polyethylene terpolymer with enhanced rheological properties |
| EP3257879A1 (en) | 2016-06-17 | 2017-12-20 | Borealis AG | Bi- or multimodal polyethylene with low unsaturation level |
| WO2017216096A1 (en) | 2016-06-17 | 2017-12-21 | Borealis Ag | Bi- or multimodal polyethylene with low unsaturation level |
| WO2017216095A1 (en) | 2016-06-17 | 2017-12-21 | Borealis Ag | Bi- or multimodal polyethylene terpolymer with enhanced rheological properties |
| WO2017216094A1 (en) | 2016-06-17 | 2017-12-21 | Borealis Ag | Bi- or multimodal polyethylene with enhanced rheological properties |
| US10982019B2 (en) | 2016-06-23 | 2021-04-20 | Borealis Ag | Process for catalyst deactivation |
| US11220558B2 (en) | 2017-06-20 | 2022-01-11 | Borealis Ag | Method, an arrangement and use of an arrangement of preparing polymer |
| WO2018234175A1 (en) | 2017-06-20 | 2018-12-27 | Borealis Ag | METHOD, ARRANGEMENT AND USE OF AN ARRANGEMENT FOR THE PREPARATION OF POLYMER |
| WO2018234176A1 (en) | 2017-06-20 | 2018-12-27 | Borealis Ag | METHOD, ARRANGEMENT AND USE OF OLEFIN POLYMERIZATION DEVICE |
| US11208507B2 (en) | 2017-06-20 | 2021-12-28 | Borealis Ag | Method, an arrangement and use of an arrangement for olefin polymerisation |
| EP3418309A1 (en) | 2017-06-20 | 2018-12-26 | Borealis AG | A method, an arrangement and use of an arrangement of preparing polymer |
| EP3418308A1 (en) | 2017-06-20 | 2018-12-26 | Borealis AG | A method, an arrangement and use of an arrangement for olefin polymerisation |
| WO2018233999A1 (en) | 2017-06-23 | 2018-12-27 | Borealis Ag | METHOD AND APPARATUS FOR REMOVING POLYMER MATERIAL FROM POLYMERIZATION REACTOR OF GASEOUS-SOLID OLEFINS |
| EP3418310A1 (en) | 2017-06-23 | 2018-12-26 | Borealis AG | Process and apparatus for removing polymer material from a gas-solids olefin polymerization reactor |
| WO2019081611A1 (en) | 2017-10-24 | 2019-05-02 | Borealis Ag | MULTILAYER POLYMER FILM |
| WO2019086623A1 (en) | 2017-11-03 | 2019-05-09 | Borealis Ag | Polymerization reactor system comprising at least one withdrawal valve |
| EP3479896A1 (en) | 2017-11-03 | 2019-05-08 | Borealis AG | Polymerization reactor system comprising at least one withdrawal valve |
| EP3483189A1 (en) | 2017-11-14 | 2019-05-15 | Borealis AG | Automated method for terminating an olefin polymerization reaction under emergency conditions |
| US11400429B2 (en) | 2017-11-17 | 2022-08-02 | Borealis Ag | Method of splitting the return fluidization gas in a gas solids olefin polymerization reactor |
| WO2019096557A1 (en) | 2017-11-17 | 2019-05-23 | Borealis Ag | Method for improving the cooling capacity of a gas solids olefin polymerization reactor |
| WO2019096556A1 (en) | 2017-11-17 | 2019-05-23 | Borealis Ag | Method of splitting the return fluidization gas in a gas solids olefin polymerization reactor |
| EP3486260A1 (en) | 2017-11-17 | 2019-05-22 | Borealis AG | Method of splitting the return fluidization gas in a gas solids olefin polymerization reactor |
| EP3486261A1 (en) | 2017-11-17 | 2019-05-22 | Borealis AG | Method for improving the cooling capacity of a gas solids olefin polymerization reactor |
| US11559776B2 (en) | 2017-11-17 | 2023-01-24 | Borealis Ag | Method for improving the cooling capacity of a gas solids olefin polymerization reactor |
| WO2019166652A1 (en) | 2018-03-02 | 2019-09-06 | Borealis Ag | Process |
| WO2019180166A1 (en) | 2018-03-21 | 2019-09-26 | Borealis Ag | Bi- or multimodal polyethylene composition |
| WO2019238428A1 (en) | 2018-06-14 | 2019-12-19 | Borealis Ag | Process for polymerizing olefin in a gas phase reactor with improved thermal homogeneity |
| US12018102B2 (en) | 2018-06-14 | 2024-06-25 | Borealis Ag | Process for polymerizing olefin in a gas phase reactor with improved thermal homogeneity |
| WO2020025757A1 (en) | 2018-08-02 | 2020-02-06 | Borealis Ag | Process for polymerizing ethylene in a multi-stage polymerization process |
| US12043687B2 (en) | 2018-08-02 | 2024-07-23 | Borealis Ag | Process for polymerizing ethylene in a multi-stage polymerization process |
| WO2020094347A1 (en) | 2018-11-07 | 2020-05-14 | Borealis Ag | Polyolefin composition with improved impact and whitening resistance |
| WO2020099564A1 (en) | 2018-11-15 | 2020-05-22 | Abu Dhabi Polymers Co. Ltd (Borouge) L.L.C. | Polymer composition for blow molding applications |
| US12460071B2 (en) | 2018-11-15 | 2025-11-04 | Abu Dhabi Polymers Co., Ltd (Borouge) L.L.C. | Polymer composition for blow molding |
| WO2020109563A1 (en) | 2018-11-29 | 2020-06-04 | Borealis Ag | Process to produce a polymer and polymer |
| WO2020109452A1 (en) | 2018-11-30 | 2020-06-04 | Borealis Ag | Washing process |
| US12146019B2 (en) | 2018-11-30 | 2024-11-19 | Borealis Ag | Washing process |
| WO2020244834A1 (en) | 2019-06-04 | 2020-12-10 | Borealis Ag | Process and reactor assembly for the enhancement of hydrodynamics in a gas-solids fluidized bed reactor |
| WO2020244833A1 (en) | 2019-06-04 | 2020-12-10 | Name: Borealis Ag | A process and a multi-stage reactor assembly for the production of polyolefins |
| WO2020260021A1 (en) | 2019-06-24 | 2020-12-30 | Borealis Ag | Process for preparing polypropylene with improved recovery |
| WO2021013552A1 (en) | 2019-07-22 | 2021-01-28 | Abu Dhabi Polymers Co. Ltd (Borouge) L.L.C. | Single site catalysed multimodal polyethylene composition |
| WO2021123410A1 (en) | 2019-12-20 | 2021-06-24 | Borealis Ag | Polymer composition and article |
| EP3838984A1 (en) | 2019-12-20 | 2021-06-23 | Borealis AG | Polymer composition and article |
| WO2021170552A1 (en) | 2020-02-24 | 2021-09-02 | Borealis Ag | Process for producing alpha-olefin polymers in a multistage polymerization process |
| EP3868793A1 (en) | 2020-02-24 | 2021-08-25 | Borealis AG | Process for producing alpha-olefin polymers in a multistage polymerization process |
| WO2021191019A1 (en) | 2020-03-24 | 2021-09-30 | Borealis Ag | Polyethylene composition for a film layer |
| WO2021191018A1 (en) | 2020-03-24 | 2021-09-30 | Borealis Ag | Polyethylene composition for a film layer |
| WO2021234042A1 (en) | 2020-05-20 | 2021-11-25 | Borealis Ag | Polymer for power cable insulation |
| WO2021234040A1 (en) | 2020-05-20 | 2021-11-25 | Borealis Ag | Polymer for cable jacket |
| WO2022018239A1 (en) | 2020-07-23 | 2022-01-27 | Borealis Ag | Multimodal ethylene copolymer |
| EP4029914A1 (en) | 2021-01-14 | 2022-07-20 | Borealis AG | Heterophasic polyolefin composition |
| WO2022268951A1 (en) | 2021-06-24 | 2022-12-29 | Borealis Ag | Use of a swelling agent in multi-stage polyolefin production |
| WO2022268960A1 (en) | 2021-06-24 | 2022-12-29 | Borealis Ag | Utilization of 1-hexene in multi-stage polyolefin production |
| WO2022268959A1 (en) | 2021-06-24 | 2022-12-29 | Borealis Ag | Improving catalyst performance in multi-stage polyolefin production |
| WO2022268957A1 (en) | 2021-06-24 | 2022-12-29 | Borealis Ag | Method for determining compressive character of olefin polymerisation catalysts |
| EP4116091A1 (en) | 2021-07-07 | 2023-01-11 | Borealis AG | Multilayer film |
| WO2023280800A1 (en) | 2021-07-07 | 2023-01-12 | Borealis Ag | Multilayer film |
| WO2023280997A1 (en) | 2021-07-08 | 2023-01-12 | Borealis Ag | Polyethylene for use in the production of crosslinked polyethylene (pex) |
| EP4144435A1 (en) | 2021-09-01 | 2023-03-08 | Borealis AG | Gas phase polymerization process with improved gas recycling |
| WO2023031201A1 (en) | 2021-09-01 | 2023-03-09 | Borealis Ag | Gas phase polymerization process with improved gas recycling |
| EP4163309A1 (en) | 2021-10-07 | 2023-04-12 | Borealis AG | Hdpe |
| EP4163334A1 (en) | 2021-10-10 | 2023-04-12 | Borealis AG | Polyethylene composition for a film layer |
| WO2023057479A1 (en) | 2021-10-10 | 2023-04-13 | Borealis Ag | Polyethylene composition for a film layer |
| EP4257640A1 (en) | 2022-04-04 | 2023-10-11 | Borealis AG | Pipe comprising a polypropylene composition |
| WO2023194276A1 (en) | 2022-04-04 | 2023-10-12 | Borealis Ag | Pipe comprising a polypropylene composition |
| WO2024028421A1 (en) | 2022-08-03 | 2024-02-08 | Abu Dhabi Polymers Co. Ltd (Borouge) L.L.C | Low density ethylene terpolymer composition |
| EP4317216A1 (en) | 2022-08-03 | 2024-02-07 | Abu Dhabi Polymers Co. Ltd (Borouge) LLC | Low density ethylene terpolymer composition |
| EP4389414A1 (en) | 2022-12-19 | 2024-06-26 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Multilayer collation shrink film |
| EP4389418A1 (en) | 2022-12-19 | 2024-06-26 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Multilayer collation shrink film |
| WO2024133057A1 (en) | 2022-12-19 | 2024-06-27 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Multilayer collation shrink film |
| WO2024133117A1 (en) | 2022-12-19 | 2024-06-27 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Multilayer collation shrink film |
| WO2024223777A1 (en) | 2023-04-26 | 2024-10-31 | Borealis Ag | Layer element suitable as integrated backsheet for a bifacial photovoltaic module |
| WO2024223775A1 (en) | 2023-04-26 | 2024-10-31 | Borealis Ag | Layer element suitable as integrated backsheet for a bifacial photovoltaic module |
| WO2024223818A1 (en) | 2023-04-28 | 2024-10-31 | Borealis Ag | Cable compositions comprising a multimodal ethylene-butene-hexene polymer |
| EP4455170A1 (en) | 2023-04-28 | 2024-10-30 | Borealis AG | Cable compositions comprising a multimodal ethylene-butene-hexene terpolymer |
| EP4541583A1 (en) | 2023-10-18 | 2025-04-23 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Multilayer film |
| WO2025083188A1 (en) | 2023-10-18 | 2025-04-24 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Multilayer film |
| WO2025125458A1 (en) | 2023-12-12 | 2025-06-19 | Abu Dhabi Polymers Co. Ltd (Borouge) - Sole Proprietorship L.L.C. | Modified polyethylene having improved hydrostatic pressure resistance and slow crack growth resistance |
| EP4574848A1 (en) | 2023-12-19 | 2025-06-25 | Borealis AG | Polypropylene copolymer composition having high molecular weight |
| WO2025132817A1 (en) | 2023-12-19 | 2025-06-26 | Borealis Ag | Polypropylene copolymer composition having high molecular weight |
| WO2025219499A1 (en) | 2024-04-18 | 2025-10-23 | Borealis Gmbh | Processes for polymerising olefins |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1764676A (zh) | 2006-04-26 |
| US20070037939A1 (en) | 2007-02-15 |
| KR20050109582A (ko) | 2005-11-21 |
| EP1462464A1 (en) | 2004-09-29 |
| JP2006521436A (ja) | 2006-09-21 |
| BRPI0408714A (pt) | 2006-03-07 |
| WO2004085499A3 (en) | 2005-01-20 |
| EP1606327A2 (en) | 2005-12-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20070037939A1 (en) | Process | |
| CN100398570C (zh) | 含有弱共聚单体引入剂和良共聚单体引入剂的混合金属茂催化剂体系 | |
| CN100562532C (zh) | 用于生产具有优良纵向(md)埃尔曼多夫撕裂强度的膜树脂的双茂金属催化剂 | |
| JP4523002B2 (ja) | メタロセン触媒系を使用した重合方法 | |
| US8030241B2 (en) | Catalyst compositions and polyolefins for extrusion coating applications | |
| EP1773899B1 (en) | Polymerization catalysts for producing polymers with low levels of long chain branching | |
| US6492472B2 (en) | Mixed catalysts for use in a polymerization process | |
| US7741419B2 (en) | Process for producing olefin polymers | |
| CN105143285A (zh) | 聚烯烃的制备 | |
| RU2645216C2 (ru) | Увеличенное отношение индексов расплава для полимера путем загрузки катализатора на подложке, насыщенного выбранным жидким агентом | |
| JPH08245712A (ja) | α−オレフィンの単独重合体又は共重合体の製造方法 | |
| JPH10507212A (ja) | 重合方法及びこの重合方法に有用な触媒系 | |
| JP7727715B2 (ja) | 混成遷移金属化合物を含む触媒、これを用いて調製されたオレフィン系重合体およびそれらの調製方法 | |
| JP2004536183A (ja) | コモノマー低結合性メタロセン触媒化合物 | |
| JP3202358B2 (ja) | α‐オレフィン重合用触媒および該触媒を用いたα‐オレフィン重合体の製造法 | |
| KR20220055863A (ko) | 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법 | |
| HK1098772B (en) | Polymerization catalysts for producing polymers with low levels of long chain branching | |
| JP2002512276A (ja) | 特定のメタロセンを使用するポリプロピレンの製造方法 | |
| HK1097411B (en) | Catalyst compositions and polyolefins for extrusion coating applications |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 3561/DELNP/2005 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004722852 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020057017314 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006504840 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004807915X Country of ref document: CN |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020057017314 Country of ref document: KR |
|
| WWP | Wipo information: published in national office |
Ref document number: 2004722852 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: PI0408714 Country of ref document: BR |
|
| DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2007037939 Country of ref document: US Ref document number: 10550237 Country of ref document: US |
|
| WWP | Wipo information: published in national office |
Ref document number: 10550237 Country of ref document: US |