WO2004085093A1 - ボルトの製造方法および製造装置並びにこれに用いる螺子転造ダイス並びに多重螺子ボルト - Google Patents

ボルトの製造方法および製造装置並びにこれに用いる螺子転造ダイス並びに多重螺子ボルト Download PDF

Info

Publication number
WO2004085093A1
WO2004085093A1 PCT/JP2004/003788 JP2004003788W WO2004085093A1 WO 2004085093 A1 WO2004085093 A1 WO 2004085093A1 JP 2004003788 W JP2004003788 W JP 2004003788W WO 2004085093 A1 WO2004085093 A1 WO 2004085093A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
coarse
fine
thread
screw thread
Prior art date
Application number
PCT/JP2004/003788
Other languages
English (en)
French (fr)
Inventor
Teruie Takemasu
Hiroshi Miyahara
Original Assignee
Kyushu Tlo Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Tlo Company Limited filed Critical Kyushu Tlo Company Limited
Priority to DE602004024191T priority Critical patent/DE602004024191D1/de
Priority to US10/549,898 priority patent/US7159429B2/en
Priority to KR1020057017730A priority patent/KR101087505B1/ko
Priority to EP04722062A priority patent/EP1625902B1/en
Publication of WO2004085093A1 publication Critical patent/WO2004085093A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling
    • B21H3/04Making by means of profiled-rolls or die rolls
    • B21H3/042Thread-rolling heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling
    • B21H3/06Making by means of profiled members other than rolls, e.g. reciprocating flat dies or jaws, moved longitudinally or curvilinearly with respect to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling
    • B21H3/04Making by means of profiled-rolls or die rolls

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a bolt having a function of preventing loosening, a thread rolling die used for the method, and a multiple screw bolt.
  • a coarse nut is screwed into a coarse screw portion of the bolt, and then a fine nut is overlapped with the fine screw portion and screwed onto the coarse nut, and the port and the both ends are screwed. Nuts can be fastened. At this time, the pitch of the fine nut and the coarse nut is different, so if they are united and rotate in the same direction, a repulsive force acts on the contact surface (seat surface) between the two nuts, and the coarse nut is loosened. Rotation in the direction can be prevented.
  • Patent Document 1 also describes a method for producing this double screw port.
  • the manufacturing method is as follows. First, a coarse thread portion having a pitch P is formed by cutting from a tip end portion of a port shaft portion to a predetermined portion, and thereafter, at least the entire length of the coarse thread portion of the bolt shaft portion or a portion of the port shaft portion is formed. Overlap the coarse thread from the tip to the predetermined part of the coarse thread, and set the pitch p Is formed by cutting. Disclosure of the invention
  • the cutting process must be performed twice. Furthermore, if the fine screw portion is formed by performing the second cutting while overlapping the coarse screw portion formed by the first cutting, the portion that is repeatedly cut will return. Therefore, a step of removing the return with a wire brush or the like is required.
  • Patent Document 1 discloses a method of manufacturing a double screw bolt by one-step rolling using a coarse die and a fine die. As described in Patent Document 1, a coarse die is used. And a fine die are placed opposite to each other with a certain distance between them, and even if rolling is performed by inserting a bolt shaft between the coarse die and the fine die, a double screw port is actually manufactured. It is impossible. This is because the screw thread rolled by one die (coarse / fine) is rolled by the other die (fine / coarse).
  • Patent Document 1 describes that the same can be implemented by using a die in which coarse screw threads and fine screw threads are formed in a body.
  • Patent Document 1 discloses a coarse screw thread. It does not describe how to specifically form the screw thread and the fine screw thread. The description that the coarse thread and the fine thread are formed in the body is a seemingly correct force. The actual coarse thread and the fine thread are integrally formed on one die. Therefore, it is impossible to manufacture a double screw bolt only from the description of Patent Document 1.
  • the double screw port described in Patent Literature 1 is actually produced only by cutting.
  • the manufacturing method by cutting since the number of manufacturing steps is larger than that of a normal bolt, the manufacturing cost is extremely high, and the single screw of the double screw port is used. The prices are very high.
  • the present invention provides a method and apparatus for manufacturing a bolt capable of mass-producing a multiple screw port such as a so-called double screw port at a lower unit price and a screw rolling die used for the same.
  • the purpose is to do.
  • the thread rolling die of the present invention provides a part of a coarse screw thread where a coarse screw is developed, and a phase shift between the fine screw thread where a fine screw is developed and the coarse screw thread. Accordingly, a part of the fine screw thread periodically formed in the valley of the coarse screw thread is provided.
  • the porto manufacturing apparatus of the present invention is a porto manufacturing apparatus for rolling by pressing a port material onto a screw rolling die, wherein at least one of the screw rolling dies is formed by the screw rolling die of the present invention. Dice.
  • the method for manufacturing a bolt according to the present invention is a method for manufacturing a bolt in which a port material is pressed against a screw rolling die, wherein at least one of the screw rolling dies is the screw rolling die according to the present invention. It is a thing.
  • the porto material is pressed by a part of the coarse thread and a part of the fine thread formed on the thread rolling die, and the thread rolling is performed.
  • a part of the coarse thread on the outer peripheral surface of the bolt material is formed by a part of the coarse thread on the die, and a coarse screw on the outer peripheral surface of the bolt material is formed by a part of the fine thread on the thread rolling die.
  • a part of the fine screw thread is transferred to one part of the mountain at a time in one process. Thereby, a port having a so-called double screw in which a part of the coarse screw thread and a part of the fine screw thread are formed is obtained.
  • the coarse screw means a screw in which a combination of diameter and pitch is common and most commonly used.
  • the fine screw is a screw having a smaller ratio of the pitch to the diameter and a smaller valley than the coarse screw.
  • the pitch of the fine thread in the thread rolling die of the present invention may be equal to or less than the pitch of the coarse thread.
  • the shape of each screw thread may be any of a triangular screw, a trapezoidal screw, a square screw, a saw tooth screw, a round screw, a pole screw and other special screws, and may be arbitrarily combined.
  • a cylindrical body or a conical body having two or more screw threads having different pitches on the same axis, although the directions of the helical windings coincide with each other is referred to as a multiple screw.
  • Multi-screw if the number of screw threads with different pitch is 2, double screw, 3 screw, 3 screw, 4 screw, 4 screw ,. ⁇
  • n it is called n-fold screw.
  • the multiple screw has a multiple pitch of a large pitch screw thread. The shape of the thread of the screw changes periodically.
  • the screw rolling dies consist of a part of the coarse screw thread where the coarse screw is developed, and a helical winding in the same direction as the coarse screw in the valley of this coarse screw thread.
  • a fine screw having a line and a smaller pitch than the coarse screw (however, the pitch ratio between the coarse screw and the fine screw is a: b, and a and b are the minimum integer ratio) is developed. And a part of the fine thread which periodically appears every b winding of the coarse thread according to the phase shift from the coarse thread.
  • the screw rolling die further has a helical wire in the same direction as the coarse screw in a valley formed by a part of the coarse screw, and a valley formed by a part of the fine screw.
  • the pitch is small
  • the finest screw (however, the pitch ratio of the coarse screw, the fine screw, and the finest screw is a: b: c, and a: b: c is the smallest integer ratio.
  • the screw rolling dies include a part of the coarse screw thread where the coarse screw is developed and a vine in the same direction as the coarse screw at the valley of the coarse screw thread.
  • One or more fine screws having a winding line and a smaller pitch than the coarse screws and different pitches (however, the pitch ratio between the coarse screws and the one or more fine screws is a: ..: n. And a, ⁇ ⁇ ⁇ ⁇ n are the minimum integer ratios.) It shall have a part of each fine screw thread that appears periodically for every n turns of the coarse screw thread according to the phase shift from the child screw thread. This makes it possible to manufacture a multiple screw port in which a part of the coarse screw threads and a part of each of the plurality of fine screw threads are formed.
  • the fine screw when the fine screw is developed so that a part of the finest screw thread having the smallest pitch among the fine screw threads is located at a position higher than the valley bottom of the coarse screw when the fine screw is developed. If, assuming that the coarse thread appears periodically every 11 windings of the coarse thread according to the phase shift from the coarse thread, the rolling pitch circle diameter during rolling, the fine thread has developed. At the bottom of the mushroom, move about half the height of the raised bottom inside the bolt material. As a result, the fluctuation of the rolling pitch circle diameter at the end of processing is reduced, and the fluctuation of the rotation center position of the porto material is reduced.
  • the valley bottom when the fine screw is unfolded is located at a position 5 to 50% higher than the standard fine screw thread height than the valley bottom of the coarse screw thread.
  • the content exceeds 50%, the height of the fine screw thread of the multiple screw bolt manufactured by rolling is reduced, and the effective diameter of the standard fine screw thread is reduced. Of the thread on the fine screw thread is reduced.
  • this deep groove plays the role of a dashpot when rolling multiple screw ports.
  • the groove of the screw rolling die is not completely filled with the port material, it is possible to manufacture a multiple screw port having standard fine screw dimensions. Further, by not completely filling, chatter vibration at the end of processing, which is caused by complete filling as one factor, can be suppressed.
  • the groove has a depth of 3 to 10% of the height of the fine screw thread of the standard.
  • the dashpot can fully fulfill its role. As a result, it is possible to manufacture a multiple screw bolt having a fine screw thread having a perfect shape, and sufficiently suppress the shear vibration at the end of processing. If it is less than 3%, there is almost no improvement due to the groove. On the other hand, if it exceeds 10%, the groove is too deep, which may affect the fine screw thread shape of the multiple screw bolt.
  • the thread rolling die of the present invention is formed by forming a part of a coarse thread on a round die and a part of a fine thread, the thread rolling dies are arranged at predetermined intervals. Then, by rotating each in the same direction and pressing the bolt material between the screw rolling dies, a double screw port can be manufactured.
  • the thread rolling die of the present invention is formed by forming a part of a coarse thread or a part of a fine thread on a flat die, the thread rolling dies are arranged at predetermined intervals. Then, the other side is moved by 1 F ⁇ or the other side is moved in parallel or in parallel to each other, and the bolt material is pressed between the thread rolling dies to produce a double screw port. it can.
  • the screw rolling dies of the present invention may be arranged at least one of a plurality of screw rolling dies arranged at a predetermined interval, but all the screw rolling dies are used as the screw rolling dies of the present invention. Is also possible.
  • the other screw rolling dies are normal coarse screw dies in which only coarse screws are developed.
  • the thread rolling die of the present invention may be applied to either a round die or a segment die, or may be applied to both.
  • the pitch ratio between the coarse screw and the fine screw is a to b, and a and b are the smallest integer ratios.
  • At least one screw rolling die having a part of a fine screw thread which appears periodically for every b winding of the screw thread is arranged, and the port material is pressed against the screw rolling die to form the screw.
  • Porto material is pressed by a part of the coarse thread and a part of the fine thread formed on the rolling die, and a part of the coarse thread and the fine thread are formed on the outer peripheral surface of the bolt material. Since a part of the thread is transferred at a time in the process, a part of the coarse thread and a part of the fine thread are formed. Than cutting a so-called double screw Porto becomes possible to mass-produced at low unit cost.
  • the finest screw having a helical wire in the same direction as the coarse screw and having a smaller pitch than the fine screw in a valley formed by a part of the coarse screw and a part of the fine screw.
  • the pitch ratio of the coarse screw, the fine screw and the finest screw is a to b to c, and a, b and c are the smallest integer ratios.
  • At least one thread rolling die having a part of the finest thread that appears periodically for each c winding of the coarse thread according to the phase shift with a part of the thread and a part of the fine thread.
  • a part of the coarse thread, a part of the fine thread and a part of the finest thread are formed on the thread rolling die by pressing the port material against the thread rolling die.
  • a part of the bolt material is pressed, and a part of the coarse screw thread and one of the fine screw threads are formed on the outer peripheral surface of the porto material.
  • the part and the part of the finest thread are transferred at a time in the process, so that a part of the coarse thread, a part of the fine thread and a part of the finest thread are formed.
  • Triple screw It is possible to mass-produce lts at a lower unit price than cutting.
  • the thread rolling die is provided with a deep groove that is further cut into the bottom of a part of the fine screw thread, when rolling multiple screw bolts, the port material is completely inserted into the groove of the screw rolling die. Even if the screw thread is not filled, a multiple screw bolt having a fine screw thread height of the fine screw thread of the screw rolling die can be manufactured. Further, by not being completely filled, it is possible to suppress shear vibration at the end of machining, which is caused by complete filling as one factor.
  • the tip shape at the boundary between the coarse screw thread and the fine screw thread has a smooth curvature, and is manufactured by cutting. No edge is generated at the boundary between the coarse screw thread and the fine screw thread as in the case of the double screw port.
  • FIG. 1 is a schematic view showing a double screw port manufacturing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view showing the thread rolling die of FIG.
  • FIG. 3 is a diagram in which a part of the transfer pattern on the outer periphery of the screw rolling die of FIG. 2 is developed on a plane.
  • FIG. 4A is a sectional view taken along the line A-A in FIG.
  • FIG. 4B is a sectional view taken along line BB of FIG.
  • FIG. 4C is a cross-sectional view taken along line CC of FIG.
  • FIG. 4D is a sectional view taken along line DD in FIG.
  • FIG. 4E is a sectional view taken along line EE of FIG.
  • FIG. 4A is a sectional view taken along the line A-A in FIG.
  • FIG. 4B is a sectional view taken along line BB of FIG.
  • FIG. 4C is a cross-sectional view taken along line CC of FIG.
  • FIG. 4F is a sectional view taken along line FF of FIG.
  • Figure 5A is a partially enlarged view of Figure 4A.
  • FIG. 5B is a partially enlarged view of FIG. 4D.
  • FIG. 6A is a partially enlarged view of the modified screw rolling die corresponding to FIG. 5A.
  • FIG. 6B is a partially enlarged view of the modified screw rolling die corresponding to FIG. 5B.
  • FIG. 7A is a partially enlarged view of the modified screw rolling die corresponding to FIG. 5A.
  • FIG. 7B is a partially enlarged view of the modified screw rolling die corresponding to FIG. 5B.
  • FIG. 8A is a partially enlarged view of the modified screw rolling die corresponding to FIG. 5A.
  • FIG. 8B is a partially enlarged view of the modified screw rolling die corresponding to FIG. 5B.
  • FIG. 9 is a schematic diagram showing a double screw bolt manufacturing apparatus according to the second embodiment of the present invention.
  • FIG. 10A, FIG. 10B, FIG. 10C, FIG. 10D, FIG. 10E, and FIG. 10F are cross-sectional views of a thread rolling die for a triple screw port in the third embodiment of the present invention.
  • FIG. 4 is a view showing a state of material flow in a cross section taken along line DD of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic view showing a double screw port manufacturing apparatus according to a first embodiment of the present invention
  • FIG. 2 is a perspective view showing a screw rolling die 1 of FIG.
  • the apparatus for manufacturing a double screw bolt includes a pair of thread rolling dies 1 arranged facing each other at a predetermined interval, and a columnar bolt material (hereinafter, referred to as “work”). And a porto support 2 for supporting the support 3 at a predetermined position.
  • the thread rolling die 1 has a transfer pattern 4 for forming a double screw bolt formed on the outer periphery of a cylindrical die (round die).
  • FIG. 3 is a view in which a part of the transfer pattern 4 on the outer periphery of the thread rolling die 1 of FIG. 2 is developed on a plane
  • FIG. F is a sectional view taken along the line AA, a sectional view taken along the line B-B, a sectional view taken along the line C-C, a sectional view taken along the line D-D, a sectional view taken along the line E-E, and a sectional view taken along the line FF of FIG. 3, respectively.
  • FIG. F is a sectional view taken along the line AA, a sectional view taken along the line B-B, a sectional view taken along the line C-C, a sectional view taken along the line D-D, a sectional view taken along the line E-E, and a sectional view taken along the line FF of FIG. 3,
  • transfer patterns 4 corresponding to the double screw port to be manufactured are repeatedly formed for 16 turns per round.
  • the outer diameter of the thread rolling die 1 is 173.987 mm
  • the double screw bolt has a nominal diameter of M12 and a coarse thread pitch of 1.75 mm and a fine thread pitch of 0.875. mm. Therefore, the transfer pattern 4 for one double screw bolt is 22.5 out of 360 ° of the outer circumference of the screw rolling die 1. Is formed in the range.
  • the A-A line, B-B line, C-C line, D-D line, E-E line, and FF line in Fig. 3 are provided at 3.75 ° intervals.
  • the transfer pattern 4 of the screw rolling die 1 (shown by a solid line in FIGS. 4A to 4F) is based on the standard pattern in which the coarse screws are spread on the surface of the round die.
  • a part of the coarse screw thread that becomes the screw thread (hereinafter referred to as the “coarse screw thread part”) 5 and the valley of this coarse screw thread This is constituted by an additional projection 6 periodically formed on the portion 5a.
  • the protrusion 6 has a helical winding in the same direction as the original coarse screw of the developed coarse screw thread, and is a fine screw thread in which a fine screw with a smaller pitch than the coarse screw is developed (FIG. 4A to FIG. 4A). 4F is indicated by a dotted line (imaginary line) 6a.) And a phase shift 7 between the coarse screw thread and a periodic shape.
  • the projection 6 expands the fine screw. Then, according to the phase shift from the coarse screw thread, it becomes a part of the fine screw thread that periodically appears every b winding (one winding in the illustrated example) of the coarse screw thread. As shown in FIGS. 4A to 4F, the fine screw thread indicated by the imaginary line 6a has a phase shift 7 from the coarse screw thread, and only the portion protruding from the coarse screw thread has additional protrusions. Appears as 6.
  • the protrusion 6 is not the fine screw thread itself, but is additionally protruded from the coarse screw thread so as to correspond to the imaginary line 6a of the fine screw thread by an amount shifted according to the phase shift 7. It is a projection.
  • the coarse screw thread portion 5 is a portion excluding a part of the fine screw thread (the surface of the protrusion 6) that appears on the surface of the screw rolling die 1.
  • the valley bottom 5 b of the valley portion 5 a of the coarse screw thread serving as the reference and the valley bottom 6 b of the imaginary line 6 a of the fine screw thread corresponding to the protrusion 6 but the position is not limited to this.
  • the protrusion 6 of the screw rolling die 1 is increased.
  • the force that reduces the contact area by the amount The double screw is formed by moving the position of the valley bottom 6b of the imaginary line 6a of the fine screw thread corresponding to the protrusion 6 downward in Figs. 4A to 4F.
  • the contact area between the coarse thread of the Porto and the coarse nut can be increased.
  • the thread rolling die 1 of the present embodiment No attempt is made to fit the eye screw nut and the fine screw nut.
  • a conventional coarse screw thread and a fine screw thread are formed in a body as described in Patent Document 1 (although the specific structure is not clear). This is because the periodic screw-shaped protrusions 6 are formed at the valleys 5a of the original thread ridges 5 and the original thread ridges 5 of the coarse thread ridges 5.
  • a columnar work 3 is placed on the po / reto support portion 2, and the work 3 is mounted on a pair of screw rolling tools.
  • the pair of thread rolling dies 1 is rotated in the same direction (for example, clockwise as indicated by an arrow in FIG. 1) by pressing between the chairs 1.
  • a part of the coarse screw thread and a part of the fine screw thread are transferred onto the outer peripheral surface of the workpiece 3 at once in one process, and a part of the coarse screw part and a part of the fine screw part are formed.
  • the obtained double screw Porto is obtained.
  • the obtained double screw port is in a state in which the coarse screw threads are formed and the fine screw threads are removed similarly to the double screw port formed by conventional cutting. Therefore, the coarse screw nut and the fine screw nut can be fitted to the obtained double screw bolt.
  • the double screw bolt is fitted with the coarse thread of the coarse screw nut in the coarse screw thread valley of the double screw port, and the coarse screw of the double screw port is coarse. Since the ridges of the fine screw nuts are fitted into the valleys of the fine screw threads formed at the peaks of the mountain, the radial position of the peaks of the fine screw threads and the peaks of the fine screw threads In general, it is formed such that the radial positions of the two always coincide with each other.
  • the projection of the screw rolling die for manufacturing such a double screw bolt is developed with a fine screw so that the position of the valley bottom when the fine screw is developed coincides with the position of the valley bottom of the coarse screw thread.
  • FIGS. 5A and 5B are partially enlarged views of FIGS. 4A and 4D, respectively.
  • the depth of the periodically changing groove of the standard die is the position of the valley bottom 5b of the coarse screw thread and the fine screw of the fine screw developed to form the protrusion 6.
  • the position of the valley bottom 6b of the mountain 6a is the deepest at the part where the valley bottom 6b overlaps the most (A-A line section), and the shallowest at the part where the two positions are the most shifted (D-D line section). .
  • the rolling pitch between the tool and the work 3 at the final stage of machining (the position where the tool and the work 3 make rolling contact)
  • the diameter of the circle is A — Largest in the section along the line A, and smallest in the section along the line D—D.
  • the rotation center position of the work 3 is constantly fluctuated at the time of the processing (that is, at the final adaptation stage of the processing), causing severe chatter vibration and noise.
  • the cross-sectional area of the groove in each cross section is different (that is, the cross-sectional area is the largest in the A-A line cross-section, and the smallest in the D-D line cross-section).
  • the filling rate of the material in the groove is high, so there is no place for escape of surplus material. This also causes problems such as chatter vibration.
  • the projection 6 is formed with the coarse screw thread. It is desirable that it be a part of the fine screw thread 6a that periodically appears every b winding of the coarse screw thread according to the phase shift of.
  • the fine screw to be developed is a shallow fine screw with a valley depth of 5 to 50% lower than the standard, and this fine screw is replaced by this shallower amount dh.
  • the valley bottom 6 b when unfolded is higher than the valley bottom 5 b of the coarse screw mountain.
  • the fine screw to be developed is the position of the valley bottom 5 b of the coarse screw thread and the fine screw 6 a of the fine screw that has been developed to form the projection 6.
  • valley At the point where the position of the bottom 6b overlaps the most (A-A line cross section), a fine screw with a valley depth of 5 to 50% smaller than the standard is formed, and the position where both positions are most shifted (D — In the D-section, it should change smoothly to the standard valley depth.
  • the rolling pitch diameter in the A-A line cross-section is smaller than when rolling using a standard die.
  • the depth of the valley floor 6b when the valley 6b is unfolded moves to the inside of about half of the depth d3, which is the depth of the d, and approaches the rolling pitch circle diameter in the cross section along the line D-D. Therefore, the fluctuation of the rolling pitch circle diameter at the end of machining is reduced, and the fluctuation of the rotation center position of the work 3 is reduced. Also, since the cross-sectional area of the groove in the A-A line cross-section approaches the cross-sectional area of the groove in the D-D line cross-section, the material filling rate of the groove in each cross-section becomes more uniform and the shear vibration is greatly suppressed. can do.
  • the peak height of the fine screw portion is naturally higher (particularly at the portion corresponding to the cross section along the line A-A). Lower than that of However, since the double threaded porto obtains most of the tightening force at its coarse threaded portion, the static strength and the dynamic fatigue strength are hardly impaired, and a sufficient loosening prevention effect can be exhibited.
  • the thread height of the fine thread is lower than that of the standard.
  • the peak height of the fine screw portion may be required to be perfect.
  • the screw rolling die has a groove 6c further cut into a valley bottom 6b of a part of the fine screw thread 6a which appears as the protrusion 6.
  • the depth dv of the groove 6c is 3 to 10% of the height of the fine screw thread 6a.
  • FIG. 9 is a schematic view showing an apparatus for manufacturing a double screw port in the second embodiment of the present invention.
  • the apparatus for manufacturing a double threaded bolt includes a pair of thread rolling dies 8 arranged to face each other at a predetermined interval.
  • One of the pair of thread rolling dies 8 is fixed and the other is arranged so as to be movable in parallel, or is arranged so as to be movable in parallel in opposite directions.
  • the screw rolling die 8 is formed by forming a transfer pattern 9 for forming a double screw bolt on one surface of a flat die (flat die).
  • the transfer pattern 9 is similar to the transfer pattern 4 in the first embodiment and is developed on a plane.
  • FIG. 10A, FIG. 10B, FIG. 10C, FIG. 10D, FIG. 10E, FIG. 1OF are three-port screw rolling dies 10 for a triple screw port in the third embodiment of the present invention. It is sectional drawing. On the outer periphery of the screw rolling die 10, a transfer pattern corresponding to the triple screw bolt to be manufactured is formed by repeating 16 pieces per circumference, and FIG. 10A to FIG. FIG. 3 is a diagram showing a cross section of the outer periphery of a die 10 at 3.75 ° intervals.
  • a valley 11 formed by the coarse screw thread 5 and the projection 6 has a helical wire in the same direction as the original coarse screw of the unfolded coarse screw thread to form the protrusion 6.
  • the finest screw with a smaller pitch than the fine screw (where the ratio of the pitch of the coarse screw, the fine screw, and the finest screw is a: b: c: c, and a: b: c is the smallest integer ratio In the illustrated example, the ratio is 4 to 2 to 1.), and when the phase is shifted from the coarse screw thread portion 5 and the projection 6, c winding of the coarse screw thread (1 roll in the illustrated example) is performed.
  • Each of the protrusions 12 has a protrusion 12 which is a part of the finest screw thread (which is indicated by a dotted line (imaginary line) 12a in FIGS. 10A to 10F) that periodically appears every time.
  • the projection 12 is not the finest screw thread itself, but corresponds to the imaginary line 12a of the finest screw thread by an amount shifted according to the phase shift between the coarse screw thread portion 5 and the projection 6. It is a projection further projecting from the coarse screw thread portion 5 and the projection 6.
  • the pitch ratio between the coarse screw and the one or more fine screws is a: ' ⁇ 'N vs. a, ⁇ ⁇ ⁇ ⁇ , n is the smallest integer ratio.
  • the screw rolling die for rolling this n-fold screw bolt can be modified similarly to the screw rolling die in the first embodiment.
  • the valley depth when the fine screw is developed so that the bottom of the fine screw with the smallest pitch is higher than the bottom of the coarse screw, the coarse screw And rank What is necessary is just to make it a part of the fine thread which periodically appears every n turns of the coarse thread according to the phase shift.
  • FIG. 11A to Fig. 111, Fig. 12 to Fig. 1211, Fig. 13 to Fig. 13H are cross-sections of A-A line, B-B line, and D-D line of Fig. 3, respectively.
  • FIG. 4 is a view showing a state of material flow in the above.
  • FIGS. 11 to 11, FIGS. 12 to 1211, and FIGS. 13 to 13H A to H are obtained by rotating a pair of thread rolling dies 1 in the same direction. When the distance between each other was continuously narrowed, the thread rolling die 1 was finally pushed into the workpiece 3 by about 1 mm in steps of about 0.1 to 0.2 mm. It is shown up to the state.
  • the depth of the valley bottom 6b of the fine screw thread is reduced from 5% to 40% with respect to the standard fine screw thread. %, The chatter vibration and noise during processing were reduced as the depth became smaller.
  • the thread rolling die modified by changing the depth of the groove 6c when the depth of the groove 6c is set to 5% and 10% of the standard fine screw thread height, the machining time is reduced. The improvement of vibration and noise was confirmed.
  • the present invention is useful when a multiple screw port having a function of preventing loosening is manufactured by rolling.

Abstract

 いわゆる二重螺子ボルトのような多重螺子ボルトを、より低単価で大量生産することが可能なボルトの製造方法および製造装置並びにこれに用いる螺子転造ダイスを提供する。所定間隔で対向配置した一対の螺子転造ダイス(1)と、円柱状のボルト材料(3)を所定位置で支持するボルト支持部(2)とを備えるボルトの製造装置である。螺子転造ダイス(1)は、並目螺子を展開した並目螺子山の一部である並目螺子山部(5)と、細目螺子を展開した想像線(6a)で示す細目螺子山と並目螺子山との位相ずれに応じて並目螺子山の谷部(5a)に周期的に形成された細目螺子山(6a)の一部である突起(6)とからなる転写パターン(4)を備える。

Description

明 細 書 ポルトの製造方法およぴ製造装置並びにこれに用いる螺子転造ダイス並びに多重 螺子ポルト 技術分野
本発明は、緩み防止機能を有するボルトの製造方法およぴ製造装置並びにこれに 用いる螺子転造ダイス並びに多重螺子ボルトに関する。 背景技術
近年、緩み防止機能を有する種々のポルトおよびその製造方法が研究 '開発され ている。 例えば、 国際公開第 0 2 Z 0 7 7 4 6 6号パンフレット (以下、 「特許文 献 1」 と称す。) に記載のポルトは、 ボルト軸部の先端部から所定部まで形成され たピッチ Pの並目螺子部と、少なくともボルト軸部の並目螺子部の全長もしくは先 端部から並目螺子部の所定部まで並目螺子部に重ねて形成されたピッチ p ( p = P Z n , nは 2以上の整数) の細目螺子部とを備える構成である。
このボルト (いわゆる二重螺子ポルト) では、 ボルトの並目螺子部に並目ナット を螺合させた後、 細目螺子部に細目ナツトをこの並目ナツトに重ねて螺合させて、 ポルトおよび両ナツト間を締結させることができる。 この際、細目ナツトと並目ナ ットのピッチが異なるので、両者が一体になつて同一方向に回転すると、両ナツト 間の接触面 (座面) に反発力が働き、並目ナツトが緩み方向に回転するのを防止す ることができる。
また、特許文献 1には、 この二重螺子ポルトの製造方法についても記載されてい る。 その製造方法は、 まず、 ポルト軸部の先端部から所定部まで切削によりピッチ Pの並目螺子部を形成し、その後、少なくともボルト軸部の並目螺子部の全長もし くはポルト軸部の先端から並目螺子部の所定部まで並目螺子部に重ねて、ピッチ p の細目螺子部を切削により形成するというものである。 発明の開示
上記のように、 まず、 並目螺子部を切削により形成し、 その後、 この並目螺子部 に重ねて細目螺子部を切削により形成する場合、 1個の二重螺子ポルトを製造する ために、切削工程を 2回行わなければならない。 さらに、 1回目の切削により形成 された並目螺子部に重ねて 2回目の切削を行つて細目螺子部の形成を行うと、重ね て切削した部分に返りが生じてしまう。そのため、 この返りをワイヤブラシ等によ つて除去する工程が必要となる。
また、特許文献 1には、並目ダイスと細目ダイスを用いて一工程の転造により二 重螺子ボルトを製造することについて言及されている力 この特許文献 1に記載の ように、並目ダイスと細目ダイスを一定間隔を挟んで対向して配置し、 この並目ダ イスと細目ダイスとの間にボルト軸部を入れて転造を行つても、実際には二重螺子 ポルトを製造することは不可能である。 これは、 一方のダイス (並目 ·細目) によ り転造した螺子山を、他方のダイス (細目 ·並目) により壌すことになるからであ る。
さらに、特許文献 1には、並目螺子山と細目螺子山とがー体に形成されたダイス を用いても同様に実施可能であるという記載がある力 特許文献 1には、並目螺子 山と細目螺子山を具体的にどのようにして一体に形成すればよいのか記載されて いない。並目螺子山と細目螺子山とがー体に形成されたダイスという記載は一見正 しいように思われる力 実際に並目螺子山と細目螺子山とを一つのダイス上に一体 に形成することはできず、 この特許文献 1の記載からだけでは、二重螺子ボルトを 製造することは不可能である。
このように、特許文献 1に記載の二重螺子ポルトは、実際には切削により製造す るしか方法がない。 ところが、上記のように切削による製造方法では、通常のボル トよりも製造工程が多くなるため、製造コストが極めて高く、二重螺子ポルトの単 価は非常に高いものとなっている。
そこで、本発明においては、いわゆる二重螺子ポルトのような多重螺子ポルトを、 より低単価で大量生産することが可能なボルトの製造方法おょぴ製造装置並びに これに用いる螺子転造ダイスを提供することを目的とする。
上記課題を解決するため、本発明の螺子転造ダイスは、並目螺子を展開した並目 螺子山の一部と、細目螺子を展開した細目螺子山と前記並目螺子山との位相ずれに 応じて前記並目螺子山の谷部に周期的に形成された前記細目螺子山の一部とを備 えたものである。本発明のポルトの製造装置は、螺子転造ダイスにポルト材料を押 し付けて転造するポルトの製造装置において、前記螺子転造ダイスのうち少なくと も一つを上記本発明の螺子転造ダイスとしたものである。本発明のボルトの製造方 法は、螺子転造ダイスにポルト材料を押し付けて転造するボルトの製造方法におい て、螺子転造ダイスのうち少なくとも一つを上記本発明の螺子転造ダイスとするも のである。
本発明のポルトの製造方法および製造装置によれば、螺子転造ダイス上に形成さ れた並目螺子山の一部およぴ細目螺子山の一部によりポルト材料が押圧され、螺子 転造ダイス上の並目螺子山の一部によりボルト材料の外周表面上に並目螺子山の 一部が、螺子転造ダイス上の細目螺子山の一部によりボルト材料の外周表面上の並 目螺子山の一部に細目螺子山の一部が、 一工程で一度に転写される。 これにより、 並目螺子山の一部と細目螺子山の一部とが形成された、いわゆる二重螺子を備えた ポルトが得られる。
ここで、並目螺子とは、直径とピッチとの組み合わせが一般的で最も普通に使用 されている螺子をいう。 また、細目螺子とは、並目螺子に比べて直径に対するピッ チの割合が細かく、谷が浅い螺子をいう。本発明の螺子転造ダイスに係る細目螺子 山のピッチは、並目螺子山のピッチ以下であればよい。 また、 それぞれの螺子山の 形状は、 三角螺子、 台形螺子、 角螺子、鋸歯螺子、 丸螺子、 ポール螺子やその他の 特殊螺子などのいずれでもよく、 任意に組み合わせることも可能である。 なお、本明細書中においては、つる卷き線の方向は一致するが、 ピッチの異なる 二つ以上の螺子山を同軸上に持つ、 円筒体または円錐体のことを多重螺子という。 多重螺子は、 ピッチの異なる螺子山の数が 2の場合、 二重螺子、 3の場合、三重螺 子、 4の場合、 四重螺子、。 · '、 nの場合、 n重螺子と呼ぶ。 多重螺子は、 その 最も大きなピッチの螺子山と最も小さなピッチの螺子山の比を a対 nとするとき ( aと nは最小の整数比)、 大きなピツチの螺子山のピッチ aごとにその多重螺子 の螺子山の形状は周期的に変化する。
二重螺子ポルトを製造する場合、螺子転造ダイスは、並目螺子を展開した並目螺 子山の一部と、この並目螺子山の谷部に並目螺子と同一方向のつる卷き線を持ち並 目螺子よりもピッチの小さい細目螺子(但し、並目螺子と細目螺子のピッチの比は a対 bであり、 aと bは最小の整数比である。) を展開したときに並目螺子山との 位相ずれに応じて並目螺子山の b卷きごとに周期的に現れる細目螺子山の一部と を有するものとする。
また、螺子転造ダイスが、 さらに、並目螺子山の一部おょぴ細目螺子山の一部に より形成される谷部に並目螺子と同一方向のつる卷き線を持ち細目螺子よりもさ らにピツチの小さレ、最細目螺子(但し、並目螺子と細目螺子と最細目螺子のピッチ の比は a対 b対 cであり、 aと bと cは最小の整数比である。) を展開したときに 並目螺子山の一部およぴ細目螺子山の一部との位相ずれに応じて並目螺子山の c 卷きごとに周期的に現れる最細目螺子山の一部を有するものとすることで、並目螺 子山の一部と細目螺子山の一部と最細目螺子山の一部とが形成された三重螺子ポ ルトを製造することが可能である。
さらに、 n重螺子ポルトを製造する場合、螺子転造ダイスは、並目螺子を展開し た並目螺子山の一部と、この並目螺子山の谷部に並目螺子と同一方向のつる卷き線 を持ち並目螺子よりもピツチが小さくかつピッチが異なる一つまたは複数の細目 螺子 (但し、 並目螺子と一つまたは複数の細目螺子のピッチの比は a対。 · 。対 n であり、 a, · · ·, nは最小の整数比である。) をそれぞれ展開したときに並目螺 子山との位相ずれに応じて並目螺子山の n卷きごとに周期的に現れるそれぞれの 細目螺子山の一部とを有するものとする。 これによ'り、並目螺子山の一部と複数の 細目螺子山それぞれの一部とが形成された多重螺子ポルトを製造することが可能 でめ 。
ここで、細目螺子山のうち最もピッチの小さい細目螺子山の一部が、細目螺子を 展開したときの谷底が並目螺子山の谷底よりも高い位置となるように細目螺子を 展開したときに、並目螺子山との位相ずれに応じて並目螺、子山の 11卷きごとに周期 的に現れるものとすれば、転造の際、転がりピッチ円径が、細目螺子を展開したと きの谷底部分において谷底を高くした分の約半分ボルト材料の内側に移動する。こ れにより、加工終期における転がりピッチ円径の変動が減少し、ポルト材料の回転 中心位置の変動が軽減される。
また、 このとき、細目螺子を展開したときの谷底は、並目螺子山の谷底よりも標 準規格の細目螺子山高さの 5〜 5 0 %高い位置とするのが望ましい。この範囲であ れば、加工中のぴぴり振動おょぴ騒音を有効に減少することができる。 なお、 5 % より小さレ、場合、谷底高さを変化させたことによるぴぴり振動および騷音の改善は ほとんど見られない。 一方、 5 0 %を超えると、転造により製造された多重螺子ボ ルトの細目螺子山の高さ力 標準規格の細目螺子山の有効径ょりも小さくなつてし まうため、 この多重螺子ポルトの細目螺子山への掛かりが小さくなる。
また、螺子転造ダイスが、細目螺子山の一部の谷底にさらに切り込んだ深い溝を 備えたものとすることで、多重螺子ポルトを転造する際、 この深い溝がダッシュポ ットの役目を果たし、螺子転造ダイスの溝部へポルト材料が完全に充填されなくて も、標準規格の細目螺子寸法を有する多重螺子ポルトを製造することができる。 ま た、完全充填されないことによって、完全充填が一つの要因となって発生する加工 終期のぴびり振動を抑制することができる。
また、 このとき、溝は、標準規格の細目螺子山高さの 3〜1 0 %の深さとするこ とが望ましい。 この範囲であれば、ダッシュポットの役目を十分に発揮することが でき、完全な形状の細目螺子山を有する多重螺子ボルトを製造することができると ともに、加工終期のぴぴり振動を十分に抑制することができる。 なお、 3 %より小 さい場合、溝を設けたことによる改善はほとんど見られない。 一方、 1 0 %を超え ると、溝が深すぎて、多重螺子ボルトの細目螺子山形状に影響を及ぼす可能性があ る。
ここで、本発明の螺子転造ダイスが、丸ダイス上に並目螺子山の一部おょぴ細目 螺子山の一部を形成したものであれば、この螺子転造ダイスを所定間隔で配置して それぞれ同一方向に回転させ、この螺子転造ダイス間にボルト材料を押圧させるこ とにより、 二重螺子ポルトを製造することができる。
また、本発明の螺子転造ダイスが、平ダイス上に並目螺子山の一部おょぴ細目螺 子山の一部を形成したものであれば、 この螺子転造ダイスを所定間隔で配置し、― 方を固定して他方を1 F亍移動させる力 または互いに逆方向に平行移動させ、 この 螺子転造ダイス間にボルト材料を押圧させることにより、二重螺子ポルトを製造す ることができる。
なお、本発明の螺子転造ダイスは、所定間隔で配置する複数の螺子転造ダイスの うち少なくとも一つ配置すればよいが、すべての螺子転造ダイスを本発明の螺子転 造ダイスとすることも可能である。螺子転造ダイスのうち一つを本発明の螺子転造 ダイスとする場合、他の螺子転造ダイスは並目螺子のみを展開した通常の並目螺子 ダイスとする。また、 ロータリプラネタリ方式のポルトの製造方法または製造装置 に適用する場合、本発明の螺子転造ダイスは丸ダイスまたはセグメントダイスのい ずれか一方に適用すればよく、 両方に適用してもよい。
本発明によれば、 以下の効果を奏することができる。
( 1 )並目螺子を展開した並目螺子山の一部と、細目螺子を展開した細目螺子山と 並目螺子山との位相ずれに応じて並目螺子山の谷部に周期的に形成された細目螺 子山の一部とを備えた螺子転造ダイスを少なくとも一つ配置し、螺子転造ダイスに ボルト材料を押し付けて転造する構成により、螺子転造ダイス上に形成された並目 螺子山の一部およぴ細目螺子山の一部によりポルト材料が押圧され、このボルト材 料の外周表面上に並目螺子山の一部と細目螺子山の一部とが一工程で一度に転写 されるため、並目螺子山の一部と細目螺子山の一部とが形成された、いわゆる二重 螺子を備えたポルトを切削よりも低単価で大量生産することが可能となる。
( 2 )並目螺子を展開した並目螺子山の一部と、この並目螺子山の谷部に並目螺子 と同一方向のつる卷き線を持ち並目螺子よりもピッチの小さい細目螺子(但し、並 目螺子と細目螺子のピツチの比は a対 bであり、 aと bは最小の整数比である。) を展開したときに並目螺子山との位相ずれに応じて並目螺子山の b卷きごとに周 期的に現れる細目螺子山の一部とを有する螺子転造ダイスを少なくとも一つ配置 し、螺子転造ダイスにポルト材料を押し付けて転造する構成により、螺子転造ダイ ス上に形成された並目螺子山の一部および細目螺子山の一部によりポルト材料が 押圧され、このボルト材料の外周表面上に並目螺子山の一部と細目螺子山の一部と がー工程で一度に転写されるため、並目螺子山の一部と細目螺子山の一部とが形成 された、いわゆる二重螺子ポルトを切削よりも低単価で大量生産することが可能と なる。
( 3 ) さらに、並目螺子山の一部および細目螺子山の一部により形成される谷部に 並目螺子と同一方向のつる卷き線を持ち細目螺子よりもさらにピッチの小さい最 細目螺子(但し、並目螺子と細目螺子と最細目螺子のピツチの比は a対 b対 cであ り、 aと bと cは最小の整数比である。) を展開したときに並目螺子山の一部およ び細目螺子山の一部との位相ずれに応じて並目螺子山の c卷きごとに周期的に現 れる最細目螺子山の一部を有する螺子転造ダイスを少なくとも一つ配置し、螺子転 造ダイスにポルト材料を押し付けて転造する構成により、螺子転造ダイス上に形成 された並目螺子山の一部、細目螺子山の一部および'最細目螺子山の一部によりボル ト材料が押圧され、このポルト材料の外周表面上に並目螺子山の一部と細目螺子山 の一部と最細目螺子山の一部とがー工程で一度に転写されるため、並目螺子山の一 部と細目螺子山の一部と最細目螺子山の一部とが形成された、いわゆる三重螺子ポ ルトを切削よりも低単価で大量生産することが可能となる。
( 4 )並目螺子を展開した並目螺子山の一部と、 この並目螺子山の谷部に並目螺子 と同一方向のつる卷き線を持ち並目螺子よりもピッチが小さくかつピッチが異な る一つまたは複数の細目螺子(但し、並目螺子と複数の細目螺子のピッチの比は a 対 · ' '対 nであり、 a, ' · ·, nは最小の整数比である。) をそれぞれ展開した ときに並目螺子山との位相ずれに応じて並目螺子山の n巻きごとに周期的に現れ るそれぞれの細目螺子山の一部とを有する螺子転造ダイスを少なくとも一つ配置 し、螺子転造ダイスにボルト材料を押し付けて転造する構成により、螺子転造ダイ ス上に形成された並目螺子山の一部およぴ複数の細目螺子山の一部によりボルト 材料が押圧され、このポルト材料の外周表面上に並目螺子山の一部と複数の細目螺 子山それぞれの一部とがー工程で一度に転写されるため、並目螺子山の一部と複数 の細目螺子山それぞれの一部とが形成された、いわゆる多重螺子ボルトを切削より も低単価で大量生産することが可能となる。
( 5 )細目螺子山のうち最もピッチの小さい細目螺子山の一部力 細目螺子を展開 したときの谷底が並目螺子山の谷底よりも高い位置となるように細目螺子を展開 したときに、並目螺子山との位相ずれに応じて並目螺子山の n卷きごとに周期的に 現れるものであることにより、転造の際の加工終期における転がりピッチ円径の変 動が減少し、 ポルト材料の回転中心位置の変動が軽減される。 これにより、螺子転 造ダイスの溝部への材料充填率がより均等に近くなり、ぴぴり振動を大幅に抑制す ることができる。
( 6 )螺子転造ダイスが、細目螺子山の一部の谷底にさらに切り込んだ深い溝を備 えたことにより、多重螺子ボルトを転造する際、螺子転造ダイスの溝部へポルト材 料が完全に充填されなくても、螺子転造ダイスの細目螺子山高さの細目螺子山を有 する多重螺子ボルトを製造することができる。 また、完全充填されないことによつ て、完全充填が一つの要因となって発生する加工終期のぴぴり振動を抑制すること ができる。 (7)本発明の螺子転造ダイスを用いた転造により得られた二重螺子ボルトは、並 目螺子山と細目螺子山との境界部の先端形状が滑らかな曲率となり、切削により製 造した二重螺子ポルトのように並目螺子山と細目螺子山との境界部にェッジが発 生することがない。 図面の簡単な説明
図 1は本発明の第 1実施形態における二重螺子ポルトの製造装置を示す概略図 である。図 2は図 1の螺子転造ダイスを示す斜視図である。図 3は図 2の螺子転造 ダイスの外周の転写パターンの一部を平面に展開した図である。図 4 Aは図 3の A 一 A線断面図である。図 4 Bは図 3の B— B線断面図である。図 4 Cは図 3の C— C線断面図である。図 4 Dは図 3の D— D線断面図である。図 4Eは図 3の E— E 線断面図である。 図 4 Fは図 3の F— F線断面図である。図 5 Aは図 4 Aの一部拡 大図である。図 5 Bは図 4Dの一部拡大図である。図 6 Aは修正を加えた螺子転造 ダイスの図 5 Aに対応する一部拡大図である。図 6 Bは修正を加えた螺子転造ダイ スの図 5 Bに対応する一部拡大図である。図 7 Aは修正を加えた螺子転造ダイスの 図 5 Aに対応する一部拡大図である。図 7 Bは修正を加えた螺子転造ダイスの図 5 Bに対応する一部拡大図である。図 8 Aは修正を加えた螺子転造ダイスの図 5 Aに 対応する一部拡大図である。図 8 Bは修正を加えた螺子転造ダイスの図 5 Bに対応 する一部拡大図である。図 9は本発明の第 2実施形態における二重螺子ボルトの製 造装置を示す概略図である。図 10 A、図 10 B、図 10 C、図 10 D、図 10 E、 図 10 Fは、本発明の第 3実施形態における三重螺子ポルト用の螺子転造ダイスの 断面図である。 図 11A、 図 11B、 図 11 C、 図 11D、 図 11E、 図 11 F、 図 11 G、図 11 Hは、図 3の A— A線断面での材料流動の様子を示した図である。 図 12 A、 図 12B、 図 12C、 図 12D、 図 12E、 図 12 F、 図 12G、 図 1 2Hは、 図 3の B— B線断面での材料流動の様子を示した図である。 図 13 A、図 13B、 図 13C、 図 13D、 図 13E、 図 13F、 図 13G、 図 13Hは、 図 3 の D— D線断面での材料流動の様子を示した図である。 発明を実施するための最良の形態
(実施の形態 1 )
図 1は本発明の第 1実施形態における二重螺子ポルトの製造装置を示す概略図、 図 2は図 1の螺子転造ダイス 1を示す斜視図である。
図 1に示すように、本実施形態における二重螺子ボルトの製造装置は、所定間隔 で対向配置した一対の螺子転造ダイス 1と、 円柱状のボルト材料(以下、 「ワーク」 と称す。) 3を所定位置で支持するポルト支持部 2とを備える。 また、 図 2に示す ように、螺子転造ダイス 1は、 円筒形のダイス (丸ダイス) の外周に二重螺子ボル ト形成用の転写パターン 4を形成したものである。
図 3は図 2の螺子転造ダイス 1の外周の転写パターン 4の一部を平面に展開し た図、 図 4 A、 図 4 B、 図 4 C、 図 4 D、 図 4 E、 図 4 Fは、 それぞれ図 3の A— A線断面図、 B— B線断面図、 C— C線断面図、 D— D線断面図、 E— E線断面図、 F— F線断面図である。
図 3に示すように、螺子転造ダイス 1の外周には、製造する二重螺子ポルトに対 応する転写パターン 4が 1周につき 1 6個分繰り返して形成されている。螺子転造 ダイス 1の外径は 1 7 3 . 9 8 7 mmであり、二重螺子ボルトは呼ぴ径 M 1 2で並 目螺子ピッチ 1 . 7 5 mm、 細目螺子ピッチ 0 . 8 7 5 mmである。 したがって、 二重螺子ボルト 1個分の転写パターン 4は、螺子転造ダイス 1の外周 1周 3 6 0 ° のうち 2 2 . 5。 の範囲に形成されていることになる。図 3の A— A線、 B— B線、 C一 C線、 D— D線、 E— E線、 F— F線は、 それぞれ 3 . 7 5 ° 間隔で設けたも のである。
図 4 A〜図 4 Fに示すように、螺子転造ダイス 1の転写パターン 4 (図 4 A〜図 4 Fに実線で示す。) は、 並目螺子を丸ダイスの表面に展開した基準の螺子山とな る並目螺子山の一部 (以下、 「並目螺子山部」 と称す。) 5と、 この並目螺子山の谷 部 5 aに周期的に形成された付加的な突起 6とにより構成されている。 突起 6は、 展開した並目螺子山の元の並目螺子と同一方向のつる卷き線を持ち、並目螺子より +もピッチの小さい細目螺子を展開した細目螺子山(図 4 A〜図 4 Fに点線 (想像線) 6 aで示す。) と並目螺子山との位相ずれ 7に応じて周期的な形状に形成されたも のである。
ここで、並目螺子と細目螺子のピッチの比を a対 b (但し、 aと bは最小の整数 比。 図示例では 2対 1としている。) とすると、 突起 6は、 細目螺子を展開したと きに並目螺子山との位相ずれに応じて並目螺子山の b卷き (図示例では 1卷き) ご とに周期的に現れる細目螺子山の一部となる。図 4 A〜図 4 Fに示すように、想像 線 6 aで示す細目螺子山は、並目螺子山との位相ずれ 7によって、 この並目螺子山 から突出した部分のみが、付加的な突起 6として現れている。すなわち、突起 6は、 細目螺子山そのものではなく、位相ずれ 7に応じてずれた分だけ細目螺子山の想像 線 6 aに対応するように、並目螺子山に対して付加的に突出させた突起である。並 目螺子山部 5は、螺子転造ダイス 1の表面に現れている細目螺子山の一部(突起 6 の表面) を除く部分である。
また、図 4 A〜図 4 Fに示す例では、基準となる並目螺子山の谷部 5 aの谷底 5 bと、突起 6に対応させた細目螺子山の想像線 6 aの谷底 6 bとの位置を一致させ ているが、 これに限るものではない。
例えば、本実施形態における螺子転造ダイス 1により製造された二重螺子ポルト (図示せず。 ) の並目螺子山に並目ナットを螺合させると、 螺子転造ダイス 1の突 起 6の分だけ接触面積が減ることになる力 突起 6に対応させた細目螺子山の想像 線 6 aの谷底 6 bの位置を図 4 A〜図 4 Fの下方へ移動させることにより、二重螺 子ポルトの並目螺子山と並目ナットとの接触面積を増やすことができる。
なお、通常の螺子転造ダイスであれば、その表面に並目螺子山または細目螺子山 のいずれか一方のみが形成されているため、並目螺子ナツトまたは細目螺子ナツト を嵌めることができる。 しカゝし、本実施形態における螺子転造ダイス 1の 、並 目螺子ナツトおよび細目螺子ナツトを嵌めようとしても嵌らない。螺子転造ダイス 1の表面に、特許文献 1に記載のように従来の並目螺子山と細目螺子山とがー体に 形成されたもの (具体的な構造は明らかでないが) ではなく、並目螺子山部 5とこ の並目螺子山部 5の元の並目螺子山の谷部 5 aに周期的な形状の突起 6とが形成 されたものだからである。
上記構成の二重螺子ボルトの製造装置を用いて二重螺子ボルトを製造するには、 円柱状のワーク 3をポ/レト支持部 2上に配置し、このワーク 3を一対の螺子転造ダ イス 1間に押圧させ、一対の螺子転造ダイス 1をそれぞれ同一方向 (例えば、 図 1 に矢印で示すように右回り) に回転させる。 これにより、 ワーク 3の外周表面上に 並目螺子山の一部および細目螺子山の一部が一工程で一度に転写され、並目螺子部 の一部と細目螺子部の一部とが形成された二重螺子ポルトが得られる。
こうして得られた二重螺子ボルトの外周表面には、図 4 A〜図 4 Fの螺子転造ダ ィス 1の転写パターン 4の逆パターンの溝(並目螺子山部 5および突起 6に相当す る溝) が形成されている。
得られた二重螺子ポルトは、 従来の切削により形成した二重螺子ポルトと同様、 並目螺子山が形成されたうえで、 細目螺子山がえぐり取られた状態のものとなる。 したがって、得られた二重螺子ボルトには並目螺子ナットと細目螺子ナットとを嵌 めることができる。
なお、二重螺子ボルトは、 この二重螺子ポルトの並目螺子山の谷部に並目螺子ナ ットの並目螺子山の山部を嵌合させ、この二重螺子ポルトの並目螺子山の山部に形 成された細目螺子山の谷部に細目螺子ナットの細目螺子の山部を嵌合させるもの であるため、並目螺子山の山頂の半径方向位置と細目螺子山の山頂の半径方向位置 とが常に一致するように形成するのが一般的である。このような二重螺子ボルトを 製造するための螺子転造ダイスの突起は、細目螺子を展開したときの谷底の位置が 並目螺子山の谷底の位置と一致するように細目螺子を展開し、並目螺子山との位相 ずれに応じて並目螺子山の b卷きごとに周期的に現れる細目螺子山の一部からな る。 以下、 このような突起を有する螺子転造ダイスを 「標準ダイス」 と称す。 図 5 A、 図 5 Bは、 それぞれ図 4 A、 図 4 Dの一部拡大図である。 図 5 A、 図 5 Bに示すように標準ダイスの周期的に変化する溝の深さは、並目螺子山の谷底 5 b の位置と突起 6を形成するために展開した細目螺子の細目螺子山 6 aの谷底 6 b の位置とが互いに最もよく重なり合う部分(A— A線断面) で最も深く、両者の位 置が最もずれている部分(D— D線断面) で最も浅くなつている。 このため、標準 ダイスで二重螺子ボルトを転造する場合、加工の最終段階における工具とワーク 3 の転がりピッチ(工具とワーク 3が転がり接触する位置) 円の径は、 ワーク 3から みると A— A線断面部分で最も大きく、 D— D線断面部分で最も小さくなる。 この結果、 その加工時点 (すなわち加工の最終なじみ段階) ではワーク 3の回転 中心位置は常に変動し、激しいぴびり振動、騒音の原因となる。 このびびり振動の 程度によっては、精度不良を引き起こし、工具寿命を著しく縮め、製造装置にも悪 影響を及ぼす可能性がある。 また、 この標準ダイスでは、各断面での溝部の断面積 が異なる (すなわち、 A— A線断面で最も大きく、 D— D線断面で最も小さい。) ため、 各断面における溝部への材料充填率に差が生じ、 特に加工終期においては、 溝部への材料の充填率が高いため、余剰材料の逃げ場がなくなる。 これもぴびり振 動等の問題の原因となる。
そこで、本実施形態において、突起 6は、細目螺子を展開したときの谷底 6 が 並目螺子山の谷底 5 bよりも高い位置となるように細目螺子を展開したときに、並 目螺子山との位相ずれに応じて並目螺子山の b卷きごとに周期的に現れる細目螺 子山 6 aの一部としたものであることが望ましい。 このとき、 図 6 A、 図 6 Bに示 すように、展開する細目螺子は、標準規格よりも 5〜 5 0 %谷深さの浅い細目螺子 とし、この浅くした分 d hだけこの細目螺子を展開したときの谷底 6 bが並目螺子 山の谷底 5 bよりも高い位置となるようにする。
あるいは、 図 7 A、 図 7 Bに示すように、展開する細目螺子は、並目螺子山の谷 底 5 bの位置と突起 6を形成するために展開した細目螺子の細目螺子山 6 aの谷 底 6 bの位置とが互いに最もよく重なり合う部分(A— A線断面)では標準規格よ りも 5〜 5 0 %谷深さの浅い細目螺子となり、 両者の位置が最もずれている部分 (D— D線断面)では標準規格の谷深さとなるように滑らかに変化するものとする。 これらの修正を加えた螺子転造ダイスを用いて二重螺子ボルトを転造した場合、 標準ダイスを用いて転造する場合と比べて、 A— A線断面における転がりピッチ円 径が、細目螺子を展開したときの谷底 6 bの深さを浅くした分 d の約半分ヮ一ク 3の内側に移動し、 その分だけ D— D線断面における転がりピッチ円径に近づく。 そのため、加工終期における転がりピッチ円径の変動が減少し、 ワーク 3の回転中 心位置の変動が軽減される。また、 A— A線断面の溝部の断面積が D— D線断面積 の溝部の断面積に近づくため、 各断面の溝部の材料充填率がより均等に近くなり、 ぴぴり振動を大幅に抑制することができる。
一方、このような修正を加えた螺子転造ダイスを用いて転造した二重螺子ポルト では、 当然ながら細目螺子部の山高さが (特に、 A— A線断面に相当する部分で) 標準規格のものより低くなる。 しかしながら、二重螺子ポルトはその並目螺子部で 締め付け力のほとんどを得るため、これにより静的強度や動的疲労強度が損なわれ ることはほとんどなく、 また十分な緩み止め効果も発揮できる。
ところで、上記のように修正を加えた螺子転造ダイスを用いて二重螺子ポルトを 転造した場合、標準ダイスを用いた転造におけるぴぴり振動等の問題は解決できる 力 製造された二重螺子ポルトは細目螺子部の山高さが標準規格のものよりも低く なる。 し力し、細目螺子部の強度、細目螺子ナツトの掛かり具合あるいは商品性を 考える場合、 細目螺子部の山高さの完全性が求められる場合もある。
この場合、螺子転造ダイスは、 図 8 A、 図 8 Bに示すように、 突起 6として現れ た細目螺子山 6 aの一部の谷底 6 bにさらに切り込んだ溝 6 cを備えたものとす る。 この溝 6 cの深さ d vは、細目螺子山 6 aの高さの 3〜 1 0 %である。 このよ うな螺子転造ダイスにより二重螺子ポルトを転造する場合、溝 6 cがダッシュポッ トの役目を果たし、 螺子転造ダイスの溝部へワーク 3が完全に充填されなくても、 標準高さの細目螺子山を有する二重螺子ポルトを製造することができる。これによ り、完全充填が一つの要因となって発生する加工終期のぴびり振動を抑制すること あでさる。
(実施の形態 2 )
図 9は本発明の第 2実施形態における二重螺子ポルトの製造装置を示す概略図 である。
図 9に示すように、本実施形態における二重螺子ボルトの製造装置は、所定間隔 で対向配置した一対の螺子転造ダイス 8を備える。一対の螺子転造ダイス 8の一方 を固定し他方を平行移動可能に配設するカゝ、または相互に反対方向に平行移動可能 に配設する。
螺子転造ダイス 8は、平板状のダイス (平ダイス) の片面に二重螺子ボルト形成 用の転写パターン 9を形成したものである。転写パターン 9は、第 1実施形態にお ける転写パターン 4と同様のものを平面に展開したものである。
このような二重螺子ボルトの製造装置を用いて二重螺子ポルトを製造するには、 一対の螺子転造ダイス 8間に円柱状のワーク 3を押圧させ、一方の螺子転造ダイス 8を他方の螺子転造ダイス 8と TOを維持したまま平行移動させる力 または互い に逆方向に平行移動させる。 これにより、第 1実施形態と同様に、 ワーク 3の外周 表面上に並目螺子山の一部おょぴ細目螺子山の一部が一工程で一度に転写され、並 目螺子部の一部と細目螺子部の一部とが形成された二重螺子ポルトが得られる。 (実施の形態 3 )
図 1 0 A、 図 1 0 B、 図 1 0 C、 図 1 0 D、 図 1 0 E、 図 1 O Fは、本発明の第 3実施形態における三重螺子ポルト用の螺子転造ダイス 1 0の断面図である。螺子 転造ダイス 1 0の外周には、製造する三重螺子ボルトに対応する転写パターンが 1 周につき 1 6個分繰り返して形成されており、図 1 0 A〜図 1 0 Fは、螺子転造ダ イス 1 0の外周の断面を 3 . 7 5 ° 間隔で示した図である。
図 1 0 A〜図 1 0 Fに示すように三重螺子ボルト用の螺子転造ダイス 1 0では、 さらに、並目螺子山部 5および突起 6により形成される谷部 1 1に、展開した並目 螺子山の元の並目螺子と同一方向のつる卷き線を持ち、突起 6を形成する元となつ た細目螺子よりもさらにピッチの小さい最細目螺子(但し、並目螺子と細目螺子と 最細目螺子のピッチの比は a対 b対 cとし、 aと bと cは最小の整数比とする。図 示例では 4対 2対 1としている。) を展開したときに、 並目螺子山部 5および突起 6との位相ずれに応じて並目螺子山の c卷き (図示例では 1卷き) ごとに周期的に 現れる最細目螺子山 (図 1 0 A〜図 1 0 Fに点線 (想像線) 1 2 aで示す。) の一 部からなる突起 1 2を有する。
図 1 0 〜図1 0 Fに示すように、細目螺子山 6 aは並目螺子山から突出した部 分のみが付加的な突起 6として現れている。さらに、この螺子転造ダイス 1 0では、 最細目螺子山 1 2 a力 この突起 6から突出した部分のみ付加的な突起 1 2として 現れている。突起 1 2は、最細目螺子山そのものではなく、並目螺子山部 5および 突起 6との位相ずれに応じてずれた分だけ最細目螺子山の想像線 1 2 aに対応す るように、並目螺子山部 5および突起 6に対してさらに付加的に突出させた突起で ある。
なお、 図示していないが、 n重螺子ポルトを転造する場合には、並目螺子を展開 した並目螺子山の一部と、この並目螺子山の谷部に並目螺子と同一方向のつる卷き 線を持ち並目螺子よりもピッチが小さくかつピッチが異なる一つまたは複数の細 目螺子 (伹し、 並目螺子と一つまたは複数の細目螺子のピッチの比は a対' · '対 nとし、 a, · · ·, nは最小の整数比とする。) をそれぞれ展開したときに並目螺 子山との位相ずれに応じて並目螺子山の II卷きごとに周期的に現れるそれぞれの 細目螺子山の一部からなる突起とを有する螺子転造ダイスを用いればよい。
なお、 この n重螺子ボルトを転造する螺子転造ダイスにおいても、第 1実施形態 における螺子転造ダイスと同様に修正を加えることが可能である。谷深さに修正を 加える場合には、最もピツチの小さい細目螺子を展開したときの谷底が並目螺子山 の谷底よりも高い位置となるように細目螺子を展開したときに、並目螺子山との位 相ずれに応じて並目螺子山の n卷きごとに周期的に現れる細目螺子山の一部とな るようにすればよい。
(実施例 1 )
上記本発明の第 1実施形態における二重螺子ボルトの製造装置を用いて二重螺 子がポルトに転写されるメカニズムについて解析した。図 1 1 A〜図 1 1 11、図1 2 〜図1 2 11、 図1 3 〜図1 3 Hは、それぞれ図 3の A— A線断面、 B— B線 断面、 D— D線断面での材料流動の様子を示した図である。 なお、 図 1 1 〜図1 1 11、 図1 2 〜図1 2 11、 図1 3八〜図1 3 Hにおいて、 A〜Hは、 一対の螺子 転造ダイス 1を同一方向に回転させながら、互いの間の距離を連続的に狭めていつ たときの様子を、約 0 . 1〜0 . 2 mmステップで最終的に螺子転造ダイス 1がヮ ーク 3に約 1 mm押し込まれた状態まで示したものである。
図 1 1 A〜図 1 1 H、 図 1 2 A〜図 1 2 H、 図 1 3 A〜図 1 3 Hに示すように、 螺子転造ダイス 1がワーク 3に徐々に押し込まれるに連れて、ワーク 3は、まず螺 子転造ダイス 1の並目螺子山部 5の表面に沿って塑性変形しながら並目螺子山の 谷部 5 aを埋めていった。 そして、途中まで埋めたところで、今度は並目螺子山に 付加的に突出した突起 6の表面に沿つて塑性変形しながら、谷部 5 aを埋めていつ た。 これにより、並目螺子部の一部と細目螺子部の一部とが形成された二重螺子ポ ルトが得られた。
(実施例 2 )
上記本発明の第 1実施形態において修正を加えた螺子転造ダイスと標準ダイス による二重螺子ポルト製造の比較試験を行った。表 1は、呼ぴ径 M l 2と M l 6の 二種類について、それぞれ細目螺子山の谷底 6 bの深さを変化させた場合と溝 6 c の深さを変化させた場合の加工中のびびり振動と騒音について測定した結果であ る。なお、 M 1 2の二重螺子ポルトの製造に用いた螺子転造ダイスのピッチ比は 1 . 7 5対 0 . 8 7 5、 M 1 6については 2対 1である。 表 1
Figure imgf000019_0001
表 1から分かるように、細目螺子山の谷底 6 bの深さを変化させて修正した螺子 転造ダイスでは、谷底 6 bの深さを標準規格の細目螺子山に対して 5 %から 4 0 % まで浅くしたときに、浅くすればするほど加工時のびびり振動および騷音が低減さ れた。一方、溝 6 cの深さを変化させて修正した螺子転造ダイスでは、溝 6 cの深 さを標準規格の細目螺子山高さの 5 %と 1 0 %とした場合に、加工時のぴぴり振動 およぴ騷音の改善が確認された。
なお、 これらの螺子転造ダイスは、すべて米国航空規格 N A S 3 3 5 4振動試験 法による緩み試験に合格した。また、アムスラ一式引張強度試験法による静的強度 試験および油圧サーポ式試験法による動的強度試験において、標準螺子ボルトと同 等の能力を備えていることが確露できた。 産業上の利用可能性
本発明は、緩み防止機能を有する多重螺子ポルトを転造により製造する場合に有 用である。

Claims

請 求 の 範 囲
1 .螺子転造ダイスにポルト材料を押し付けて転造するポル卜の製造方法において、 前記螺子転造ダイスのうち少なくとも一つが、並目螺子を展開した並目螺子山の 山部と、前記並目螺子山の谷部に前記並目螺子と同一方向のつる卷き線を持ち前記 並目螺子よりもピッチの小さい細目螺子(伹し、前記並目螺子と前記細目螺子のピ ツチの比は a対 bであり、 aと bは最小の整数比である。) をその谷底が前記並目 螺子山の谷底よりも高い位置となるように展開したときに前記並目螺子山との位 相ずれに応じて前記並目螺子山の b卷きごとに周期的に現れる細目螺子山に対応 する突起とを有することを特徴とするポルトの製造方法。
2 .螺子転造ダイスにポルト材料を押し付けて転造するポルトの製造方法において、 前記螺子転造ダイスのうち少なくとも一つが、並目螺子を展開した並目螺子山の 山部と、前記並目螺子山の谷部に前記並目螺子と同一方向のつる卷き線を持ち前記 並目螺子よりもピッチが小さくかつピッチが異なる一つまたは複数の細目螺子(但 し、 前記並目螺子と前記一つまたは複数の細目螺子のピッチの比は a対' · '対 n であり、 a, · · ·, nは最小の整数比である。) をそれぞれ展開したとき (但し、 最もピッチの小さい細目螺子についてはその谷底が前記並目螺子山の谷底よりも 高い位置となるように展開したとき)に前記並目螺子山との位相ずれに応じて前記 並目螺子山の n卷きごとに周期的に現れるそれぞれの細目螺子山に対応する突起 とを有することを特徴とするポルトの製造方法。
3 . 前記細目螺子を展開したときの谷底は、前記並目螺子山の谷底よりも標準規格 の細目螺子山高さの 5〜 5 0 %高い位置としたものであることを特徴とする請求 の範囲第 1項記載のポルトの製造方法。
4 . 前記細目螺子を展開したときの谷底は、前記並目螺子山の谷底よりも標準規格 の細目螺子山高さの 5〜 5 0 %高い位置としたものであることを特徴とする請求 の範囲第 2項記載のポルトの製造方法。
5 .螺子転迨ダイスにボルト材料を押し付けて転造するポルトの製造装置において、 前記螺子転造ダイスのうち少なくとも一つが、並目螺子を展開した並目螺子山の 山部と、前記並目螺子山の谷部に前記並目螺子と同一方向のつる卷き線を持ち前記 並目螺子よりもピッチの小さい細目螺子(伹し、前記並目螺子と前記細目螺子のピ ツチの比は a対 bであり、 aと bは最小の整数比である。) をその谷底が前記並目 螺子山の谷底よりも高い位置となるように展開したときに前記並目螺子山との位 相ずれに応じて前記並目螺子山の b卷きごとに周期的に現れる細目螺子山に対応 する突起とを有するものであることを特徴とするポルトの製造装置。
6 .螺子転造ダイスにポルト材料を押し付けて転造するボルトの製造装置において、 前記螺子転造ダイスのうち少なくとも一つが、並目螺子を展開した並目螺子山の 山部と、この並目螺子山の谷部に前記並目螺子と同一方向のつる卷き線を持ち前記 並目螺子よりもピッチが小さくかつピッチが異なる一つまたは複数の細目螺子(伹 し、 前記並目螺子と前記一つまたは複数の細目螺子のピッチの比は a対 · · '対 n であり、 a , · · · , nは最小の整数比である。) をそれぞれ展開したとき (但し、 最もピッチの小さい細目螺子についてはその谷底が前記並目螺子山の谷底よりも 高い位置となるように展開したとき)に前記並目螺子山との位相ずれに応じて前記 並目螺子山の n巻きごとに周期的に現れるそれぞれの細目螺子山に対応する突起 とを有するものであることを特徴とするボルトの製造装置。
7 . 前記細目螺子を展開したときの谷底は、前記並目螺子山の谷底よりも標準規格 の細目螺子山高さの 5〜5 0 %高い位置としたものであることを特徴とする請求 の範囲第 5項記載のボルトの製造装置。
8 . 前記細目螺子を展開したときの谷底は、前記並目螺子山の谷底よりも標準規格 の細目螺子山高さの 5〜5 0 %高い位置としたものであることを特徴とする請求 の範囲第 6項記載のボルトの製造装置。
9 . 並目螺子を展開した並目螺子山の山部と、前記並目螺子山の谷部に前記並目螺 子と同一方向のつる卷き線を持ち前記並目螺子よりもピッチの小さい細目螺子(但 し、前記並目螺子と前記細目螺子のピッチの比は a対 bであり、 aと bは最小の整 数比である。) をその谷底が前記並目螺子山の谷底よりも高い位置となるように展 開したときに前記並目螺子山との位相ずれに応じて前記並目螺子山の b卷きごと に周期的に現れる細目螺子山に対応する突起とを有する螺子転造ダイス。
1 0 .並目螺子を展開した並目螺子山の山部と、前記並目螺子山の谷部に前記並目 螺子と同一方向のつる卷き線を持ち前記並目螺子よりもピツチが小さくかつピッ チが異なる複数の細目螺子(但し、前記並目螺子と前記複数の細目螺子のピッチの 比は a対 · · ·対 nであり、 a , · · ·, nは最小の整数比である。) をそれぞれ展 開したとき (伹し、最もピッチの小さい細目螺子についてはその谷底が前記並目螺 子山の谷底よりも高レ、位置となるように展開したとき)に前記並目螺子山との位相 ずれに応じて前記並目螺子山の n卷きごとに周期的に現れるそれぞれの細目螺子 山に対応する突起とを有する螺子転造ダイス。
1 1 . 前記細目螺子を展開したときの谷底は、前記並目螺子山の谷底よりも標準規 格の細目螺子山高さの 5〜 5 0 %高い位置としたものである請求の範囲第 9項記 載の螺子転造ダイス。
1 2 . 前記細目螺子を展開したときの谷底は、前記並目螺子山の谷底よりも標準規 格の細目螺子山高さの 5〜 5 0 %高い位置としたものである請求の範囲第 1 0項 記載の螺子転造ダイス。
1 3 . 請求の範囲第 9項記載の螺子転造ダイスに対し、ボルト材料を押し付けて転 造した多重螺子ボルト。
1 4 . 請求の範囲第 1 0項記載の螺子転造ダイスに対し、ポルト材料を押し付けて 転造した多重螺子ポルト。
1 5 . 請求の範囲第 1 1項記載の螺子転造ダイスに対し、ボルト材料を押し付けて 転造した多重螺子ポルト。
1 6 . 請求の範囲第 1 2項記載の螺子転造ダイスに対し、ボルト材料を押し付けて 転造した多重螺子ポルト。
PCT/JP2004/003788 2003-03-24 2004-03-19 ボルトの製造方法および製造装置並びにこれに用いる螺子転造ダイス並びに多重螺子ボルト WO2004085093A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE602004024191T DE602004024191D1 (de) 2003-03-24 2004-03-19 Verfahren und vorrichtung zur herstellung von bolzen, dafür verwendete schraubenwalzbacke und mehrfachschraubenbolzen
US10/549,898 US7159429B2 (en) 2003-03-24 2004-03-19 Method and device for manufacturing bolt, screw rolling die used therefor, and multiple screw bolt
KR1020057017730A KR101087505B1 (ko) 2003-03-24 2004-03-19 볼트의 제조 방법 및 제조 장치 및 이것에 이용하는 나사전조 다이스 및 다중나사 볼트
EP04722062A EP1625902B1 (en) 2003-03-24 2004-03-19 Method and device for manufacturing bolt, screw rolling die used therefor, and multiple screw bolt

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-081247 2003-03-24
JP2003081247 2003-03-24
JP2003-352624 2003-10-10
JP2003352624A JP3546211B1 (ja) 2003-03-24 2003-10-10 ボルトの製造方法および製造装置並びにこれに用いる螺子転造ダイス並びに多重螺子ボルト

Publications (1)

Publication Number Publication Date
WO2004085093A1 true WO2004085093A1 (ja) 2004-10-07

Family

ID=32829032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003788 WO2004085093A1 (ja) 2003-03-24 2004-03-19 ボルトの製造方法および製造装置並びにこれに用いる螺子転造ダイス並びに多重螺子ボルト

Country Status (6)

Country Link
US (1) US7159429B2 (ja)
EP (1) EP1625902B1 (ja)
JP (1) JP3546211B1 (ja)
KR (1) KR101087505B1 (ja)
DE (1) DE602004024191D1 (ja)
WO (1) WO2004085093A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780629A (zh) * 2010-04-08 2010-07-21 浙江裕泰紧固件制造有限公司 一种异形螺栓的生产工艺
WO2015165263A1 (zh) * 2014-04-28 2015-11-05 江苏振东港口机械制造有限公司 一种紧固螺栓

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535358B2 (en) 2007-11-19 2013-09-17 Medical Facets, Llc Bone screw and method for manufacturing the same
US8112870B2 (en) 2007-11-19 2012-02-14 Medical Facets Llc Bone screw and method for manufacturing the same
JP5311901B2 (ja) * 2008-07-04 2013-10-09 株式会社ニッセー 螺子転造ダイス
JP5042931B2 (ja) * 2008-07-04 2012-10-03 株式会社ニッセー 転造ボルト
CN101504025B (zh) * 2009-03-12 2013-07-31 贾灯喜 一种双线螺纹紧固件的制造方法
US9643236B2 (en) * 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
US20120148356A1 (en) * 2010-12-08 2012-06-14 Lohmeier Kevin F Extrication Tool
DE102011078256A1 (de) * 2011-06-29 2013-01-03 Hilti Aktiengesellschaft Schraube und Verfahren zur Herstellung eines Schraubgewindes
JP2013043183A (ja) * 2011-08-22 2013-03-04 Yutaka Michiwaki 両ねじ体の転造用ダイス構造及び転造方法
DE102013203150A1 (de) * 2013-02-26 2014-08-28 Hilti Aktiengesellschaft Verfahren zum Herstellen einer Betonschraube
US9950380B1 (en) * 2013-03-13 2018-04-24 Mark Doll Method for forming a dual threaded die
CN104454906B (zh) 2013-09-16 2016-06-08 纬创资通股份有限公司 螺柱结构及组装结构
US9757792B1 (en) * 2014-04-09 2017-09-12 Mark Doll Method for making a die for roll forming a dual threaded bolt
WO2016194842A1 (ja) 2015-05-29 2016-12-08 株式会社転造技術研究所 二重ねじ構成体
CN106257229A (zh) * 2015-06-17 2016-12-28 江西省分宜驱动桥有限公司 一种检测驱动桥差速器半壳球面的量具及制作工艺
PL233929B1 (pl) * 2017-12-01 2019-12-31 Lukomski Marian Sposób wykonywania gwintu Rd 50x7 na odkuwce cięgła-śruby dwustronnej sprzęgu śrubowego, do szynowego taboru kolejowego
TWI707747B (zh) * 2019-10-18 2020-10-21 國立高雄科技大學 強固螺絲diy工具
KR102287152B1 (ko) 2021-03-22 2021-08-06 김선태 소착방지용 볼트
KR102278921B1 (ko) 2021-03-22 2021-07-19 김선태 소착방지 볼트 전조용 금형

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232326A (ja) * 2002-02-06 2003-08-22 Eco World:Kk 緩み防止ボルト及び同製造方法並びに平ダイス及び同製造方法
JP2003260532A (ja) * 2002-03-08 2003-09-16 Japan Power Fastening Co Ltd ボルトの製造装置及び製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1574825A (en) * 1976-03-31 1980-09-10 Rubery Owen Fasteners Ltd Screw threaded members and their manufacture
JP3345617B2 (ja) * 1997-08-06 2002-11-18 株式会社イデア・デザインテック セルフロックねじの製造方法
US6149363A (en) * 1998-10-29 2000-11-21 Huck International, Inc. Lightweight threaded fastener and thread rolling die
CN1427926A (zh) * 2001-03-26 2003-07-02 大喜工业株式会社 螺栓及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232326A (ja) * 2002-02-06 2003-08-22 Eco World:Kk 緩み防止ボルト及び同製造方法並びに平ダイス及び同製造方法
JP2003260532A (ja) * 2002-03-08 2003-09-16 Japan Power Fastening Co Ltd ボルトの製造装置及び製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1625902A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780629A (zh) * 2010-04-08 2010-07-21 浙江裕泰紧固件制造有限公司 一种异形螺栓的生产工艺
WO2015165263A1 (zh) * 2014-04-28 2015-11-05 江苏振东港口机械制造有限公司 一种紧固螺栓

Also Published As

Publication number Publication date
KR101087505B1 (ko) 2011-11-29
US7159429B2 (en) 2007-01-09
JP3546211B1 (ja) 2004-07-21
DE602004024191D1 (de) 2009-12-31
EP1625902A4 (en) 2008-05-28
US20060225477A1 (en) 2006-10-12
EP1625902A1 (en) 2006-02-15
EP1625902B1 (en) 2009-11-18
JP2004306132A (ja) 2004-11-04
KR20050114673A (ko) 2005-12-06

Similar Documents

Publication Publication Date Title
WO2004085093A1 (ja) ボルトの製造方法および製造装置並びにこれに用いる螺子転造ダイス並びに多重螺子ボルト
US5928084A (en) Tools for producing threads with varying pitch
JP4986409B2 (ja) 研削ウォーム及び研削ウォームをプロファイリングするためのプロファイリングギヤ並びにプロファイリング方法
JP5496655B2 (ja) 多重ねじ転造ダイスの製造方法および多重ねじ転造ダイスならびにこれを用いた多重ねじボルトの製造方法
US20020192050A1 (en) Fastner having multiple-bossed lead
CN102658345A (zh) 轧制模具
JP5221635B2 (ja) ディンプル成形バニシング工具
JP2004345076A (ja) 螺子転造ダイスの製造方法
JP4810640B2 (ja) 二重螺子ボルトの製造方法
US4571972A (en) Skewed-axis cylindrical die rolling
US6571475B1 (en) Method of chamfering and deburring gear teeth, device implementing such a method, and relative tool
WO2006013724A1 (ja) マルチピッチねじを備えたナット部材およびその製造方法
US3186082A (en) Method of forming a coil and mounting on a shaft
JP2012515311A (ja) ねじ部品、ねじ接続部、およびねじ部品の製造方法
CN100446914C (zh) 螺纹滚轧成形辊的制造方法
JP2006043745A (ja) マルチピッチねじ、マルチピッチねじの製造方法及び製造装置
CN1764510A (zh) 螺栓的制造方法和制造装置以及用在该装置中的螺纹滚轧成形辊以及多线螺纹螺栓
US20160003282A1 (en) Method for Producing a Concrete Screw
JP2003033841A (ja) ボールねじのねじ軸の製造方法
CN105945183B (zh) 一种螺纹花键同步滚轧用相位可调模具结构
JP2006342900A (ja) ボールねじ装置及び転造ダイス
US9643237B1 (en) Compound die for dual thread forming
JP5311901B2 (ja) 螺子転造ダイス
JP2006218492A (ja) 転造ダイス
JPH0566220B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006225477

Country of ref document: US

Ref document number: 10549898

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057017730

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004722062

Country of ref document: EP

Ref document number: 20048079319

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057017730

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004722062

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10549898

Country of ref document: US