WO2004084504A1 - 光クロスコネクト装置及び光通信制御方法 - Google Patents

光クロスコネクト装置及び光通信制御方法 Download PDF

Info

Publication number
WO2004084504A1
WO2004084504A1 PCT/JP2003/003179 JP0303179W WO2004084504A1 WO 2004084504 A1 WO2004084504 A1 WO 2004084504A1 JP 0303179 W JP0303179 W JP 0303179W WO 2004084504 A1 WO2004084504 A1 WO 2004084504A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
station
output
signal
priority signal
Prior art date
Application number
PCT/JP2003/003179
Other languages
English (en)
French (fr)
Inventor
Kiichi Sugitani
Satoshi Kuroyanagi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/003179 priority Critical patent/WO2004084504A1/ja
Priority to JP2004569553A priority patent/JP3987534B2/ja
Publication of WO2004084504A1 publication Critical patent/WO2004084504A1/ja
Priority to US11/137,365 priority patent/US20050213875A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0297Optical equipment protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/0291Shared protection at the optical multiplex section (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0284WDM mesh architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0011Construction using wavelength conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0024Construction using space switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0043Fault tolerance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • H04Q2011/0092Ring

Definitions

  • the present invention relates to an optical cross-connect device configured in an optical network configured to transmit a priority signal and a non-priority signal having different transmission priorities from a transmission node to a reception node, and the optical cross-connect device.
  • the present invention relates to a method for controlling optical communication using a computer. Background art
  • optical cross-connect device separates wavelength-multiplexed optical signals from a plurality of optical fibers for each wavelength, performs switching in the state of the optical signals, wavelength-multiplexes again, and outputs the signals to a desired optical fiber. It is at the core of building optical networks.
  • Fig. 1 is a diagram showing the outline of an optical network. When a failure occurs in the transmission path from the transmission node to the reception node, the entire transmission path is switched, and the optical path is switched to the new transmission path. The case where a signal is transmitted by a spare optical fiber is shown.
  • the optical network shown in Fig. 1 is composed of nine optical cross-connect devices (optical XC) 1 to 9, an active optical fiber 11 connecting these optical cross-connect devices, and a standby optical fiber 12.
  • the entire transmission path including the working optical fiber 11 connecting the optical XC 2 and the optical XC 5 is switched, and the transmission path after the switching is configured by the standby optical fiber 12.
  • the transmission path composed of the optical XCs 1, 2, 5, and 8 and the transmission path composed of the working optical fiber 11 is connected to the transmission path composed of the optical XCs 1, 4, 7, and 8 and the spare optical fiber 12. Switch to the route.
  • the optical XC2, 5, 8 and 9 are connected, and the transmission path composed of the working optical fiber 11 is switched to the transmission path composed of the optical XC2, 3, 6, 9 and the spare optical fiber 12.
  • FIG. 2 and 3 are diagrams illustrating a configuration example of an optical connect device when the transmission path switching illustrated in FIG. 1 is performed.
  • the thick lines indicate the transmission paths of the optical signals.
  • the optical cross-connect device shown in FIGS. 2 and 3 has, on the input side, k pairs of inter-station optical fibers 700—1 to 700_k composed of a working optical fiber (W) 701 and a standby optical fiber (P) 702. Connected to a device outside the station, and connected to a device inside the station via an intra-station line 71 l_l to 711-j (hereinafter collectively referred to as “in-station line 711” as appropriate).
  • the optical cross-connect device is connected outside the office by k pairs of inter-office optical fibers 800-1 to 800_k composed of a working optical fiber (W) 801 and a standby optical fiber (P) 802. It is connected to the equipment and connected to the equipment in the office by intra-office lines 811-1 to 811-j (hereinafter collectively referred to as “intra-office line 811J”).
  • the optical cross-connect device includes a working optical cross-connect unit 510 to which the working optical fibers 701 and 801 are connected, a spare optical cross-connect unit 520 to which the spare optical fibers 702 and 802 are connected, and a light distribution unit (DIS) 530— 1 to 530-j (hereinafter collectively referred to as “light distribution unit 530”), light selection unit (SEL) 550—l to 550—j (hereinafter collectively referred to as “light selection unit 550”). ").
  • the working optical cross-connect unit 510 includes an optical demultiplexer 511 11 to 511-k (hereinafter collectively referred to as an “optical demultiplexer 511”), an optical switch 512, and an optical-electrical (O / E / O) 513— 1— 1 to 51 3-k-n (these are collectively referred to as ⁇ / ⁇ / 0 5 13 ”), optical multiplexers 5 1 4—1—1 to 5 14—k—n (these are collectively referred to as As appropriate, referred to as “optical multiplexers 5 14”).
  • optical demultiplexer 511 an optical demultiplexer 511 11 to 511-k
  • an optical switch 512 includes an optical-electrical (O / E / O) 513— 1— 1 to 51 3-k-n (these are collectively referred to as ⁇ / ⁇ / 0 5 13 ”), optical multiplexers 5 1 4—1—1 to 5 14—k—n (these are collectively referred to as
  • the spare optical cross-connect unit 5200 includes an optical demultiplexer 5 21-1-1 to 5 2 1—k (hereinafter collectively referred to as an “optical demultiplexer 5 2 1”), Switch 5 2 2, light-electricity-light change »(O / E / O) 5 2 3—1—1 to 5 2 3—k—n (hereinafter collectively referred to as“ OZE / 0 5 2 3 ” ), And an optical multiplexer 524-1-1-l to 524-k-n (hereinafter, these are collectively referred to as an "optical multiplexer 524" as appropriate).
  • the wavelength-multiplexed optical signal from the device outside the station is transmitted through the working optical fiber 701. It is sent to the working optical cross-connect unit 5110.
  • the optical demultiplexers 5 11 1-1 to 5 11 1-k in the working optical cross-connect unit 5 10 are connected one-to-one with the working optical fibers 70 1.
  • These optical demultiplexers 5 11 demultiplex the wavelength-multiplexed optical signal into optical signals of individual wavelengths (here, I 1 to I n) and output the optical signals to the optical switch 5 12.
  • an optical signal from a device in the station is transmitted through the intra-station line 71 1 and is input to the optical distribution unit 530.
  • optical distribution units 530_l to 530_j are connected one-to-one with the intra-station lines 711. These optical distribution sections 530 transmit the input optical signal to both the optical switch 512 in the working optical cross-connect section 510 and the optical switch 522 in the standby optical cross-connect section 520. Output.
  • the optical switch 512 When an optical signal is input, the optical switch 512 performs switching according to the transmission path of the optical signal, and outputs the signal to 0 / E / 0 5 13 and the optical selection section 5550.
  • the O / E / O 5 13 converts the input optical signal into an electric signal, performs waveform shaping, amplification, and the like, converts the signal into an optical signal again, and outputs the optical signal to the optical multiplexer 5 14.
  • optical multiplexers 5 14 _ 1 to 5 14 -k are connected to the respective working optical fibers 800 1 on a one-to-one basis. These optical multiplexers 514 wavelength multiplex the input optical signal and output it to the working optical fiber 801.
  • the optical selectors 5 5 0— 1 to 5 5 0—j have input terminals connected to the optical switches 5 12 and 5 2 2, and output terminals connected one-to-one with each local line 8 1 1. I have. These optical selectors 550 transmit one of the optical signals input to the two input terminals to the local line 811. Output. Here, the optical selector 550 receives only the optical signal from the optical switch 512, and outputs this optical signal to the intra-office line 811 as it is.
  • the wavelength-multiplexed optical signal from the device outside the station is transmitted through the spare optical fiber 72. , And are input to the spare optical cross-connect unit 520.
  • the optical demultiplexers 5 2 1-1 to 5 2 1-k in the standby optical cross-connect unit 5 20 are connected to the standby optical fibers 70 2 on a one-to-one basis.
  • These optical demultiplexers 5221 demultiplex the wavelength-multiplexed optical signal into optical signals of individual wavelengths (here, L1 to m) and output the optical signals to the optical switch 5222.
  • an optical signal from a device in the station is transmitted through the intra-station line 71 1 and is input to the optical distribution unit 530.
  • the optical distribution unit 530 transmits the optical signal from the device outside the station to the optical switch 512 in the working optical cross-connect unit 510 and the optical switch 522 in the standby optical cross-connect unit 520. Output to both sides.
  • the optical switch 522 When an optical signal is input, the optical switch 522 performs switching according to the transmission path of the optical signal, and outputs the signal to the ⁇ / ⁇ 523 and the ⁇ light selection unit 550.
  • the O / E / 0 523 converts the input optical signal into an electric signal, performs waveform shaping, amplification, and the like, converts the signal again to an optical signal, and outputs the optical signal to the optical multiplexer 524.
  • the optical multiplexers 5 2 4-1 to 5 2 4-k are connected one-to-one with each spare optical fiber 8 02. These optical multiplexers 524 multiplex the input optical signals into wavelengths and output them to the standby optical fiber 802. On the other hand, the optical selector 550 outputs the optical signal from the optical switch 522 to the intra-office line 811.
  • FIG. 4 is a diagram showing the outline of an optical network.
  • the optical network shown in FIG. 4 includes nine optical cross-connect devices (optical XC) 1 to 9 and each of these optical cross-connect devices. It is composed of an optical fiber having a working wavelength band 21 and a spare wavelength band 22 connecting between them.
  • the transmitting node connected to optical XC 1 is connected to optical XC 8
  • a transmission path composed of the working wavelength band 21 is set by connecting the light XCs 1, 2, 5, and 8.
  • an optical signal is transmitted from a transmitting node connected to optical XC 2 to a receiving node connected to optical XC 9.
  • the optical XCs 2, 5, 8, and 9 are connected, and a transmission path composed of the working wavelength band 21 is set.
  • the entire transmission path including the working wavelength band 21 connecting the optical XC 2 and the optical XC 5 is switched, and the switched transmission path is constituted by the spare wavelength band 22.
  • the transmission path composed of the optical XCs 1, 2, 5, and 8 and the working wavelength band 21 is connected to the transmission path composed of the optical XCs 1, 4, 7, and 8 and the protection wavelength band 22. Switch to the route.
  • the transmission path that connects the optical XCs 2, 5, 8, and 9 and is configured by the working wavelength band 21 is the transmission path that connects the optical XCs 2, 3, 6, and 9 and that is configured by the protection wavelength band 22. Switch.
  • FIGS. 5 and 6 are diagrams showing an example of the configuration of an optical connect device when the transmission path switching shown in FIG. 4 is performed.
  • the thick lines indicate the transmission paths of the optical signals.
  • the optical cross-connect device shown in Fig. 5 and Fig. 6 is connected on the input side to devices outside the office by inter-office optical fibers 700-1 to 700-k, and to the inside of the office by intra-office lines 711-1 to 711-j. Connected to the device. Similarly, on the output side, the optical cross-connect device is connected to equipment outside the office via inter-station optical fibers 800-1 to 800-k, and connected to equipment inside the office via the intra-office circuit, 811-l to 811_j. It is.
  • the optical cross-connect device includes a wavelength separation unit 540 1 l to 540 -k (hereinafter, these are collectively referred to as a “wavelength separation unit 540” as appropriate) and a light combining unit 560-1. 560_k (hereinafter, these will be collectively referred to as “photosynthesis unit 560” as appropriate).
  • the wavelength-division multiplexed optical signal from the device outside the station is transmitted through the optical fiber 700 between the stations. And transmitted to the wavelength separation unit 540.
  • the wavelength demultiplexers 540-0 to 540-k are connected to the inter-station optical fibers 700 in a one-to-one relationship. These wavelength demultiplexers 540 output the optical signal to the working optical cross-connect part 510 in response to the input optical signal being transmitted in the working wavelength band.
  • the optical demultiplexer 511 in the working optical cross-connect unit 5110 demultiplexes the wavelength-multiplexed optical signal into optical signals of individual wavelengths (here, 11 to ⁇ ), and the optical switch 5 1
  • the optical signal from the intra-station device is transmitted through the intra-station line 711 as in FIG. 2, and is input to the optical distribution unit 530.
  • the optical distribution section 530 outputs the input optical signal to both the optical switch 512 in the working optical cross-connect section 510 and the optical switch 522 in the standby optical cross-connect section 520. I do.
  • the optical switch 512 When an optical signal is input, the optical switch 512 performs switching according to the transmission path of the optical signal, and outputs the signal to 0 / ⁇ / 0 5 13 and the optical selection unit 5550.
  • the ⁇ / ⁇ / 0 513 converts an input optical signal into an electric signal, performs waveform shaping, amplification, and the like, converts the signal again into an optical signal, and outputs the optical signal to the optical multiplexer 514.
  • the optical multiplexer 514 wavelength-multiplexes the input optical signal and outputs the multiplexed signal to the optical combining section 560.
  • the light combining sections 560-1 to 560-k are connected to the inter-station optical fibers 700 in a one-to-one relationship. These optical combining sections 540 output the input optical signals to the working wavelength band of the optical fiber 800 between stations.
  • optical selectors 5 5 ⁇ — 1 to 550 0 — j are connected to the optical switches 5 12 and 5 2 2, and the output terminals are connected one-to-one with each local line 8 11 1 .
  • These optical selectors 550 output one of the optical signals input to the two input terminals to the intra-station line 811.
  • the optical selector 550 receives only the optical signal from the optical switch 512, and outputs this optical signal to the intra-office line 811 as it is.
  • the wavelength-multiplexed optical signal from the device outside the station is supplied to the standby optical fiber 700 of the inter-station.
  • the signal is transmitted by the wavelength band (W) and input to the wavelength separation unit 540.
  • the wavelength separation unit 540 outputs the optical signal to the standby optical cross-connect unit 520 in response to the input optical signal being transmitted in the standby wavelength band.
  • Working light cloth The optical demultiplexer 5 21 in the connecting section 5 20 demultiplexes the wavelength-multiplexed optical signal into optical signals of individual wavelengths (here, L n +1 to m), and switches the optical signal. Output to 2.
  • the optical signal from the device in the station is transmitted through the intra-station line 711 as in FIG. 3, and is input to the optical distribution unit 530.
  • the optical distribution unit 530 transmits the input optical signal, and the optical distribution unit 530 transmits the input optical signal to the optical switch 512 in the working optical cross connect unit 510 and the standby optical cross.
  • the signal is output to both optical switches 522 in the connection section 520 °.
  • the optical switch 522 When an optical signal is input, the optical switch 522 performs switching according to the transmission path of the optical signal, and outputs the signal to the O / E / O 523.
  • the 0 / E / 0 523 converts the input optical signal to an electric signal, performs waveform shaping, amplification, and the like, converts the signal again to an optical signal, and outputs the optical signal to the optical multiplexer 524.
  • the optical multiplexer 524 wavelength-multiplexes the input optical signal and outputs the multiplexed optical signal to the optical combiner 560.
  • the optical combining section 560 outputs the input optical signal to the spare wavelength band of the optical fiber 800 between stations.
  • the optical selector 550 outputs the optical signal from the optical switch 5 22 to the intra-office line 8 1 1.
  • Figure 7 is a diagram showing an overview of the optical network.If a failure occurs in the transmission path from the transmission node to the reception node, only the transmission path at the point of failure is switched to the detour path. The figure shows a case where an optical signal is transmitted by a spare optical fiber in the detour path.
  • the optical network shown in FIG. 7 is composed of nine optical cross-connect devices (optical XC) 1 to 9, an active optical fiber 11 connecting these optical cross-connect devices, and a standby optical fiber 12.
  • the optical fiber 11 connects the optical XC 2 and the optical XC 5 to each other.
  • the transmission path to be switched is switched to a detour path, and the detour path is constituted by the standby optical fiber 12.
  • the optical XCs 1, 2, 5, and 8 are connected to each other, and the transmission path configured by the working optical fiber 11 connects the optical XCs 2, 3, 6, and 5 between the optical XC2 and the optical XC5, which are the failure points.
  • the path is switched to the detour path constituted by the spare optical fiber 12.
  • the optical XCs 2, 5, 8, and 9 are connected, and the transmission path composed of the working optical fiber 11 is
  • optical XC5 are connected to the optical XCs 2, 3, 6, and 5, and are switched to a bypass route constituted by the spare optical fiber 12.
  • FIG. 8 and 9 are diagrams illustrating an example of the configuration of an optical connect device when the transmission path switching illustrated in FIG. 7 is performed.
  • the thick lines indicate the transmission paths of optical signals.
  • the optical cross-connect device shown in FIG. 8 and FIG. 9 is configured such that, on the input side, k pairs of inter-station optical fibers 700 0-1 to 700-k composed of a working optical fiber 701 and a spare optical fiber 702 are used outside the station. And connected to the intra-office equipment via the intra-office lines 711-1 to 71 1-j. Similarly, at the output side, the optical cross-connect device is connected to a device outside the office by k pairs of inter-office optical fibers 800_1 to 800_k composed of a working optical fiber 801 and a standby optical fiber 802, and an intra-office line 811— 1 to 811 are connected to devices in the station.
  • This optical cross-connect device includes a working optical cross-connect unit 510, a spare optical cross-connect unit 520, and a light selection unit (SEL) 541-1 to 541-k (hereinafter, these are collectively referred to as a “light selection unit 541” as appropriate. ), And a light selector (SW) 5511-15-151-k (hereinafter, these are collectively referred to as “light selector 551” as appropriate).
  • the working optical cross-connect unit 510 has the same configuration as the working cross-connect unit 510 in FIG.
  • the standby optical cross-connect unit 520 is composed of optical switches 525 and 529, optical demultiplexers 526-1 to 526_r, and optical-electrical-electric-light-variable crane (O / E / O) 527-1 to 1 to 513 — M (hereinafter collectively referred to as “ ⁇ / ⁇ / 0527” as appropriate), optical multiplexer 528— 1-1-1 to 52 8-rm (hereinafter collectively referred to as “optical multiplexer 528” as appropriate) It is composed of When the transmission path from the transmitting node to the receiving node is normal, as shown in FIG.
  • the wavelength-multiplexed optical signal from the device outside the station is transmitted through the working optical fiber 701, and Input to selection section 5 4 1.
  • Light selector 5 4 1— :! 5 5 4 1-k are connected one-to-one with each working optical fiber 70 1.
  • These optical selectors 541 output the optical signal from the working optical fiber 701 to the working optical cross-connect unit 5110.
  • the optical demultiplexers 5 11 1-1 to 5 11 1-k in the working optical cross-connect section 5 10 are connected to each of the light selecting sections 5 41 on a one-to-one basis.
  • These optical demultiplexers 5 11 demultiplex the wavelength-multiplexed optical signals into optical signals of individual wavelengths (here, 11 to n) and output the optical signals to the optical switch 5 12.
  • the optical signal from the device in the station is transmitted through the intra-station line 711, and is input to the optical switch 512 in the working optical cross-connect unit 5110.
  • the optical switch 512 When an optical signal is input, the optical switch 512 performs switching according to the transmission path of the optical signal, and outputs the signal to the O / I 5 13. 0 / ⁇ ⁇ 513 converts the input optical signal into an electric signal, performs waveform shaping, amplification, etc., converts it again to an optical signal, and outputs it to the optical multiplexer 514.
  • the optical multiplexer 514 wavelength-multiplexes the input optical signal and outputs the multiplexed optical signal to the optical selector 551.
  • the optical selectors 5 5 1-1 to 5 5 1-k are connected to each working optical fiber 8 1 in a one-to-one relationship. These light selectors 551 output an optical signal to the working optical fiber 801.
  • the optical signal transmitted from the external optical device through the standby optical fiber 722 becomes a standby optical cross-connect. It is input to the connection section 520.
  • the optical switch 525 in the standby optical cross-connect section 520 performs switching according to the transmission path of the optical signal, and the output destination of the optical signal is the working optical fiber 820. 1 or the intra-station line 8 11 1, the signal is output to the optical selector 5 4 1. If the output destination of the optical signal is the spare optical fiber 8 0 2, the optical demultiplexer 5 2 6 Output to
  • the optical demultiplexer 526 demultiplexes the wavelength-multiplexed optical signal into optical signals of individual wavelengths (here, L1 to Lm) and outputs the optical signals to the OZEZO 527.
  • ⁇ 0 5 2 7 converts the input optical signal to an electrical signal, performs waveform shaping, amplification, etc., and then converts it back to an optical signal.
  • the signal is converted and output to the optical multiplexer 5 2 8.
  • the optical multiplexer 528 wavelength-multiplexes the input optical signal and outputs the multiplexed signal to the optical switch 529.
  • the optical switch 529 When an optical signal is input, the optical switch 529 performs switching according to the transmission path of the optical signal, and outputs the optical signal to the spare optical fiber 802.
  • the optical selection section 541 when an optical signal is output from the optical switch 525 to the optical selection section 541, the optical selection section 541 outputs the optical signal to the working optical cross-connect section 510.
  • the optical demultiplexer 511 in the current optical cross-connect unit 5110 demultiplexes the wavelength-multiplexed optical signal into individual wavelength optical signals and outputs the optical signals to the optical switch 512.
  • An optical signal from a device in the station is transmitted through the intra-station line 711, and is input to the optical switch 512 in the working optical cross-connect unit 5110.
  • the optical switch 512 When an optical signal is input, the optical switch 512 performs switching according to the transmission path of the optical signal, and outputs the signal to 0 / E / 0 5 13 or the intra-office line 8 11.
  • the ⁇ / E / OS 13 converts the input optical signal into an electric signal, performs waveform shaping, amplification, and the like, converts the signal again into an optical signal, and outputs the optical signal to the optical multiplexer 514.
  • the optical multiplexer 514 wavelength-multiplexes the input optical signal and outputs the multiplexed optical signal to the optical selector 551.
  • the optical selector 551 outputs the input optical signal to the working optical fiber 801 or the optical switch 529 in the standby optical cross-connector 520 according to the transmission path.
  • the optical switch 529 performs switching according to the transmission path of the optical signal, and outputs the optical signal to the spare optical fiber 802.
  • optical signals are classified into signals in which transmission is prioritized (priority signals) and signals in which transmission is not prioritized (non-priority signals) depending on whether real-time characteristics are required.
  • no consideration was given to communication control for transmitting a priority signal with priority over a non-priority signal. Disclosure of the invention
  • An object of the present invention is to provide an optical cross-connect device and an optical communication control method capable of performing communication control according to transmission priority, which solve the above-mentioned problems of the prior art. It has a comprehensive purpose.
  • a more specific object of the present invention is to realize an optical cross-connect device and an optical communication control method capable of preferentially transmitting a signal having a high transmission priority when a failure occurs in a transmission path. With the goal.
  • an optical cross-connect device is constituted by a pair of optical fibers currently used and reserved, and has a priority signal and a non-priority signal having different transmission priorities from a transmission node to a reception node.
  • an optical connection device in an optical network for transmitting a signal when a transmission path from the transmitting node to the receiving node is normal, a priority signal from the working optical fiber on the input side and from the station is switched to the output side.
  • Output from the transmitting node to the receiving node by switching the standby optical fiber on the input side and the non-priority signal from the station, and outputting to the standby optical fiber on the output side and the station.
  • the input spare optical fiber and the priority signal from within the station are switched, and the output spare optical fiber is switched. And switching means for outputting to the station.
  • FIG. 1 is a diagram showing a first outline of a conventional optical network.
  • FIG. 2 is a diagram illustrating a configuration example of the optical cross-connect device in a normal state in FIG. 1.
  • FIG. 3 is a diagram illustrating a configuration example of the optical cross-connect device in a fault state in FIG. 1.
  • FIG. FIG. 3 is a diagram illustrating a second outline of an optical network.
  • FIG. 5 is a diagram showing a configuration example of the optical cross-connect device in the normal state in FIG. 4.
  • FIG. 6 is a diagram showing a configuration example of the optical cross-connect device in the case of a failure in FIG.
  • FIG. 3 is a diagram illustrating a third outline of an optical network.
  • FIG. 8 is a diagram showing a configuration example of the optical cross-connect device at the time of normal operation in FIG. 7.
  • FIG. 9 is a diagram showing a configuration example of the optical cross-connect device at the time of failure in FIG.
  • FIG. 1 is a diagram illustrating an outline of an optical network in one embodiment.
  • FIG. 11 is a diagram showing a configuration example of the optical cross-connect device in the normal state in FIG.
  • FIG. 12 is a diagram showing a configuration example of the optical cross-connect device at the time of failure in FIG.
  • FIG. 13 is a diagram showing a first modification of the optical cross-connect device in FIG.
  • FIG. 14 is a diagram illustrating a second modification of the optical cross-connect device in FIG.
  • FIG. 15 is a diagram illustrating a third modification of the optical cross-connect device in FIG. 10.
  • FIG. 16 is a diagram showing an outline of the optical network in the second embodiment.
  • FIG. 17 is a diagram showing a configuration example of the optical cross-connect device in the normal state in FIG.
  • FIG. 18 is a diagram showing a configuration example of the optical cross-connect device at the time of failure in FIG.
  • FIG. 19 is a diagram illustrating a first modification of the optical cross-connect device in FIG.
  • FIG. 20 is a diagram showing a second modification of the optical cross-connect device in FIG.
  • FIG. 21 is a diagram showing a third modification of the optical cross-connect device in FIG.
  • FIG. 22 is a diagram showing an outline of the optical network in the second embodiment.
  • FIG. 23 is a diagram illustrating a configuration example of a spare optical cross-connect unit in the optical cross-connect device in a normal state in FIG.
  • FIG. 24 is a diagram illustrating a configuration example of a spare optical cross-connect unit in the optical cross-connect device at the time of failure in FIG.
  • FIG. 25 is a diagram illustrating a first modification of the spare optical cross-connect unit in the optical cross-connect device at the time of failure in FIG.
  • FIG. 26 is a diagram illustrating a second modification of the spare optical cross-connect unit in the optical cross-connect device at the time of failure in FIG.
  • FIG. 27 is a diagram showing a third modification of the spare optical cross-connect unit in the optical cross-connect device at the time of failure in FIG.
  • FIG. 28 is a diagram illustrating a configuration example of a spare optical cross-connect unit, a PCA input unit, and a PCA output unit in the optical cross-connect device at the time of failure in FIG.
  • FIG. 29 is a diagram illustrating a first modification of the spare optical cross-connect unit, the PCA input unit, and the PCA output unit in the optical cross-connect device at the time of failure in FIG.
  • FIG. 30 is a diagram showing a second modification of the spare optical cross-connect unit, the PCA input unit, and the PCA output unit in the optical cross-connect device at the time of failure in FIG.
  • FIG. 31 is a diagram illustrating a third modification of the spare optical cross-connect unit, the PCA input unit, and the PCA output unit in the optical cross-connect device at the time of failure in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the optical network can transmit two types of optical signals (priority signal and non-priority signal) having different transmission priorities.
  • the non-priority signal is referred to as PCA (Protected Channel Access; 1).
  • FIG. 10 is a diagram showing an outline of an optical network in the first embodiment.
  • the entire transmission path is The case where switching is performed and only the priority signal is transmitted by the spare optical fiber in the new transmission path is shown.
  • the optical network shown in FIG. 1 ⁇ is composed of nine optical cross-connect devices (optical XC) 1 to 9 and a working optical fiber 11 and a backup optical fiber 12 connecting these optical cross-connect devices.
  • a transmission path composed of the working optical fiber 11 is set as the transmission path of the priority signal, connecting the optical XCs 2, 5, 8, and 9.
  • a transmission path composed of the spare optical fiber 12 by connecting the optical XCs 2, 5, 8, and 9 is set.
  • the transmission path for the priority signal including the working optical fiber 11 connecting the optical XC2 and the optical XC5 is: The whole is switched, and the transmission path after the switching is constituted by the spare optical fiber 12.
  • the transmission path for the priority signal composed of the optical XCs 1, 2, 5, and 8 and the active optical fiber 11 is composed of the optical XCs 1, 4, 7, and 8, and the spare optical fiber 12. Is switched to the transmission path to be performed.
  • the transmission path for priority signals composed of the working optical fiber 11 is connected to the optical XCs 2, 5, 8, and 9, and the transmission path composed of the spare optical fiber 12 is connected to the optical XCs 2, 3, 6, and 9. You can switch to the route.
  • the entire transmission path for the PCA signal including the spare optical fiber 12 connecting the optical XC 2 and the optical XC 5 is deleted.
  • FIG. 11 and 12 are diagrams illustrating a configuration example of the optical cross-connect device when the transmission path switching illustrated in FIG. 10 is performed.
  • the solid line shows the transmission path of the priority signal
  • the bold dotted line shows the transmission path of the PCA signal.
  • inter-station optical fibers 200-1 to 201 composed of a working optical fiber (W) 201 and a spare optical fiber (P) 202 are provided.
  • 200-k which is connected to a device outside the station, and includes j pairs of intra-station circuits 210—1 to 210— constituted by an intra-station line 211 for priority signals and an intra-station line 212 for PCA signals; These are collectively referred to as an "intra-office line 210" and are connected to devices in the office.
  • the optical cross-connect device is connected outside the office by k pairs of inter-office optical fibers 300-1 to 300_k composed of the working optical fiber (W) 301 and the standby optical fiber (P) 302. It is connected to a local station 311 and is composed of an intra-station line 311 for priority signals and an intra-station line 312 for PCA signals; a pair of intra-station lines 310—l to 310—j (hereinafter collectively referred to as “in-station line 310 ) Are connected to devices in the station.
  • the optical cross-connect device includes a working optical cross-connect unit 110 to which the working optical fibers 201 and 301 are connected, a spare optical cross-connect unit 120 to which the spare optical fibers 202 and 302 are connected, and an optical branching unit (BRA) 130-.
  • BRA optical branching unit
  • optical splitter 130 As appropriate
  • light selector (SEL) 13 1 l to 131_j hereinafter collectively referred to as “optical selector 131” as appropriate
  • Optical branching unit 150 Optical branching unit 150-1 to 150-j
  • SEL light selecting unit 151-1 to 151-j
  • the working optical cross-connect unit 110 includes optical demultiplexers 111_1 to 111—k (hereinafter, these are collectively referred to as “optical demultiplexers 1 11” as appropriate), an optical switch 112, and an optical-electrical-optical converter ( O / E / O) 113-1-1-113-k-n (hereinafter collectively referred to as “0 / E / 0113”), optical multiplexer 114-1-1- 1 14- kn (hereinafter, these are collectively referred to as “optical multiplexer 114” as appropriate).
  • the standby optical cross-connect unit 110 includes optical demultiplexers 121-1 to 121-k (hereinafter, these are collectively referred to as “optical demultiplexers 121” as appropriate), an optical switch 122, and an optical-electrical «(O / E / O) 123— 1—1 to 123—k-n (hereinafter collectively referred to as“ OZE / 0123 ”as appropriate), optical multiplexer 124—111—124—k—n (hereinafter collectively referred to as “optical multiplexer 124” as appropriate).
  • the wavelength-multiplexed priority signal from the device outside the station is transmitted through the working optical fiber 201 and the working optical cross-connect. Input to the unit 110.
  • optical splitters 111 split the wavelength-multiplexed priority signal into optical signals of individual wavelengths (here, L1 to In) and output the optical signals to the optical switch 112.
  • the priority signal from the device in the station is transmitted through the intra-station line 211 and the optical branching unit 1
  • the input terminals of the optical branching units 130_l to 130_j are connected one-to-one with the local line 211, the output terminal a is connected to the optical switch 112 in the working optical cross-connect unit 110, and the output terminal b is connected to the optical switch 112.
  • These optical splitters 130 output the input priority signal to either the optical switch 112 or the optical selector 131.
  • the optical branching unit 130 transmits the priority signal from the device in the station to the optical switch 112 in response to the priority signal from the device outside the station being input to the optical switch 112 in the working optical cross-connect unit 110. Output to switch 112.
  • the optical switch 112 When the priority signal is input, the optical switch 112 performs switching according to the transmission path of the priority signal, and to the O / E / Ol 13 when the priority signal needs to be further transmitted outside the station. The signal is output to the optical selector 151 when it is necessary to take it into the station.
  • the O / E / Ol 13 converts the input optical signal into an electric signal, performs waveform shaping, amplification, and the like, and then converts it again into an optical signal and outputs the optical signal to the optical multiplexer 114.
  • the output terminals of the optical multiplexers 114-1 to 114-1 k are connected one-to-one with the active optical fibers 301. These optical multiplexers 114 wavelength-multiplex the input optical signal (priority signal) and output it to the working optical fiber 301.
  • the optical selectors 151—1 to 151—j have an input terminal “e” connected to the optical switch 112, and an input terminal “f” connected to the optical splitters 150—1 to 151—j in a one-to-one correspondence.
  • the output terminal is connected to the intra-office line 311 one-to-one.
  • These optical selectors 151 output one of the optical signals input to the two input terminals to the intra-office line 311.
  • the optical selector 151 receives only the priority signal from the optical switch 112 and outputs this priority signal to the intra-office line 311 as it is.
  • the wavelength multiplexed PCA signal from the device outside the station is transmitted through the standby optical fiber 202 and input to the standby optical cross-connect unit 120.
  • the input terminals of the optical demultiplexers 121-1 to 121-k in the standby optical cross-connect unit 120 are connected to the standby optical fiber 202 one-to-one.
  • These optical demultiplexers 121 demultiplex the wavelength-multiplexed PCA signal into optical signals of individual wavelengths (here, ⁇ 1 to Lm) and output the optical signals to the optical switch 122.
  • the PCA signal from the device in the station is transmitted through the intra-station line 212 and input to the optical selection unit 131.
  • the input terminal c is the optical branching unit 130—! 130-j are connected one-to-one
  • the input terminal d is connected one-to-one with the intra-office line 212
  • the output terminal is connected to the optical switch 122 in the spare optical cross-connect unit 120.
  • These light selectors 131 output one of the optical signals input to the two input terminals.
  • the optical selector 131 receives only the PCA signal from the intra-station line 212 and outputs the PCA signal to the optical switch 122 as it is.
  • the optical switch 122 When the PCA signal is input, the optical switch 122 performs switching according to the transmission path of the PCA signal, and outputs the PCA signal to ⁇ and ⁇ 123 when it is necessary to transmit the PCA signal further outside the station. However, when it is necessary to capture the signal in the station, the signal is output to the optical branching unit 150.
  • the O / E / Ol 23 converts the input optical signal into an electrical signal, performs waveform shaping, amplifies, and the like, and then converts it again into an optical signal and outputs the optical signal to the optical multiplexer 124.
  • the output terminals of the optical multiplexers 124-1-1 to 124-k are connected one-to-one with the active optical fiber 301.
  • These optical multiplexers 124 wavelength-multiplex the input optical signal (PCA signal) and output it to the standby optical fiber 302.
  • the input terminals of the optical branching units 150-1 to 151-j are connected to the optical switch 122, and the output terminals g are connected to the optical selection units 151_1 to 151-;
  • the output terminal h is connected one-to-one to the intra-office line 3 1 2.
  • These optical splitters 150 output the input optical signal to either the optical selector 151 or the intra-station line 312. In this case, since only the PCA signal from the optical switch 122 is input to the optical branching unit 150, the PCA signal is output to the intra-station loop for the PCA signal.
  • the wavelength-multiplexed priority signal from the device outside the station is transmitted through the standby optical fiber 202.
  • the optical demultiplexer 122 in the standby optical cross-connect part 120 demultiplexes the wavelength-multiplexed priority signal into optical signals of individual wavelengths (here, L1 to lm), and switches the optical switch. 2 Output to 2.
  • the priority signal from the device in the station is transmitted through the intra-station line 211 and input to the optical branching unit 130.
  • the optical branching unit 130 responds to the occurrence of a failure and a priority signal from a device outside the station is input to the optical switch 122 in the standby optical cross-connecting unit 120.
  • the priority signal from the device is output to the optical selection unit 13 1.
  • the PCA signal from the device in the station is transmitted through the intra-station line 2 12 and is input to the optical selection unit 13 1.
  • the optical selection unit 131 In response to the fact that chapter P damage has occurred and the priority signal from a device outside the station has been input to the optical switch 122, the optical selection unit 131 The priority signal is selected and output to the optical switch 122.
  • the optical switch 122 When the priority signal is input, the optical switch 122 performs switching according to the transmission path of the priority signal, and when it is necessary to transmit the priority signal further outside the station, O / E / O The signal is output to 123 and is output to the optical splitter 150 when it is necessary to take it into the station.
  • the O / E / Ol 23 converts the input optical signal into an electrical signal, performs waveform shaping, amplification, etc., converts it again to an optical signal, and outputs it to the optical multiplexer 124 .
  • the output terminals of the optical multiplexers 124-l to 124_k are connected one-to-one with the working optical fibers 301. These optical multiplexers 124 multiplex the input optical signals (priority signals) into wavelengths and output them to the standby optical fiber 302.
  • the optical splitter 150 converts the input optical signal into an optical selector Output to either.
  • the optical branching unit 150 outputs the priority signal to the in-station line 311 for the priority signal in response to the input optical signal being the priority signal. 5 Output to 1.
  • the optical selection unit 151 receives only the priority signal from the optical branching unit 150 and outputs the priority signal to the intra-office line 311 as it is.
  • the optical branching unit 130 is provided as a device for determining the output destination of the priority signal from the intra-station line 211, and the output destination of the PCA signal from the optical switch 122 is provided.
  • the optical branching unit 150 is provided as a device for determining the optical branching unit, as shown in FIG.
  • an optical distribution unit 1332 is provided instead of the optical branching unit 130, and instead of the optical branching unit 150 A light distribution unit 15 2 may be provided.
  • only the optical splitter 150 may be replaced with the optical distributor 152, and as shown in FIG. 15, only the optical splitter 130 may be replaced with the optical distributor 132. May be.
  • the optical distribution unit 1332 When the optical distribution unit 1332 is provided instead of the optical branching unit 130, the optical distribution unit 1332 outputs the priority signal from the intra-office line 2 11 from the output terminal a to the optical switch 1 12 At the same time, the signal is output from the output terminal b to the light selector 1 3 1. At this time, the optical switch 1 1 2 performs switching only when the transmission path is normal, and does not perform switching when a failure occurs.
  • the optical selector 1311 outputs the PCA signal from the intra-station line 312 to the optical switch 122 when the transmission path is normal, and outputs the PCA signal from the optical distributor 132 when there is a failure.
  • the priority signal is output to the optical switch 122.
  • the optical distribution unit 152 transmits the PCA signal from the optical switch 122 when the transmission path is normal. Output from the output terminal g to the optical selection unit 151, and output from the output terminal h to the local line 312. At this time, the optical selector 151 outputs the prompt signal from the optical switch 112 to the intra-office line 3111.
  • the optical distribution section 15 2 outputs the priority signal from the optical switch 1 2 2 to the output terminal g output ⁇ optical selection section 15 1 and the output terminal h To the station line 3 1 2 At this time, the optical selector 151 outputs the priority signal from the optical switch 112 to the intra-office line 3111.
  • FIG. 16 is a diagram showing an outline of an optical network in the second embodiment.
  • a failure occurs in a transmission path from a transmission node to a reception node, the entire transmission path is switched and a new transmission path is switched. Only priority signal is spare wavelength band of optical fiber The case where the transmission is performed by the area is shown.
  • the optical network shown in FIG. 16 is composed of nine optical cross-connect devices (optical XC) 1 to 9 and optical fibers having a working wavelength band 21 and a spare wavelength band 22 connecting these optical cross-connect devices. .
  • the transmission path for priority signals composed of the optical wavelength bands 21 that connects the optical XCs 1, 2, 5, and 8 is composed of the auxiliary wavelength band 22 that connects the optical XCs 1, 4, 7, and 8. Is switched to the transmission path to be performed.
  • the transmission path for the priority signal composed of the optical XCs 2, 5, 8, and 9 and the working wavelength band 21 is connected to the optical XC2, 3, 6, and 9, and the transmission path composed of the protection wavelength band 22. Switch to route.
  • the entire transmission path for the PCA signal including the spare wavelength band 22 connecting the light XC2 and the light XC5 is deleted.
  • FIGS. 17 and 18 are diagrams illustrating a configuration example of the optical cross-connect device when the transmission path switching illustrated in FIG. 16 is performed.
  • the bold solid line indicates the transmission path of the priority signal
  • the bold dotted line indicates the transmission path of the PCA signal.
  • the optical cross-connect devices shown in FIGS. 17 and 18 have wavelength separation units 140-1 to 140_k (hereinafter collectively referred to as a “wavelength separation unit 140” as appropriate) and photosynthesis.
  • Units 160-1 to 160_k hereinafter, these are collectively referred to as “photosynthesizing unit 160” as appropriate) are newly provided.
  • the optical cross-connect device is connected on the input side to an external device via an inter-station optical fiber 200-1 to 200-k having a working wavelength band (W) and a protection wavelength band (P).
  • the intra-office line is composed of j pairs of intra-office lines 210—1 to 210—j (hereinafter collectively referred to as “intra-office line 210”) composed of an intra-office line 211 and an intra-office line for PC A signal 21.2. Connected to.
  • the optical cross-connect device is connected to a device outside the station by an inter-station optical fiber 300_1 to 300-k having a working wavelength band (W) and a protection wavelength band (P), and a priority signal is output.
  • J-station 310-1-1-310-j composed of the intra-station line 311 for the PC and the intra-station line 312 for the PC A signal (hereinafter collectively referred to as “in-station loop H310”). Connected to the device.
  • a wavelength-division multiplexed priority signal from a device outside the station is transmitted through the working wavelength band of the inter-station optical fiber 200.
  • the wavelength-multiplexed PCA signal from the device outside the station is transmitted through the spare wavelength band of the inter-station optical fiber 200, and is input to the wavelength demultiplexing unit 140, respectively.
  • the wavelength demultiplexing units 140-1 through 140-k have input terminals connected one-to-one with the inter-office optical fiber 200, and two output terminals connected to the working optical cross-connect unit 110 and the standby optical cross-connect unit 120. It is connected. These wavelength separation units 140 separate the priority signal transmitted through the working wavelength band of the inter-station optical fiber 200 from the PCA signal transmitted through the protection wavelength band, and output the priority signal to the working optical cross-connect unit 110. Then, the PCA signal is output to the standby optical cross-connect unit 120.
  • the input terminals of the optical demultiplexers 111-1 to ll_k in the working optical cross-connect unit 110 are connected to the wavelength demultiplexing unit 140 one-to-one.
  • These optical splitters 111 split the wavelength-multiplexed priority signal into optical signals of individual wavelengths (here, L1 to Ln) and output the optical signals to the optical switch 112.
  • the priority signal from the device in the station is transmitted through the intra-station line 211 and input to the optical branching unit 130.
  • the optical branching unit 130 outputs the input priority signal to either the optical switch 112 or the optical selecting unit 131.
  • the optical branching unit 130 responds to the fact that a priority signal from a device outside the station is input to the optical switch 112 in the working optical cross-connect unit 110. Output to the optical switch 111.
  • the optical switch 1 12 When the priority signal is input, the optical switch 1 12 performs switching according to the transmission path of the priority signal, and when the priority signal needs to be further transmitted outside the station, ⁇ / ⁇ 1 1 Output to 3 and output to the optical selection unit 151 when it is necessary to take it into the station.
  • the OZE group Ol 13 converts an input optical signal into an electric signal, performs waveform shaping, amplification, and the like, converts the signal again into an optical signal, and outputs the optical signal to the optical multiplexer 114.
  • the output terminals of the optical multiplexers 1 1 4 1 to 1 1 4 — k are connected one-to-one with the working optical fibers 301.
  • These optical multiplexers 114 wavelength-multiplex the input optical signal (priority signal) and output it to the optical combining section 160.
  • the optical selector 151 outputs one of the optical signals input to the two input terminals to the intra-office line 311.
  • the optical selector 151 receives only the priority signal from the optical switch 112 and outputs the priority signal to the intra-office line 3111 as it is.
  • the input terminals of the optical demultiplexers 1 2 1-1 to 1 2 1-k in the standby optical cross connect section 120 are connected to the wavelength demultiplexing section 140 in a one-to-one relationship.
  • These optical splitters 122 split the wavelength-multiplexed PCA signal into optical signals of individual wavelengths (here, 11 + 1 to Lm) and output the optical signals to the optical switch 122.
  • the PCA signal from the device in the station is transmitted through the intra-station line 2 12 and is input to the optical selector 13 1.
  • These light selectors 131 output one of the optical signals input to the two input terminals.
  • the optical selection section 13 1 receives only the PCA signal from the intra-station line 2 12 and outputs the PCA signal to the optical switch 1 22 as it is.
  • the optical switch 122 When the PCA signal is input, the optical switch 122 needs to perform switching according to the transmission path of the PCA signal, and further transmit the PCA signal outside the station. In this case, the signal is output to OZE / Ol23, and when it is necessary to take it into the station, it is output to the optical branching unit 150.
  • the O / E / Ol 23 converts the input optical signal into an electric signal, performs waveform shaping, amplifies, etc., converts it again into an optical signal, and outputs the optical signal to the optical multiplexer 124.
  • the optical multiplexer 124 wavelength multiplexes the input optical signal (PCA signal) and outputs it to the optical combining section 160.
  • the optical splitter 150 outputs the input optical signal to either the optical selector 151 or the intra-office line 31.2.
  • the optical branching section 150 since the optical branching section 150 receives and receives only the PCA signal from the optical switch 122, the optical branching section 150 outputs this PCA signal to the intra-office line 312 for the PCA signal.
  • the optical combiner 16 0 — 1 to 16 0 — k have two input terminals.
  • the optical combining section 160 outputs the priority signal from the optical multiplexer 114 of the working optical cross-connect section 110 to the working wavelength band of the inter-station optical fiber 300, and outputs the standby optical cross-connect.
  • the PCA signal from the optical multiplexer 124 in the section 120 is output to the spare wavelength band of the optical fiber 300 between stations.
  • a wavelength-multiplexed priority signal from a device outside the station is transmitted to the inter-station optical fiber 200.
  • the spare wavelength band is transmitted and input to the wavelength demultiplexer 140.
  • the wavelength demultiplexing unit 140 outputs a priority signal transmitted in the standby wavelength band of the inter-station optical fiber 200 to the standby optical cross-connect unit 120.
  • the priority signal from the device in the station is transmitted through the intra-station line 211 and input to the optical branching unit 130.
  • the optical branching unit 130 responds to the occurrence of a failure and a priority signal from a device outside the station is input to the optical switch 122 in the standby optical cross-connecting unit 120.
  • the priority signal from the device is output to the optical selection unit 13 1.
  • the PCA signal from the device in the station is transmitted through the intra-station circuit ⁇ 212 and is input to the optical selector 131.
  • the optical selector 1 3 1 outputs a priority signal from a device outside the station when a failure occurs.
  • a priority signal is selected from the input priority signal and PCA signal and output to the optical switch 122.
  • the optical switch 1 2 2 When a priority signal is input, the optical switch 1 2 2 performs switching according to the transmission path of the priority signal, and when it is necessary to transmit the priority signal further outside the station, ⁇ / ⁇ 1 2 The signal is output to the optical branching unit 150 when it is necessary to take it into the station.
  • the O / E / Ol 23 converts the input optical signal into an electric signal, performs waveform shaping, width adjustment, and the like, then converts it again into an optical signal and outputs the optical signal to the optical multiplexer 124.
  • the optical multiplexer 124 wavelength multiplexes the input optical signal (priority signal) and outputs it to the optical combining section 160.
  • the optical combining section 160 outputs the priority signal from the optical multiplexer 124 in the standby optical cross-connect section 120 to the standby wavelength band of the optical fiber 300 between stations.
  • the optical branching unit 150 outputs the optical selection unit 1501 to output the priority signal to the intra-station line 311 for the priority signal.
  • Output to The optical selection unit 151 receives only the priority signal from the optical branching unit 150, and outputs the priority signal to the line 311 in the office as it is.
  • the optical branching unit 130 is provided as a device for determining the output destination of the priority signal from the intra-office line 211, and the output destination of the PCA signal from the optical switch 122 is determined.
  • the optical branching unit 150 was provided as a device to determine, but as shown in Fig. 19, an optical distribution unit 1332 was provided instead of the optical branching unit 130, and light was used instead of the optical branching unit 150.
  • a distributing section 152 may be provided.
  • only the optical branching unit 150 may be replaced by the optical distribution unit 152
  • only the optical branching unit 130 is replaced by the optical distribution unit 1332. May be.
  • the optical distribution unit 1332 When an optical distribution unit 1332 is provided instead of the optical branching unit 130, the optical distribution unit 1332 outputs the priority signal from the intra-office line 311 from the output terminal a to the optical switch 112. At the same time, the signal is output from the output terminal b to the light selector 1 3 1. At this time, the optical switch 1 1 2 performs switching only when the transmission path is normal, and does not perform switching when a failure occurs. On the other hand, the optical selector 13 1 outputs the PCA signal from the intra-station line 3 12 to the optical switch 12 2 when the transmission path is normal, and outputs the PCA signal from the optical distributor 13 2 in the case of a failure. The priority signal is output to the optical switch 122.
  • the optical distribution unit 152 transmits the PCA signal from the optical switch 122 when the transmission path is normal. Output from the output terminal g to the optical selector 15.1, and output from the output terminal h to the local line 3.12. At this time, the optical selector 151 outputs the priority signal from the optical switch 112 to the intra-office line 3111. On the other hand, when the transmission path is faulty, the optical distribution unit 152 outputs the priority signal from the optical switch 122 to the optical selection unit 151 from the output terminal g and outputs the priority signal from the output terminal h to the local station. Output to line 3 1 2 At this time, the optical selection unit 151 outputs the priority signal from the optical switch 112 to the in-station loop # 31.
  • Fig. 22 is a diagram showing an outline of the optical network in the third embodiment. If a failure occurs in the transmission path from the transmission node to the reception node, only the transmission path at the failure point is switched to the detour path. The figure shows a case in which an optical signal is transmitted by a standby optical fiber in the detour path.
  • the optical network shown in FIG. 22 is composed of nine optical cross-connect devices (optical XC) 1 to 9, and a working optical fiber 11 and a standby optical fiber 12 that connect these optical cross-connect devices.
  • optical XCs 2, 5, 8, and 9 are connected as a transmission path for the priority signal, and a transmission path for the priority signal constituted by the working optical fiber 11 is set.
  • a transmission path that connects the optical XCs 2, 5, 8, and 9 and is configured by the spare wavelength band 22 is set.
  • the optical XCs 1, 2, 5, and 8 are connected to each other, and the transmission path for the priority signal formed by the working optical fiber 11 is connected between the optical XC2 and the optical XC5, which are the failure points, by the optical XC2, By connecting 3, 6, and 5, it is possible to switch to the bypass route constituted by the spare optical fiber 12.
  • the transmission path for the priority signal composed of the working optical fiber 11 that connects the optical XCs 2, 5, 8, and 9 connects the optical XC 2 and the optical XC 5 between the optical XC 2 and the optical XC 5, which are the failure points. , 6, and 5 are switched to a detour path constituted by the spare optical fiber 12.
  • the entire transmission path for the PCA signal including the spare optical fiber 12 connecting the optical XC2 and the optical XC5 is deleted.
  • optical cross-connect device optical XCs 3 and 6 in FIG. 22 arranged in the bypass route
  • FIGS. 23 and 24 are diagrams illustrating a configuration example of a spare optical cross-connect unit in the optical cross-connect device when the transmission path switching illustrated in FIG. 22 is performed.
  • the bold solid line indicates the transmission path of the priority signal
  • the bold dotted line indicates the transmission path of the PCA signal.
  • the configuration other than the spare optical cross-connect unit of the optical cross-connect device has the same configuration as that of FIG. 11 and FIG.
  • the spare optical cross-connect unit 120 in FIGS. 23 and 24 is connected to a device outside the station by k spare optical fibers (P) 202 on the input side, and k spare optical fibers (K) on the output side.
  • P) 302 connects to equipment outside the office.
  • the spare optical cross-connect unit 120 includes an optical switch 161, optical demultiplexers 162-1 to 162-r (hereinafter collectively referred to as “optical demultiplexer 162" as appropriate), an optical-electrical-optical converter, and the like.
  • optical demultiplexer 162 optical demultiplexers 162-1 to 162-r
  • optical-electrical-optical converter optical-electrical-optical converter
  • O / E / O optical switch 163—1-1—1 to 163—r—m
  • optical switch 164_1—1 to 164-r-m hereinafter, these will be collectively referred to as “optical switch 164”
  • optical-electrical-optical conversion ⁇ (O / E / O) 165—l—l to 165—r—m
  • Optical multiplexers 166-1-1 to 166—rm hereinafter, collectively referred to as “optical multiplexer 166” as appropriate
  • the non-priority signal multiplexed from the device outside the station is transmitted through the spare optical fiber 202. Input to the optical switch 16 1.
  • the optical switch 16 1 When an optical signal is input, the optical switch 16 1 performs switching according to the transmission path of the optical signal, and an optical demultiplexer 1 11 (not shown) or an optical splitter in the working optical cross-connect unit. Output to 1 62. Here, only the non-priority signal is input to the optical switch 16 1. Therefore, the optical switch 16 1 outputs the non-priority signal to the optical demultiplexer 16 2.
  • the optical demultiplexer 16 2 demultiplexes the wavelength-multiplexed non-priority signal into optical signals of individual wavelengths (here, L 1 to ⁇ ⁇ ) and outputs them to ⁇ / ⁇ / ⁇ 16 3.
  • the ⁇ / ⁇ / ⁇ 163 converts the input optical signal into an electrical signal, performs waveform shaping, amplifies, etc., converts it again to an optical signal, and outputs it to the optical switch 164.
  • the optical switch 1 6 4— 1— 1 to 1 6 4— r— ⁇ has the input side connected to ⁇ / ⁇ / ⁇ 16 3 and the intra-office line 2 1 3 for non-priority signals, one-to-one.
  • the output side is connected one-to-one with ⁇ / ⁇ / ⁇ 165 and the intra-station line 313 for non-priority signals.
  • these optical switches 1664 respond to the transmission path of the non-priority signal.
  • the O / E / Ol 65 converts the input optical signal into an electric signal, performs waveform shaping, amplifies, etc., converts it again into an optical signal, and outputs it to the optical multiplexer 1666.
  • the optical multiplexer 166 wavelength-multiplexes the input optical signal (non-priority signal) and outputs it to the optical switch 167. When the non-priority signal is input, the optical switch 167 performs switching and outputs the signal to the spare optical fiber 302.
  • the priority signal transmitted from the device outside the station through the spare optical fiber 202 is an optical switch. Entered in 1 6 1.
  • Optical switch 1 6 1 receives the priority signal. Then, switching is performed according to the transmission path of the priority signal.
  • a priority signal is input.
  • the optical switch 16 1 outputs the priority signal to the optical demultiplexer 1 11 (not shown) in the working optical cross connect unit.
  • the working optical cross-connect unit performs switching and the like in the same manner as the procedure described in FIG.
  • the optical multiplexer 114 in the working optical cross-connect unit converts the input priority signal into the standby optical cross-connect unit 120.
  • the optical switch 167 performs switching according to the transmission path of the priority signal and outputs the signal to the spare optical fiber 302.
  • a non-priority signal that does not include a failure point in the transmission path is input to the spare optical cross-connect unit 120, as in the case of FIG.
  • the non-priority signals are: optical switch 161, optical demultiplexer 162, O / E / O 163, optical switch 1664, O / E / Ol 65, optical multiplexer 1 It is input to the optical switch 16 7 through 66.
  • the optical switch 1667 outputs the input optical signal to the standby optical fiber 302 when the standby optical fiber 302 as the output destination is not the bypass route of the priority signal.
  • the optical switch 168 is 0 / E / 0 163, the intra-office line 2 13, the O / E / O l 65 and the intra-office line 3 1 3 and 1 Although they are configured in a one-to-one relationship, as shown in Fig. 25, they are configured to correspond one-to-one with the optical demultiplexer 162 and the optical multiplexer 165, and a plurality of OZEZOs 63 and Optical switches 168 that input non-priority signals from a plurality of intra-office lines 2 13 and output non-priority signals to a plurality of O / E / Os 165 and intra-office lines 3 13 may be provided. good.
  • the electric switch 170 is configured to correspond one-to-one with the optical demultiplexer 162 and the optical demultiplexer 1655, and performs electric signal switching with an electric switch 170.
  • Each of the optical signals demultiplexed by the optical demultiplexer 16 2 is input, converted into an electric signal, and output to the electric switch 170 by a plurality of optical-electrical converters «( ⁇ / ⁇ ) 1 6 9
  • an electric switch from the electric switch 170 to convert the electric signal into an optical signal and output the optical signal to the optical multiplexer 165 ( ⁇ / ⁇ ) 17 1 Is also good.
  • electric switch 170 and 6 ⁇ 171 may be provided.
  • an electric switch 172 incorporating OZE and EZO may be provided.
  • FIG. 28 is a diagram illustrating a configuration example of a spare optical cross-connect unit, a PC ⁇ output unit, and a PC C input unit in the optical cross-connect device when the transmission path switching illustrated in FIG. 22 is performed.
  • a bold solid line indicates a transmission path of a priority signal
  • a bold dotted line indicates a transmission path of a PCA signal.
  • the configuration other than the spare optical cross-connect unit of the optical cross-connect device has the same configuration as that of FIG. 11 and FIG.
  • the optical switch 16 1 has a PC ⁇ output section 180 connected to the output end thereof, and outputs a non-priority signal accommodated in the standby optical cross connect section 120 to the station.
  • the optical switch 1667 has a PCA input section 190 connected to the input end, and the optical switch 1667 accommodates a non-priority signal from the station in the spare optical cross-connect section 120. Has become.
  • the optical switch 1661 When a non-priority signal from outside the station to the inside of the station is input to the spare optical cross-connect unit 120 via the spare optical fiber 202, the optical switch 1661 receives the non-priority signal from the spare optical fiber 202. When a priority signal is input, the non-priority signal is output to the PCA output unit 180 when it is necessary to accommodate the signal in the station.
  • the PCA output section 180 has the same number of optical demultiplexers 18 1 11 to 18 1 _ k as the number of the spare optical fibers 202 (hereinafter, these are collectively referred to as “optical demultiplexer 18 1) and an optical-electrical-optical converter (O / E / O) 1 8 2— 1— 1 to 18 2— k—n (hereinafter collectively referred to as ⁇ / ⁇ / ⁇ ⁇ 8 2 J).
  • the optical splitter 18 1 splits the wavelength-multiplexed priority signal into optical signals of individual wavelengths (here, 1 to L ⁇ ) and outputs them to the OZEZO 82.
  • the OZE / 0182 converts the input optical signal into an electric signal, performs waveform shaping, amplifies, etc., converts it again to an optical signal, and outputs it to the station.
  • the non-priority signal from the inside of the station to the outside of the station is input to the PC input section 190.
  • the CA input section 190 is provided with an optical-electrical-optical conversion (O / E / O) 191-1-1-1-1 to 191-kn (hereinafter, these are collectively referred to as “0 / E / 0191” as appropriate).
  • optical multiplexers 192-1 to 192-k (hereinafter collectively referred to as “optical multiplexer 192”) are provided as many as the number of the optical fibers 302.
  • the O / E / Ol 91 converts the input optical signal (non-priority signal) from the station into an electric signal, performs waveform shaping, amplification, etc., converts it again to an optical signal, and converts it to the optical multiplexer 192 Output.
  • the optical multiplexer 192 wavelength-multiplexes the input optical signal (non-priority signal) and outputs the resultant signal to the optical switch 167.
  • the optical switch 167 When the non-priority signal from PCAT ⁇ l 90 is input, the optical switch 167 outputs the non-priority signal to the standby optical fiber 302 when it is necessary to output the non-priority signal outside the station.
  • the optical multiplexers 192 in the PCA input section 190 are provided in the same number as the number of the spare optical fibers 302 so as to correspond to the spare optical fibers 302, as shown in FIG. As described above, only one optical multiplexer 192 may be provided, and an optical distributor (DIS) 193 that distributes an optical signal from the optical multiplexer 192 and outputs the optical signal to the optical switch 167 may be provided.
  • DIS optical distributor
  • an optical branching section (BRA) 183 is provided between the optical demultiplexer 181 and the O / E / O 182, and the PCA input section 190 has an O / O section.
  • An optical selector 194 may be provided between the E / O 191 and the optical multiplexer 192, and the optical splitter 183 and the optical selector 194 may be connected.
  • a non-priority signal input from the standby optical fiber 202 and output to the standby optical fiber 302, that is, it is not necessary to accommodate the signal in the station.
  • the non-priority signal is transmitted from the optical branching unit 183 to the optical selecting unit 194.
  • a light distribution unit (DIS) 184 may be provided in place of the light branching unit (BRA) 183.
  • the optical cross-connect device switches and transmits not only the priority signal but also the non-priority signal. Enables effective use of bandwidth
  • the priority signal is switched and transmitted, so that the priority signal can be transmitted preferentially even if the bandwidth is reduced due to the failure. That is, according to the present invention, communication control according to the transmission priority, specifically, when a failure occurs in a transmission path, a signal having a higher transmission priority can be transmitted preferentially. It becomes possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Description

光クロスコネクト装置及び光通信制御方法 技術分野
本発明は、 光ファイバによって構成され、 送信ノードから受信ノードまで伝送 の優先度が異なる優先信号及び非優先信号を伝送する光ネットワーク内に構成さ れる光クロスコネクト装置、 及び、 当該光クロスコネクト装置を用いた光通信制 御方法に関する。 背景技術
情報通信の高速化、 大容量化に伴い、 ネットワークならびに伝送システムの広 帯域化及ぴ大容量化が必要とされている。 その実現手段として、 波長分割多重技 術をベースとする光ネットワークの構築が望まれている。 光クロスコネクト装置 は、 複数の光ファイバからの波長多重された光信号を波長毎に分離して光信号の 状態でスイッチングを行い、 再度、 波長多重して所望の光ファイバに出力するも のであり、 光ネットワークを構築する上で中核となる。
図 1は、 光ネットワークの概要を示す図であり、 送信ノ一ドから受信ノ一ドま での伝送経路に障害が発生した場合に、 伝送経路全体が切り替えられ、 新たな伝 送経路において光信号が予備光ファイバにより伝送される場合が示されている。 図 1に示す光ネットワークは 9個の光クロスコネクト装置 (光 X C) 1〜9と これら各光クロスコネクト装置間を接続する現用光ファイバ 1 1及び予備光ファ ィバ 1 2により構成される。
正常時において、 光 X C 1に接続される送信ノードから光 X C 8に接続される 受信ノードまで光信号が伝送される場合を考える。 この場合、 光 X C 1、 2、 5 、 8を結び、 現用光ファイバ 1 1により構成される伝送経路が設定される。 また 、 光 X C 2に接続される送信ノードから光 X C 9に接続される受信ノードまで光 信号が伝送される場合を考える。 この^、光 X C 2、 5、 8、 9を結ぴ、 現用 光ファイバ 1 1により構成される伝送経路が設定される。 このような状態で、 光 X C 2と光 X C 5との間に障害が発生した場合を考える 。 この場合、 光 XC 2と光 XC 5とを接続する現用光ファイバ 11を含む伝送経 路は、 その全体が切り替えられ、 且つ、 切り替え後の伝送経路は、 予備光フアイ ノ 12によって構成されることになる。 具体的には、 光 XC1、 2、 5、 8を結 ぴ、 現用光ファイバ 11によって構成される伝送経路は、 光 XC1、 4、 7、 8 を結ぴ、 予備光ファイバ 12によって構成される伝送経路に切り替えられる。 一 方、 光 XC2、 5、 8、 9を結ぴ、 現用光ファイバ 11によって構成される伝送 経路は、 光 XC2、 3、 6、 9を結び、 予備光ファイバ 12によって構成される 伝送経路に切り替えられる。
図 2及び図 3は、 図 1に示す伝送経路切り替えが行われる場合における光ク口 スコネクト装置の構成例を示す図である。 なお、 これらの図において、 太線は、 光信号の伝送経路を示す。
図 2及ぴ図 3における光クロスコネクト装置は、 入力側において、 現用光ファ ィバ (W) 701及び予備光ファイバ (P) 702から構成される k対の局間光 ファイバ 700— 1〜700_kによって局外の装置と接続され、 局内回線 71 l_l〜711— j (以下、 これらをまとめて適宜 「局内回線 711」 と称する ) によって局内の装置に接続される。 同様に、 光クロスコネクト装置は、 出力側 において、 現用光ファイバ (W) 801及び予備光ファイバ (P) 802力 ら構 成される k対の局間光ファイバ 800— 1〜800_kによって局外の装置と接 続され、 局内回線 811—1〜811— j (以下、 これらをまとめて適宜 「局内 回線 811 J と称する) によって局内の装置と接続される。
この光クロスコネク ト装置は、 現用光ファイバ 701、 801が接続される現 用光クロスコネクト部 510、 予備光ファイバ 702、 802が接続される予備 光クロスコネクト部 520、 光分配部 (D I S) 530— 1〜530- j (以下 、 これらをまとめて適宜「光分配部 530」 と称する)、光選択部 (SEL) 55 0— l〜550— j (以下、 これらをまとめて適宜 「光選択部 550」 と称する ) により構成される。 更に、 現用光クロスコネクト部 510は、 光分波器 511 一 1〜511— k (以下、 これらをまとめて適宜 「光分波器 511」 と称する) 、 光スィッチ 512、 光一電気一光変 (O/E/O) 513— 1— 1〜51 3 - k - n (以下、 これらをまとめて適宜 ΓΟ/Ε/0 5 1 3」 と称する)、光合 波器 5 1 4— 1— 1〜5 1 4— k— n (以下、 これらをまとめて適宜 「光合波器 5 1 4」 と称する) により構成される。 同様に、 予備光クロスコネクト部 5 2 0 は、 光分波器 5 2 1— 1〜5 2 1— k (以下、 これらをまとめて適宜 「光分波器 5 2 1」 と称する)、光スィッチ 5 2 2、光一電気一光変 » (O/E/O) 5 2 3—1— 1〜5 2 3— k— n (以下、 これらをまとめて適宜 「OZE/0 5 2 3 」 と称する)、光合波器 5 2 4— 1— l〜5 2 4 _ k— n (以下、 これらをまとめ て適宜 「光合波器 5 2 4」 と称する) により構成される。
送信ノ一ドから受信ノ一ドまでの伝送経路が正常である場合には、 図 2に示す ように、 局外の装置からの波長多重された光信号は、 現用光ファイバ 7 0 1を伝 送され、 現用光クロスコネクト部 5 1 0に入力される。 現用光クロスコネクト部 5 1 0内の光分波器 5 1 1— 1〜5 1 1— kは、 各現用光ファイバ 7 0 1と 1対 1に接続されている。 これら光分波器 5 1 1は、 波長多重された光信号を個々の 波長 (ここでは; I 1〜; I n) の光信号に分波して光スィッチ 5 1 2へ出力する。 一方、 局内の装置からの光信号は、 局内回線 7 1 1を伝送され、 光分配部 5 3 0に入力される。 光分配部 5 3 0 _ l〜5 3 0 _ jは、 入力端子が各局内回線 7 1 1と 1対 1に接続されている。 これら光分配部 5 3 0は、 入力される光信号を 、 現用光クロスコネクト部 5 1 0内の光スィッチ 5 1 2と予備光クロスコネクト 部 5 2 0内の光スィツチ 5 2 2の双方に出力する。
光スィツチ 5 1 2は、 光信号が入力されると、 当該光信号の伝送経路に応じて スィツチングを行い、 0/E/0 5 1 3及ぴ光選択部 5 5 0へ出力する。 O/E /0 5 1 3は、 入力される光信号を電気信号に変換し、 波形整形、 増幅等を行つ た後、 光信号に再度変換して光合波器 5 1 4へ出力する。
光合波器 5 1 4 _ 1〜5 1 4— kは、 各現用光ファイバ 8 0 1と 1対 1に接続 されている。 これら光合波器 5 1 4は、 入力される光信号を波長多重して現用光 ファイバ 8 0 1へ出力する。
光選択部 5 5 0— 1〜5 5 0— jは、 入力端子が光スィッチ 5 1 2及ぴ 5 2 2 と接続され、 出力端子が各局内回線 8 1 1と 1対 1に接続されている。 これら光 選択部 5 5 0は、 2つの入力端子に入力される光信号の一方を局内回線 8 1 1へ 出力する。 ここでは、 光選択部 5 5 0は、 光スィッチ 5 1 2からの光信号のみが 入力され、 この光信号をそのまま局内回線 8 1 1へ出力する。
一方、 送信ノードから受信ノードまでの伝送経路に障害が発生した場合には、 図 3に示すように、 局外の装置からの波長多重された光信号は、 予備光ファイバ 7 0 2を伝送され、 予備光クロスコネクト部 5 2 0に入力される。 予備光クロス コネクト部 5 2 0内の光分波器 5 2 1— 1〜5 2 1— kは、 各予備光ファイバ 7 0 2と 1対 1に接続されている。 これら光分波器 5 2 1は、 波長多重された光信 号を個々の波長 (ここでは; L 1〜 m) の光信号に分波して光スィッチ 5 2 2へ 出力する。
一方、 局内の装置からの光信号は、 局内回線 7 1 1を伝送され、 光分配部 5 3 0に入力される。 光分配部 5 3 0は、 局外の装置からの光信号を、 現用光クロス コネクト部 5 1 0内の光スィツチ 5 1 2と予備光クロスコネクト部 5 2 0内の光 スィッチ 5 2 2の双方へ出力する。
光スィッチ 5 2 2は、 光信号が入力されると、 当該光信号の伝送経路に応じて スィツチングを行い、 Ο/ΕΖΟ 5 2 3及び'光選択部 5 5 0へ出力する。 O/E /0 5 2 3は、 入力される光信号を電気信号に変換し、 波形整形、 増幅等を行つ た後、 光信号に再度変換して光合波器 5 2 4へ出力する。
光合波器 5 2 4— 1〜 5 2 4— kは、 各予備光ファイバ 8 0 2と 1対 1に接続 されている。 これら光合波器 5 2 4は、 入力される光信号を波長多重して予備光 ファイバ 8 0 2へ出力する。 一方、 光選択部 5 5 0は、 光スィッチ 5 2 2からの 光信号を局内回線 8 1 1へ出力する。
図 4は、 光ネットワークの概要を示す図であり、 送 ί言ノ一ドから受信ノ一ドま での伝送経路に障害が発生した場合に、 伝送経路全体が切り替えられ、 新たな伝 送経路にぉレヽて光信号が予備波長帯域のみにより伝送される場合が示されて ヽる 図 4に示す光ネットワークは 9個の光クロスコネクト装置 (光 X C) 1〜9と これら各光クロスコネクト装置間を接続する現用波長帯域 2 1及び予備波長帯域 2 2を有する光ファイバにより構成される。
正常時において、 光 X C 1に接続される送信ノードから光 X C 8に接続される 受信ノードまで光信号が伝送される場合を考える。 この場合、 光 XC1、 2、 5 、 8を結び、 現用波長帯域 21により構成される伝送経路が設定される。 また、 光 XC 2に接続される送信ノードから光 XC 9に接続される受信ノードまで光信 号が伝送される場合を考える。 この場合、 光 XC2、 5、 8、 9を結ぴ、 現用波 長帯域 21により構成される伝送経路が設定される。
このような状態で、 光 XC 2と光 XC 5との間に障害が発生した場合を考える 。 この^、光 XC 2と光 XC 5とを接続する現用波長帯域 21を含む伝送経路 は、 その全体が切り替えられ、 且つ、 切り替え後の伝送経路は、 予備波長帯域 2 2によって構成されることになる。 具体的には、 光 XC1、 2、 5、 8を結ぴ、 現用波長帯域 21によって構成される伝送経路は、 光 XC1、 4、 7、 8を結ぴ 、 予備波長帯域 22によって構成される伝送経路に切り替えられる。 一方、 光 X C2、 5、 8、 9を結び、 現用波長帯域 21によって構成される伝送経路は、 光 XC 2、 3、 6、 9を結ぴ、 予備波長帯域 22によって構成される伝送経路に切 り替えられる。
図 5及ぴ図 6は、 図 4に示す伝送経路切り替えが行われる場合における光ク口 スコネクト装置の構成例を示す図である。 なお、 これらの図において、 太線は、 光信号の伝送経路を示す。
図 5及ぴ図 6における光クロスコネクト装置は、 入力側において、 局間光ファ ィパ 700— 1〜700— kによって局外の装置と接続され、 局内回線 711- 1〜711— jによって局内の装置に接続される。 同様に、 光クロスコネクト装 置は、 出力側において、 局間光ファイバ 800— 1〜800— kによって局外の 装置と接続され、 局内回 ,锒811— l〜811_jによって局内の装置に接続さ れる。
この光クロスコネクト装置は、 図 2及び図 3と比較すると、 波長分離部 540 一 l〜540— k (以下、 これらをまとめて適宜 「波長分離部 540」 と称する ) と、 光合成部 560— 1〜560_k (以下、 これらをまとめて適宜 「光合成 部 560」 と称する) とが新たに備えられている。
送信ノードから受信ノ一ドまでの伝送経路が正常である場合には、 図 5に示す ように、 局外の装置からの波長多重された光信号は、 局間光ファイバ 700の現 用波長帯域 (W) により伝送され、 波長分離部 5 4 0に入力される。 波長分離部 5 4 0— 1〜5 4 0— kは、 各局間光ファイバ 7 0 0と 1対 1に接続されている 。 これら波長分離部 5 4 0は、 入力される光信号が現用波長帯域により伝送され たことに応じて、 当該光信号を現用光クロスコネクト部 5 1 0へ出力する。 現用 光クロスコネクト部 5 1 0内の光分波器 5 1 1は、 波長多重された光信号を個々 の波長 (ここでは 1 1〜λ η) の光信号に分波して光スィッチ 5 1 2へ出力する 一方、 局内の装置からの光信号は、 図 2と同様、 局内回線 7 1 1を伝送され、 光分配部 5 3 0に入力される。 光分配部 5 3 0は、 入力される光信号を、 現用光 クロスコネクト部 5 1 0内の光スィツチ 5 1 2と予備光クロスコネクト部 5 2 0 内の光スィツチ 5 2 2の双方へ出力する。
光スィツチ 5 1 2は、 光信号が入力されると、 当該光信号の伝送経路に応じて スイッチングを行い、 0/Ε/0 5 1 3及び光選択部 5 5 0へ出力する。 Ο/Ε /0 5 1 3は、 入力される光信号を電気信号に変換し、 波形整形、 増幅等を行つ た後、 光信号に再度変換して光合波器 5 1 4へ出力する。 光合波器 5 1 4は、 入 力される光信号を波長多重して光合成部 5 6 0へ出力する。 光合成部 5 6 0 - 1 〜 5 6 0— kは、 各局間光ファイバ 7 0 0と 1対 1に接続されている。 これら光 合成部 5 4 0は、 入力される光信号を局間光ファイバ 8 0 0の現用波長帯域へ出 力する。
光選択部 5 5◦— 1〜 5 5 0— jは、 入力端子が光スィツチ 5 1 2及び 5 2 2 と接続され、 出力端子が各局内回線 8 1 1と 1対 1に接続されている。 これら光 選択部 5 5 0は、 2つの入力端子に入力される光信号の一方を局内回線 8 1 1へ 出力する。 ここでは、 光選択部 5 5 0は、 光スィッチ 5 1 2からの光信号のみが 入力され、 この光信号をそのまま局内回線 8 1 1へ出力する。
一方、 送信ノードから受信ノードまでの伝送経路に障害が発生した場合には、 図 6に示すように、 局外の装置からの波長多重された光信号は、 局間光ファイバ 7 0 0の予備波長帯域 (W) により伝送され、 波長分離部 5 4 0に入力される。 波長分離部 5 4 0は、 入力される光信号が予備波長帯域により伝送されたことに 応じて、 当該光信号を予備光クロスコネクト部 5 2 0へ出力する。 現用光クロス コネクト部 5 2 0内の光分波器 5 2 1は、 波長多重された光信号を個々の波長 ( ここでは; L n + 1〜; m) の光信号に分波して光スィッチ 5 2 2へ出力する。 一方、 局内の装置からの光信号は、 図 3と同様、 局内回線 7 1 1を伝送され、 光分配部 5 3 0に入力される。 光分配部 5 3 0は、 入力される光信号を、 光分配 部 5 3 0は、 入力される光信号を、 現用光クロスコネクト部 5 1 0内の光スイツ チ 5 1 2と予備光クロスコネクト部 5 2 0內の光スィッチ 5 2 2の双方へ出力す る。
光スィッチ 5 2 2は、 光信号が入力されると、 当該光信号の伝送経路に応じて スイッチングを行い、 O/E/O 5 2 3へ出力する。 0/E/0 5 2 3は、 入力 される光信号を電気信号に変換し、 波形整形、 増幅等を行った後、 光信号に再度 変換して光合波器 5 2 4へ出力する。 光合波器 5 2 4は、 入力される光信号を波 長多重して光合成部 5 6 0へ出力する。 光合成部 5 6 0は、 入力される光信号を 局間光ファイバ 8 0 0の予備波長帯域へ出力する。 —方、 光選択部 5 5 0は、 光 スィッチ 5 2 2からの光信号を局内回線 8 1 1へ出力する。
図 7は、 光ネットワークの概要を示す図であり、 送信ノ一ドから受信ノ一ドま での伝送経路に障害が発生した場合に、 障害箇所の伝送経路のみが迂回経路に切 り替えられ、 当該迂回経路において光信号が予備光ファイバにより伝送される場 合が示されている。
図 7に示す光ネットワークは 9個の光クロスコネクト装置 (光 X C) 1〜9と これら各光クロスコネクト装置間を接続する現用光ファイバ 1 1及び予備光ファ ィバ 1 2により構成される。
正常時において、 光 X C 1に接続される送信ノードから光 X C 8に接続される 受信ノ一ドまで光信号が伝送される場合を考える。 この場合、 光 X C 1、 2、 5 、 8を結び、 現用光ファイバ 1 1により構成される伝送経路が設定される。 また 、 光 X C 2に接続される送信ノードから光 X C 9に接続される受信ノードまで光 信号が伝送される場合を考える。 この場合、 光 X C 2、 5、 8、 9を結び、 現用 光ファイバ 1 1により構成される伝送経路が設定される。
このような状態で、 光 X C 2と光 X C 5との間に障害が発生した場合を考える 。 この場合、 光 X C 2と光 X C 5とを接続する現用光ファイバ 1 1によって構成 される伝送経路は、 迂回経路に切り替えられ、 且つ、 その迂回経路は、 予備光フ アイパ 12によって構成されることになる。 具体的には、 光 XC1、 2、 5、 8 を結び、 現用光ファイバ 11によって構成される伝送経路は、 障害箇所である光 XC2と光 XC5の間が、 光 XC2、 3、 6、 5を結ぴ、 予備光ファイバ 12に よって構成される迂回経路に切り替えられる。 一方、 光 XC2、 5、 8、 9を結 ぴ、 現用光ファイバ 11によって構成される伝送経路は、 障害箇所である光 xc
2と光 XC5の間が、 光 XC2、 3、 6、 5を結び、 予備光ファイバ 12によつ て構成される迂回経路に切り替えられる。
図 8及び図 9は、 図 7に示す伝送経路切り替えが行われる場合における光ク口 スコネクト装置の構成例を示す図である。 なお、 これらの図において、 太線は、' 光信号の伝送経路を示す。
図 8及び図 9における光クロスコネクト装置は、 入力側において、 現用光ファ ィバ 701及ぴ予備光ファイバ 702から構成される k対の局間光ファイバ 70 0— 1〜700— kによって局外の装置と接続され、 局内回線 711— 1〜71 1— jによって局内の装置に接続される。 同様に、 光クロスコネクト装置は、 出 力側において、 現用光ファイバ 801及び予備光ファイバ 802から構成される k対の局間光ファイバ 800_1〜800_kによって局外の装置と接続され、 局内回線 811— 1〜811—】によって局内の装置に接続される。
この光クロスコネクト装置は、 現用光クロスコネクト部 510、 予備光クロス コネクト部 520、 光選択部 (SEL) 541— 1〜541— k (以下、 これら をまとめて適宜「光選択部 541」 と称する)、光選択部 (SW) 551一 1〜5 51— k (以下、 これらをまとめて適宜 「光選択部 551」 と称する) により構 成される。 これらのうち、 現用光クロスコネクト部 510は、 図 2における現用 クロスコネクト部 510と同様の構成を有する。 一方、 予備光クロスコネクト部 520は、 光スィッチ 525、 529、 光分波器 526— 1〜 526 _ r、 光一 電気一光変鶴 (O/E/O) 527— 1— 1〜513— r— m (以下、 これら をまとめて適宜 ΓΟ/Ε/0527」 と称する)、光合波器 528— 1—1〜 52 8-r-m (以下、 これらをまとめて適宜 「光合波器 528」 と称する) により 構成される。 送信ノードから受信ノードまでの伝送経路が正常である場合には、 図 8に示す ように、 局外の装置からの波長多重された光信号は、 現用光ファイバ 7 0 1を伝 送され、 光選択部 5 4 1に入力される。 光選択部 5 4 1—:!〜 5 4 1— kは、 各 現用光ファイバ 7 0 1と 1対 1に接続されている。 これら光選択部 5 4 1は、 現 用光ファイバ 7 0 1からの光信号を現用光クロスコネクト部 5 1 0へ出力する。 現用光クロスコネクト部 5 1 0内の光分波器 5 1 1— 1〜5 1 1— kは、 各光 選択部 5 4 1と 1対 1に接続されている。 これら光分波器 5 1 1は、 波長多重さ れた光信号を個々の波長 (ここでは; 1 1〜 n) の光信号に分波して光スィッチ 5 1 2へ出力する。
一方、 局内の装置からの光信号は、 局内回線 7 1 1を伝送され、 現用光クロス コネクト部 5 1 0内の光スィツチ 5 1 2に入力される。
光スィッチ 5 1 2は、 光信号が入力されると、 当該光信号の伝送経路に応じて スイッチングを行い、 O Έ/Ό 5 1 3へ出力する。 0/Ε Ό 5 1 3は、 入力 される光信号を電気信号に変換し、 波形整形、 増幅等を行った後、 光信号に再度 変換して光合波器 5 1 4へ出力する。
光合波器 5 1 4は、 入力される光信号を波長多重して光選択部 5 5 1へ出力す る。 光選択部 5 5 1— 1〜 5 5 1— kは、 各現用光ファイバ 8 0 1と 1対 1に接 続されている。 これら光選択部 5 5 1は、 光信号を現用光ファイバ 8 0 1へ出力 する。
—方、 送信ノードから受信ノードまでの伝送経路に障害が発生した場合には、 図 9に示すように、 局外の装置から予備光ファイバ 7 0 2を伝送された光信号は 、 予備光クロスコネクト部 5 2 0に入力される。 予備光クロスコネクト部 5 2 0 内の光スィツチ 5 2 5は、 光信号が入力されると、 当該光信号の伝送経路に応じ てスイッチングを行い、 当該光信号の出力先が現用光ファイバ 8 0 1又は局内回 線 8 1 1である場合には、 光選択部 5 4 1へ出力し、 当該光信号の出力先が予備 光ファイバ 8 0 2である場合には、 光分波器 5 2 6へ出力する。
光分波器 5 2 6は、 波長多重された光信号を個々の波長 (ここでは; L 1〜 L m ) の光信号に分波して OZEZO 5 2 7へ出力する。 ΟΖΕΖ0 5 2 7は、 入力 される光信号を電気信号に変換し、 波形整形、 増幅等を行った後、 光信号に再度 変換して光合波器 5 2 8へ出力する。 光合波器 5 2 8は、 入力される光信号を波 長多重して光スィッチ 5 2 9へ出力する。
光スィッチ 5 2 9は、 光信号が入力されると、 当該光信号の伝送経路に応じて スイッチングを行い、 予備光ファイバ 8 0 2へ出力する。
一方、 光スィツチ 5 2 5から光選択部 5 4 1へ光信号が出力されると、 当該光 選択部 5 4 1は、 当該光信号を現用光クロスコネクト部 5 1 0へ出力する。 現用 光クロスコネクト部 5 1 0内の光分波器 5 1 1は、 波長多重された光信号を個々 の波長の光信号に分波して光スィッチ 5 1 2へ出力する。 また、 局内の装置から の光信号は、 局内回線 7 1 1を伝送され、 現用光クロスコネクト部 5 1 0内の光 スィッチ 5 1 2に入力される。
光スィッチ 5 1 2は、 光信号が入力されると、 当該光信号の伝送経路に応じて スィツチングを行い、 0/E/0 5 1 3又は局内回線 8 1 1へ出力する。 〇/E /O S 1 3は、 入力される光信号を電気信号に変換し、 波形整形、 増幅等を行つ た後、 光信号に再度変換して光合波器 5 1 4へ出力する。
光合波器 5 1 4は、 入力される光信号を波長多重して光選択部 5 5 1へ出力す る。 光選択部 5 5 1は、 入力される光信号を、 その伝送経路に応じて現用光ファ ィバ 8 0 1又は予備光クロスコネクト部 5 2 0内の光スィッチ 5 2 9へ出力する 。 光スィッチ 5 2 9は、 光信号が入力されると、 当該光信号の伝送経路に応じて スィツチングを行い、 予備光ファイバ 8 0 2へ出力する。
上述した光クロスコネクト装置の従来技術としては、 例えば日本国特許公開公 報 「特開平 7— 8 6 9 8 8」 がある。
しかしながら、 上述した光クロスコネクト装置では、 例えば、 光信号が、 リア ルタイム性の必要の有無等により伝送が優先される信号 (優先信号) と優先され ない信号 (非優先信号) とに分類される場合、 優先信号を非優先信号よりも優先 して伝送するような通信制御については考慮されていなかった。 発明の開示
本発明は、 上述した従来技術の問題点を解決する、 伝送の優先度に応じた通信 制御を可能とした光クロスコネクト装置及び光通信制御方法を提供することを総 括的な目的としている。
本発明のより詳細な目的は、 伝送経路に障害が発生した場合に、 伝送の優先度 の高い信号を優先的に伝送することが可能な光クロスコネクト装置及び光通信制 御方法を実現することを目的とする。
この目的を達成するため、 本発明に係る光クロスコネクト装置は、 現用及ぴ予 備の 1対の光ファイバによって構成され、 送信ノードから受信ノードまで伝送の 優先度が異なる優先信号及ぴ非優先信号を伝送する光ネットワーク内の光ク口ス コネクト装置において、 前記送信ノードから受信ノードまでの伝送経路の正常時 に、 入力側の現用光ファイバ及び局内からの優先信号をスイッチングして、 出力 側の現用光ファイバ及ぴ局内へ出力するとともに、 入力側の予備光ファィバ及び 局内からの非優先信号をスィツチングして、 出力側の予備光ファイバ及び局内へ 出力し、 前記送信ノードから受信ノードまでの伝送経路の障害時に、 前記入力側 の予備光ファイバ及ぴ局内からの優先信号をスィツチングして、 出力側の予備光 ファイバ及び局内へ出力するスィツチング手段を備える。
このような光クロスコネクト装置によれば、 伝送經路が正常の場合には、 優先 信号のみならず非優先信号についてもスィツチングを行い、 伝送することにより 、 帯城の有効利用を図ることができ、 一方、 伝送経路に障害が発生した場合には 、 優先信号のみについてスイッチングを行い、 伝送することにより、 障害により 帯域が減少しても優先信号を優先的に伝送することが可能となる。 図面の簡単な説明
本発明の他の目的、 特徴及び利点は添付の図面を参照しながら以下の詳細な説 明を読むことにより一層明瞭となるであろう。
図 1は、 従来の光ネットワークの第 1の概要を示す図である。
図 2は、 図 1における正常時の光クロスコネクト装置の構成例を示す図である 図 3は、 図 1における障害時の光クロスコネクト装置の構成例を示す図である 図 4は、 従来の光ネットワークの第 2の概要を示す図である。 図 5は、 図 4における正常時の光クロスコネクト装置の構成例を示す図である 図 6は、 図 4における障害時の光クロスコネクト装置の構成例を示す図である 図 7は、 従来の光ネットワークの第 3の概要を示す図である。
図 8は、 図 7における正常時の光クロスコネクト装置の構成例を示す図である 図 9は、 図 7における障害時の光クロスコネクト装置の構成例を示す図である 図 1 0は、 第 1実施例における光ネットワークの概要を示す図である。
図 1 1は、 図 1 0における正常時の光クロスコネクト装置の構成例を示す図で める。
図 1 2は、 図 1 0における障害時の光クロスコネクト装置の構成例を示す図で あ 。
図 1 3は、 図 1 0における光クロスコネクト装置の第 1の変形例を示す図であ る。
図 1 4は、 図 1 0における光クロスコネクト装置の第 2の変形例を示す図であ る。
図 1 5は、 図 1 0における光クロスコネクト装置の第 3の変形例を示す図であ る。
図 1 6は、 第 2実施例における光ネットワークの概要を示す図である。
図 1 7は、 図 1 6における正常時の光クロスコネクト装置の構成例を示す図で める。
図 1 8は、 図 1 6における障害時の光クロスコネクト装置の構成例を示す図で ある。
図 1 9は、 図 1 6における光クロスコネクト装置の第 1の変形例を示す図であ る。
図 2 0は、 図 1 6における光クロスコネクト装置の第 2の変形例を示す図であ る。 図 2 1は、 図 1 6における光クロスコネクト装置の第 3の変形例を示す図であ る。
図 2 2は、 第 2実施例における光ネットワークの概要を示す図である。
図 2 3は、 図 2 2における正常時の光クロスコネクト装置内の予備光クロスコ ネクト部の構成例を示す図である。
図 2 4は、 図 2 2における障害時の光クロスコネクト装置内の予備光クロスコ ネクト部の構成例を示す図である。
図 2 5は、 図 2 2における障害時の光クロスコネクト装置内の予備光クロスコ ネクト部の第 1の変形例を示す図である。
図 2 6は、 図 2 2における障害時の光クロスコネクト装置内の予備光クロス ネクト部の第 2の変形例を示す図である。
図 2 7は、 図 2 2における障害時の光クロスコネクト装置内の予備光クロス ネクト部の第 3の変形例を示す図である。
図 2 8は、 図 2 2における障害時の光クロスコネクト装置内の予備光クロス ネクト部、 P C A入力部及ぴ P C A出力部の構成例を示す図である。
図 2 9は、 図 2 2における障害時の光クロスコネクト装置内の予備光クロス ネクト部、 P C A入力部及ぴ P C A出力部の第 1の変形例を示す図である。
図 3 0は、 図 2 2における障害時の光クロスコネクト装置内の予備光クロス ネクト部、 P C A入力部及ぴ P C A出力部の第 2の変形例を示す図である。
図 3 1は、 図 2 2における障害時の光クロスコネクト装置内の予備光クロスコ ネクト部、 P C A入力部及び P C A出力部の第 3の変形例を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施例を図面に基づいて説明する。 本発明の実施例において、 光ネットワークは、 伝送の優先度の異なる 2種類の光信号 (優先信号及び非優先 信号) を伝送可能である。 また、 以下においては、 非優先信号を P C A (Protec ted Channel Access; 1 と称する。
図 1 0は、 第 1実施例における、 光ネットワークの概要を示す図であり、 送信 ノードから受信ノードまでの伝送経路に障害が発生した場合に、 伝送経路全体が 切り替えられ、 新たな伝送経路において優先信号のみが予備光ファイバにより伝 送される場合が示されている。
図 1◦に示す光ネットワークは、 9個の光クロスコネクト装置 (光 XC) 1〜 9とこれら各光クロスコネクト装置間を接続する現用光ファイバ 11及び予備光 ファイバ 12により構成される。
正常時において、 光 XC 1に接続される送信ノードから光 XC 8に接続される 受信ノードまで光信号が伝送される場合を考える。 この場合、 優先信号の伝送経 路として、 光 XC1、 2、 5、 8を結び、 現用光ファイバ 11により構成される 伝送経路が設定される。 同様に、 P C A信号の伝送経路として、 光 XC1、 2、 5、 8を結ぴ、 予備光ファイバ 12により構成される伝送経路が設定される。 また、 光 X C 2に接続される送信ノ一ドから光 X C 9に接続される受信ノード まで光信号が伝送される場合を考える。 この場合、 優先信号の伝送経路として、 光 XC2、 5、 8、 9を結ぴ、 現用光ファイバ 11により構成される伝送経路が 設定される。 同様に、 PC A信号の伝送経路として、 光 XC2、 5、 8、 9を結 ぴ、 予備光ファイバ 12により構成される伝送経路が設定される。
このような状態で、 光 XC 2と光 XC5との間に障害が発生した場合を考える o この場合、 光 XC2と光 XC5とを接続する現用光フアイパ 11を含む優先信 号用の伝送経路は、 その全体が切り替えられ、 且つ、 切り替え後の伝送経路は、 予備光ファイバ 12によって構成されることになる。
具体的には、 光 XC1、 2、 5、 8を結び、 現用光ファイバ 11によって構成 される優先信号用の伝送経路は、 光 XC1、 4、 7、 8を結ぴ、 予備光ファイバ 12によって構成される伝送経路に切り替えられる。 また、 光 XC2、 5、 8、 9を結び、 現用光ファイバ 11によって構成される優先信号用の伝送経路は、 光 XC2、 3、 6、 9を結ぴ、 予備光ファイバ 12によって構成される伝送経路に 切り替えられる。
一方、 光 XC 2と光 XC 5とを接続する予備光ファイバ 12を含む PC A信号 用の伝送経路は、 その全体が消去される。
図 11及び図 12は、 図 10に示す伝送経路切り替えが行われる場合における 光クロスコネクト装置の構成例を示す図である。 なお、 これらの図において、 太 実線は優先信号の伝送経路を示し、 太点線は P C A信号の伝送経路を示す。
図 2及ぴ図 3における光クロスコネクト装置は、 入力側において、 現用光ファ ィバ (W) 201及ぴ予備光ファイバ (P) 202から構成される k対の局間光 ファイバ 200—1〜200— kによって局外の装置と接続され、 優先信号用の 局内回線 211及ぴ PC A信号用の局内回線 212から構成される j対の局内回 線 210— 1〜210—; j (以下、 これらをまとめて適宜 「局内回線 210」 と 称する) によって局内の装置に接続される。 同様に、 光クロスコネクト装置は、 出力側において、 現用光ファイバ (W) 301及ぴ予備光ファイバ (P) 302 から構成される k対の局間光ファイバ 300— 1〜300_kによって局外の装 置と接続され、 優先信号用の局内回線 311及ぴ P C A信号用の局内回線 312 から構成される; Ϊ対の局内回線 310— l〜310—j (以下、 これらをまとめ て適宜 「局内回線 310」 と称する) によって局内の装置に接続される。
この光クロスコネクト装置は、 現用光ファイバ 201、 301が接続される現 用光クロスコネクト部 110、 予備光ファイバ 202、 302が接続される予備 光クロスコネクト部 120、 光分岐部 (BRA) 130— 1〜130— j (以下 、 これらをまとめて適宜「光分岐部 130」 と称する)、光選択部 (SEL) 13 1一 l〜131_j (以下、 これらをまとめて適宜 「光選択部 131」 と称する )、光分岐部 (BRA) 150— 1〜150— j (以下、 これらをまとめて適宜「 光分岐部 150」 と称する)、光選択部 (SEL) 151一 1〜151— j (以下 、 これらをまとめて適宜 「光選択部 151」 と称する) により構成される。
更に、 現用光クロスコネクト部 110は、 光分波器 111_1〜111— k ( 以下、 これらをまとめて適宜 「光分波器 1 11」 と称する)、 光スィッチ 112、 光一電気一光変換器 (O/E/O) 113— 1一 1〜113— k一 n (以下、 こ れらをまとめて適宜「0/E/0113」 と称する)、光合波器 114-1-1- 1 14-k-n (以下、 これらをまとめて適宜 「光合波器 114」 と称する) に より構成される。 同様に、 予備光クロスコネクト部 110は、 光分波器 121- 1〜121— k (以下、 これらをまとめて適宜「光分波器 121」 と称する)、光 スィッチ 122、 光—電気一光変 « (O/E/O) 123— 1— 1〜123— k一 n (以下、 これらをまとめて適宜「OZE/0123」 と称する)、光合波器 124— 1一 1〜124— k— n (以下、 これらをまとめて適宜 「光合波器 12 4」 と称する).により構成される。
言ノードから受信ノードまでの伝送経路が正常である には、 図 11に示 すように、 局外の装置からの波長多重された優先信号は、 現用光ファイバ 201 を伝送され、 現用光クロスコネクト部 110に入力される。 現用光クロスコネク ト部 110内の光分波器 111一 1〜111一 kは、 入力端子が現用光ファイバ
201と 1対 1に接続されている。 これら光分波器 111は、 波長多重された優 先信号を個々の波長 (ここでは L 1〜; In) の光信号に分波して光スィッチ 11 2へ出力する。
一方、 局内の装置からの優先信号は、 局内回線 211を伝送され、 光分岐部 1
30に入力される。 光分岐部 130_l〜130_jは、 入力端子が局内回線 2 11と 1対 1に接続されるとともに、 出力端子 aが現用光クロスコネクト部 11 0内の光スィツチ 112に接続され、 出力端子 bが光選択部 131—:!〜 131 - jと 1対 1に接続されている。 これら光分岐部 130は、 入力される優先信号 を、 光スィッチ 112と光選択部 131の何れかに出力する。 ここでは、 光分岐 部 130は、 局外の装置からの優先信号が現用光クロスコネクト部 110内の光 スィッチ 112へ入力されていることに応じて、 局内の装置からの優先信号を当 該光スィッチ 112へ出力する。
光スィッチ 112は、 優先信号が入力されると、 当該優先信号の伝送経路に応 じてスイッチングを行い、 当該優先信号を更に局外へ伝送する必要のある場合に は O/E/Ol 13へ出力し、 局内に取り込む必要のある場合には光選択部 15 1へ出力する。
O/E/Ol 13は、 入力される光信号を電気信号に変換し、 波形整形、 増幅 等を行った後、 光信号に再度変換して光合波器 114へ出力する。 光合波器 11 4— 1〜114一 kは、 出力端子が現用光ファイバ 301と 1対 1に接続されて いる。 これら光合波器 114は、 入力される光信号 (優先信号) を波長多重して 現用光ファイバ 301へ出力する。
光選択部 151— 1〜151— jは、 入力端子 eが光スィツチ 112に接続さ れ、 入力端子 f が光分岐部 150— 1〜151— j と 1対 1に接続されるととも に、 出力端子が局内回線 311と 1対 1に接続されている。 これら光選択部 15 1は、 2つの入力端子に入力される光信号の一方を局内回線 311へ出力する。 ここでは、 光選択部 151は、 光スィツチ 112からの優先信号のみが入力され 、 この優先信号をそのまま局内回線 311へ出力する。
一方、 局外の装置からの波長多重された P C A信号は、 予備光ファイバ 202 を伝送され、 予備光クロスコネクト部 120に入力される。 予備光クロスコネク ト部 120内の光分波器 121— 1〜121— kは、 入力端子が予備光ファイバ 202と 1対 1に接続されている。 これら光分波器 121は、 波長多重された P CA信号を個々の波長 (ここでは λ 1〜 Lm) の光信号に分波して光スィッチ 1 22へ出力する。
一方、 局内の装置からの PC A信号は、 局内回線 212を伝送され、 光選択部 131に入力される。 光選択部 131— 1〜 131— jは、 入力端子 cが光分岐 部 130—:!〜 130— j と 1対 1に接続され、 入力端子 dが局内回線 212と 1対 1に接続されるとともに、 出力端子が予備光クロスコネクト部 120内の光 スィッチ 122に接続されている。 これら光選択部 131は、 2つの入力端子に 入力される光信号の一方を出力する。 ここでは、 光選択部 131は、 局内回線 2 12からの PC A信号のみが入力され、 この PCA信号をそのまま光スィッチ 1 22へ出力する。
光スィッチ 122は、 PC A信号が入力されると、 当該 P C A信号の伝送経路 に応じてスィツチングを行い、 当該 P C A信号を更に局外へ伝送する必要のある 場合には ΟΖΕ,Ο 123へ出力し、 局内に取り込む必要のある場合には光分岐 部 150へ出力する。
O/E/Ol 23は、 入力される光信号を電気信号に変換し、 波形整形、 増幅 等を行った後、 光信号に再度変換して光合波器 124へ出力する。 光合波器 12 4— 1〜124— kは、 出力端子が現用光ファイバ 301と 1対 1に接続されて いる。 これら光合波器 124は、 入力される光信号 (PCA信号) を波長多重し て予備光ファイバ 302へ出力する。
光分岐部 150— 1〜151— jは、 入力端子が光スィツチ 122に接続され るとともに、 出力端子 gが光選択部 151_1〜151— ; j と 1対 1に接続され 、 出力端子 hが局内回線 3 1 2と 1対 1に接続されている。 これら光分岐部 1 5 0は、 入力される光信号を、 光選択部 1 5 1と局内回線 3 1 2の何れかに出力す る。 ここでは、 光分岐部 1 5 0は、 光スィッチ 1 2 2からの P C A信号のみが入 力されているため、 この P C A信号を P C A信号用の局内回,镍 3 1 2へ出力する 一方、 送信ノードから受信ノードまでの伝送経路に障害が発生した場合には、 図 1 2に示すように、 局外の装置からの波長多重された優先信号は、 予備光ファ ィバ 2 0 2を伝送され、 予備光クロスコネクト部 1 2 0に入力される。 予備光ク ロスコネクト部 1 2 0内の光分波器 1 2 1は、 波長多重された優先信号を個々の 波長 (ここでは L 1〜; l m) の光信号に分波して光スィツチ 1 2 2へ出力する。 一方、 局内の装置からの優先信号は、 局内回線 2 1 1を伝送され、 光分岐部 1 3 0に入力される。 光分岐部 1 3 0は、 障害が発生し、 局外の装置からの優先信 号が予備光クロスコネクト部 1 2 0内の光スィッチ 1 2 2へ入力されていること に応じて、 局内の装置からの優先信号を光選択部 1 3 1へ出力する。 また、 局内 の装置からの P C A信号は、 局内回線 2 1 2を伝送され、 光選択部 1 3 1に入力 される。
光選択部 1 3 1は、 P章害が発生し、 局外の装置からの優先信号が光スィッチ 1 2 2へ入力されていることに応じて、 入力される優先信号と P C A信号のうち、 優先信号を選択して光スィツチ 1 2 2へ出力する。
光スィッチ 1 2 2は、 優先信号が入力されると、 当該優先信号の伝送経路に応 じてスィツチングを行い、 当該優先信号を更に局外へ伝送する必要のある場合に は O/E/O 1 2 3へ出力し、 局内に取り込む必要のある場合には光分岐部 1 5 0へ出力する。
O/E/O l 2 3は、 入力される光信号を電気信号に変換し、 波形整形、 増巾; 等を行った後、 光信号に再度変換して光合波器 1 2 4へ出力する。 光合波器 1 2 4— l〜1 2 4 _ kは、 出力端子が現用光ファイバ 3 0 1と 1対 1に接続されて いる。 これら光合波器 1 2 4は、入力される光信号 (優先信号) を波長多重して 予備光ファイバ 3 0 2へ出力する。
光分岐部 1 5 0は、 入力される光信号を、 光選択部 1 5 1と局内回線 3 1 2の 何れかに出力する。 ここでは、 光分岐部 1 5 0は、 入力される光信号が優先信号 であることに応じて、 当該優先信号を優先信号用の局内回線 3 1 1へ出力するた めに、 光選択部 1 5 1へ出力する。 光選択部 1 5 1は、 光分岐部 1 5 0からの優 先信号のみが入力され、 この優先信号をそのまま局内回線 3 1 1へ出力する。 ところで、 図 1 1及ぴ図 1 2では、 局内回線 2 1 1からの優先信号の出力先を 決定する装置として光分岐部 1 3 0を備え、 光スィッチ 1 2 2からの P C A信号 の出力先を決定する装置として光分岐部 1 5 0を備えたが、 図 1 3に示すように 光分岐部 1 3 0の代わりに光分配部 1 3 2を備え、 光分岐部 1 5 0の代わりに光 分配部 1 5 2を備えるようにしても良い。 あるいは、 図 1 4に示すように光分岐 部 1 5 0のみ光分配部 1 5 2に代えても良く、 図 1 5に示すように光分岐部 1 3 0のみ光分配部 1 3 2に代えても良い。
光分岐部 1 3 0の代わりに光分配部 1 3 2を備えた場合、 当該光分配部 1 3 2 は、 局内回線 2 1 1からの優先信号を出力端子 aから光スィッチ 1 1 2へ出力す るとともに、 出力端子 bから光選択部 1 3 1へ出力する。 この際、 光スィッチ 1 1 2は、 伝送経路が正常の場合にのみスイッチングを行い、 障害の場合には行わ ない。 一方、 光選択部 1 3 1は、 伝送経路が正常の場合には局内回線 3 1 2から の P C A信号を光スィツチ 1 2 2へ出力し、 障害の場合には光分配部 1 3 2から の優先信号を光スィッチ 1 2 2へ出力する。
また、 光分岐部 1 5 0の代わりに光分配部 1 5 2を備えた場合、 当該光分配部 1 5 2は、 伝送経路が正常の場合には、 光スィツチ 1 2 2からの P C A信号を出 力端子 gから光選択部 1 5 1へ出力するとともに、 出力端子 hから局内回線 3 1 2へ出力する。 この際、 光選択部 1 5 1は、 光スィッチ 1 1 2からの俊先信号を 局内回線 3 1 1へ出力する。 —方、 光分配部 1 5 2は、 伝送経路が障害の場合に は、 光スィッチ 1 2 2からの優先信号を出力端子 g力 ^光選択部 1 5 1へ出力す るとともに、 出力端子 hから局内回線 3 1 2へ出力する。 この際、 光選択部 1 5 1は、 光スィッチ 1 1 2からの優先信号を局内回線 3 1 1へ出力する。
図 1 6は、 第 2実施例における、 光ネットワークの概要を示す図であり、 送信 ノードから受信ノードまでの伝送経路に障害が発生した場合に、 伝送経路全体が 切り替えられ、 新たな伝送経路において優先信号のみが光ファイバの予備波長帯 域により伝送される場合が示されている。
図 16に示す光ネットワークは、 9個の光クロスコネクト装置 (光 XC) 1〜 9とこれら各光クロスコネクト装置間を接続する現用波長帯域 21及び予備波長 帯域 22を有する光ファイバにより構成される。
正常時において、 光 XC1に接続される送信ノードから光 XC 8に接続される 受信ノードまで光信号が伝送される場合を考える。 この場合、 優先信号の伝送経 路として、 光 XC1、 2、 5、 8を結び、 現用波長帯域 21により構成される伝 送経路が設定される。 同様に、 PC A信号の伝送経路として、 光 XC1、 2、 5 、 8を結び、 予備波長帯域 22により構成される伝送経路が設定される。
また、 光 XC 2に接続される送信ノードから光 XC 9に接続される受信ノード まで光信号が伝送される場合を考える。 この場合、 優先信号の伝送経路として、 光 X C 2、 5、 8、 9を結び、 現用波長帯域 21により構成される伝送経路が設 定される。 同様に、 PC A信号の伝送経路として、 光 XC2、 5、 8、 9を結ぴ 、 予備波長帯域 22により構成される伝送経路が設定される。
このような状態で、 光 XC 2と光 XC 5との間に障害が発生した場合を考える 。 この場合、 光 XC 2と光 XC 5とを接続する現用波長帯域 21を含む優先信号 用の伝送経路は、 その全体が切り替えられ、 且つ、 切り替え後の伝送経路は、 予 備波長帯域 22によって構成されることになる。
具体的には、 光 XC1、 2、 5、 8を結び、 現用波長帯域 21によって構成さ れる優先信号用の伝送経路は、 光 XC1、 4、 7、 8を結ぴ、 予備波長帯域 22 によって構成される伝送経路に切り替えられる。 また、 光 XC2、 5、 8、 9を 結ぴ、 現用波長帯域 21によって構成される優先信号用の伝送経路は、 光 XC2 、 3、 6、 9を結び、 予備波長帯域 22によって構成される伝送経路に切り替え られる。
一方、 光 X C 2と光 X C 5とを接続する予備波長帯域 22を含む P C A信号用 の伝送経路は、 その全体が消去される。
図 17及ぴ図 18は、 図 16に示す伝送経路切り替えが行われる場合における 光クロスコネクト装置の構成例を示す図である。 なお、 これらの図において、 太 実線は優先信号の伝送経路を示し、 太点線は P C A信号の伝送経路を示す。 図 17及び図 18における光クロスコネクト装置は、 図 11及び図 12と比較 すると、 波長分離部 140— l〜140_k (以下、 これらをまとめて適宜 「波 長分離部 140」 と称する) と、 光合成部 160— 1〜160_k (以下、 これ らをまとめて適宜 「光合成部 160」 と称する) とが新たに備えられている。 + 光クロスコネクト装置は、 入力側において、 現用波長帯域 (W) 及び予備波長 帯域 (P) を有する局間光ファイバ 200—1〜200— kによって局外の装置 と接続され、 優先信号用の局内回線 211及び PC A信号用の局内回線 21.2力、 ら構成される j対の局内回線 210— 1〜210— j (以下、 これらをまとめて 適宜 「局内回線 210」 と称する) によって局内の装置に接続される。 同様に、 光クロスコネクト装置は、 出力側において、 現用波長帯域 (W) 及び予備波長帯 域 (P) を有する局間光ファイバ 300_ 1〜300— kによって局外の装置と 接続され、 優先信号用の局内回線 311及び PC A信号用の局内回線 312から 構成される j対の局內回線 310— 1〜310— j (以下、 これらをまとめて適 宜 「局内回 H310」 と称する) によって局内の装置に接続される。
送信ノードから受信ノードまでの伝送経路が正常である場合には、 図 17に示 すように、 局外の装置からの波長多重された優先信号が局間光ファイバ 200の 現用波長帯域を伝送され、 局外の装置からの波長多重された P C A信号が局間光 ファイバ 200の予備波長帯域を伝送され、 それぞれ波長分離部 140に入力さ れる。
波長分離部 140— 1〜140— kは、 入力端子が局間光ファイバ 200と 1 対 1に接続されるとともに、 2つの出力端子が現用光クロスコネクト部 110及 び予備光クロスコネクト部 120に接続されている。 これら波長分離部 140は 、 局間光ファイバ 200の現用波長帯域を伝送される優先信号と、 予備波長帯域 を伝送される PC A信号とを分離し、 優先信号を現用光クロスコネクト部 110 へ出力し、 PC A信号を予備光クロスコネクト部 120へ出力する。
現用光クロスコネクト部 110内の光分波器 111一 l〜l l l_kは、 入力 端子が波長分離部 140と 1対 1に接続されている。 これら光分波器 111は、 波長多重された優先信号を個々の波長 (ここでは L 1〜 n) の光信号に分波し て光スィッチ 112へ出力する。 一方、 局内の装置からの優先信号は、 局内回線 2 1 1を伝送され、 光分岐部 1 3 0に入力される。 光分岐部 1 3 0は、 入力される優先信号を、 光スィッチ 1 1 2と光選択部 1 3 1の何れかに出力する。 ここでは、 光分岐部 1 3 0は、 局外の 装置からの優先信号が現用光クロスコネクト部 1 1 0内の光スィッチ 1 1 2へ入 力されていることに応じて.、 局内の装置からの優先信号を当該光スィッチ 1 1 2 へ出力する。
光スィッチ 1 1 2は、 優先信号が入力されると、 当該優先信号の伝送経路に応 じてスィツチングを行い、 当該優先信号を更に局外へ伝送する必要のある場合に は Ο/ΕΖΟ 1 1 3へ出力し、 局内に取り込む必要のある場合には光選択部 1 5 1へ出力する。
OZEグ O l 1 3は、 入力される光信号を電気信号に変換し、 波形整形、 増幅 等を行った後、 光信号に再度変換して光合波器 1 1 4へ出力する。 光合波器 1 1 4一 l〜1 1 4 _ kは、 出力端子が現用光ファイバ 3 0 1と 1対 1に接続されて いる。 これら光合波器 1 1 4は、 入力される光信号 (優先信号) を波長多重して 光合成部 1 6 0へ出力する。
光選択部 1 5 1は、 2つの入力端子に入力される光信号の一方を局内回線 3 1 1へ出力する。 ここでは、 光選択部 1 5 1は、 光スィッチ 1 1 2からの優先信号 のみが入力され、 この優先信号をそのまま局内回線 3 1 1へ出力する。
一方、 予備光クロスコネクト部 1 2 0内の光分波器 1 2 1— 1〜1 2 1— kは 、 入力端子が波長分離部 1 4 0と 1対 1に接続されている。 これら光分波器 1 2 1は、 波長多重された P C A信号を個々の波長 (ここでは; 11 + 1〜 L m) の光 信号に分波して光スィツチ 1 2 2へ出力する。
—方、 局内の装置からの P C A信号は、 局内回線 2 1 2を伝送され、 光選択部 1 3 1に入力される。 これら光選択部 1 3 1は、 2つの入力端子に入力される光 信号の一方を出力する。 ここでは、 光選択部 1 3 1は、 局内回線 2 1 2からの P C A信号のみが入力され、 この P C A信号をそのまま光スィッチ 1 2 2へ出力す る。
光スィツチ 1 2 2は、 P C A信号が入力されると、 当該 P C A信号の伝送経路 に応じてスィツチングを行い、 当該 P C A信号を更に局外へ伝送する必要のある 場合には OZE/O l 2 3へ出力し、 局内に取り込む必要のある場合には光分岐 部 1 5 0へ出力する。
O/E/O l 2 3は、 入力される光信号を電気信号に変換し、 波形整形、 増幅 等を行った後、 光信号に再度変換して光合波器 1 2 4へ出力する。 光合波器 1 2 4は、 入力される光信号 (P CA信号) を波長多重して光合成部 1 6 0へ出力す る。
光分岐部 1 5 0は、 入力される光信号を、 光選択部 1 5 1と局内回線 3 1.2の 何れかに出力する。 ここでは、 光分岐部 1 5 0は、 光スィッチ 1 2 2からの P C A信号のみが入力されてレ、るため、 この P C A信号を P C A信号用の局内回線 3 1 2へ出力する。
光合成部 1 6 0— 1〜1 6 0— kは 2つの入力端子が現用光クロスコネクト部 1 1 0内の光合波器 1 1 4及ぴ予備光クロスコネクト部 1 2 0内の光合波器 1 2 4に接続されるとともに、 出力端子が局間光ファイバ 3 0 0と 1対 1に接続され ている。 これら光合成部 1 6 0は、 現用光クロスコネクト部 1 1 0內の光合波器 1 1 4からの優先信号を局間光ファイバ 3 0 0の現用波長帯域へ出力するととも に、 予備光クロスコネクト部 1 2 0内の光合波器 1 2 4からの P C A信号を局間 光ファイバ 3 0 0の予備波長帯域へ出力する。
一方、 送信ノードから受信ノードまでの伝送経路に障害が発生した場合には、 図 1 8に示すように、 局外の装置からの波長多重された優先信号が局間光フアイ バ 2 0 0の予備波長帯域を伝送され、 波長分離部 1 4 0に入力される。 波長分離 部 1 4 0は、 局間光ファイバ 2 0 0の予備波長帯域を伝送される優先信号を予備 光クロスコネクト部 1 2 0へ出力する。
一方、 局内の装置からの優先信号は、 局内回線 2 1 1を伝送され、 光分岐部 1 3 0に入力される。 光分岐部 1 3 0は、 障害が発生し、 局外の装置からの優先信 号が予備光クロスコネクト部 1 2 0内の光スィッチ 1 2 2へ入力されていること に応じて、 局内の装置からの優先信号を光選択部 1 3 1へ出力する。 また、 局内 の装置からの P C A信号は、 局内回,锒 2 1 2を伝送され、 光選択部 1 3 1に入力 される。
光選択部 1 3 1は、 障害が発生し、 局外の装置からの優先信号が光スィッチ 1 2 2へ入力されていることに応じて、 入力される優先信号と P C A信号のうち、 優先信号を選択して光スィツチ 1 2 2へ出力する。
光スィッチ 1 2 2は、 優先信号が入力されると、 当該優先信号の伝送経路に応 じてスイッチングを行い、 当該優先信号を更に局外へ伝送する必要のある場合に は Ο/ΕΖΟ 1 2 3へ出力し、 局内に取り込む必要のある場合には光分岐部 1 5 0へ出力する。
O/E/O l 2 3は、 入力される光信号を電気信号に変換し、 波形整形、 增幅 等を行った後、 光信号に再度変換して光合波器 1 2 4へ出力する。 光合波器 1 2 4は、 入力される光信号 (優先信号) を波長多重して光合成部 1 6 0へ出力する 。 光合成部 1 6 0は、 予備光クロスコネクト部 1 2 0内の光合波器 1 2 4からの 優先信号を局間光ファイバ 3 0 0の予備波長帯域へ出力する。
一方、 光分岐部 1 5 0は、 入力される光信号が優先信号であることに応じて、 当該優先信号を優先信号用の局内回線 3 1 1へ出力するために、 光選択部 1 5 1 へ出力する。 光選択部 1 5 1は、 光分岐部 1 5 0からの優先信号のみが入力され 、 この優先信号をそのまま局内回,線 3 1 1へ出力する。
ところで、 図 1 7及び図 1 8では、 局内回線 2 1 1からの優先信号の出力先を 決定する装置として光分岐部 1 3 0を備え、 光スィッチ 1 2 2からの P C A信号 の出力先を決定する装置として光分岐部 1 5 0を備えたが、 図 1 9に示すように 光分岐部 1 3 0の代わりに光分配部 1 3 2を備え、 光分岐部 1 5 0の代わりに光 分配部 1 5 2を備えるようにしても良い。 あるいは、 図 2 0に示すように光分岐 部 1 5 0のみ光分配部 1 5 2に代えても良く、 図 2 1に示すように光分岐部 1 3 0のみ光分配部 1 3 2に代えても良い。
光分岐部 1 3 0の代わりに光分配部 1 3 2を備えた場合、 当該光分配部 1 3 2 は、 局内回線 3 1 1からの優先信号を出力端子 aから光スィッチ 1 1 2へ出力す るとともに、 出力端子 bから光選択部 1 3 1へ出力する。 この際、 光スィッチ 1 1 2は、 伝送経路が正常の場合にのみスイッチングを行い、 障害の場合には行わ ない。 一方、 光選択部 1 3 1は、 伝送経路が正常の場合には局内回線 3 1 2から の P C A信号を光スィッチ 1 2 2へ出力し、 障害の場合には光分配部 1 3 2から の優先信号を光スィツチ 1 2 2へ出力する。 また、 光分岐部 1 5 0の代わりに光分配部 1 5 2を備えた場合、 当該光分配部 1 5 2は、 伝送経路が正常の場合には、 光スィッチ 1 2 2からの P C A信号を出 力端子 gから光選択部 1 5. 1へ出力するとともに、 出力端子 hから局内回線 3. 1 2へ出力する。 この際、 光選択部 1 5 1は、 光スィッチ 1 1 2からの優先信号を 局内回線 3 1 1へ出力する。 一方、 光分配部 1 5 2は、 伝送経路が障害の場合に は、 光スィッチ 1 2 2からの優先信号を出力端子 gから光選択部 1 5 1へ出力す るとともに、 出力端子 hから局内回線 3 1 2へ出力する。 この際、 光選択部 1 5 1は、 光スィッチ 1 1 2からの優先信号を局内回 #泉 3 1 1へ出力する。
図 2 2は、 第 3実施例における、 光ネットワークの概要を示す図であり、 送信 ノードから受信ノードまでの伝送経路に障害が発生した場合に、 障害箇所の伝送 経路のみが迂回経路に切り替えられ、 当該迂回経路において光信号が予備光フ了 ィバにより伝送される場合が示されている。
図 2 2に示す光ネットワークは、 9個の光クロスコネクト装置 (光 X C) 1〜 9とこれら各光クロスコネクト装置間を接続する現用光ファイバ 1 1及び予備光 ファイバ 1 2により構成される。
正常時において、 光 X C 1に接続される送信ノードから光 X C 8に接続される 受信ノ一ドまで光信号が伝送される場合を考える。 この場合、 優先信号用の伝送 経路として、 光 X C 1、 2、 5、 8を結び、 現用光ファイバ 1 1により構成され る優先信号用の伝送経路が設定される。 同様に、 P C A信号の伝送経路として、 光 X C 1、 2、 5、 8を結び、 予備光ファイバ 1 2により構成される伝送経路が れる。
また、 光 X C 2に接続される送信ノードから光 X C 9に接続される受信ノード まで光信号が伝送される場合を考える。 この場合、 優先信号用の伝送経路として 、 光 X C 2、 5、 8、 9を結ぴ、 現用光ファイバ 1 1により構成される優先信号 用の伝送経路が設定される。 同様に、 P C A信号の伝送経路として、 光 X C 2、 5、 8、 9を結び、 予備波長帯域 2 2により構成される伝送経路が設定される。 このような状態で、 光 X C 2と光 X C 5との間に障害が発生した場合を考える 。 この^^、光 X C 2と光 X C 5とを接続する現用光ファイバ 1 1によって構成 される優先信号用の伝送経路は、 迂回経路に切り替えられ、 且つ、 その迂回経路 は、 予備光ファイバ 12によって構成されることになる。
具体的には、 光 XC1、 2、 5、 8を結び、 現用光ファイバ 11によって構成 される優先信号用の伝送経路は、 障害箇所である光 XC 2と光 XC 5の間が、 光 XC2、 3、 6、 5を結ぴ、 予備光ファイバ 12によって構成される迂回経路に 切り替えられる。 また、 光 XC2、 5、 8、 9を結び、 現用光ファイバ 11によ つて構成される優先信号用の伝送経路は、 障害箇所である光 XC 2と光 XC 5の 間が、 光 XC2、 3、 6、 5を結ぴ、 予備光ファイバ 12によって構成される迂 回経路に切り替えられる。 ·
一方、 光 X C 2と光 X C 5とを接続する予備光ファイバ 12を含む PC A信号 用の伝送経路は、 その全体が消去される。
以下においては、 迂回経路中に配置される光クロスコネクト装置 (図 22では 光 XC 3及ぴ 6) について説明する。
図 23及び図 24は、 図 22に示す伝送経路切り替えが行われる場合における 光クロスコネクト装置内の予備光クロスコネクト部の構成例を示す図である。 な お、 これらの図において、 太実線は優先信号の伝送経路を示し、 太点線は PC A 信号の伝送経路を示す。 また、 光クロスコネクト装置の予備光クロスコネクト部 以外の構成は、 図 11及び図 12と同様の構成を有する。
図 23及び図 24における予備光クロスコネクト部 120は、 入力側において 、 k本の予備光ファイバ (P) 202によって局外の装置と接続され、 出力側に おいて、 k本の予備光ファイバ (P) 302によって局外の装置と接続されてレ、 る。
この予備光クロスコネクト部 120は、 光スィッチ 161、 光分波器 162- 1〜162— r (以下、 これらをまとめて適宜「光分波器 162」 と称する)、光 一電気一光変 « (O/E/O) 163— 1— 1〜 163— r—m (以下、 これ らをまとめて適宜 Γθ/Ε/Ο 163」 と称する)、光スィッチ 164_1—1〜 164- r -m (以下、 これらをまとめて適宜 「光ス ッチ 164」 と称する) 、 光一電気—光変^^ (O/E/O) 165— l— l〜165— r— m (以下、 これらをまとめて適宜「0/E/0165」 と称する)、光合波器 166-1-1 〜166— r—m (以下、 これらをまとめて適宜 「光合波器 166」 と称する) 、 光スィッチ 1 6 7により構成される。
送信ノードから受信ノードまでの伝送経路が正常である場合には、 図 2 3に示 すように、 局外の装置からの波長多重された非優先信号は、 予備光ファイバ 2 0 2を伝送され、 光スィッチ 1 6 1に入力される。
光スィツチ 1 6 1は、 光信号が入力されると、 当該光信号の伝送経路に応じて スイッチングを行い、 現用光クロスコネクト部内の光分波器 1 1 1 (図示せず) 又は光分配器 1 6 2へ出力する。 ここでは、 光スィッチ 1 6 1は、 非優先信号の みが入力される。 このため、 光スィッチ 1 6 1は、 当該非優先信号を光分波器 1 6 2へ出力する。
光分波器 1 6 2は、 波長多重された非優先信号を個々の波長 (ここでは; L 1 〜 λ η) の光信号に分波して Ο/Ε/Ο 1 6 3へ出力する。 Ο/Ε/Ο 1 6 3は、 入力される光信号を電気信号に変換し、 波形整形、 増幅等を行った後、 光信号に 再度変換して光スィツチ 1 6 4へ出力する。
光スィツチ 1 6 4— 1— 1 〜 1 6 4— r— ηは、 入力側が Ο/Ε/Ο 1 6 3及 ぴ非優先信号用の局内回線 2 1 3と 1対 1に接続されるとともに、 出力側が Ο/ Ε/Ο 1 6 5及び非優先信号用の局内回線 3 1 3と 1対 1に接続されている。 こ れら光スィツチ 1 6 4は、 Ο/Ε/Ο 1 6 3及ぴ非優先信号用の局内回線 2 1 3 からの非優先信号が入力されると、 当該非優先信号の伝送経路に応じてスィッチ ングを行い、 当該非優先信号を局外へ伝送する必要のある場合には Ο/Ε/Ο 1 6 5へ出力し、 局内に取り込む必要のある場合には非優先信号用の局内回線 3 1 3へ出力する。
O/E/O l 6 5は、 入力される光信号を電気信号に変換し、 波形整形、 増幅 等を行った後、 光信号に再度変換して光合波器 1 6 6へ出力する。 光合波器 1 6 6は、 入力される光信号 (非優先信号) を波長多重して光スィッチ 1 6 7へ出力 する。 光スィッチ 1 6 7は、 非優先信号が入力されると、 スイッチングを行い、 予備光ファイバ 3 0 2へ出力する。
一方、 送信ノードから受信ノードまでの伝送経路に障害が発生した場合には、 図 2 4に示すように、 局外の装置から予備光ファイバ 2 0 2を伝送された優先信 号は、 光スィッチ 1 6 1に入力される。 光スィッチ 1 6 1は、 優先信号が入力さ れると、 当該優先信号の伝送経路に応じてスイッチングを行う。 ここでは、 優先 信号が入力される。'このため、 光スィッチ 1 6 1は、 当該優先信号を現用光クロ スコネクト部内の光分波器 1 1 1 (図示せず) へ出力する。 現用光クロスコネク ト部は、 優先信号が入力されると、 図 1 2において説明した手順と同様に、 スィ ツチング等を行う。
また、 現用光クロスコネクト部内の光合波器 1 1 4は、 光クロスコネクト装置 が優先信号の迂回経路中に配置されている場合、 入力される優先信号を予備光タ ロスコネクト部 1 2 0内の光スィッチ 1 6 7へ出力する。 光スィッチ 1 6 7は、 . 優先信号が入力されると、 当該優先信号の伝送経路に応じてスィツチングを行い 、 予備光ファイバ 3 0 2へ出力する。
一方、 伝送経路内に障害箇所を含まない非優先信号については、 図 2 3の場合 と同様、 予備光クロスコネクト部 1 2 0に入力される。 そして、 この非優先信号 は、 光スィツチ 1 6 1、 光分波器 1 6 2、 O/E/O 1 6 3、 光スィツチ 1 6 4 、 O/E/O l 6 5、 光合波器 1 6 6を介して光スィッチ 1 6 7へ入力される。 光スィツチ 1 6 7は、 出力先となる予備光ファイバ 3 0 2が優先信号の迂回経路 でない場合には、 入力される光信号を当該予備光フアイバ 3 0 2へ出力する。 ところで、 図 2 3及ぴ図 2 4では、 光スィッチ 1 6 8は、 0/E/0 1 6 3、 局内回線 2 1 3、 O/E/O l 6 5及び局内回線 3 1 3と 1対 1に構成されてい るが、 図 2 5に示すように、 光分波器 1 6 2及び光合波器 1 6 5と 1対 1に対応 するように構成され、 複数の OZEZO l 6 3及び複数の局内回線 2 1 3からの 非優先信号を入力し、 複数の O/E/O 1 6 5及び局内回線 3 1 3へ非優先信号 を出力する光スィッチ 1 6 8を備えるようにしても良い。
また、 図 2 6に示すように、 光分波器 1 6 2及ぴ光合波器 1 6 5と 1対 1に対 応するように構成され、 電気信号のスィツチングを行う電気スィツチ 1 7 0と、 光分波器 1 6 2によつて分波された各光信号を入力して電気信号に変換し、 電気 スィッチ 1 7 0へ出力する複数の光一電気変 « (Ο/Ε) 1 6 9と、 電気スィ ツチ 1 7 0からの電気信号を入力して光信号に変換し、 光合波器 1 6 5へ出力す る電気一光変 « (Ε/Ο) 1 7 1を備えるようにしても良い。
更には、 図 2 6に示す ΟΖΕ 1 6 9、 電気スィツチ 1 7 0及び ΕΖθ 1 7 1に 代えて、 図 2 7に示すように、 OZE及ぴ EZOを内蔵する電気スィッチ 1 7 2 を備えるようにしても良い。
また、 局内へ非優先信号を出力する構成と、 局内からの非優先信号を入力する 構成とを、 予備光クロスコネクト部 1 2 0の外部に備えるようにしても良い。 図 2 8は、 図 2 2に示す伝送経路切り替えが行われる場合における光クロスコ ネクト装置内の予備光クロスコネクト部、 P C Α出力部及び P C Α入力部の構成 例を示す図である。 なお、 これらの図において、 太実線は優先信号の伝送経路を 示し、 太点線は P C A信号の伝送経路を示す。 また、 光クロスコネクト装置の予 備光クロスコネクト部以外の構成は、 図 1 1及び図 1 2と同様の構成を有する。 図 2 8における予備光クロスコネクト部 1 2 0は、 図 2 3及び図 2 4と比較す ると、 OZE/O l 6 3、 光スィッチ 1 6 4及ぴ OZE/O l 6 5に代えて、 O ZEZO 1 7 3を備えている。 また、 光スィッチ 1 6 1は、 出力端に P C Α出力 部 1 8 0が接続されており、 予備光クロスコネクト部 1 2 0に収容された非優先 信号を局内へ出力するようになっている。 —方、 光スィッチ 1 6 7は、 入力端に P C A入力部 1 9 0が接続され、 当該光スィツチ 1 6 7が局内からの非優先信号 を予備光クロスコネクト部 1 2 0に収容するようになっている。
局外から局内への非優先信号が予備光ファイバ 2 0 2を介して予備光クロスコ ネクト部 1 2 0へ入力されると、 光スィツチ 1 6 1は、 予備光ファイバ 2 0 2か らの非優先信号が入力されると、 局内へ収容する必要がある場合には、 当該非優 先信号を P C A出力部 1 8 0へ出力する。
P CA出力部 1 8 0は、 予備光ファイバ 2 0 2の本数と同数の光分波器 1 8 1 一 1〜 1 8 1 _ k (以下、 これらをまとめて適宜 「光分波器 1 8 1」 と称する) と、 光一電気—光変換器 (O/E/O) 1 8 2— 1— 1〜1 8 2— k— n (以下 、 これらをまとめて適宜 Γθ/Ε/Ο Ι 8 2 J と称する) を備える。
光分波器 1 8 1は、 波長多重された優先信号を個々の波長 (ここでは 1〜; L η ) の光信号に分波して OZEZO l 8 2へ出力する。 OZE/0 1 8 2は、 入 力される光信号を電気信号に変換し、 波形整形、 増幅等を行った後、 光信号に再 度変換して局内へ出力する。
一方、 局内から局外への非優先信号は、 P C Α入力部 1 9 0へ入力される。 P C A入力部 190は、 光一電気一光変 « (O/E/O) 191— 1— 1〜 19 1-k-n (以下、 これらをまとめて適宜 「0/E/0191」 と称する) と、 予備光ファイバ 302の本数と同数の光合波器 192— 1〜192— k (以下、 これらをまとめて適宜 「光合波器 192」 と称する) を備える。
O/E/Ol 91は、 入力される局内からの光信号 (非優先信号) を電気信号 に変換し、 波形整形、 増幅等を行った後、 光信号に再度変換して光合波器 192 へ出力する。 光合波器 192は、 入力される光信号 (非優先信号) を波長多重し + て光スィッチ 167へ出力する。
光スィッチ 167は、 PCAT ^l 90からの非優先信号が入力されると、 局外へ出力する必要がある場合には、 当該非優先信号を予備光フアイバ 302へ 出力する。
ところで、 図 28では、 P C A入力部 190内の光合波器 192は、 予備光フ アイバ 302に対応するように、 当該予備光ファイバ 302の本数と同数だけ備 えられているが、 図 29に示すように 1つの光合波器 192のみを備え、 当該光 合波器 192からの光信号を分配して光スィツチ 167へ出力する光分配器 (D I S) 193を備える構成にしても良い。
また、 図 30に示すように、 P C A出力部 180において、 光分波器 181と O/E/O 182との間に光分岐部 (BRA) 183を備えるとともに、 PCA 入力部 190において、 O/E/O 191と光合波器 192との間に光選択部 1 94を備え、 これら光分岐部 183と光選択部 194とを接続する構成としても 良い。 この場合には、 送信ノードから受信ノードまでの伝送経路の正常時におい ては、 予備光ファイバ 202から入力され、 予備光ファイバ 302へ出力される 非優先信号、 即ち、 局内へ収容する必要のない非優先信号は、 光分岐部 183か ら光選択部 194へ伝送されることになる。 更には、 図 31に示すように、 光分 岐部 (BRA) 183に代えて光分配部 (D I S) 184を備えるようにしても 良い。
このように本発明によれば、 光クロスコネクト装置は、 送信ノードから受信ノ 一ドまでの伝送経路が正常の場合には、 優先信号のみならず非優先信号について もスイッチングを行い、 伝送することにより、 帯域の有効利用を図ることができ 、 一方、 伝送経路に障害が発生した場合には、 優先信号のみについてスィッチン グを行い、 伝送することにより、 障害により帯域が減少しても優先信号を優先的 に伝送することが可能となる。 即ち、 本発明によれば、 伝送の優先度に応じた通 信制御、 具体的には、 伝送経路に障害が発生した場合に、 伝送の優先度の高い信 号を優先的に伝送することが可能となる。

Claims

請求の範囲
. 1 . 現用及び予備の 1対の光ファイバによって構成され、 送信ノードから受 信ノードまで伝送の優先度が異なる優先信号及び非優先信号を伝送する光ネット ワーク内の光クロスコネクト装置において、
前記送信ノ一ドから受信ノ一ドまでの伝送経路の正常時に、 入力側の現用光フ アイバ及び局内からの優先信号をスィツチングして、 出力側の現用光ファイバ及 び局内へ出力するとともに、 入力側の予備光ファイバ及び局内からの非優先信号 をスイッチングして、 出力側の予備光ファイバ及び局内へ出力し、 前記送信ノー ドから受信ノードまでの伝送経路の障害時に、 前記入力側の予備光ファイバ及び 局内からの優先信号をスィツチングして、 出力側の予備光ファイバ及び局内へ出 力するスイッチング手段を備える光クロスコネクト装置。
2 · 請求項 1に記載の光クロスコネクト装置において、
前記スイッチング手段は、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の現用光フ アイバ及ぴ局内からの優先信号をスィツチングして、 出力側の現用光ファイバ及 ぴ局内へ出力する第 1の光スィツチと、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の予備光フ アイパ及ぴ局内からの非優先信号をスィツチングして、 出力側の予備光ファイバ 及び局内へ出力し、 前記送信ノードから受信ノードまでの伝送経路の障害時に、 前記入力側の予備光ファィバ及ぴ局内からの俊先信号をスィツチングして、 前記 出力側の予備光ファイバ及び局内へ出力する第 2の光スィッチと、
を備え、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の現用光フ アイバ及び局内からの優先信号をスィツチングして、 出力側の現用光ファイバ及 び局内へ出力するとともに、 入力側の予備光ファィバ及ぴ局内からの非優先信号 をスイッチングして、 出力側の予備光ファイノく及び局内へ出力し、 前記送信ノー ドから受信ノードまでの伝送経路の障害時に、 前記入力側の予備光ファイバ及ぴ 局内からの優先信号をスィツチングして、 出力側の予備光ファイバ及び局内へ出 力する光クロスコネクト装置。
3. 現用波長帯域及び予備波長帯域を有する光ファイバによって構成され、 送信ノードから受信ノードまで伝送の優先度が異なる優先信号及び非優先信号を 伝送する光ネットワーク内の光クロスコネクト装置において、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の光フアイ バの現用波長帯域及ぴ局内からの優先信号をスィツチングして、 出力側の光ファ ィバの現用波長帯域及び局内へ出力するとともに、 入力側の光ファイバの予備波 長帯域及び局内からの非優先信号をスイッチングして、 出力側の光ファイバの予 備波長帯域及び局内へ出力し、 前記送信ノードから受信ノードまでの伝送経路の 障害時に、 前記入力側の光ファィバの予備波長帯域及び局内からの優先信号をス ィツチングして、 前記出力側の光ファイバの予備波長帯域及ぴ局内へ出力するス イッチング手段と、
を備える光クロスコネクト装置。
4. 請求項 3に記載の光クロスコネクト装置において、
前記スイッチング手段は、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の光フアイ バの現用波長帯域及び局内からの優先信号をスィツチングして、 出力側の光ファ ィバの現用波長帯域及び局内へ出力する第 1の光スィツチと、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の光フアイ パの予備波長帯域及び局内からの非優先信号をスィツチングして、 出力側の光フ アイバの予備波長帯域及び局内へ出力し、 前記送信ノードから受信ノードまでの 伝送経路の障害時に、 前記入力側の光ファィパの予備波長帯域及ぴ局内からの優 先信号をスィツチングして、 前記出力側の光ファイバの予備波長帯域及ぴ局内へ 出力する第 2の光スィッチと、
を備え、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の光フアイ バの現用波長帯域及び局内からの優先信号をスィツチングして、 出力側の光ファ ィバの現用波長帯域及び局内へ出力するとともに、 入力側の光ファイバの予備波 長帯域及び局内からの非優先信号をスィツチングして、 出力側の光ファイバの予 備波長帯域及び局内へ出力し、 前記送信ノードから受信ノードまでの伝送経路の
5 P章害時に、 前記入力側の光ファィバの予備波長帯域及び局內からの優先信号をス ィツチングして、 前記出力側の光ファイバの予備波長帯域及び局内へ出力する光 クロスコネクト装置。
5. 請求項 2又は 4に記載の光クロスコネクト装置において、
0 前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の優先信号 用の局内回線からの優先信号を前記第 1の光スィツチへ出力するとともに、 前記 入力側の非優先信号用の局内回線からの非優先信号を前記第 2の光スィッチへ出 力し、 前記送信ノードから受信ノードまでの伝送経路の障害時に、 前記入力側の 優先信号用の局内回線からの優先信号を前記第 2の光スィツチへ出力する第 1の
L5 経路変換手段と、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 前記第 1の光スィ ツチによりスィツチングされた優先信号を出力側の優先信号用の局内回線へ出力 するとともに、 前記第 2の光スィツチによりスィツチングされた非優先信号を出 力側の非優先信号用の局内回線へ出力し、 前記送信ノードから受信ノードまでの 0 伝送経路の障害時に、 前記第 2の光スィツチによりスィツチングされた優先信号 を前記出力側の優先信号用の局内回線へ出力する第 2の経路変換手段と、 を備える光クロスコネクト装置。
6. 請求項 5に記載の光クロスコネクト装置において、
5 前記第 1の経路変換手段は、 入力端からの光信号を複数の出力端の何れかへ出 力する第 1の光分岐部と、 複数の入力端からの光信号の何れかを出力端へ出力す る第 1の光選択部とを有し、
前記第 1の光分岐部は、 入力端が前記入力側の優先信号用の局内回線に接続さ れ、 出力端が前記第 1の光スィッチと、 第 1の光分岐部の入力端とに接続され、 前記送信ノードから受信ノードまでの伝送経路の正常時に、 前記入力側の優先信 号用の局内回線からの優先信号を前記第 1の光スィツチへ出力し、 前記送信ノー ドから受信ノードまでの伝送経路の障害時に、 前記入力側の優先信号用の局内回 線からの優先信号を前記第 1の光選択部へ出力し、
前記第 1の光選択部は、 入力端が前記第 1の光分岐部の出力端と、 前記入力側 の非優先信号用の局内回線とに接続され、 出力端が前記第 2の光スィツチに接続 され、 前記送信ノードから受信ノードまでの伝送経路の正常時に、 前記入力側の 非優先信号用の局内回線からの非優先信号を前記第 2の光スィッチへ出力し、 前 記送信ノードから受信ノードまでの伝送経路の障害時に、 前記第 1の光選択部か らの優先信号を前記第 2の光スィツチへ出力する光クロスコネクト装置。
7 . 請求項 6に記載の光クロスコネクト装置において、
前記第 1の光分岐部に代えて、 入力端からの光信号を全ての出力端へ出力する 第 1の光分配部を有する光クロスコネクト装置。
8 , 請求項 5に記載の光クロスコネクト装置において、
前記第 2の経路変換手段は、 入力端からの光信号を複数の出力端の何れ力へ出 力する第 2の光分岐部と、 複数の入力端からの光信号の何れかを出力端へ出力す る第 2の光選択部とを有し、
前記第 2の光分岐部は、 入力端が前記第 2の光スィツチに接続され、 出力端が 前記出力側の非優先信号用の局内回線と、 前記第 2の光選択部の入力端に接続さ れ、 前記送信ノードから受信ノードまでの伝送経路の正常時に、 前記第 2の光ス ィッチからの非優先信号を前記出力側の非俊先信号用の局内回線へ出力し、 前記 送信ノードから受信ノードまでの伝送経路の障害時に、 前記第 2の光スィツチか らの優先信号を前記第 2の光選択部へ出力し、
前記第 2の光選択部は、 入力端が前記第 1の光スィッチと、 前記第 2の光分岐 部の出力端とに接続され、 出力端が前記出力側の優先信号用の局内回線に接続さ れ、 前記送信ノードから受信ノードまでの伝送経路の正常時に、 前記第 1の光ス ィツチからの優先信号を前記出力側の優先信号用の局内回線へ出力し、 前記送信 ノードから受信ノードまでの伝送経路の障害時に、 前記第 2の光分岐部からの優 先信号を前記出力側の優先信号用の局内回線へ出力する光クロスコネクト装置。
9. 請求項 8に記載の光クロスコネクト装置において、
前記第 2の光分岐部に代えて、 入力端からの光信号を全ての出力端へ出力する 第 2の光分配部を有する光クロスコネクト装置。
1 0. 現用及び予備の 1対の光ファイバによって構成され、 送信ノードから 受信ノ一ドまで伝送の優先度が異なる優先信号及び非優先信号を伝送する光ネッ トワーク内の光クロスコネクト装置において、
t&t己送信ノ一ドから受信ノ一ドまでの伝送経路の正常時に、 入力側の現用光フ アイバ及び局内からの優先信号をスィツチングして、 出力側の現用光ファイバ及 び局内へ出力するとともに、 入力側の予備光フ了ィバ及ぴ局内からの非俊先信号 をスイッチングして、 出力側の予備光ファィバ及ぴ局内へ出力し、 前記送信ノー ドから受信ノードまでの伝送経路の障害時に、 前記障害の箇所を迂回する伝送経 路における入力側の予備光ファィバ及ぴ局内からの優先信号を」
、 前記障害の箇所を迂回する伝送経路における出力側の予備光: 及ぴ局内 へ出力するスイッチング手段を備える光クロスコネクト装置。
1 1 . 請求項 1 0に記載の光クロスコネクト装置において、
前記スィツチング手段は、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の現用光フ アイバ及び局内からの優先信号をスィツチングして、 出力側の現用光ファイバ及 び局内へ出力し、 前記送信ノードから受信ノードまでの伝送経路の障害時に、 前 記障害の箇所を迂回する伝送経路における入力側の予備光ファイノ及び局内から の優先信号をスィツチングして、 前記障害の箇所を迂回する伝送経路における出 力側の予備光ファイバ及び局内へ出力する第 1の光スィツチと、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の予備光フ アイパ及び局内からの非優先信号をスィツチングして、 出力側の予備光: 及び局内へ出力する第 2の光スィッチと、
を備え、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の現用光フ アイパ及ぴ局内からの優先信号をスィツチングして、 出力側の現用光ファイバ及 び局内へ出力するとともに、 入力側の予備光ファイバ及び局内からの非優先信号 をスイッチングして、 出力側の予備光ファイバ及ぴ局内へ出力し、 前記送信ノー ドから受信ノードまでの伝送経路の障害時に、 前記障害の箇所を迂回する伝送経 路における入力側の予備光ファィパ及ぴ局内からの優先信号をスィツチングして 、 前記障害の箇所を迂回する伝送経路における出力側の予備光ファイノ及び局内 へ出力する光クロスコネクト装置。
1 2 . 請求項 1 1に記載の光クロスコネクト装置において、
前記送信ノ一ドから受信ノ一ドまでの伝送経路の正常時に、 入力側の予備光フ アイパからの非優先信号を前記第 2の光スィツチへ出力し、 前記送信ノードから 受信ノードまでの伝送経路の障害時に、 前記障害の箇所を迂回する伝送経路にお ける入力側の予備光ファイバからの優先信号を前記第 1の光スィツチへ出力する 第 1の経路変換手段と、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 前記第 2の光スィ ツチからの非優先信号を出力側の予備光ファイバへ出力し、 前記送信ノードから 受信ノ一ドまでの伝送経路の障害時に、 前記第 1の光スィツチからの優先信号を 前記障害の箇所を迂回する伝送経路における出力側の予備光ファイバからへ出力 する第 2の経路変換手段と、
を備える光クロスコネクト装置。
1 3 . 請求項 1 2に記載の光クロスコネクト装置において、
前記第 2の光スィッチは、 前記第 1の経路変換手段からの分波された複数の光 信号毎に備えられている光クロスコネクト装置。
1 4 . 請求項 1 2に記載の光クロスコネクト装置において、 前記第 2の光スィツチは、 前記第 1の経路変換手段からの分波された複数の光 信号の全てを入力する光クロスコネクト装置。
1 5 . 請求項 1 2に記載の光クロスコネクト装置において、
前記第 2の光スィッチは、
前記第 1の経路変換手段からの光信号を電気信号に変換する光一電気変 «と 前記光一電気変 »からの電気信号をスィツチングする電気スィツチと、 前記電気スィツチからの電気信号を光信号に変換する電気一光変 «と、 を備える光クロスコネクト装置。
1 6 . 請求項 1 1に記載の光クロスコネクト装置において、
前記第 2の光スィツチからの非優先信号を局内へ出力する第 1の非優先信号出 力手段と、
前記局内からの非優先信号を前記第 2の光スィツチへ出力する第 2の非優先信 号出力手段と、
を備える光クロスコネクト装置。
1 7 . 請求項 1 6に記載の光クロスコネクト装置において、
前記第 2の非優先信号出力手段は、 前記出力側の予備光ファイバに対応して、 前記局内からの非便先信号を合波し、 前記第 2の光スィツチへ出力する光合波部 を備える光クロスコネクト装置。
1 8 . 請求項 1 6に記載の光クロスコネクト装置において、
前記第 2の非優先信号出力手段は、
前記局内からの非優先信号を合波する光合波部と、
前記光合波部からの非優先信号を全ての出力端から前記第 2の光スィッチへ出 力する光分配部を有する光クロスコネクト装置。
1 9 . 請求項 1 6に記載の光クロスコネクト装置において、
前記第 1の非優先信号出力手段は、 前記第 2の光スィツチからの非優先信号を 前記局内及び前記第 2の非優先信号出力手段の何れかへ出力する光分岐部を備え 前記第 2の非優先信号出力手段は、 前記局内及び前記第 1の非優先信号出力手 段からの非優先信号の何れかを前記第 2の光スィツチへ出力する光選択部を備え る光クロスコネクト装置。
2 0. 請求項 1 9に記載の光クロスコネクト装置において、
前記光分岐部に代えて、 前記第 2の光スィツチからの非優先信号を前記局内及 ぴ前記第 2の非優先信号出力手段の双方へ出力する光分配部を備える光クロスコ ネクト装置。
•2 1 . 現用及び予備の 1対の光フアイバによつて構成され、 送信ノードから 受信ノ一ドまで伝送の優先度が異なる優先信号及び非優先信号を伝送する光ネッ トワーク内に構成され、 現用部と予備部からなる光クロスコネクト装置の光通信 制御方法において、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の現用光フ アイバ及び局内からの優先信号をスィツチングして、 出力側の現用光ファイバ及 ぴ局内へ出力するとともに、 入力側の予備光ファイバ及び局内からの非優先信号 をスィツチングして、 出力側の予備光ファイバ及ぴ局内へ出力し、
前記送信ノードから受信ノードまでの伝送経路の障害時に、 前記入力側の予備 光ファイバ及び局内からの優先信号をスィツチングして、 前記出力側の予備光フ ァィパ及び局内へ出力する光通信制御方法。
2 2. 現用波長帯域及び予備波長帯域を有する光ファイバによって構成され、 送信ノードから受信ノードまで伝送の優先度が異なる優先信号及び非優先信号を 伝送する光ネットワーク内に構成され、 現用部と予備部からなる光クロスコネク ト装置の光通信制御方法にお!/、て、 前記送信ノ一ドから受信ノ一ドまでの伝送経路の正常時に、 入力側の光ファィ パの現用波長帯域及ぴ局内からの優先信号をスィツチングして、 出力側の光ファ ィバの現用波長帯域及び局内へ出力するとともに、 入力側の光ファイバの予備波 長帯域及ぴ局内からの非優先信号をスィツチングして、 出力側の光ファイバの予 備波長帯域及び局内へ出力し、
前記送信ノードから受信ノードまでの伝送経路の障害時に、 前記入力側の光フ アイバの予備波長帯域及び局内からの優先信号をスィツチングして、 前記出力側 の光フアイバの予備波長帯域及び局内へ出力する光通信制御方法。 2 3 . 現用及ぴ予備の 1対の光ファイバによって構成され、 送信ノードから 受信ノ一ドまで伝送の優先度が異なる優先信号及び非優先信号を伝送する光ネッ トワーク内に構成され、 現用部と予備部からなる光クロスコネクト装置の光通信 制御方法において、
前記送信ノードから受信ノードまでの伝送経路の正常時に、 入力側の現用光フ アイバ及ぴ局内からの優先信号をスイッチングして、 出力側の現用光ファイバ及 ぴ局内へ出力するとともに、 入力側の予備光ファイノ及び局内からの非優先信号 をスィツチングして、 出力側の予備光ファィバ及び局内へ出力し、
前記送信ノードから受信ノードまでの伝送経路の障害時に、 前記障害の箇所を 迂回する伝送経路における入力側の予備光フ了ィバ及ぴ局内からの優先信号をス イッチングして、 前記障害の箇所を迂回する伝送経路における出力側の予備光フ ァィバ及び局内へ出力する光通信制御方法。
PCT/JP2003/003179 2003-03-17 2003-03-17 光クロスコネクト装置及び光通信制御方法 WO2004084504A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2003/003179 WO2004084504A1 (ja) 2003-03-17 2003-03-17 光クロスコネクト装置及び光通信制御方法
JP2004569553A JP3987534B2 (ja) 2003-03-17 2003-03-17 光クロスコネクト装置及び光通信制御方法
US11/137,365 US20050213875A1 (en) 2003-03-17 2005-05-26 Optical cross-connect device and method of optical communication control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/003179 WO2004084504A1 (ja) 2003-03-17 2003-03-17 光クロスコネクト装置及び光通信制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/137,365 Continuation US20050213875A1 (en) 2003-03-17 2005-05-26 Optical cross-connect device and method of optical communication control

Publications (1)

Publication Number Publication Date
WO2004084504A1 true WO2004084504A1 (ja) 2004-09-30

Family

ID=33018131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003179 WO2004084504A1 (ja) 2003-03-17 2003-03-17 光クロスコネクト装置及び光通信制御方法

Country Status (2)

Country Link
JP (1) JP3987534B2 (ja)
WO (1) WO2004084504A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306335A (ja) * 2006-05-11 2007-11-22 Mitsubishi Electric Corp 光クロスコネクト装置
JP2011015254A (ja) * 2009-07-03 2011-01-20 Nec Corp 光通信ネットワーク
WO2015129194A1 (ja) * 2014-02-25 2015-09-03 日本電気株式会社 光ネットワーク制御装置および光ネットワーク制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946367A (ja) * 1995-08-02 1997-02-14 Hitachi Ltd コネクション管理方法
JPH0964883A (ja) * 1995-08-24 1997-03-07 Toshiba Corp 多重化端局装置
JPH11298928A (ja) * 1998-04-16 1999-10-29 Fujitsu Ltd 光クロスコネクト装置
JP2002300193A (ja) * 2001-03-30 2002-10-11 Hitachi Ltd ルータ
JP2002344492A (ja) * 2001-05-18 2002-11-29 Nec Corp 優先度別パス切替方法及び方式

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946367A (ja) * 1995-08-02 1997-02-14 Hitachi Ltd コネクション管理方法
JPH0964883A (ja) * 1995-08-24 1997-03-07 Toshiba Corp 多重化端局装置
JPH11298928A (ja) * 1998-04-16 1999-10-29 Fujitsu Ltd 光クロスコネクト装置
JP2002300193A (ja) * 2001-03-30 2002-10-11 Hitachi Ltd ルータ
JP2002344492A (ja) * 2001-05-18 2002-11-29 Nec Corp 優先度別パス切替方法及び方式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUROYANAGI S., HIRONISHI K., MAEDA T.: "Kosho kirikae o koryo shita hikari cross connect koseiho no kento", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, 10 February 1995 (1995-02-10), XP002986440 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306335A (ja) * 2006-05-11 2007-11-22 Mitsubishi Electric Corp 光クロスコネクト装置
JP2011015254A (ja) * 2009-07-03 2011-01-20 Nec Corp 光通信ネットワーク
WO2015129194A1 (ja) * 2014-02-25 2015-09-03 日本電気株式会社 光ネットワーク制御装置および光ネットワーク制御方法
JPWO2015129194A1 (ja) * 2014-02-25 2017-03-30 日本電気株式会社 光ネットワーク制御装置および光ネットワーク制御方法
US10193651B2 (en) 2014-02-25 2019-01-29 Nec Corporation Optical network controller and optical network control method

Also Published As

Publication number Publication date
JP3987534B2 (ja) 2007-10-10
JPWO2004084504A1 (ja) 2006-06-29

Similar Documents

Publication Publication Date Title
US6701085B1 (en) Method and apparatus for data transmission in the wavelength-division multiplex method in an optical ring network
JP3008260B2 (ja) 光伝送路のリングネットワーク通信構造とその構造用の再構成可能ノード
EP0802697B1 (en) Optical transmission system
JP4593267B2 (ja) 光ノードおよび光分岐挿入装置
US6738540B2 (en) Optical cross-connect switch using programmable multiplexers/demultiplexers
JP3298514B2 (ja) 光路切替装置とその使用方法およびこの光路切替装置を用いた光adm装置と光クロスコネクトネットワーク装置
AU743041B2 (en) Method and arrangement for transmitting data in a ring network
JPH0974577A (ja) クロスコネクト装置
US20020131118A1 (en) Optical packet node and optical packet add drop multiplexer
JPH10285119A (ja) 光通信用ノード及びこれにより構成されるリング構成の波長分割多重光伝送装置
US6771907B1 (en) Optical ring system
US7146102B2 (en) Optical cross-connect device
JP3475756B2 (ja) 通信ネットワーク、通信ネットワーク・ノード装置、及び、障害回復方式
JP3369018B2 (ja) 光クロスコネクト及びこれを用いた波長分割型光伝送システム
WO2004084504A1 (ja) 光クロスコネクト装置及び光通信制御方法
JP2000078176A (ja) 通信ネットワ―ク及び通信ネットワ―ク・ノ―ド装置
CN115967465A (zh) 一种波分复用设备及光信号处理方法
JP2000115133A (ja) 光パスクロスコネクト装置及び光ネットワーク
US7020078B2 (en) Communication network system and communication network node for use in the same communication network system
US6922530B1 (en) Method and apparatus for optical channel switching in an optical add/drop multiplexer
JP3788263B2 (ja) 通信ネットワーク、通信ネットワーク・ノード装置、及び、障害回復方式
US7085493B2 (en) Line processing equipment
JP3444231B2 (ja) 波長リングシステムおよびそのファイバへの収容方法
US20050213875A1 (en) Optical cross-connect device and method of optical communication control
JP3551115B2 (ja) 通信ネットワークノード

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004569553

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11137365

Country of ref document: US

122 Ep: pct application non-entry in european phase