WO2004084348A1 - アンテナ装置、及びアンテナ装置の製造方法 - Google Patents

アンテナ装置、及びアンテナ装置の製造方法 Download PDF

Info

Publication number
WO2004084348A1
WO2004084348A1 PCT/JP2004/003214 JP2004003214W WO2004084348A1 WO 2004084348 A1 WO2004084348 A1 WO 2004084348A1 JP 2004003214 W JP2004003214 W JP 2004003214W WO 2004084348 A1 WO2004084348 A1 WO 2004084348A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
wire
conductive
loop conductor
antenna device
Prior art date
Application number
PCT/JP2004/003214
Other languages
English (en)
French (fr)
Inventor
Susumu Morioka
Takashi Takano
Shigeru Saegusa
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/549,671 priority Critical patent/US7345644B2/en
Priority to EP04719647A priority patent/EP1605544B1/en
Priority to DE602004018281T priority patent/DE602004018281D1/de
Publication of WO2004084348A1 publication Critical patent/WO2004084348A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/04Screened antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/02Collapsible antennas; Retractable antennas

Definitions

  • the present invention relates to an antenna device provided with a so-called loop antenna having a loop shape, and a method for manufacturing such an antenna device.
  • AV equipment is often equipped with a switching power supply circuit, for example, to reduce power consumption and size. From this switching power supply circuit, it is known that relatively high frequency switching noise is generated. For example, in AV digital devices such as CD players, high frequency noise is generated from digital circuits. In other words, in recent AV equipment, high-frequency noise tends to increase as so-called in-flight noise.
  • AV equipment equipped with a radio tuner is also widely used, but if the AV equipment equipped with such a radio tuner generates the above-mentioned in-flight noise, the For the antenna for receiving the noise, this noise is received as interference noise.
  • FIG. 6 schematically shows the principle of receiving interference noise by the antenna as described above.
  • the AV device 20 is, for example, a device provided with at least a radio tuner, and an antenna 30 is connected to the AV device 20 via a feed line 31.
  • the noise generated as described above generates a noise potential between itself and the ground.
  • the noise generated in the AV device 20 is conducted through the feed line 31, when the antenna is radiated due to the potential difference from the ground, the feed line 31 and the antenna For 30, a component as a noise current flows from the feeder line 31. This results in the noise current being received at the antenna 30 as interference noise.
  • an AM antenna for example, a loop antenna in which an unshielded lead wire of about 1 m is formed in a loop shape is generally used. Therefore, when the antenna 30 shown in FIG. 6 is an AM antenna, it is easy to receive interference noise, which is a particular problem.
  • a configuration for taking measures against noise for a loop antenna is described in Japanese Patent Application Laid-Open No. 57-212.
  • a coaxial cable composed of a core wire and a shield conductor around the core wire is used for the loop antenna.
  • the shield conductor of the coaxial cable is cut at a position equidistant from each input / output terminal.
  • the shield conductor in one coaxial cable is divided into two with the cutting position as a boundary, so that these shield conductors are connected to the Dutch potential. This allows, for example, The noise received by the loop antenna can be reduced more effectively than when the entire antenna is shielded.
  • An object of the present invention is to further reduce interference noise received by a loop antenna. It is another object of the present invention to efficiently manufacture a loop antenna provided with such a noise reduction configuration. Disclosure of the invention
  • the present invention is configured as follows as an antenna device in consideration of the above problems.
  • the loop conductor is composed of a loop-shaped conductive wire and that the loop conductor is covered as a whole, and that the two terminals to which the antenna device and the receiving circuit are connected are symmetrical to each other.
  • a first line for connecting one end of the conductive wire to the ground and a second line for connecting the shield member to the ground are physically provided separately.
  • the basic configuration of the antenna device adopts a structure in which a shield member is covered around a loop conductor portion in which a conductive wire is formed in a loop shape. Then, an uncovered portion in which the loop conductor is not covered is formed corresponding to the portion of the conductive wire including the reference position where the two terminals to which the antenna device and the receiving circuit are connected are symmetrical to each other.
  • This makes it possible to achieve a balanced structure in which noise current flows in the shield member in the opposite direction with the uncovered portion as the boundary. The noise current component can be reduced by canceling it.
  • a line for connecting one end of the conductive wire to the ground and a line for connecting the shield member to the ground are physically provided separately. This makes it difficult for the effect of the voltage drop due to the common impedance between the lines to appear on the conductive lines.
  • a conductive foil material as a shield member for shielding the loop conductor portion is disposed on the winding frame portion along the loop shape as the loop conductor portion in the winding frame member.
  • the position corresponding to the position of the loop conductor including the reference position such that the connection parts to connect both ends of the loop conductor with the receiving circuit side are symmetrical to each other is An arranging step for preventing the conductive foil material from being arranged; and a winding step of winding a conductive wire as a loop conductor portion on the winding frame portion from above the conductive foil material arranged in the arranging step.
  • a covering step of covering the conductive wire with a conductive foil material so that the conductive wire wound in the winding step is covered with the conductive foil material is covered with the conductive foil material.
  • the conductive foil material is arranged on the bobbin portion of the bobbin member such that there is a portion where the conductive foil material is not located. The portion where the conductive foil material is not located is the above-mentioned uncovered portion. Then, a conductive wire as a loop conductor portion is wound around the winding frame portion from above the arranged conductive foil material, and the conductive wire is formed in a loop shape. Further, by covering the wound conductive wire with the conductive foil material, the conductive foil material functions as a shield member for the conductive wire.
  • FIG. 1A to FIG. 1B are diagrams showing a configuration example of the AM antenna device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of an AM antenna device according to a second embodiment of the present invention.
  • FIGS. 3A to 3B are diagrams showing a configuration example of an AM antenna device according to a third embodiment of the present invention.
  • FIG. 4 is a diagram showing a process of assembling a loop antenna unit of the AM antenna device according to the third embodiment.
  • 5A to 5B are diagrams showing a configuration example of a loop antenna having a shield structure.
  • FIG. 6 is a diagram schematically illustrating a principle of receiving interference noise by an antenna.
  • the loop antenna is an AM antenna device corresponding to AM broadcasting.
  • FIGS. 5A to 5B when taking measures against noise with respect to a loop antenna type AM antenna, a configuration as shown in FIGS. 5A to 5B can be considered.
  • FIG. 5A is a view seen from the front side of the AM antenna device 1A, and FIG. 5B shows a cross section along AA in FIG. 5A.
  • the AM antenna device 1A includes a loop antenna portion 2 including a loop conductor portion 3 and a shield pipe member 4, a loop antenna portion 2 and an AV device.
  • the power supply line 5A is used to supply power by connecting to the 20 receiving circuit side.
  • the loop conductor section 3 is formed by winding the conductive wire 3a in a loop shape with a required number of turns.
  • the loop conductor portion 3 is provided so as to be housed in a tube of a shield pipe member 4 in which a pipe-shaped member is formed in a loop shape.
  • the shield pipe member 4 is formed of a conductive material such as a metal, for example. Therefore, depending on the shield pipe member 4, an electrostatic shielding effect on the loop antenna unit 2 can be obtained.
  • the AM antenna device 1A includes a feeder line 5A for connecting the above-described loop antenna unit 2 side and the receiving circuit of the AV device 20 side.
  • the power supply line 5A in this case is a so-called single-core shielded cable, and has one core wire S1 and a covered wire S3 that covers the core wire S1 to provide an electrostatic shielding effect.
  • the core wire S 1 is connected to one end of a conductive wire 3 a drawn from a cut portion 4 b formed by cutting a part of the shield pipe member 4 and a signal line of a tuning circuit 21 in the AV device 20. It is for connecting with the side.
  • the covered wire S3 connects the shield pipe member 4 and the other end of the conductive wire 3a to the ground GND on the AV device 20 side.
  • the AV device 20 is assumed to have at least a tuner (receiving circuit) capable of receiving AM radio broadcasts.
  • a tuning circuit 21 including a tuning coil L2 and a tuning variable capacitor Vc is shown as a receiving circuit.
  • noise radiated from the digital circuit in the AV device 20 ⁇ switching power supply circuit, power line noise transmitted from the power supply line, and the like flow to the antenna side as noise current, This is received as interference noise on the antenna side.
  • an AM antenna device having further improved anti-jamming noise based on the above-described structure is configured.
  • FIG. 1A to 1B show a configuration example of an AM antenna device 1 according to a first embodiment of the present invention.
  • FIG. 1A is a view seen from the front side of the AM antenna device 1
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A.
  • the AM antenna device 1 of the present embodiment includes a loop antenna unit 2 including a loop conductor 3 and a shield pipe member 4, and a loop antenna 2 And a power supply line 5 for supplying power by connecting to the receiving circuit side of the AV device 20.
  • the loop conductor section 3 is formed by winding a conductive wire 3a having a length corresponding to the inductance suitable for the AM band in a loop shape with a required number of turns.
  • a conductive wire 3a use is made of a wire obtained by applying an insulating coating to a conductive core wire with, for example, a vinyl coating.
  • the loop conductor portion 3 is provided so as to be housed in a tube of a shield pipe member 4 in which a pipe-shaped member is formed in a loop shape.
  • the shield pipe member 4 is made of, for example, a conductive material such as a metal, the shield pipe member 4 covers the loop conductor portion 3. That is, the shield pipe member 4 functions as a shield member for applying an electrostatic shield to the loop antenna unit 2.
  • the uncovered portion 6 that is not covered with the loop conductor portion 3 is formed by cutting a part thereof.
  • the AM antenna device 1 of the present embodiment has a feeder line 5 for connecting the above-described loop antenna unit 2 side and the receiving circuit of the AV device 20 side.
  • the power supply line 5 is a so-called two-core shielded cable, and has two core wires S 1 and S 2 and a covered wire S 3 that covers these core wires to provide an electrostatic shielding effect.
  • One of the core wires S 1 among the core wires forming the feeder line 5 is used to connect one end of the conductive wire 3 a to the signal line side of the tuning circuit 21 in the AV device 20. Further, the other core wire S2 connects the other end of the conductive wire 3a and the ground GND of the AV device 20.
  • the covered wire S3 connects the shield pipe member 4 to the ground GND of the AV device 20 as shown in the figure.
  • the shield pipe member 4 is connected to the ground GND by connecting the metal part of the housing 20a of the AV device 20 to the other end of the covered wire S3. I am doing it.
  • the AV device 20 is assumed to include at least a tuner (receiving circuit) capable of receiving AM radio broadcasting.
  • the tuning circuit 21 is shown as a receiving circuit.
  • the tuning circuit 21 is composed of a tuning coil L2 and a tuning variable capacitor Vc as shown in the figure. Depending on these time constants, a predetermined reception frequency according to the AM band is set.
  • the received signal tuned by the tuning circuit 21 is transmitted to a subsequent receiving circuit and subjected to required processing.
  • the shield pipe member 4 applies an electrostatic shield to the loop antenna section 2 so that interference noise is received. It is hard to be done. This is the same as in the AM antenna device 1A in FIGS. 5A to 5B.
  • the physical connection of the shield pipe member 4 is cut by providing the uncovered portion 6 at the position shown in the shield pipe member 4, As a result, the electrical connection of the shield pipe member 4 at the position of the uncovered portion 6 is also interrupted.
  • the conductive wire 3 a is drawn out of the shield pipe member 4 from a radius position opposite to the uncovered portion 6, and at this drawing position, the core wire SI of the feeder line 5 is drawn. , S2.
  • the shield pipe member 4 is also connected to the covered line S3 of the power supply line 5 at this drawn position.
  • the uncovered portion 6 seen from the receiving circuit side is located at the middle of the entire length of the conductive wire 3a. That is, the end of the conductive wire 3a is symmetric with respect to the position of the uncovered portion 6 as a reference position.
  • the noise current component flowing through the conductive wire 3a is transmitted to the shield pipe member 4 via electromagnetic coupling, and the noise current component is also transmitted to the shield pipe member 4. Will flow.
  • the noise currents flowing through the shield pipe member 4 are mutually expressed as shown by the noise currents a and b shown by arrows in FIG. 1A. Flows due to the opposite polarity. That is, assuming that the position where the conductive wire 3a is drawn is taken as a base point, the noise current a flows from the position where the conductive wire 3a is drawn toward the uncovered portion 6 in the portion of the shield pipe member 4 on the left side in the figure. In the case of the shield pipe member 4 on the right side in the figure, the noise current b flows in the opposite direction to the uncovered portion 6 from the position where the conductive wire 3 a is drawn out. .
  • the present embodiment has a balanced shield structure, whereby the noise currents a and b flowing through the shield pipe member 4 are almost cancelled.
  • the noise current is, for example, based on the position corresponding to the cut portion 4b as shown by the arrow in the drawing. And flows in the same direction along the loop shape of the shield pipe member 4. That is, the balanced structure as shown in FIGS. 1A to 1B is not obtained, so that the above-described noise current component canceling effect cannot be obtained.
  • the antenna device 1 shown in FIGS. 1A to 1B employs a balanced shield structure, so that the interference noise is smaller than that of the antenna device 1A shown in FIGS. 5A to 5B. Has become difficult to receive.
  • a two-core shielded cable is used as the feeder line 5. Then, by utilizing the two core wires, one end of the conductive wire .3a is connected to the ground GND by the core wire S2 which is not used for connection of the signal line. And For the connection between the shield pipe member 4 and the ground GND, a covered wire S3 is used.
  • the grounding of the conductive line 3a and the shield pipe member 4 is performed by using a covered line S Was commonly used.
  • the antenna device 1 shown in FIGS. 1A to 1B having the above-described configuration the line for grounding the conductive wire 3a, which is the conductor of the antenna, and the shield pipe member 4 are grounded. Are the individual lines. Thereby, the influence of the voltage drop due to the common impedance between the conductive wire 3a and the shield pipe member 4 is reduced. That is, the antenna device is more resistant to noise than the case of the grounding structure of the conductive wire 3a and the shield pipe member 4 shown in FIGS. 5A to 5B.
  • the loop antenna section 2 has a balanced shield structure, and furthermore, a different line structure is used as the ground structure of the conductive wire and the shield member. To be grounded.
  • the antenna device 1 shown in FIGS. 1A to 1B has a sufficiently higher noise resistance performance than, for example, the antenna device 1A shown in FIGS. 5A to 5B. is there.
  • the antenna described in Japanese Patent Application Laid-Open No. It does not have the grounding structure of the conductive wire and the shield member as shown in Fig. B. Therefore, the antenna device 1 of the present embodiment shown in FIGS. 1A to 1B can obtain better noise resistance performance.
  • the grounding structure between the conductive wire and the shield member according to the present embodiment is based on the assumption that a single-core cable is used for the power supply line. Connection is made by a core wire in the same manner as in FIGS. 5A to 5B, and the shield pipe member 4 can also be obtained by separately connecting to the ground using a conductor. However, as shown in FIGS. 1A to 1B, if the two-core shielded cable is used, the shielding effect of the power supply line can be enhanced by efficient wiring. Therefore, it can be said that it is more reasonable.
  • FIG. 2 shows a configuration example of an AM antenna device 1 according to a second embodiment.
  • the same parts as those in FIGS. 1A to 1B are denoted by the same reference numerals, and the description overlapping with the previous description will be omitted.
  • the loop antenna section 2 shown in FIG. 2 includes a single-core shielded cable 7.
  • the single-core shielded cable 7 includes one core wire 7a and a covered wire 7b that covers and shields the core wire 7a.
  • As the core wire 7a a predetermined length corresponding to the inductance required as an AM antenna is set. Then, the single-core shielded cable 7 is formed in a loop shape with a predetermined number of turns.
  • the core wire 7a corresponds to the conductive wire 3a in FIGS. 1A to 1B, and the single-core shielded cable 7 is formed in a loop shape.
  • the entire loop shape of the core wire 7 a formed as a result of this operation corresponds to the loop conductor 3.
  • the covered wire 7b corresponds to the shield pipe member 4 (that is, the shield member) in FIGS. 1A to 1B. That is, in the second embodiment, the loop antenna having the electrostatic shield structure is obtained by forming the single-core shield cable 7 in a loop shape. For example, in the structure shown in FIGS.
  • the bundle wound around the conductive wire 3a is covered with a shield pipe member 4 as a shield member, whereas the structure shown in FIG. In the configuration, the covered wire 7b is wound in the same manner as the core wire 7a as the conductive wire.
  • an uncovered section 6 for forming a balanced shield structure is formed.
  • the uncovered portion 6 is to be provided corresponding to a reference position such that connection portions for connecting both ends of the conductive wire of the loop antenna portion to the receiving circuit portion side are symmetrical to each other.
  • the position of the loop antenna section 2 is approximately at the midpoint of the entire length of the single-core shielded cable 7. It suffices that the insulated wire 7b is cut off.
  • the position of the uncovered portion 6 in the loop shape of the loop antenna section 2 and the single-core shielded cable The position where 7 is connected to the feeder line 5 side is located at substantially the same circumferential position.
  • both ends of the core wire 7a of the single-core shielded cable 7 are connected to the core wires S1 and S2 of the power supply line 5 of the double-core shielded cable, respectively, so that the tuning circuit 21 on the AV device 1 side is connected.
  • the shielded wire 7b of the single-core shielded cable 7 corresponding to the shield member is connected to the housing 20a grounded to the GND of the AV device 20 via the coated wire S3 of the power supply line 5. Is done. That is, the second embodiment also employs the same grounding structure as in FIGS. 1A to 1B.
  • the loop antenna portion 2 is formed by forming a portion where the core wire 7 a is not covered by the covered wire 7 b as the non-covered portion 6. It is only necessary to form the core shielded cable 7 in a loop shape. That is, the loop antenna unit 2 can be manufactured by a simple operation.
  • An actual manufacturing process for forming a portion as the uncoated portion 6 with respect to the single-core shielded cable 7 may be performed as follows.
  • a single core shielded cable 7 is prepared by cutting out the length necessary to form the loop antenna section 2 from a roll of a single core shielded cable.
  • the single-core shielded cable 7 at the position where the uncovered portion 6 is to be formed (substantially at an intermediate position), only the covered wire 7b is cut while leaving the core wire 7a.
  • two single-core shielded cables having a length corresponding to approximately 12 of the entire length of the single-core shielded cable 7 required to form the loop antenna section 2 are prepared. Then, at one end of each single-core shielded cable, the core wire 7a is stripped by a required length, and the stripped core wires 7a are connected to each other using a connector such as soldering or a connection terminal. To be continued.
  • the uncovered portion 6 of the uncovered portion 6 is left exposed, so the uncovered portion 6 is protected by an insulating material such as an insulating tube to protect against inadvertent short-circuiting or cutting. Is preferred. Regarding this point, the same can be said for the loop antenna unit 2 previously shown in FIGS. 1A to 1B.
  • an insulating material such as an insulating tube to protect against inadvertent short-circuiting or cutting. Is preferred.
  • the same can be said for the loop antenna unit 2 previously shown in FIGS. 1A to 1B.
  • a relatively thick insulating material 7d is filled around a core wire 7a. If a structure having the covered wire 7b and the insulating cover 7c is used, the distance A between the core wire 7a and the covered wire 7b becomes relatively long.
  • the use of the single-core shielded cable 7 for the loop antenna unit 2 can also achieve the effect of reducing the stray capacitance.
  • FIG. 3A to 3B show an AM antenna device 1 according to a third embodiment.
  • FIG. 3A is a view as viewed from the front side of the AM antenna device 1
  • FIG. 3B is a cross-sectional view taken along line A_A in FIG. 3A.
  • the same parts as those in FIGS. 1A to 1B and 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the loop antenna section 2 shown in FIGS. 3A to 3B is provided with a ring-shaped winding frame member 8 first.
  • the winding frame member 8 is formed with a winding frame portion 8a having a substantially U-shaped cross section.
  • the shape of the winding frame portion 8a may be a cross-sectional shape of a frame in which an opening is formed on the outer peripheral side of the ring shape, for example, a substantially U-shaped cross-sectional shape.
  • a loop conductor portion 3 is formed by winding the conductive wire 3a in the winding frame portion 8a. It is covered with foil 4A.
  • the material of the shielding metal foil 4 A is conductive
  • the material is not particularly limited as long as it is a material that can be used. For example, an aluminum foil material can be used.
  • the shielding metal foil 4A functions as a shield member for electrostatically shielding the loop conductor portion 3.
  • the uncovered portion 6 is such that the connecting portions for connecting both ends of the conductive wire of the loop antenna portion to the receiving circuit portion side are symmetrical to each other, as shown in the drawing of the shielding metal foil 4A.
  • a portion not covering the conductive wire 3a with the shielding metal foil 4A is provided and formed.
  • the grounding structure of the loop antenna unit 2 by the feeder line 5 shown in FIGS. 3A to 3B is the same as that in FIGS. 1A to 1B.
  • FIG. 4 shows a process of assembling the antenna loop portion 2 shown in FIGS. 3A to 3B. 4 (a) to 4 (d) show only the portion of the winding frame portion 8a of the winding frame member 8 in an enlarged manner.
  • the shielding metal foil 4A is arranged inside the reel 8a so as to substantially conform to the inner shape of the reel 8a. Let it. At this time, as shown in FIG. 3A, the shielding metal foil 4A should not be arranged at the portion to be the uncovered portion 6. Further, at this time, for example, the shield metal LIN 4A is left on both sides from the opening of the winding frame 8a.
  • the conductor 3a Is wound. As a result, as shown in FIG. 3a is wound in a loop along the outer peripheral shape of the winding frame portion 8a, so that the loop conductor portion 3 is formed.
  • the shielding metal foil 4A that has protruded from the opening of the reel 8a is folded over the opening as shown in FIG. 4 (c). Cover around the conductive wire 3a. Thereby, a state is formed in which the loop conductor portion 3 is covered with the shielding metal foil 4A.
  • FIGS. 4 (a) to 4 (c) The assembly process corresponding to the structure shown in FIGS. 3A to 3B is shown in FIGS. 4 (a) to 4 (c).
  • the metal foil 4A for shielding is exposed from the outer periphery of a, and the conductive wire 3a is also exposed at the uncovered portion 6, so that the metal foil 4A for shield and the conductive wire 3a are damaged. It's easy and it's not aesthetically pleasing. Therefore, after the step of FIG. 4 (c), as shown in FIG. 4 (d), the entire opening of the winding frame 8a is covered with an insulating tape 9 or the like. It is good to
  • the conductive wire 3a is passed through a pipe as a shield member. This is not a simple task.
  • the loop antenna portion can be assembled by winding the necessary members around the winding frame member. Can be.
  • a winding wire member has conventionally been used to wind a conductive wire around it. Therefore, it can be said that, depending on the process shown in FIG. 4, it can be efficiently manufactured using the existing reel member.
  • the conductive wire 3a and the shielding metal foil 4A which is a shielding member, are close to each other, so that the conductive The stray capacitance between the wire 3a and the shielding metal foil 4A increases.
  • the outer insulating coating actually provided for the conductive wire 3a is formed so as to have a required thickness, the distance between the conductive wire 3a and the shielding metal foil 4A is increased. Therefore, it is easy to reduce stray capacitance.
  • the loop shape is a substantially circular shape, but may be a polygonal shape such as a quadrangle or a triangle.
  • the AM antenna is used.
  • an FM antenna and other antennas for other uses also employ a loop antenna. It can be applied to
  • the present invention relates to a loop antenna in which a loop conductor in which a conductive wire is formed in a loop shape is covered with a shield member, wherein the antenna device and the receiving circuit are connected.
  • the non-covered portion where the loop conductor portion is not covered is formed so as to correspond to the portion of the conductive wire including the reference position where the two terminals are symmetrical to each other.
  • the power supply cable includes a covered wire covering a predetermined number of core wires for connecting the conductive wire and the receiving circuit side, and the covered wire is connected between the shield member and the ground potential.
  • a line for connecting one end of the conductive wire to the ground potential and a line for connecting the shield member to the ground potential are individually provided, so that a common impedance is provided. This makes it difficult for the antenna to receive the voltage drop due to the noise, and the noise resistance is further improved.
  • the antenna device of the present invention realizes higher noise immunity than before by combining the balanced shield structure and the grounding structure that passes through the line in which the conductor and the shield member are grounded differently. ing.
  • a conductive foil material is disposed on the winding frame portion, and then a conductive wire as a loop conductor portion is wound on the winding frame portion.
  • the conductive wire is formed in a loop shape, and the wound conductive wire is covered with a conductive foil material.
  • the antenna device can be manufactured by a simple operation of arranging and winding the conductive foil material and the conductive wire on the winding frame portion.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Details Of Aerials (AREA)

Abstract

耐ノイズ性能の高いループアンテナを備えるループアンテナ装置である。導電線をループ状に形成したループ導体部に対してシールド部材により被覆が施されるループアンテナにおいて、アンテナ装置と受信回路が接続される2つの端子が互いに対称となる基準位置を含む導電線の部分に対応させて、ループ導体部が被覆されない非被覆部分を形成する。これによって、平衡シールド構造を得る。また、導電線の一端をグランド電位と接続するためのラインと、シールド部材とグランド電位を接続するためのラインは、それぞれ個別のものとすることで、共通インピーダンスによる電圧降下もアンテナにて受信されにくくなるようにする。

Description

明細書 アンテナ装置、 及びアンテナ装置の製造方法 技術分野
本発明は、 ループ形状を有するいわゆるループアンテナを備えるアン テナ装置、 及びこのようなアンテナ装置の製造方法に関する。 背景技術
近年の A V機器においては、 例えば低消費電力化や小型化などのため にスィツチング電源回路が搭載されることが多い。 このスィツチング電 源回路からは、 比較的高周波のスィツチングノイズが発生することが分 かっている。 また、 例えば C Dプレーヤなどに代表される A Vデジタル 機器では、 デジタル回路から高周波ノイズが発生する。 つまり、 近年の A V機器などでは、 いわゆる機内ノイズとして、 高周波ノイズが増加し ている傾向にある。
A V機器には、 ラジオチューナを備えたものも広く普及しているが、 このようなラジオチューナを備える A V機器が、 上記したような機内ノ ィズを発生させている場合、 ラジオ放送の放送波を受信するためのアン テナにとっては、 このノイズが妨害ノイズとして受信されるという不都 合を招いている。
また、 近年では、 電子機器がデジタル化されていることで、 例えば電 灯線を伝搬するノイズも増加している傾向にあり、 このような電灯線か らのノイズも、 ァンテナが受信する妨害ノイズの大きな要因となってい る。 第 6図は、 上記のようにしてアンテナにより妨害ノイズが受信される 原理を模式的に示している。
A V機器 2 0は、 例えば少なくともラジオチューナを備える機器であ り、 この A V機器 2 0に対して、 給電線 3 1を経由してアンテナ 3 0が 接続されている。
A V機器 2 0において、 上記のようにして発生するノイズは、 グラン ドとの間にノイズ電位を生じさせている。 ここで、 例えば給電線 3 1を 介して、 A V機器 2 0にて発生しているノイズが伝導されると、 グラン ドとの電位差により、 アンテナから輻射されるときに、 給電線 3 1及び アンテナ 3 0に対して、 給電線 3 1からノイズ電流としての成分が流れ る。 そして、 このノイズ電流が、 妨害ノイズとしてアンテナ 3 0におい て受信される結果となる。
近年における A Mアンテナは、 例えば非シールド構造の約 1 mのリ一 ド線をループ形状に形成したループアンテナが一般的である。 従って、 第 6図に示すアンテナ 3 0が A Mアンテナである場合には妨害ノイズを 受信しやすく、 特に問題となっている。
そこで、 例えばループアンテナを対象としてノイズ対策を行うための 構成が特開昭 5 7 - 2 1 0 2号公報に記載されている。 この特開昭 5 7 - 2 1 0 2号公報に記載の構成では、 ループアンテナについて、 芯線と その周囲のシールド導体から成る同軸ケーブルを使用することとしてい る。 その上で、 各入出力端子から等距離となる位置において、 前記同軸 ケーブルのシールド導体を切断するようにしている。 なお、 この構成の 場合には、 1本の同軸ケーブルにおけるシールド導体が切断位置を境界 として 2つに分割されることになるので、 これらのシールド導体をダラ ンド電位に接続するようにしている。 これにより、 例えば単にループア ンテナ全体に対してシールドを施したような場合よりも、 ループアンテ ナにて受信されるノイズを有効に低減することが可能となる。
しかしながら、 ループアンテナとしては、 さらに、 妨害ノイズの受信 についてさらに改善されるようにすることが好ましい。 本発明は、 ルー プアンテナが受信する妨害ノイズを更に低減することを課題とする。 ま た、 このようなノイズ低減の構成が与えられたループアンテナについて、 効率的に製造が行われるようにすることを課題とする。 発明の開示
そこで本発明としては、 上記した課題を考慮してアンテナ装置として 次のように構成する。
つまり、 ループ状の導電線から成るループ導体部と、 全体としてはル ープ導体部を被覆するものとされたうえで、 アンテナ装置と受信回路が 接続される 2つの端子が互いに対称となる基準位置を含む導電線の箇所 に対応して、 ループ導体部を被覆しない非被覆部分が形成されるシール ド部材とを備える。 また、 これと共に、 導電線の一端をグランドと接続 するための第 1のラインと、 シールド部材をグランドに接続するための 第 2のラインとを物理的に個別に設けることとした。
上記構成によると、 アンテナ装置の基本構成としては導電線をループ 状に形成したループ導体部の周囲に対して、 シールド部材を被覆させた 構造を採ることとなる。 そのうえで、 アンテナ装置と受信回路が接続さ れる 2つの端子が互いに対称となる基準位置を含む導電線の部分に対応 させて、 ループ導体部が被覆されない非被覆部分を形成することとして いる。 これにより、 非被覆部分を境界としてシールド部材において逆方 向のノイズ電流が流れるという平衡構造とすることができ、 これにより ノイズ電流成分をキャンセルさせるようにして低減させることが可能と なる。
そして、 さらに、 導電線の一端をグランドと接続するためのラインと、 シールド部材をグランドに接続するためのラインとを物理的に個別に設 けることとした。 これにより、 上記各ライン間での共通インピーダンス による電圧降下の影響が導電線に現れにくくなる。
また、 アンテナ装置の製造方法として、 巻枠部材におけるループ導体 部としてのループ形状に沿った巻枠部に対して、 ループ導体部をシール ドするためのシールド部材としての導電性箔材を配置する工程であり、 このときに、 ループ導体部の両端部を受信回路部側と接続するべき接続 部位が互いに対称となるような基準位置を含むループ導体部の箇所に対 応する位置に対しては、 導電性箔材が配置されないようにする配置工程 と、 この配置工程により配置された導電性箔材の上から、 巻枠部に対し てループ導体部としての導電線を巻装する卷装工程と、 巻装工程により 巻装された導電線が、 導電性箔材により被覆された状態となるように導 電性箔材により導電線を覆う被覆工程とを少なくとも有することとした。 上記製造方法では、 先ずは、 上記した導電性箔材が位置していない箇 所があるようにして、 巻枠部材の巻枠部に対して導電性箔材の配置を行 う。 この導電性箔材が位置していない箇所が上記した非被覆部分となる。 そして、 この配置された導電性箔材の上から、 巻枠部に対してループ導 体部としての導電線を巻装して、 導電線をループ状に形成する。 さらに、 巻装された導電線を導電性箔材によって覆うことで、 導電性箔材は、 導 電線のためのシールド部材として機能することとなる。
つまり、 上記製造方法によっては、 ループ導体部がシールド部材によ り.被覆されており、 かつ、 非被覆部分が形成されたアンテナ装置を製造 することが可能とされる。 そして、 この製造工程としては、 巻枠部に対 して導電性箔材、 導電線を配置、 巻回するという簡易な作業によるもの となる。 図面の簡単な説明
第 1 A図乃至第 1 B図は、 本発明の第 1の実施の形態の A Mアンテナ 装置の構成例を示す図である。
第 2図は、 本発明の第 2の実施の形態の A Mアンテナ装置の構成例を 示す図である。
第 3 A図乃至第 3 B図は、 本発明の第 3の実施の形態の A Mアンテナ 装置の構成例を示す図である。
第 4図は、 第 3の実施の形態の A Mアンテナ装置のループアンテナ部 の組み立て工程を示す図である。
第 5 A図乃至第 5 B図は、 シールド構造を有するループアンテナの構 成例を示す図である。
第 6図は、 アンテナにて妨害ノイズが受信される原理を模式的に示す 図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について説明していく。 本実施の形態は、 ループアンテナが A M放送に対応する A Mアンテナ装置である場合を例 に説明を行うこととする。
ここで、 ループアンテナタイプの A Mアンテナについてノイズ対策を 施すことを考えた場合、 第 5 A図乃至第 5 B図に示すような構成を考え ることができる。
第 5 A図は、 A Mアンテナ装置 1 Aの正面とされる側から見た図であ り、 第 5 B図は、 第 5 A図における A— Aによる断面を示している。 これら第 5 A図乃至第 5 B図に示されるようにして、 A Mアンテナ装 置 1 Aは、 ループ導体部 3及びシールドパイプ部材 4から成るループア ンテナ部 2と、 このループアンテナ部 2と A V機器 2 0の受信回路側と を接続して給電を行うため給電線 5 Aとから成るものとされる。
ループアンテナ部 2において、 ループ導体部 3は、 導電線 3 aを所要 の巻数分によりループ形状に巻回して形成される。 このループ導体部 3 は、 パイプ状の部材をループ状に形成した、 シールドパイプ部材 4の筒 内に収納されるようにして設けられる。 このシールドパイプ部材 4は、 例えば金属などの導電性を有する材質により形成されており、 従って、 シールドパイプ部材 4によっては、 ループアンテナ部 2に対する静電シ —ルド効果が得られることになる。
また、 A Mアンテナ装置 1 Aとしては、 上記したループアンテナ部 2 側と A V機器 2 0側の受信回路とを接続するための給電線 5 Aを有する。
この場合の給電線 5 Aは、 いわゆる一芯シールドケ一ブルであり、 1 本の芯線 S 1 と、 この芯線 S 1 を被覆することで静電シールド効果を与 える被覆線 S 3 とを有する。
芯線 S 1 は、 シールドパイプ部材 4の一部を切断するようにして形成 される切断部 4 bから引き出された導電線 3 aの一端を、 A V機器 2 0 内の同調回路 2 1の信号ライン側と接続するためのものとされる。 また、 被覆線 S 3は、 図示するようにしてシールドパイプ部材 4と、 導電線 3 aの他方の端部とを A V機器 2 0側のグランド G N Dと接続している。 この場合の A V機器 2 0は、 少なくとも A Mラジオ放送を受信可能な チューナ (受信回路) を備えているものとされる。 ここでは、 受信回路 として同調用コイル L 2及び同調用バリアブルコンデンサ V cから成る 同調回路 2 1を示している。 先に第 6図により説明したように、 例えば A V機器 2 0内のデジタル 回路ゃスィツチング電源回路から輻射されるノイズや、 電源ラインから 伝搬する電灯線ノイズなどは、 ノイズ電流としてアンテナ側に流れ、 こ れをアンテナ側では妨害ノイズとして受信する。
しかしながら、 上記第 5 A図乃至第 5 B図に示す A Mアンテナ装置 1 Aの構成であれば、 シールドパイプ部材 4によって、 ループアンテナ部 2に対する静電シールドが施されていることで、 妨害ノイズが受信され にくくなる。
本実施の形態としては、 上記した構造を基として、 さらに耐妨害ノィ ズ性を強化した A Mアンテナ装置を構成する。
第 1 A図乃至第 1 B図は、 本発明の第 1の実施の形態としての A Mァ ンテナ装置 1の構成例を示している。 第 1 A図は、 A Mアンテナ装置 1 の正面とされる側から見た図であり、 第 1 B図は、 第 1 A図における A —Aによる断面を示している。
これら第 1 A図乃至第 1 B図に示されるようにして、 本実施の形態の A Mアンテナ装置 1は、 ループ導体部 3及びシールドパイプ部材 4から 成るループアンテナ部 2と、 このループアンテナ部 2と A V機器 2 0の 受信回路側とを接続して給電を行うため給電線 5とから成るものとされ る。
ループアンテナ部 2において、 ループ導体部 3は、 A Mの帯域に適合 したィンダクタンスに応じた長さの導電線 3 aを所要の巻数分によりル ープ形状に巻回して形成される。 なお、 確認のために述べておくと、 こ の導電線 3 aには、 導電性を有する芯線に対して例えばビニル被覆など により絶縁被覆が施された線材を使用する。
そして、 このループ導体部 3は、 パイプ状の部材をループ状に形成し たシールドパイプ部材 4の筒内に収納されるようにして設けられる。 こ のシールドパイプ部材 4は、 例えば金属による導電性を有する材質によ り形成されているから、 シールドバイプ部材 4はループ導体部 3を被覆 していることになる。 つまり、 シールドパイプ部材 4は、 ループアンテ ナ部 2に対する静電シールドを施すためのシールド部材として機能する。 そしてさらに、 本実施の形態では、 シールドパイプ部材 4のループ形 状において、 その一部を切断するようにして、 ループ導体部 3が被覆さ れていない非被覆部 6を形成している。
また、 本実施の形態の A Mアンテナ装置 1としては、 上記したループ アンテナ部 2側と A V機器 2 0側の受信回路とを接続するための給電線 5を有する。
この給電線 5は、 いわゆる二芯シールドケーブルであり、 2本の芯線 S 1 , S 2 と、 これらの芯線を被覆することで静電シールド効果を与え る被覆線 S 3 とを有する。
給電線 5を形成する芯線のうち、 一方の芯線 S 1 は、 導電線 3 aの一 端を、 A V機器 2 0内の同調回路 2 1の信号ライン側と接続するための ものとされる。 また、 他方の芯線 S 2は、 導電線 3 aの他端と A V機器 2 0のグランド G N Dとを接続する。
また、 被覆線 S 3は、 図示するようにしてシールドパイプ部材 4を A V機器 2 0側のグランド G N Dと接続している。 この場合には、 A V機 器 2 0の筐体 2 0 aの金属部分と、 被覆線 S 3の上記他方の端部とを接 続することで、 シールドパイプ部材 4がグランド G N Dと接続されるよ うにしている。
この場合の A V機器 2 0は、 少なくとも A Mラジオ放送を受信可能な チューナ (受信回路) を備えているものとされ、 ここでは、 受信回路と して同調回路 2 1を示している。 この同調回路 2 1は、 図示するように して、 同調用コイル L 2及び同調用バリアブルコンデンサ V cとから成 り、 これらの時定数によっては、 A M帯域に応じた所定の受信周波数が 設定される。 この同調回路 2 1により同調された受信信号は、 後段の受 信回路に伝送されて所要の処理が施される。
上記第 1 A図乃至第 1 B図に示す A Mアンテナ装置 1の構成であれば、 先ず、 シールドパイプ部材 4によって、 ループアンテナ部 2に対する静 電シールドが施されていることで、 妨害ノイズが受信されにくくなる。 この点については、 第 5 A図乃至第 5 B図の A Mアンテナ装置 1 Aと同 様である。
そのうえで、 本実施の形態では、 シールドパイプ部材 4について、 図 示する位置に対して非被覆部 6を設けることで、 ここでのシールドパイ プ部材 4の物理的な接続を切断しているが、 これによつては、 この非被 覆部 6の位置でのシールドバイプ部材 4の電気的接続も遮断されている ことになる。
そして、 この場合において、 導電線 3 aは、 シールドパイプ部材 4に おいて、 非被覆部 6とは反対の半径位置から引き出されており、 この引 き出し位置にて、 給電線 5の芯線 S I , S 2と接続されている。 また、 シールドパイプ部材 4についても、 この引き出し位置にて給電線 5の被 覆線 S 3と接続している。 これにより、 受信回路側から見た非被覆部 6 は、 導電線 3 aとしての全長のちようど中間に位置していることになる。 つまり、 導電線 3 aの端部が、 非被覆部 6の位置を基準位置として対称 となっている。
上記した非被覆部 6と導電線 3 aの関係を形成した場合、 導電線 3 a に流れるノイズ電流成分は、 電磁結合を介してシールドバイプ部材 4に 伝達され、 シールドパイプ部材 4にもノイズ電流が流れることになる。
ここで、 シールドパイプ部材 4に流れるノイズ電流は、 第 1 A図にお いて矢印のノイズ電流 a及びノイズ電流 bにより示すようにして、 互い に逆極性により流れるものとなる。 つまり、 導電線 3 aの引き出し位置 を基点として考えたとして、 図において左側となるシールドパイプ部材 4の部分で、 ノイズ電流 aが導電線 3 aの引き出し位置から非被覆部 6 の方向に流れているとされるときには、 図において右側となるシールド パイプ部材 4の部分では、 これとは逆方向となるようにして、 導電線 3 aの引き出し位置から非被覆部 6の方向にノイズ電流 bが流れる。
そして、 この場合において、 導電線 3 aの端部が、 非被覆部 6の位置 を基準位置として対称となっていることで、 逆極性とされた上で、 ほぼ 同レベルのノィズ電流 a, が生じていることになる。
つまり、 本実施の形態では、 平衡シールド構造となっているものであ り、 これによつて、 シールドパイプ部材 4に流れるノイズ電流 a , bは、 ほぼ相殺されることになる。
これに対して、 第 5 A図乃至第 5 B図に示したループアンテナ部 2の 構造では、 図において矢印により示すようにして、 ノイズ電流は、 例え ば切断部 4 bに対応する位置を基点として、 シールドパイプ部材 4のル ープ形状にそって同一方向に流れる。 つまり、 第 1 A図乃至第 1 B図に 示したような平衡構造とはなっておらず、 このため、 上記したようなノ ィズ電流成分のキャンセル効果も得られない。
つまり、 第 1 A図乃至第 1 B図に示すアンテナ装置 1は、 平衡のシー ルド構造を採っていることで、 第 5 A図乃至第 5 B図に示すアンテナ装 置 1 Aよりも妨害ノイズが受信されにくくなつている。
さらに、 第 1 A図乃至第 1 B図に示すアンテナ装置 1では、 給電線 5 として、 二芯シールドケーブルを採用している。 そして、 芯線が 2本で あることを利用して、 信号ラインの接続に用いない芯線 S 2 により導電 線.3 aの一端とグランド G N Dとを接続するようにしている。 そして、 シールドパイプ部材 4とグランド G N Dとの接続については、 被覆線 S 3を用いることとしている。
例えば第 5 A図乃至第 5 B図に示す構成では、 給電線 5 Aがー芯シー ルドケーブルとされていることで、 導電線 3 aとシールドパイプ部材 4 の接地には、 被覆線 S 3を共通に用いていた。 これに対して、 上記した 構成を採る第 1 A図乃至第 1 B図のアンテナ装置 1では、 アンテナの導 体である導電線 3 aを接地するためのラインと、 シールドパイプ部材 4 を接地するためのラインとは、 それぞれ個別のラインであることになる。 これにより、 導電線 3 aとシールドパイプ部材 4との間での共通ィンピ —ダンスによる電圧降下の影響も少なくなる。 つまり、 第 5 A図乃至第 5 B図に示す導電線 3 aとシールドパイプ部材 4の接地構造の場合より もノイズに強いアンテナ装置となっているものである。
このようにして、 第 1 A図乃至第 1 B図に示すアンテナ装置 1では、 ループアンテナ部 2について平衡シールド構造としたうえで、 さらに、 導電線とシールド部材の接地構造として、 それぞれが異なるラインによ り接地されるようにしている。 この組み合わせによって、 第 1 A図乃至 第 1 B図に示すアンテナ装置 1は、 例えば第 5 A図乃至第 5 B図に示す アンテナ装置 1 Aよりも充分に高い耐ノイズ性能を得ているものである。 そして、 例えば特開昭 5 7 — 2 1 0 2号公報と比較した場合において も、 この特開昭 5 7 — 2 1 0 2号公報に記載されるアンテナでは、 上記 第 1 A図乃至第 1 B図に示したような導電線とシールド部材の接地構造 とはなっていない。 従って、 第 1 A図乃至第 1 B図に示す本実施の形態 のアンテナ装置 1のほうが、 より良好な耐ノイズ性能を得ることができ るものである。
.なお、 本実施の形態としての導電線とシールド部材の接地構造は、 給 電線について一芯ケーブルを用いることとして、 導電線 3 aについては、 第 5 A図乃至第 5 B図と同様にして芯線により接続を行い、 シールドパ ィプ部材 4については、 別途に導線を用いてグランドに接続しても得る ことができる。 しかしながら、 第 1 A図乃至第 1 B図に示したように、 二芯シールドケ一ブルを用いるようにすれば、 効率的に配線を行ったう えで、 給電線のシールド効果も強化するができるので、 より合理的であ るといえる。
また、 周知のことであるが、 二芯シールドケーブルとしては、 2本の 芯線を相互に撚るようにしたものを用いることが、 さらに好ましい。 第 2図は、 第 2の実施の形態としての A Mアンテナ装置 1の構成例を 示している。 なお、 第 1 A図乃至第 1 B図と同一部分には同一符号を付 して、 これまでと重複する説明については省略する。
第 2図に示すループアンテナ部 2は、 一芯シールドケーブル 7を備え て成る。 この一芯シールドケーブル 7は、 1本の芯線 7 aと、 この芯線 7 aを被覆してシールドする被覆線 7 bとから成る。 また、 芯線 7 aと しては、 A Mアンテナとして必要なインダクタンスに応じた所定長が設 定される。 そして、 この一芯シールドケーブル 7について、 所定の巻数 によるループ状に形成する。
このようにして形成されるループアンテナ部 2においては、 芯線 7 a が第 1 A図乃至第 1 B図の導電線 3 aに相当し、 また、 この一芯シール ドケーブル 7をループ状に形成したことに伴って形成される芯線 7 aの ループ形状全体がループ導体部 3に相当する。 また、 被覆線 7 bが第 1 A図乃至第 1 B図のシールドパイプ部材 4 (即ちシールド部材) に相当 することになる。 つまり、 第 2の実施の形態では、 一芯シールドケープ ル 7をループ状に形成することで以て、 静電シールド構造のループアン テナを得るようにされている。 例えば第 1 A図乃至第 1 B図に示す構造では、 導電線 3 aを巻回した 束に対してシールド部材としてのシールドパイプ部材 4を被覆させてい るのに対して、 第 2図に示す構成では、 導電線としての芯線 7 aととも に、 被覆線 7 bも同じようにして巻回される状態となっている。
しかしながら、 第 2図に示す構造であっても、 導電線である芯線 7 a が被覆線 7 bによりシールドされている以上、 全体としては、 ループ導 体部 3を被覆していることと等価であり、 また、 同等のシールド効果も 得られるものである。
そのうえで、 第 2図に示すループアンテナ部 2としても、 平衡シール ド構造とするための非被覆部 6が形成される。
非被覆部 6は、 ループアンテナ部の導電線の両端部を受信回路部側と 接続するべき接続部位が互いに対称となるような基準位置に対応して設 けられるべきものである。
従って、 第 2図に示すようにして、 ループアンテナ部 2を、 一芯シ一 ルドケーブル 7により形成することとした場合には、 一芯シールドケー ブル 7の全長のほぼ中点の位置において、 被覆線 7 bが切断されたよう な状態とすればよいこととなる、 このために、 第 2図においては、 ルー プアンテナ部 2のループ形状における非被覆部 6の位置と、 一芯シール ドケーブル 7が給電線 5側と接続される位置とについて、 ほぼ同じ円周 位置にあるようにされているものである。
また、 一芯シールドケーブル 7の芯線 7 aの両端部は、 それぞれ、 二 芯シールドケーブルによる給電線 5の芯線 S 1, S 2 と接続されること で、 A V機器 1側の同調回路 2 1の信号ラインと、 グランド G N Dと接 続される。 また、 シールド部材に相当する一芯シールドケーブル 7の被 覆線 7 bは、 給電線 5の被覆線 S 3を介して、 A V機器 2 0のグランド G N Dに接地された筐体 2 0 aと接続される。 つまり、 第 2の実施の形態においても、 第 1 A図乃至第 1 B図と同様 の接地構造を採っている。
このようにして構成される第 2の実施の形態の A Mアンテナ装置 1と した場合、 ループアンテナ部 2として、 非被覆部 6としての被覆線 7 b により芯線 7 aが被覆されない箇所を形成した一芯シールドケーブル 7 をループ状に形成しさえすればよいことになる。 つまり、 簡略な作業に よりループアンテナ部 2を製造することができる。
また、 一芯シールドケーブル 7に対して非被覆部 6としての箇所を形 成するための実際の製造工程としては、 次のようにすればよい。
1つには、 例えば一芯シールドケーブルのロールから、 ループアンテ ナ部 2を形成するのに必要な長さを切り出して、 1本分の一芯シールド ケーブル 7を用意する。 そして、 この一芯シールドケーブル 7において 非被覆部 6を形成すべき位置 (ほぼ中間位置) において、 芯線 7 aは残 して、 被覆線 7 bのみを切断するようにされる。
あるいは、 ループアンテナ部 2を形成するのに必要な長さの一芯シ一 ルドケーブル 7の全長のほぼ 1 2に対応する長さの一芯シールドケー ブルを 2本用意する。 そして、 各一芯シールドケーブルの一方の端部に おいて、 芯線 7 aを必要長さだけ剥き出し、 この剥き出された芯線 7 a どうしを、 例えばハンダ付け或いは接続端子などのコネクタを用いて接 続するようにされる。
なお、 そのままでは、 非被覆部 6における被覆線 7 aの部分が露出し たままになるから、 不用意な短絡や切断などに対する保護のため、 絶縁 チューブなどの絶縁材により非被覆部 6を保護することが好ましい。 こ の点については、 先に第 1 A図乃至第 1 B図に示したループアンテナ部 2についても同様のことがいえる。 ところで、 例えば第 2図において拡大断面図として示すように、 一芯 シールドケーブル 7について、 芯線 7 aの周囲に比較的厚めの絶縁材 7 dを充填し、 この絶緣材 7 dの周囲に対して被覆線 7 b、 絶縁被覆 7 c を設けたような構造のものを用いると、 芯線 7 aと、 被覆線 7 bとの間 隔 Aとしては比較的長いものとなる。 芯線 7 aと被覆線 7 bとの間隔が 離れることによっては、 芯線 7 aと被覆線 7 bとの間での浮遊容量が少 なくなることから、 その分、 耐ノイズ性能が向上するということがいえ る。 つまり、 第 2図に示す構成では、 ループアンテナ部 2に一芯シール ドケーブル 7を用いることにより、 浮遊容量の低減効果も得ることがで きているものである。
第 3 A図乃至第 3 B図は、 第 3の実施の形態としての A Mアンテナ装 置 1を示している。 第 3 A図は、 A Mアンテナ装置 1の正面とされる側 から見た図であり、 第 3 B図は、 第 3 A図における A _ Aによる断面を 示している。 なお、 これらの図においても、 第 1 A図乃至第 1 B図及び 第 2図と同一とされる部分については、 同一符号を付して説明を省略す る。
第 3 A図乃至第 3 B図に示すループアンテナ部 2は、 先ず、 リング形 状の巻枠部材 8が設けられる。 この巻枠部材 8には、 第 3 B図から分か るように、 断面が略コ字状の巻枠部 8 aが形成されている。 なお、 巻枠 部 8 aの形状としては、 例えば略 U字型の断面形状とするなど、 リング 形状の外周側に対して、 開口部が形成された枠の断面形状とされればよ い。
そして、 この巻枠部 8 a内においては、 図示するようにして、 導電線 3 aを巻回することでループ導体部 3が形成されており、 さらに、 この ル プ導体部 3をシールド用金属箔 4 Aによって被覆している状態とな つている。 なお、 シールド用金属箔 4 Aの材質としては、 導電性を有す る材質である限り特に限定されるべきものではないが、 例えばアルミ二 ゥムの箔材を用いることができる。
このような構造では、 シールド用金属箔 4 Aが、 ループ導体部 3を静 電シールドするシールド部材として機能することになる。
また、 この場合の非被覆部 6は、 シールド用金属箔 4 Aを図示するよ うにして、 ループアンテナ部の導電線の両端部を受信回路部側と接続す るべき接続部位が互いに対称となる基準位置に対応する箇所において、 シールド用金属箔 4 Aにより導電線 3 aを被覆しない部位を設けて形成 している。
また、 第 3 A図乃至第 3 B図に示す給電線 5によるループアンテナ部 2の接地構造は、 第 1 A図乃至第 1 B図と同様となっている。
このような構成は、 本発明に基づくループアンテナ部を実際に製造す るのにあたり、 効率よく組み立てることのできる構造となっている。 第 4図に、 第 3 A図乃至第 3 B図に示すアンテナループ部 2の組み立てェ 程を示す。 第 4図 (a ) 〜 (d ) は、 巻枠部材 8の卷枠部 8 aの部分の みを抜き出し、 拡大して示している。
先ず、 第 4図 (a ) に示すようにして、 巻枠部 8 aの内側に対して、 シールド用金属箔 4 Aを、 巻枠部 8 aの内側形状にほぼ沿わせるように して配置させる。 なお、 このときには、 第 3 A図に示しているように、 非被覆部 6となる箇所においては、 シールド用金属箔 4 Aは配置しない ようにする。 また、 このときには、 例えば、 巻枠部 8 aの開口部からシ ールド用金属笵 4 Aが両側に余るような状態としておくようにする。 上記のようにしてシールド用金属箔 4 Aを配置したとされると、 続い ては、 第 4図 (b ) に示すようにして、 巻枠部 8 aの内側に対して、 導 電線 3 aを巻回する。 これにより、 第 3 B図に示すようにして、 導電線 3 aは、 巻枠部 8 aの外周形状に沿ってループ状に巻回されることにな り、 ループ導体部 3が形成されることとなる。
そして、 この後においては、 第 4図 (c ) に示すようにして、 巻枠部 8 aの開口部からはみ出させていたシールド用金属箔 4 Aを、 開口部の 上側において畳み込むようにして、 導電線 3 aの周囲を覆うようにする。 これにより、 ループ導体部 3がシールド用金属箔 4 Aにより被覆された 状態が形成される。
第 3 A図乃至第 3 B図に示した構造に対応する組み立て工程は、 第 4 図 (a ) 〜第 4図 (c ) までにより示されるのであるが、 このままでは、 例えば、 巻枠部 8 aの外周から、 シールド用金属箔 4 Aがむき出しとな つており、 さらに非被覆部 6では導電線 3 aもむき出しとなるので、 シ 一ルド用金属箔 4 Aや導電線 3 aが損傷しやすく、 また、 美観上も好ま しくない。 そこで、 第 4図 (c ) の工程の後において、 さらに第 4図 ( d ) に示すようにして、 絶縁性を有する化粧用テープ 9などにより、 巻枠部 8 aの開口部全体を覆うようにすると良い。
例えば、 第 1 A図乃至第 1 B図及び第 5 A図乃至第 5 B図に示した構 造のループアンテナ部を製造する場合には、 シールド部材としてのパイ プに導電線 3 aを通した状態とする必要があり、 このための作業は、 簡 単であるとはいえない。
これに対して、 第 4図に示す工程であれば、 巻枠部材に対して、 必要 な部材を巻き付けるようにしてループアンテナ部を組み立てていくこと ができるので、 より簡易な製造作業とすることができる。
また、 例えば、 ループアンテナを製造するのにあたっては、 従来から 巻枠部材を用いて、 これに対して導電線を巻き付けるということが行わ れている。 従って、 第 4図に示した工程によっては、 既存の巻枠部材を 用いて効率的に製造できるということもいえる。 なお、 第 3 A図乃至第 3 B図に示すループアンテナ部 2の構成では、 導電線 3 aと、 シールド部材であるシールド用金属箔 4 Aが近接するこ とになるので、 その分、 導電線 3 aとシールド用金属箔 4 Aとの間での 浮遊容量が増加することになる。 しかしながら、 例えば、 導電線 3 aに 対して実際に設けられる外周の絶縁被覆について、 所要の厚みを与える ようにして形成すれば、 導電線 3 aとシールド用金属箔 4 Aの間の距離 が隔てられることなるので、 浮遊容量を小さくすることは容易に可能で ある。
また、 上記各実施の形態ではループ形状を略円周形状としているので あるが、 例えば四角形、 三角形などの多角形形状とされても構わない。 また、 上記実施の形態では、 A Mアンテナであることとしているが、 例えば F Mアンテナをはじめ、 他の用途のアンテナについてもループア ンテナは採用されているものであり、 本発明としては、 ループアンテナ 全般に対して適用できるものである。
以上説明したようにして本発明は、 導電線をループ状に形成したル一 プ導体部に対してシールド部材により被覆が施されるループアンテナに おいて、 アンテナ装置と受信回路が接続される 2つの端子が互いに対称 となる基準位置を含む導電線の部分に対応させて、 ループ導体部が被覆 されない非被覆部分を形成するようにしている。 これによつて、 平衡シ 一ルド構造を得ることができるので、 ループアンテナにて受信されるノ ィズは、 例えば平衡シールド構造を採らない場合よりも低減することが できる。
さらに、 給電ケーブルとしては、 導電線と受信回路側とを接続するた めの所定数の芯線を被覆する被覆線を備えており、 この被覆線をシール ド部材とグランド電位との間に接続するようにしている。 これにより、 例えば導電線の一端をグランド電位と接続するためのラ インと、 シールド部材とグランド電位を接続するためのラインは、 それ ぞれ個別のものとされることになるので、 共通ィンピーダンスによる電 圧降下もアンテナにて受信されにくくなり、 さらに耐ノイズ性能が向上 されることになる。
このようにして、 本発明のアンテナ装置は、 平衡シールド構造と、 導 電線とシールド部材の接地が異なるラインを経由する接地構造とを組み 合わせることによって、 これまでよりも高い耐ノイズ性能を実現してい る。
また、 本発明としてのアンテナ装置を製造方法としては、 先ず巻枠部 に対して導電性箔材の配置を行ったうえで巻枠部に対してループ導体部 としての導電線を巻装して導電線をループ状に形成し、 さらに、 巻装さ れた導電線を導電性箔材によって覆うようにされる。
このような製造方法では、 巻枠部に対して導電性箔材、 導電線を配置、 巻回するという簡易な作業によりアンテナ装置を製造できることになる。 また、 巻枠部材については既存のものを用いることが可能であり、 新た に巻枠部材としての部品を製造する必要がないから、 この点でも製造の 効率化が図られ、 さらには、 コスト面でも有利となる。

Claims

請求の範囲
1 . ループ状の導電線から成るループ導体部と、
全体としては上記ループ導体部を被覆するものとされたうえで、 アン テナ装置と受信回路が接続される 2つの端子が互いに対称となる基準位 置を含む上記導電線の箇所に対応して、 上記ループ導体部を被覆しない 非被覆部分が形成されるシールド部材とを備えると共に、
上記導電線の一端をグランドと接続するための第 1のラインと、 上記 シールド部材をグランドに接続するための第 2のラインとを、 物理的に 個別に設ける、
ことを特徴とするアンテナ装置。
2 . 上記ループ導体部における導電線を上記受信回路側と接続する給 電ケーブルを備え、
上記給電ケーブルは、 少なくとも上記第 1のラインとされる芯線を含 む所定数の芯線と、 これらの芯線を被覆するようにして設けられると共 に、 上記シールド部材とグランドとの間に接続される被覆線を備える、 ことを特徴とする請求の範囲第 1項に記載のアンテナ装置。
3 . 上記シールド部材は、
上記ループ導体部のループ形状に対応する外形形状を有するパイプ部 材であり、
上記ループ導体部の導電性部材は、 上記パイプ部材の内部に収納され ると共に、
上記非被覆部分は、 上記パイプ部材により上記ループ導体部の導電性 部材を被覆しない箇所として形成される、
ことを特徴とする請求の範囲第 1項に記載のアンテナ装置。
4 . 上記ループ導体部の導電性部材としての 1本の芯線と、 該芯線を 被覆するようにして設けられる上記シールド部材としての被覆線とを少 なく とも備えて形成される 1本のシールド線を備え、
上記非被覆部分は、 上記シールド線において上記被覆線により上記芯 線を被覆しない箇所として形成される、
ことを特徴とする請求の範囲第 1項に記載のアンテナ装置。
5 . 上記シールド部材は、
上記ループ形状のループ導体部の周囲を被覆するようにして設けられ る導電性箔部材であり、
上記非被覆部分は、 上記導電性箔部材により上記芯線を被覆しない箇 所として形成される、
ことを特徴とする請求の範囲第 1項に記載のシールド部材。
6 . 上記導電性箔材により被覆された上記ループ導体部の導電線がル —プ形状を形成して巻き付けられる巻枠部材、
をさらに備えることを特徴とする請求の範囲第 5項に記載のシールド 部材。
7 . 巻枠部材におけるループ導体部としてのループ形状に沿った巻枠 部に対して、 上記ループ導体部をシールドするためのシールド部材とし ての導電性箔材を配置する工程であり、 このときに、 上記ループ導体部 の両端部を受信回路部側と接続するべき接続部位が互いに対称となるよ うな基準位置を含む上記ループ導体部の箇所に対応する位置に対しては、 上記導電性箔材が配置されないようにする、 配置工程と、
上記配置工程により配置された上記導電性箔材の上から、 上記巻枠部 に対して上記ループ導体部としての導電線を巻装する卷装工程と、 上記巻装工程により巻装された導電線が、 上記導電性箔材により被覆 された状態となるように上記導電性箔材により上記導電線を覆う被覆ェ 程と、
を少なくとも備えることを特徴とするアンテナ装置の製造方法。
PCT/JP2004/003214 2003-03-19 2004-03-11 アンテナ装置、及びアンテナ装置の製造方法 WO2004084348A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/549,671 US7345644B2 (en) 2003-03-19 2004-03-11 Antenna device, and method of manufacturing antenna device
EP04719647A EP1605544B1 (en) 2003-03-19 2004-03-11 Antenna device and antenna device manufacturing method
DE602004018281T DE602004018281D1 (de) 2003-03-19 2004-03-11 Antenneneinrichtung und antenneneinrichtungsherstellverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-076426 2003-03-19
JP2003076426A JP3835420B2 (ja) 2003-03-19 2003-03-19 アンテナ装置、及びアンテナ装置の製造方法

Publications (1)

Publication Number Publication Date
WO2004084348A1 true WO2004084348A1 (ja) 2004-09-30

Family

ID=33027887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003214 WO2004084348A1 (ja) 2003-03-19 2004-03-11 アンテナ装置、及びアンテナ装置の製造方法

Country Status (7)

Country Link
US (1) US7345644B2 (ja)
EP (1) EP1605544B1 (ja)
JP (1) JP3835420B2 (ja)
KR (1) KR20050113620A (ja)
CN (1) CN1762072A (ja)
DE (1) DE602004018281D1 (ja)
WO (1) WO2004084348A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054951A1 (en) * 2004-11-22 2006-05-26 Agency For Science, Technology And Research Antennas for ultra-wideband applications
JP2013513176A (ja) * 2009-12-07 2013-04-18 アレヴァ・エヌセー 埃と金属の多い環境での、小型化された金属製の支持体の識別装置、及び、核燃料エレメントの製造工場における核燃料エレメントの収容コンテナの識別アプリケーション

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066614A1 (en) * 2006-11-21 2010-03-18 Pioneer Corporation Communicating apparatus
US8847832B2 (en) * 2006-12-11 2014-09-30 Harris Corporation Multiple polarization loop antenna and associated methods
JP4762960B2 (ja) * 2007-09-03 2011-08-31 タイコエレクトロニクスジャパン合同会社 ループアンテナ及びループアンテナの製造方法
JP5184986B2 (ja) * 2008-06-16 2013-04-17 株式会社東芝 アンテナ装置及び無線装置
JP5307241B2 (ja) * 2009-06-16 2013-10-02 株式会社ビー・アンド・プラス 双方向伝送用コイルおよびこれを用いた双方向伝送装置
JP5269219B2 (ja) * 2012-02-17 2013-08-21 京セラ株式会社 通信端末
US11460599B2 (en) * 2018-12-17 2022-10-04 Raytheon Company Shielded-loop-resonator based gradiometer probe
US11038252B1 (en) * 2019-08-27 2021-06-15 The Government ot the United States of America as represented by the Secretary of the Air Force Deployable loop antenna
CN210245722U (zh) * 2019-10-29 2020-04-03 京东方科技集团股份有限公司 一种天线组件及无线终端
AT525118A1 (de) * 2021-05-27 2022-12-15 Sensideon Gmbh Vorrichtung zur Langzeittemperaturmessung von Temperaturen oberhalb von 200 °C
CN115117629A (zh) * 2022-08-09 2022-09-27 沈阳铁路信号有限责任公司 一种环型天线屏蔽结构
FR3146031A1 (fr) * 2023-02-22 2024-08-23 Tekcem Antenne passive incorporant un cadre blindé

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1673429A (en) * 1927-08-20 1928-06-12 Paul L Vinson Sun-ray heater
DE618511C (de) * 1933-12-05 1935-09-10 Lorenz Akt Ges C Verfahren zur Herstellung von feuchtigkeitsgeschuetzten, evtl. abgeschirmten Rahmenantennen
US2349154A (en) 1941-08-13 1944-05-16 Finch Telecommunications Inc Coaxial cable loop antenna
US2465381A (en) 1945-03-12 1949-03-29 Standard Telephones Cables Ltd Loop antenna system
JPS5627509A (en) * 1979-08-15 1981-03-17 Pioneer Electronic Corp Shielded loop antenna
JPS5752118B2 (ja) 1972-07-01 1982-11-05
DE3140319A1 (de) * 1981-10-10 1983-04-21 Klaus 3300 Braunschweig Münter Elektrisch abgeschirmte breitbandantenne zur phasenrichtigen erfassung der magnetischen komponente eines elektromagnetischen wechselfeldes
EP0766200A2 (en) 1995-09-30 1997-04-02 Sony Chemicals Corporation Antenna for reader/writer
US5883574A (en) * 1994-05-16 1999-03-16 Aasbrink; Leif Arrangement for preventing disturbances in electronic alarm systems
JP2002190705A (ja) * 2000-12-21 2002-07-05 Kiyoshi Yamamoto 小型アンテナ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2411198A (en) * 1941-11-07 1946-11-19 Bendix Aviat Corp Radio apparatus
BE453286A (ja) * 1942-12-09
JPS54128653A (en) * 1978-03-30 1979-10-05 Nippon Gakki Seizo Kk Antenna unit for receiver
JPS55150509U (ja) * 1979-04-17 1980-10-30
JPS572102A (en) 1980-06-04 1982-01-07 Hitachi Ltd Loop antenna for car-to-ground communication
JPS5752118A (en) * 1980-09-16 1982-03-27 Toshiba Corp Molded coil
JPS5882014U (ja) * 1981-11-24 1983-06-03 株式会社光電製作所 ル−プアンテナ
JPH0738324A (ja) * 1993-07-19 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> 磁場検出素子
JPH08241633A (ja) * 1995-03-02 1996-09-17 Totoku Electric Co Ltd 同軸ケーブルおよびその製造方法
US6096165A (en) 1997-08-07 2000-08-01 Micron Technology, Inc. Method and apparatus for application of adhesive tape to semiconductor devices
JP2002190805A (ja) * 2000-12-20 2002-07-05 Minolta Co Ltd 電気機器
JP5247956B2 (ja) * 2001-03-19 2013-07-24 大日本印刷株式会社 フラットケーブル用シールド材及びシールド付きフラットケーブル

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1673429A (en) * 1927-08-20 1928-06-12 Paul L Vinson Sun-ray heater
DE618511C (de) * 1933-12-05 1935-09-10 Lorenz Akt Ges C Verfahren zur Herstellung von feuchtigkeitsgeschuetzten, evtl. abgeschirmten Rahmenantennen
US2349154A (en) 1941-08-13 1944-05-16 Finch Telecommunications Inc Coaxial cable loop antenna
US2465381A (en) 1945-03-12 1949-03-29 Standard Telephones Cables Ltd Loop antenna system
JPS5752118B2 (ja) 1972-07-01 1982-11-05
JPS5627509A (en) * 1979-08-15 1981-03-17 Pioneer Electronic Corp Shielded loop antenna
DE3140319A1 (de) * 1981-10-10 1983-04-21 Klaus 3300 Braunschweig Münter Elektrisch abgeschirmte breitbandantenne zur phasenrichtigen erfassung der magnetischen komponente eines elektromagnetischen wechselfeldes
US5883574A (en) * 1994-05-16 1999-03-16 Aasbrink; Leif Arrangement for preventing disturbances in electronic alarm systems
EP0766200A2 (en) 1995-09-30 1997-04-02 Sony Chemicals Corporation Antenna for reader/writer
JP2002190705A (ja) * 2000-12-21 2002-07-05 Kiyoshi Yamamoto 小型アンテナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Electrostatic Shielded Magnetic Loop Antenna", IBM TECHNICAL DISCLOSURE BULLETIN, vol. 32, no. 1, June 1989 (1989-06-01)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054951A1 (en) * 2004-11-22 2006-05-26 Agency For Science, Technology And Research Antennas for ultra-wideband applications
US7639195B2 (en) 2004-11-22 2009-12-29 Agency For Science, Technology And Research Antennas for ultra-wideband applications
JP2013513176A (ja) * 2009-12-07 2013-04-18 アレヴァ・エヌセー 埃と金属の多い環境での、小型化された金属製の支持体の識別装置、及び、核燃料エレメントの製造工場における核燃料エレメントの収容コンテナの識別アプリケーション
US9053403B2 (en) 2009-12-07 2015-06-09 Areva Nc Device having reduced overall dimensions for identifying a metal substrate in a dusty and metallic environment, and application for identifying containers containing nuclear fuel elements in the production plant thereof

Also Published As

Publication number Publication date
US20060238430A1 (en) 2006-10-26
KR20050113620A (ko) 2005-12-02
EP1605544A1 (en) 2005-12-14
EP1605544B1 (en) 2008-12-10
CN1762072A (zh) 2006-04-19
DE602004018281D1 (de) 2009-01-22
JP2004289308A (ja) 2004-10-14
JP3835420B2 (ja) 2006-10-18
US7345644B2 (en) 2008-03-18
EP1605544A4 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP4194019B2 (ja) コネクタ付き信号伝送ケーブル
TWI490892B (zh) 電感元件、具備此電感元件的濾波元件及具備此電感元件的雜訊濾波器
EP2874232B1 (en) Antenna
JP3835420B2 (ja) アンテナ装置、及びアンテナ装置の製造方法
US20010042632A1 (en) Filter for wire and cable
US6373674B1 (en) Noise eliminating apparatus of high-frequency transmission system
JP2002513195A (ja) 稲妻防止用ケーブル
US10931067B2 (en) Common mode choke
JP6595487B2 (ja) アンテナ
US4128818A (en) Electrical frequency responsive structure
JP2009188917A (ja) ノイズフィルタ付きac電源ケーブル
US6278599B1 (en) Lightning retardant cable and conduit systems
US12087474B2 (en) Cable and antenna device with coaxial cable
JP3434219B2 (ja) アンテナ
JP2000286126A (ja) 高周波伝送システムの流合雑音除去装置
JP2857677B2 (ja) Catv用保安器
JP2011250156A (ja) 受信システム
JP2019139831A (ja) コネクタ付き伝送ケーブル
JP2011018529A (ja) オーディオケーブル
JP2000278860A (ja) 高周波伝送システム用保安器
JPH08222986A (ja) 3端子濾波器
JP2011172122A (ja) 高周波受信伝送ケーブルおよび受信装置
JPH0582371A (ja) チヨークコイル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004719647

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057015963

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048072625

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057015963

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004719647

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006238430

Country of ref document: US

Ref document number: 10549671

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10549671

Country of ref document: US