WO2004083521A1 - 繊維構造物 - Google Patents

繊維構造物 Download PDF

Info

Publication number
WO2004083521A1
WO2004083521A1 PCT/JP2004/003732 JP2004003732W WO2004083521A1 WO 2004083521 A1 WO2004083521 A1 WO 2004083521A1 JP 2004003732 W JP2004003732 W JP 2004003732W WO 2004083521 A1 WO2004083521 A1 WO 2004083521A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber structure
resin layer
base material
fibrous structure
fibrous
Prior art date
Application number
PCT/JP2004/003732
Other languages
English (en)
French (fr)
Inventor
Kenichi Niimi
Masao Nakajima
Toshiya Naito
Masayuki Taniguchi
Shigenori Morishima
Original Assignee
Toppan Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co., Ltd. filed Critical Toppan Printing Co., Ltd.
Priority to JP2005503753A priority Critical patent/JP4321521B2/ja
Publication of WO2004083521A1 publication Critical patent/WO2004083521A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/24Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/28Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/56Linings or internal coatings, e.g. pre-formed trays provided with a blow- or thermoformed layer
    • B65D5/563Laminated linings; Coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a fiber structure made of paper or cellulose, and particularly to a fiber structure capable of improving water resistance and oil resistance without using a fluorine-based oil-proofing agent.
  • a fluorine-based oil-resistant agent As a method of imparting oil resistance and water resistance to fiber structures such as paper, a fluorine-based oil-resistant agent has been used for many years. When applied to paper, it modifies the surface tension of the surface fiber of paper to be lower than the surface tension of liquids such as general fats and oils and water. In other words, the fluorinated oil repellent repels the liquid to make it less wet, thereby preventing the liquid from penetrating into the fibers of the paper.
  • fluorine-based oil repellents are chemical chemicals that have the ability to accumulate and accumulate in living organisms. Due to this concern, several major manufacturers have begun reviewing the production of fluorine-based oil-resistant oil-resistant oils. c .
  • technologies for imparting oil resistance without using a fluorine-based oil-proofing agent include polyethylene (PE) and polypropylene.
  • oil-resistant paper with the above-mentioned adhesives such as polyethylene is inexpensive, but is recycled as paper. This has become difficult.
  • An object of the present invention is to provide a fiber structure which has oil resistance and water resistance without using a fluorine-based oil-proofing agent, and which can easily recycle a fiber structure base material.
  • the fiber structure of the present invention is configured as follows.
  • a first aspect of the present invention is a fibrous structure having a planar fibrous structure base material, wherein the solid content of the coating material is in the range of 10% to 60% and contains a polyester resin.
  • the material is a fiber structure having a polyester resin layer formed by coating one or both surfaces of a base material.
  • the first aspect of the present invention is different from the prior art in that a polyester resin layer which can be easily separated from the fiber structure base material at the time of recirculation is provided on one or both sides of the fiber structure base material. Due to the formed structure, it is possible to provide a fibrous structure having oil resistance and water resistance without using a fluorine-based oil repellent and capable of easily recycling a fiber structure base material. You.
  • the second aspect of the present invention is directed to the first aspect, wherein the polyester resin layer is a fibrous structure modified by a suizu group of a chain hydrocarbon. It is.
  • the action of the first aspect is depressed, and the water resistance can be improved because the polyester resin layer has a hydrophobic group (oil group).
  • the hydrophobic group Is a fibrous structure having a carbon number in the range of 8 to 24.
  • the action of the second aspect can suppress the intrusion of oil having a high viscosity and the like.
  • the glass transition point JIS 1
  • oil resistance and water resistance can be further improved.
  • the glass transition point (JI s) is used as the polyester-based resin layer.
  • the polyester-based resin layer is a fibrous structure in which an inorganic agent is mixed.
  • the action of the inorganic agent improves the adhesiveness of the adhesive and the oil absorption. It can be achieved.
  • a seventh aspect of the present invention is the fiber according to the sixth aspect, wherein the inorganic agent is mixed in a range of 0.1% by weight to 10% by weight. It is a structure.
  • a pinhole formed by the inorganic agent can be suppressed to a range without any problem.
  • the cup water absorption (JIS 8140) of the fibrous structure base material is determined by weighing the fiber structure base material (JIS 8140). g / m 2 ), and the amount of the polyester resin layer applied is in the range of 1 g / m 2 to 30 g Z m 2.
  • the application amount is optimized with respect to a fiber structure base having a water absorption of less than the weighed amount. be able to.
  • the water absorption (JISP 8140) of the fiber structure base material is determined by weighing (g / g) of the fiber structure base material. m 2 ) or more, and the coating amount of the polyester-based resin layer is 3 g Z m 2 to 30 g /
  • the fiber structure is in the range of 2 .
  • the ninth aspect of the present invention provides the effects of the first to seventh aspects and the optimization of the coating amount with respect to the fibrous base material having a water absorption of the cup equal to or greater than the weighed amount.
  • co Tsu Bed water absorption (JISP 8 1 4 0) is a fiber structure is l O g Z m 2 or less. .
  • the water absorption of the glass is specified, so that excellent water resistance is achieved. Performance can be guaranteed.
  • a fifteenth aspect of the present invention is a fibrous structure having a water repellency (JIS P 8137) of R 8 or more in each of the first to tenth aspects.
  • the degree of water repellency is defined, so that the excellent water repellency can be guaranteed.
  • a planar fibrous structure base material an SBR latex resin layer formed on the fibrous structure base, and a SBR latex resin layer formed on the SBR latex resin layer.
  • This is a fibrous structure comprising:
  • the 12th aspect of the present invention is different from the prior art in that the sBR-based latex-based resin layer and the polyester that can be easily separated from the fiber structure base material during recycling
  • the structure in which the resin-based resin layer is formed on the fiber-structured base material has oil resistance and water resistance without using a fluorine-based oil-proofing agent, and the fiber-structured base material can be easily recycled.
  • a fiber structure can be provided.
  • flexibility can be improved by the configuration including the SBR latex resin layer.
  • the fibrous structure according to the first aspect wherein the ID polyester-based resin layer is a fiber structure modified by a chain hydrocarbon water-containing group. It is.
  • the thirteenth aspect of the present invention is to improve the water resistance because the polyester resin layer has a hydrophobic group (lipophilic group) in addition to the operation of the first and second aspects.
  • a fifteenth aspect of the present invention is the fiber structure according to the thirteenth aspect, wherein the number of carbon atoms of the hydrophobe is in the range of 8 to 24.
  • the poly-tenor-based resin layer has a glass transition point (J
  • the fifteenth aspect of the present invention can further improve oil resistance and water resistance in addition to the effects of the respective 12th to 14th aspects.
  • the SBR latex resin layer has a glass transition point (JISK 7121) of 10 °. C40. It is a fiber structure within the range of c.
  • a coating liquid obtained by mixing a planar A-fiber structure base material and a polyester-based resin and a latex-based resin in advance is coated on one or both sides of the A-fiber structure base material. And a mixed resin layer formed by drying and drying.
  • 100 1 has a maximum height (R ma ) within the range of 30 to 5 ⁇ m, and the surface to which the coating liquid is applied is covered with a cup water absorption (JI s). P8140 (19776)), when the contact time with distilled water in the test method was 10 seconds, the water absorption obtained was 100 to 10 g / m2. ⁇ A fibrous base material in the range of [i 0 seconds].
  • the seventeenth aspect of the present invention is different from the prior art in that the mixed resin layer of the polyester-based resin and the latex-based resin is formed on the fiber structure base material.
  • the same operation and effect as in the fifth aspect described above can be obtained.
  • the required minimum coating amount is sufficient. The amount of plastic used can be reduced.
  • FIG. 1 is a schematic diagram showing a cross-sectional configuration of a fiber structure according to a first embodiment of the present invention.
  • 2 to 4 are schematic diagrams for explaining an example of the package of the embodiment.
  • FIG. 5 is a schematic view showing a modified configuration of the fibrous structure of the embodiment.
  • FIG. 6 is a schematic diagram showing a cross-sectional configuration of a fiber structure according to the second embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a cross-sectional configuration of a fiber structure according to the third embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a modified configuration of the fiber structure of the embodiment.
  • FIG. 9 is a schematic diagram illustrating a cross-sectional configuration of a fiber structure according to a fourth embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a modified configuration of the fiber structure of the embodiment.
  • FIG. 11 is a schematic diagram showing a cross-sectional configuration of a fiber structure according to a fifth embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing a cross-sectional configuration of a fiber structure according to a sixth embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing a modified configuration of the fiber structure of the embodiment.
  • FIG. 14 is a schematic diagram illustrating a cross-sectional configuration of a fiber structure according to a seventh embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing a modified configuration of the fiber structure of the embodiment.
  • FIG. 16 is a schematic diagram for explaining a fiber structure according to a ninth embodiment of the present invention.
  • FIG. 17 is a schematic diagram showing a cross-sectional configuration of the fibrous structure according to the tenth embodiment of the present invention.
  • FIGS. 18 to 28 are schematic diagrams showing modified configurations of the fiber structure of the embodiment.
  • FIG. 29 is a schematic diagram showing a cross-sectional configuration of the fiber structure according to the seventeenth embodiment of the present invention.
  • FIG. 30 is a schematic diagram showing a modified configuration of the fiber structure of the embodiment.
  • FIG. 31 is a schematic diagram showing a cross-sectional structure and composition of a fiber structure according to the eighteenth embodiment of the present invention.
  • FIG. 32 is a schematic diagram showing a modified configuration of the fiber structure of the embodiment. It is.
  • FIG. 33 is a schematic diagram showing a cross-sectional configuration of the fibrous structure according to the nineteenth embodiment of the present invention.
  • FIG. 34 is a schematic diagram showing a modified configuration of the fiber structure of the embodiment.
  • FIG. 35 is a schematic diagram for explaining the fibrous structure according to the twenty-first embodiment of the present invention.
  • the first to 16th and 23rd embodiments relate to a configuration in which a polyester resin layer R1 is provided on a fiber structure base material ⁇ .
  • the 17th to 22nd embodiments further relate to a configuration having an SBR latex resin layer R 0 between the fiber structure base material ⁇ and the polyester resin layer R 1. .
  • FIG. 1 is a schematic diagram showing a cross-sectional configuration of a fiber structure according to a first embodiment of the present invention.
  • the fiber structure T s1 includes a planar fiber structure base material ⁇ and a polyester-based resin layer R 1 formed on one surface of the fiber structure base material ⁇ by a groove. I have.
  • the fibrous structure base material is a paper or cellulose structure, for example, chemical pulp such as hardwood bleached kraft pulp, softwood bleached kraft pulp, or GP (ground pulp: groundwood pulp) ), RGP (refiner ground pulp: Refiner ground wood panorep), TMP (thermomechanical pulp: Thermomechanical pulp: Noreno ⁇ 0 norep), etc .;! Kai pulp or base paper made from these materials can be used Has become You.
  • This definition of base paper is defined as high-quality paper, medium-quality paper, glossy paper, and kraft paper made by a well-known fourdrinier multi-cylinder paper machine, fourdrinier Yankee type paper machine, circular web paper machine, and the like. Includes acid paper, neutral paper, and alkaline paper such as.
  • These base papers may contain papermaking auxiliary chemicals such as paper strength agents, sizing agents, fillers, and retention agents.
  • the fiber structure base material T is paper
  • examples thereof include thin paper such as high-quality paper, imitation paper, and craft paper, paperboard, corrugated cardboard, and non-woven cloth.
  • the fibrous structure base material T is a cellulose structure, for example, a structure mainly composed of cellulose fibers, such as pulp mold, may be mentioned.
  • the polyester resin layer R1 is a resin layer for imparting water resistance and oil resistance to the fibrous structure base material T.
  • the polyester resin layer R1 has a paint solid content of 10% to 60%. It is formed by applying a paint in which the resin is dispersed in water.
  • water resistance will be described.
  • paper mainly made of phenolic cellulose (OH) having hydroxyl groups (OH) or fibrous base material T such as panolep mononolide body retains its shape due to strong hydrogen bonds between cellulosic fibers. ing. For this reason, when water vapor or liquid water permeates, the hydroxyl groups are loosened, and the fibrous base material T undergoes a change in form or breakage such as breakage. Therefore, water resistance includes prevention of such changes in appearance as well as prevention of changes in appearance (stain) due to penetration of water in addition to prevention of such damage.
  • Oil resistance generally has the following two meanings. (1) Prevent changes in appearance (staining) (sanitation of packaged products, safety, protection of product images). (2) Oil seeps into the fiber surface and strikes the back surface To reduce the likelihood that the oil will fall out and adhere to clothes, hands, etc., the speed at which oil permeates the fibers will be reduced.
  • the oil resistance means that when oil penetrates, the fiber structure base material T does not cause deterioration in strength or change in morphology, etc. Conversely, one pore polymer of the fiber structure base material T fills in Including rigidity
  • Resins with excellent oil resistance include, in addition to polyester resins, acryl / styrene resins, latex (SBR), or inorganic agents (such as acid silicate) as oil adsorbents.
  • SBR latex
  • inorganic agents such as acid silicate
  • resins to which aluminum hydroxide, aluminum, alumina, talc, etc. are added.
  • a coating material in which a material mainly composed of a polyester resin is dispersed at a solid content of 10% to 60% is spread on a fiber structure base material T and dried. Then, a polyester resin layer R 1 having oil resistance was formed on the surface of the fiber structure base material T-.
  • the dry energy for volatilizing the solvent will be excessive, which is preferable from the viewpoint of production.
  • the solids content is 70% or more, the required drying energy for the solvent to evaporate and volatilize is reduced, and conversely, it quickly dries on the plate at the time of coating, and the plate is easily clogged. From the viewpoint of the good. Further, the solid content of 61% to 69% is not used for the purpose of separating from the usable solid content of 70% or more in this embodiment.
  • the surface of the fiber structure base material ⁇ is made of resin. Any method may be used as long as it is a method of forming a resin layer (resin film) by coating and filling the voids of the fibers, and may be appropriately combined with a different method. Specific coating methods include roll coat, gravure coat, curtain coat, spray coat-blade, coat, mouth, sword, bar coat, comma coat, air coat coat, Almost all coating methods are available, including die coating and cast coating. It can also be used successfully in the spray coating method, which has recently been improved.
  • the fiber structure T. s1 as described above can be used for applications such as printing ⁇ information paper, packaging paper, sanitary paper, and industrial paper.
  • the fibrous structure T s1 is not limited to these types of paper, and can be used as a package such as a paper container, a bag, or a composite container combined with a synthetic resin film.
  • FIGS. 2 to 4 are schematic diagrams for explaining an example of a package P using a fiber structure.
  • the package P is manufactured such that the polyester resin layer R1 is on the inside and the fiber structure base material T is on the outside.
  • the side b of the side is bent. And e side are glued. Also, a1 side of the bottom and b1 ⁇ c1 side are bonded together, and d side and a2 side of the side are bonded together.
  • the broken line f1 is valley-folded from the outside to produce a folded state as shown in FIG.
  • This folded state corresponds to, for example, transportation or storage to a food store, and can be easily assembled into a box shape as shown in FIG. 4 during use.
  • the polyester-based resin layer R1 is selectively applied to the fibrous structure base material T to be exposed.
  • a glue layer (adhesive layer) A dh may be formed on the fibrous structure base material T.
  • the package P as described above can be similarly applied to fiber structures Ts2 to Ts7 and Ts1x to Ts7x to be described later.
  • the package P is not limited to the configuration shown in FIG. 4, and any configuration such as a configuration having another box shape or a bag shape can be applied.
  • the package P does not need to have a folded state as illustrated in FIG. 3.
  • the package P may be designed so that the bottom is smaller than the lid, and may be realized in a stackable manner.
  • this type of stackable configuration is also an example, and is not essential for the package P. That is, for the package P, the configuration that saves space, such as the illustrated folded state and stackability, is not essential.
  • a paint is prepared by dispersing a material mainly composed of a polyester resin within a range of 10% to 60% solid content. Also, a fiber structure base material ⁇ to be coated with the paint is prepared.
  • the fibrous structure T s 1 is cut into a developed state in which a dashed line portion f 1 is formed. Thereafter, the S-line portion f1 is bent and the side and bottom overlapping surfaces are bonded to each other, whereby the S-line portion f1 is added to the folded package P as shown in FIG. You.
  • the package P is usually transported and stored at a food store in this folded state. Then, when packaging the sold food,
  • the package P is delivered to the user, for example, in a state of containing oily food such as fried chicken.
  • the used package P is discarded as garbage.
  • the discarded package P is easily separated from the polyester resin layer R1 and the material of the fibrous structure base material T during recycling.
  • the obtained material of the fiber structure base material T is recycled, for example, as paper.
  • the structure in which the polyester resin layer R1 which can be easily separated from the fiber structure base material T during the cycle is formed on one or both sides of the fiber structure base material can be used without using a fluorine-based oil resistant agent. It is possible to provide a fibrous structure having oil resistance and water resistance and capable of easily recycling a fibrous structure base material.
  • second to seventh embodiments will be described as modified examples of the above-described first embodiment.
  • the second to seventh embodiments are common in having a configuration including a polyester-based resin layer R 1, and are provided with a method of providing the polyester-based resin layer R 1 (single-sided / double-sided. Whole area) and smoothness.
  • the difference is in the additional configuration such as how to provide the clay layer to improve the performance (Yes; single-sided, double-sided, whole area, no).
  • description will be made in order.
  • FIG. 6 is a schematic diagram showing a cross-sectional configuration of a fiber structure according to a second embodiment of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. Here, the different parts are mainly described. Note that, in each of the following embodiments, the same description will not be repeated.
  • a fibrous structure T s2 includes a polyester resin layer R 1 on both surfaces of a fibrous structure base material ⁇ . Have.
  • the polyester-based resin layers R1 on both sides are finely coated on both sides of the fiber structure base material in a single step by a size press during papermaking. It is coated and formed.
  • the present invention is not limited to this, and may be formed on both sides in two steps.
  • the fibrous structure base material T two types of base paper, thin paper or cardboard (cup) and general paper, were used individually.
  • thin or thick paper (cup) the water absorption (JISP81.40) force S
  • the fiber structure T s2 was formed by a size press during papermaking on each fiber structure base material T.
  • the polyester resin layer R 1 ⁇ was formed on both sides of the fiber structure base material T. It is formed by fine coating. Thus, the production of the fibrous structure T s 2 is completed.
  • the fibrous structure T s 2 thus obtained had the following characteristics.
  • the fibrous structure base material T is thin paper or cardboard (cup)
  • the case where the polyester resin layer R 1 is formed with an application amount of 4 g Z m 2 and the case where it is formed with 6 g / m 2 is described.
  • the oil resistance of the flat part was low, the oil resistance was slightly improved by increasing the coating amount.
  • the oil resistance of the tongue line part was slightly low, and the water repellency of the flat part was low as R 3 to R 4.
  • the fibrous structure base material T is ordinary paper, the plane portion is different between the case where the polyester resin layer R1 is applied at a coating amount of 4 g Zm2 and the case where the fiber resin layer R1 is applied at 6 g / m2 Both had low oil resistance.
  • oil resistant ⁇ portion is low, One or water repellency of the planar portion also R. 3 to R 4 low 7 This 0
  • the recyclability can be obtained irrespective of the type of base paper of the fibrous base material T.
  • the effects of the first embodiment include the oil resistance of the flat portion and the recycling. Although it was easy to obtain, the oil resistance of the ⁇ -line part was not seen because of the fine coating.
  • the fiber structure base material ⁇ is ordinary paper, although the effect of the first embodiment is obtained, the recycling is easy, but the oil resistance of the flat portion and the assault portion is not observed. .
  • the one with high cobb absorption of T is not suitable.
  • the package A having a finely-coated 3 ⁇ 4 ⁇ 7A opening and a bent portion as in the present embodiment it is used for an application having no bent portion such as business paper or insole paper. This is considered preferable.
  • FIG. 7 is a schematic diagram showing a cross-sectional configuration of a fiber structure according to the third embodiment of the present invention.
  • the fibrous structure Ts3 is composed of a flat fibrous base material T having a creed layer C on one side and a fibrous base material T on the opposite side of the creed layer c. ) For coating And a more formed polyester-based resin layer Rl.
  • the glue layer Adh may be partially formed on the fiber structure base material T as shown in FIG.
  • the fibrous structure base material T three kinds of papers of cardboard (cup), cardboard (ivory), and cardboard (card, coat ball) were used individually.
  • Each cardboard has a glass water absorption of less than the weight of the paper.
  • the fibrous structure T S 3 is obtained by applying the above-mentioned paint made of a polyester resin to the fibrous structural base T having the clay layer C on the no-coat surface of the fibrous structural base T and drying it. As shown in FIG. 6, a polyester-based resin layer R1 is formed. Thereby, the production of the fibrous structure-object T s 3 is completed. ---The fiber structure T s3 thus obtained had the following characteristics.
  • the coating amount of the polyester resin layer R 1 was applied.
  • the clay layer C is provided on one side. Even in a configuration in which the polyester-based resin layer R 1 is formed on the fibrous structure base material T having the same function and effect as in the first embodiment, the same effects can be obtained.
  • FIG. 9 is a schematic diagram illustrating a cross-sectional configuration of a fiber structure according to a fourth embodiment of the present invention.
  • This fibrous structure Ts4 is applied to a flat fibrous structure base material T having a clay layer C on both sides, and to one side (the surface of one of the clay layers C) of the fibrous structure base material T. And a more formed polyester resin layer R 1.
  • the present invention is not limited to this, and the glue layer Adh may be partially formed on the creed layer C on one side of the fiber structure base material T as shown in FIG.
  • the fibrous structure base material T three kinds of papers of cardboard (cup), cardboard (ivory), and cardboard (card, coat pole) were individually used.
  • the thick paper used had a Cobb water absorption of 70 [g / m 2.2-min] or less (high water repellency).
  • the thick paper used had a smoothness of 200 seconds or less (high smoothness).
  • the fibrous structure T s4 is obtained by applying the above-mentioned paint composed of a polyester-based resin to one of the creed surfaces of the fibrous structure base ⁇ on the fibrous base T having the clay layer C on both sides. And dried to form a polyester-based resin layer R 1 as shown in FIG. Thereby, the production of the fibrous structure Ts4 is completed.
  • the fiber structure T s4 thus obtained had the following characteristics.
  • Fiber structure T s 4 is and the case of forming in the case of forming the port re ester resin layer R 1 at a coverage of 4 gm 2 and 6 g Roh m 2, the oil resistance of the flat portion Both are excellent However, the oil resistance of the assault line was slightly lower. The water repellency of the flat part and the pit line part was as high as R 10. In addition, the ease of recycling was obtained in the same manner as described above.
  • the polyester-based resin layer R 1 is formed on the fibrous structure base material T having the clay layer C on the outer surface, the first embodiment The same operation and effect as described above can be obtained.
  • the present embodiment has a configuration in which the clay layer C is provided on both sides, it is possible to improve the oil resistance of the flat portion as compared with the third embodiment.
  • FIG. 11 is a cross section of a fiber structure according to a fifth embodiment of the present invention.
  • the fiber structure T s 5 of ⁇ which is a schematic view showing the configuration, is composed of a flat fiber structure base material T, an ink layer I k printed on one side of the fiber structure base material ⁇ , and this ink structure. And a polyester resin layer R 1 formed by coating on the layer Ik.
  • FIG. 12 is a schematic diagram showing a cross-sectional configuration of a fiber structure according to a sixth embodiment of the present invention.
  • the fibrous structure Ts6 includes a flat fibrous structure base material T having a gray layer C on one side, an ink layer Ik printed on a no-coat surface of the fibrous structure base material T, And a polyester-based resin layer R1 formed on the ink layer Ik by coating.
  • the present invention is not limited to this, and the glue layer A dh may be partially formed on the no-coat surface of the fiber structure base material T as shown in FIG.
  • the fibrous structure ⁇ s 6 is obtained by printing the ink-based layer Ik on the no-coat of the fibrous structural substrate T with respect to the fibrous structural substrate A resin coating is applied onto the ink layer Ik and dried to form a polyester resin layer R1 as shown in FIG. Thus, the production of the fibrous structure Ts6 is completed.
  • the fibrous structure T s6 thus obtained had the following characteristics.
  • the fiber structure T s 6 is formed when the polyester resin layer R 1 is formed with a coating amount of 4 g Z m 2 and when the polyester resin layer R 1 is formed with a coating amount of 6 g / m 2.
  • the oil resistance of the ascending line was slightly lower, although both had excellent oil resistance in the flat part.
  • the water repellency of the flat part and the shin line part was as high as R 10. In addition, ease of recycling was obtained as described above.
  • the polyester-based resin layer R 1 is formed via the ink layer I k on the fiber structure base material T having the clay layer C on one side. Also, the same operation and effect as those of the first and third embodiments can be obtained.
  • FIG. 14 is a schematic diagram illustrating a cross-sectional configuration of a fiber structure according to a seventh embodiment of the present invention.
  • This fibrous structure T s7 has a flat fibrous structure base material having a gray layer C on both sides and an ink layer I k formed on one of the gray surfaces of the fibrous structure substrate T by printing. And a polyester-based resin layer R1 formed on the ink layer Ik by coating.
  • the glue layer Adh may be partially formed on one of the clay layers C of the fibrous structure base material T as shown in FIG.
  • the fibrous structure T s7 is a fibrous structure base material having a clay layer C on both sides.
  • An ink layer Ik is formed by printing on the T, and the above-mentioned ink layer Ik is formed on the ink layer Ik. Paints made of polyester resin After coating and drying, a polyester resin layer R 1 is formed as shown in FIG. Thus, the production of the fibrous structure Ts7 is completed.
  • Fiber structure T S 7 obtained in cormorants good this, the same oil resistance as the sixth embodiment (planar portion, shepherd's purse line portion), has water repellency, and the ease of recyclable, Was.
  • a polyester resin layer R 1 is formed on one surface of a fiber structure base material T having a clay layer C on both sides via an ink layer I k. Even in this case, the same operation and effect as those of the first and sixth embodiments can be obtained.
  • This embodiment is a modification of the first to seventh embodiments, and aims at improving the water resistance of the polyester resin layer R1.
  • the -polyester-based resin layer R1 is configured by being modified with a hydrophobic group of a chain hydrocarbon. More specifically, the water resistance of the polyester-based resin layer R 1 is improved by having a hydrophobic group (lipophilic group).
  • the hydrophilic group modifies the resin because it is dispersed using water as a solvent, and when it is a solution (dispersed in water), it is a stable dispersion.
  • the structure of the chain hydrocarbon as a hydrophobic group is similar in form to the hydrocarbon group of the oil, and the structure does not wet each other due to the relationship between water and oil, so that water resistance can be imparted. .
  • it has high safety because it is made of carbon and hydrogen.
  • the polyester resin layer R 1 has a hydrophobic group.
  • This embodiment is a modification of the eighth embodiment, and has a configuration in which the carbon number of the hydrophobic group is in the range of 8 to 24.
  • the fibrous base material T is coated with a polyester resin layer R1 having a hydrocarbon group as a hydrophobic group, as shown in Fig. 16, in order to repel water and prevent oil from penetrating into the paper.
  • a polyester resin layer R1 having a hydrocarbon group as a hydrophobic group as shown in Fig. 16, in order to repel water and prevent oil from penetrating into the paper.
  • the hydrophobicity can be improved by arranging the hydrophobic groups regularly and vertically on the fiber surface.
  • the arranged hydrophobic groups reduce the number of carbon atoms of the hydrocarbon to 82 from the viewpoint of making it difficult for highly viscous oil such as oil to penetrate the fiber surface.
  • Hydrocarbons may be either saturated or unsaturated, but are more stable when saturated.
  • the entry of highly viscous oil and the like can be suppressed by specifying the number of carbon atoms in the hydrophobic group. Can be.
  • FIG. 17 is a cross section of the fibrous structure according to the tenth embodiment of the present invention. It is a schematic diagram which shows a surface structure.
  • This embodiment is a modified example of the first embodiment.
  • a glass transition point (T g) is 25.
  • a mixed resin layer R 1 X which is foot or mixed.
  • the present invention is not limited to this, and the glue layer A dh may be partially formed on one surface of the fibrous structure base material T as shown in FIG.
  • the two glass transition points (T g) respectively impart the following properties to the mixed resin layer R 1.
  • the first glass transition point (Tg; 25 ° C to 15 ° C) improves the oil resistance and water resistance of the polyester resin.
  • the second glass transition point (T g; 10 to 140 ° C.) imparts flexibility to the latex-based resin, and eventually imparts flexibility to the mixed resin layer R 1 X, and
  • the glass transition point is determined by the DSC (differential scanning calorimetry) method in JISK7121.
  • the polyester resin and the latex have a glass transition point Tg of 10 ° C. or less, oil resistance and water resistance tend to deteriorate, but the polyester resin and the latex The oil resistance and water resistance are not problematic due to the compounding amount with the base resin.
  • the blending amount of the polyester-based resin is larger than that of the latex-based resin.
  • the latex resin is 10 solid parts by weight.
  • the package P such as a box is provided with flexibility (does not damage the membrane) to a bent portion (a bent portion) of the package P.
  • the flexibility may be low because the width of the wheat line is wide and the height of the purp line is not higher than the thickness of the paper. .
  • the width of the firewood line is as small as 0.7 mm: L.Omm.
  • the line height (100 to 200 / ⁇ ) is also higher than the paper thickness (330 ⁇ m), high flexibility is required.
  • the amount of the latex resin may be increased in proportion to the required flexibility.
  • the glass transition point of the polyester-based resin is from 25 ° C to 1 ° C.
  • the latex resin is graphitized or mixed so that the glass transition point falls within the range of 10 ° C to 140 ° C, flexibility should be imparted by the latex resin. Can be.
  • the mixed resin layer R 1 X of the present embodiment is not limited to the modified example of the first embodiment, but may be applied to the second to seventh embodiments as shown in FIGS. 19 to 28. Can be combined, combined embodiments And the effects of the present embodiment can be obtained. Although not shown, this embodiment can be combined with the eighth to ninth embodiments-and the effects of the combined embodiment and this embodiment can be obtained.
  • This embodiment is a modified example of each of the first to tenth embodiments, and an inorganic agent is mixed as the above-mentioned polyester-based resin layer R1 or mixed resin layer R1X. It has become.
  • the inorganic agent from the following viewpoints) to (ii), for example, potassium carbonate, calcium carbonate, aluminum hydroxide aluminum kaolin, or talc can be used. I have.
  • a minute gap is formed in the resin layer R 1 R 1 X by utilizing a difference in shrinkage between the resin layer R l R l x and the inorganic agent during drying.
  • Inorganic agent improves oil absorption.
  • the fibrous structure base material ⁇ can improve the adhesiveness of the adhesive and can easily select the glue for processing into a package P such as a box. .
  • the reason is that the adhesive enters the voids created in the fibers by the mixing of the inorganic agent, so that the adhesive strength can be improved.
  • the action of the inorganic agent improves the adhesiveness of the adhesive and the oil adsorbability. Can be planned.
  • This embodiment is a modification of the first embodiment, and the inorganic agent described above is mixed in the range of 0.1% by weight to 10% by weight. Configuration.
  • the purpose of defining the compounding amount of the inorganic agent is as follows: (c) When forming a pinhole with the inorganic material, a large amount of the inorganic agent and a large number of resin layers R 1 and R 1 X This is because pinholes are generated and oil resistance and water resistance are deteriorated.
  • the pinhole formed by the inorganic agent can be suppressed to a range where there is no problem.
  • pinholes formed by the inorganic agent can be suppressed to a range where there is no problem, and deterioration of oil resistance and water resistance can be prevented.
  • This embodiment is a modification of each of the first to 12th embodiments.
  • the Cob water absorption of the fibrous structure base material T is less than the weighing (g / m 2) of the fibrous structure base material ⁇ , and the coating amount of the resin layer R l, R lx is 1 g Z m 2 ⁇ 3 0 g Zm has configuration as that in the range of 2.
  • This is related to the stability (many or few membrane defects) that guarantees water resistance and oil resistance.
  • the higher the amount of coating the higher the stability, but the paper (eg, basis weight)
  • the amount of paint used to form the resin layers R 1 and R 1X is defined based on the relationship between the water absorption of the ribs and the fiber structure base material ⁇ .
  • the fiber structure having a Cobb water absorption of less than the weighing amount is used.
  • the amount of coating can be optimized.
  • This embodiment is a modification of the thirteenth embodiment (or each of the first to twelve embodiments).
  • the fiber structure base material ⁇ ⁇ has a Cobb water absorption of the fiber structure base material ⁇ . Weighing (g Zm 2 ) or more, and the coating amount of the paint for forming the resin layers R 1 and R 1 X is within the range of 3 g Zm 2 to 30 g / m 2. I have.
  • optimization of the coating amount is performed for the fibrous structure base material T having the water absorption of the cup equal to or greater than the weighed amount. It can be achieved.
  • This embodiment is a modification of each of the first to fourteenth embodiments, and is a fiber structure T s1 to T 1 having a glass water absorption (JISP 8140) of l Og Zm 2 or less.
  • This embodiment is a modification of each of the first to fifteenth embodiments, and has fiber structures T sl to T s7 and T slx whose water repellency (JISP 8137) is R 8 or more. ⁇ T s 7 x.
  • the fibrous structure base material T has similar properties to water as the fluorine-based and silicon-based materials having a hydrocarbon group as a hydrophobic group.
  • the degree of water repellency is defined, so that excellent water repellency can be guaranteed.
  • FIG. 29 is a schematic diagram showing a cross-sectional configuration of the fiber structure according to the seventeenth embodiment of the present invention.
  • the fibrous structure T s 11 comprises a flat fibrous structural base material T, an SBR latex resin layer RO formed on the fibrous structural base material ⁇ , and the SBR latex resin.
  • the fiber structure base material ⁇ is wrapped with paper or a cellulose structure, and in Example X, if the base paper described in the first embodiment can be used,
  • SBR-based latex resin R0 has excellent oil resistance and flexibility, and maintains the oil resistance of the bent portion even when the fiber structure Ts11 is bent. It is to make it.
  • the polyester resin layer R 1 is a resin layer for imparting water resistance and oil resistance to the fibrous structure base material T.
  • the first embodiment It is similarly formed using the same paint as that of the embodiment.
  • the polyester resin layer R1 in FIG. 29 can be replaced with the above-mentioned mixed resin layer RX1 of the polyester resin and the latex resin.
  • the fact that the polyester-based resin layer R1 can be replaced with the mixed resin layer Rx1 is the same in FIGS. 30 to 35 described later.
  • Oil resistance means that it does not absorb water.
  • the same coating method as that of the first embodiment can be used.
  • the fibrous structure T s 11 as described above can be used for the same applications as in the first embodiment, and may be, for example, the package P shown in FIGS. 2 to 4. . ⁇
  • the resin layers RO and R 1 are selectively applied to the fibrous structure base material T and exposed.
  • An adhesive layer (adhesive layer) A dh may be formed on the fibrous structure base material T.
  • the package P as described above is also applicable to fiber structures Ts12 to Ts13 described later. Furthermore, it goes without saying that the packaging body P is not limited to the configuration shown in FIG. 4 and any configuration can be applied.
  • a first paint is prepared in which a material mainly composed of an SBR latex resin is dispersed in water at a solid content of, for example, 50%. Similarly, a material containing a polyester resin as a main component is, for example, a solid content of 10%. Prepare a second paint dispersed within ⁇ 60%. Also, a fibrous structure base material T for applying these paints is prepared.
  • the SBR latex resin layer R 0 is formed on the surface layer of the fiber structure base material T by applying the first paint on one surface of the fiber structure base material T and drying the first paint. Subsequently, a second paint is applied on the SBR latex resin layer R0 and dried, so that the polyester resin layer R1 becomes the SBR latex resin layer R0. Formed on the zero surface.
  • the fibrous structure T s 11 is processed into a folded package P as shown in FIG. 3, as in the first embodiment.
  • the package P is delivered to the user in a state in which, for example, oily food is stored.
  • the resin layers R0 to R1 and the material of the fibrous structure base material T are easily separated at the time of recycling, similarly to the first embodiment.
  • the obtained material of the fiber structure base material ⁇ is recycled, for example, as paper.
  • the SBR latex resin layer R 0 and the polyster that can be easily separated from the fiber structure base material T during recycling.
  • the structure in which the resin-based resin layer R1 is formed on the fiber-structured base material T makes it possible to easily recycle the fiber-structured base material having oil resistance and water resistance without using a fluorine-based oil-resistant agent. It is possible to provide a fiber structure that can be clicked.
  • the eighteenth to nineteenth embodiments will be described as modified examples of the above-described seventeenth embodiment.
  • the eighteenth to nineteenth embodiments are common in having a configuration having each resin layer R 0 and R 1, and providing a gray layer for improving smoothness (one side, both sides, whole area) The difference is that the additional configuration is different.
  • description will be made in order. ⁇
  • FIG. 31 is a schematic diagram showing a cross-sectional configuration of a fibrous structure according to the eighteenth embodiment of the present invention.
  • the fibrous structure Ts12 is composed of a flat fibrous structure base material T having a creed layer C on one side and a fibrous structure base material T on the opposite side of the creed layer C (nor coat). And a laminated structure of an SBR latex resin layer R0 and a polyester resin layer R1 formed by coating.
  • the adhesive layer A dh may be partially formed on the fiber structure base material T as shown in FIG.
  • the fibrous structure base material T three kinds of papers of cardboard (cup), cardboard (ivory), and cardboard (card, coat ball) were individually used.
  • each thick paper has a Cobb water absorption of not more than the weighing of the paper, and specifically has a glass water absorption of 50 [g / m 2 ⁇ 2 minutes] or less. (Highly water-repellent) was used.
  • the fibrous structure T s 1 2 is a fibrous la material having a clay layer c.
  • the first paint composed of the SBR latex resin described above is applied to the no-coat surface of T and dried, and the SBR latex resin layer is formed.
  • R 0 is formed. Subsequently, a second paint made of a polyester resin is applied on the SBR latex resin layer R0 and dried to form a polyester resin layer R1.
  • the fibrous structure Ts12 thus obtained had the following characteristics.
  • the fibrous structure ⁇ s 12 has a flat surface oil resistance in both the case where the polyester resin layer R 1 is formed with a coating amount of 4 g nom 2 and the case where the fiber structure is formed with 6 g Z m 2 . And the oil resistance of the wire portion was good. In addition, the water repellency of the flat part and the shiny line part is R 1
  • the cream ⁇ C is applied to one side. Even when the SBR latex resin layer R0 and the polyester resin layer R1 are formed on the fibrous structure base T having the same function and effect as those of the seventeenth embodiment, the same effects can be obtained. Can be done.
  • FIG. 33 is a schematic diagram showing a cross-sectional configuration of the fibrous structure according to the nineteenth embodiment of the present invention.
  • the fibrous structure T s13 is coated on a flat fibrous structure base material T having a gray layer C on both sides, and on one side of the fiber structure base material T (the surface of one gray layer C).
  • the present invention is not limited to this, and the glue layer Adh may be partially formed on the clay layer C on one side of the fiber structure base material T as shown in FIG.
  • the fibrous structure base material T three kinds of papers of cardboard (cup), cardboard (ivory), and cardboard (card, coat pole) were individually used. Each thick paper has a Cobb water absorption of 20%.
  • the fibrous structure T s13 is formed by applying the above-mentioned first paint composed of the SBR latex resin on one surface of the fibrous structure base material T having the clay layer C on both sides, followed by drying.
  • the SBR latex resin layer RO is formed.
  • a second paint composed of a polyester resin is applied on the SBR latex resin layer R0 and dried to form a polyester resin layer R1.
  • the production of the fibrous structure T s 13 is completed.
  • the fiber structure T s 13 obtained in this manner had the following characteristics.
  • the fibrous structure T s 13 has both a flat surface oil resistance and a black line when the polyester resin layer R 1 is formed with an application amount of 4 g / m 2 and when the polyester resin layer R 1 is formed with a coating amount of 6 gm 2.
  • the oil resistance of the part was excellent.
  • the water repellency of the flat portion and the X-ray portion was as high as R 10.
  • ease of recycling was obtained in the same manner as described above.
  • the SBR latex resin layer RO and the polyester resin layer R 1 are formed on the fiber structure base material T having the clay layer C on both sides. Also, the same operation and effect as in the seventeenth embodiment can be obtained.
  • the present embodiment has a structure in which the clay layer C is provided on both sides, it is possible to improve the oil resistance of the wire portion compared to the eighteenth embodiment.
  • This embodiment is a modification of the seventeenth to nineteenth embodiments, and aims at improving the water resistance of the polyester resin layer R1.
  • the polyester resin layer R 1 is configured by being modified with a hydrophobic group of a chain hydrocarbon. More specifically, the water resistance of the polyester-based resin layer R 1 is improved by having a hydrophobic group (lipophilic group). Also, use water as a solvent when painting. The hydrophilic group modifies the resin to be dispersed, and becomes a stable dispersion when in solution (dispersed in water).
  • the structure of the chain hydrocarbon as a hydrophobic group is similar in form to the hydrocarbon group of the oil, and since this structure does not wet each other due to the relationship between water and oil, water resistance can be imparted. Also, it has high safety because it is made of ash and hydrogen.
  • the polyester resin layer R 1 has a water base (lipophilic group), so that it has water resistance. Can be improved.
  • This embodiment is a modification of the 20th embodiment, and has a configuration in which the carbon number of the hydrophobic group is in the range of 8 to 24.
  • the fibrous structure base material T is coated with a polyester resin layer R1 having a hydrocarbon group as a hydrophobic group, as shown in Fig. 35, in order to repel water and prevent oil from permeating the paper.
  • a polyester resin layer R1 having a hydrocarbon group as a hydrophobic group as shown in Fig. 35, in order to repel water and prevent oil from permeating the paper.
  • the hydrophobicity can be improved by arranging the hydrophobic groups regularly and vertically on the fiber surface.
  • the arranged hydrophobic groups reduce the number of carbon atoms of the hydrocarbon to 8 to 2 from the viewpoint of making it difficult for highly viscous oil such as oil to enter the fiber surface.
  • the number of carbon atoms is in the range of 4 to 4, more preferably, the number of carbon atoms is in the range of 12 to 18.
  • the entry of highly viscous oil and the like can be suppressed by defining the carbon number of the hydrophobic group. And can be.
  • This embodiment is a modification of each of the seventeenth to twenty-first embodiments, and has a configuration in which the glass transition point of each of the SBR latex resin layer RO and the polyester resin layer R1 is defined. It has become.
  • the SBR latex resin layer R O has a glass transition point (T g) force S 10 ° C 4 from the viewpoint of further improving flexibility.
  • the polyester-based resin layer R 1 has a glass transition point (T g) in the range of 25 ° C. to 15 ° C. from the viewpoint of further improving oil resistance and water resistance. . .
  • the glass transition point of the SBR latex resin layer R 0 does not need to be adjusted within the range of 10 ° C. to 40 ° C.
  • the glass transition point of the SBR latex resin layer R0 is set at 10 ° C. to 14 ° C. Since the temperature is within the range of 0 ° C, flexibility can be further improved. In addition, since the glass transition point of the polyester resin layer R 1 was set to 25 ° (up to 15 ° C, Oil resistance ⁇ Water resistance can be further improved.
  • the surface roughness and the cup water absorption of the coating surface of the fiber structure base material T are defined. ing. The details are described below.
  • the fiber structure Ts1X according to the present embodiment is obtained by mixing a planar fiber structure base material T with a coating liquid in which a polyester-based resin and a latex-based resin are mixed in advance. And a mixed resin layer R lx formed by coating and drying on one or both sides of T.
  • the fiber structure base material T is adjusted such that the surface to which the coating liquid is applied has the following properties (cl) and (c2).
  • Such a fiber structure base material T can be prepared by a well-known method mainly using natural fibers for papermaking. For example, to adjust the surface roughness of the fiber structure base material T, control of the raw material beating degree (CSF) gate press pressure, use of a Yankee dryer, pigment coating, calendering, etc. are applied. It is possible. Also, For adjusting the water absorption of the glass substrate T, it is possible to apply an acid sizing agent or a neutral sizing agent internally, or to apply a surface size coating by size pressing.
  • CSF raw material beating degree
  • the surface roughness ( Rmax ) of the fibrous base material ⁇ exceeds 30 ⁇ m, the size of the surface irregularities is determined by the thickness of the coating film. Therefore, the coating film on the projections becomes extremely thin, and the functional deterioration becomes large. Therefore, it is desirable that the surface roughness of the fibrous base material T is 30 [ ⁇ m] or less, o
  • the surface roughness of the fibrous structure base material T is desirably 5 [ ⁇ m] or more.
  • the drying furnace has a fixed length, when the productivity is increased, insufficient drying may occur, and the quality of the mixed resin layer R 1 X may be deteriorated. Therefore, the water absorption of the fiber structure base material T is 10
  • the water absorption of the fiber structure base material T is preferably 10 [g / m 2 ⁇ 10 seconds] or more.
  • the mixed resin layer R 1 X of the polyester-based resin and the latex-based resin is formed on the fibrous base material T.
  • the same operation and effect as the embodiment can be obtained.
  • the surface roughness R max and the cup water absorption of the coating surface of the fibrous structure base material T are defined so that the coating liquid is substantially not thinned without being extremely thin.
  • the anchor effect can be exhibited while applying evenly. For this reason, the amount of the coating solution can be reduced to a necessary minimum, so that the amount of plastic used can be reduced.
  • the present invention is not limited to the above embodiments, but may be variously modified in the implementation stage without departing from the gist of the invention. It may be implemented in combination as appropriate. ⁇ The number of openings and the combined effect can be obtained.
  • the above embodiments include inventions of various stages and are disclosed.
  • Various inventions can be extracted by appropriately combining a plurality of constituent elements. For example, in a mouth where an invention is extracted by omitting one of the constituent elements out of all the constituent elements that are inconsistent with the embodiment, the extracted invention is implemented. In the case of applying, the omitted part is appropriately captured by a well-known conventional technique.
  • the glass transition point T g [° C] described in each of the following examples is a value measured by the DSC (differential scanning calorimetry) method in JISK7121. is there.
  • T g in each embodiment means T g m.
  • Example 1 corresponds to the first embodiment.
  • Example 1 under the following conditions, the amount of paint applied, the solid content, and the results of oil resistance and water resistance were examined. The results are shown in Table 1.
  • Polyester resin Polyester resin
  • Hydrophobic group hydrocarbons with 10 or more carbon atoms
  • Fiber structure base material T 260 g / m 2 coated card paper
  • Example 1 it was possible to carry out a general coating process from a paint having a solid content of 10% or more, and to obtain sufficient oil resistance and water resistance.
  • Example 2 corresponds to the ninth embodiment.
  • Example 2 the performance of the hydrophobic group was examined under the following conditions. The results are shown in Table 2.
  • Polyester resin Polyester resin
  • Hydrophobic group The number of carbon atoms n of the hydrocarbon is as shown in Table 2.
  • Fibrous structure base T 2 6 0 g / m 2 code Toka de paper Application amount: 4 g Zm 2 ⁇ dry
  • Example 2 as long as the hydrophobic group modified on the polyester resin had 8 or more carbon atoms, good water repellency could be exhibited.
  • Example 3 corresponds to the tenth embodiment.
  • Example 3 the flexibility of the mixed resin layer Rlx and the presence or absence of tack were examined under the following conditions. The results are shown in Table 3.
  • Hydrophobic group hydrocarbons with 10 or more carbon atoms
  • Fibrous structure base T 2 6 0 g / m 2 code
  • Evaluation method After bending the coated surface of the mixed resin layer R 1 X inward, The castor oil is dripped to see if there is a pinot or not, and then to see if there is a dot.
  • X is a case where all the black spots are formed along the bending line
  • is a case where several black spots are seen
  • is a case where all the black spots are not seen.
  • the test length is 20 cm.
  • Tack Put the surface of the finger on the coated surface, set it to X when it is stuck, set it to ⁇ when it felt a resistance, and set it to ⁇ when it felt no resistance
  • Flexibility is not required for applications that do not include gamma rays, or when partial oil resistance is required.
  • the glass transition point of the polyester resin is in the range of 25 ° C. to 15 ° C. It can be seen that the glass transition point of the tex resin should be within the range of 10 ° C and 40 ° C.
  • the glass transition point of the polyester resin is 40. It is clear that the glass transition temperature should be in the range of C to 15 ° C, but a glass transition point of 25 ° C to 15 ° C which is good for bending applications may be used.
  • Example 4 corresponds to the first and second embodiments.
  • Example 4 under the following conditions, an improvement in tackiness when an inorganic agent was added was examined. The results are shown in Table 4.
  • Hydrophobic group hydrocarbon C number 10 or more
  • Inorganic material calcium carbonate with a particle size of 10 ⁇ m
  • Fibrous structure base ⁇ seog / m 2 code Toka de paper Application amount: 10 g / m 2 ⁇ dry
  • Example 4 it was confirmed that when the amount of the inorganic agent was in the range of 0.1% by weight to 10% by weight, pinholes were not generated and tack could be prevented.
  • Example 5 corresponds to the thirteenth and fourteenth embodiments.
  • Example 5 under the following conditions, the oil resistance when the coating amount was changed was examined. Table 5 shows the results.
  • Hydrophobic group hydrocarbons with 10 or more carbon atoms
  • the first resin, the second resin, and the inorganic agent are dispersed so that the solid content becomes 50% Z water.
  • Inorganic material calcium carbonate with a particle size of 10 zm
  • First resin / second resin Z inorganic agent 90 / 9.5 / 0.5 coating amount; as shown in Table 5
  • Base material 2 types of base paper in Table 5
  • the amount of the cloth is in the range of 3 to 30 g / m 2 . It was found that when the water absorption was less than the weighing of the paper, the coating amount had only to be in the range of 1 to 30 g / m 2.
  • Example 6 is a result of investigating the cup water absorption ° C and the water repellency in Example 5. Table 6 shows the results.
  • Example 6 water resistance is ensured when the water absorption of the glass is 10 g / m 2 or less, and the water repellency is ensured when the water repellency is R 8 or more. It can be seen that the mixed resin layer R lx was formed.
  • Example 7 the oil resistance of the mixed resin layer R 1 X of Example 6 was confirmed under the following conditions. Table 7 shows the results.
  • the water absorption of the cup of Example 6 was 10 g / m 2. Different samples were used.
  • Example 7 it was confirmed that those having good water resistance and water repellency in Example 6 had good oil resistance.
  • Example 8 corresponds to the thirteenth embodiment.
  • the resin layer R1 can be formed on a fibrous base material T having a large void like a pulp mold or a body under the following conditions. It is something.
  • Polyester resin Polyester resin
  • Hydrophobic group hydrocarbons with 10 or more carbon atoms
  • Example 8 the surface of the fibrous structure base material T was sufficiently buried, and a pinhole-free barrier container completely blocking the permeation of the liquid could be formed.
  • Example 9 the surface of the fibrous structure base material T was sufficiently buried, and a pinhole-free barrier container completely blocking the permeation of the liquid could be formed.
  • Example 9 corresponds to the seventeenth embodiment.
  • Example 9 the results of the coating amount, the solid content, and the oil resistance and water resistance were examined under the following conditions. Table 8 shows the results.
  • Second paint Polyester based resin
  • Hydrophobic group hydrocarbons with 10 or more carbon atoms
  • Fibrous structure base T 2 6 0 g / m 2 code
  • the first paint was applied to the no-coat surface, and dried in an oven at 100 ° C. for 1 minute. Subsequently, similarly, the second paint was applied on the SBR latex resin layer R 0, and dried in an oven at 100 ° C. for 1 minute.
  • Example 9 from those having a coating amount of 2 g or more, those having oil resistance that can withstand practical use were obtained. Further, according to the ninth embodiment, since a short-time oil resistance is required as in a carton for potatoes of fast food, etc., a carton for butter and chicken confectionery is required. Even if long-term oil resistance is required, it was confirmed that the amount of application could be increased according to the required oil resistance.
  • Example 10 corresponds to the twenty-first embodiment.
  • Example 10 the performance of the hydrophobic group was examined under the following conditions. Table 9 shows the results.
  • Second paint Polyester based resin
  • the number of carbon atoms n of the hydrocarbon is as shown in Table 9.
  • Fiber structure base material T 260 g / m 2 coated card paper
  • Example 10 as long as the hydrophobic group modified on the polyester-based resin has 8 or more carbon atoms, good water repellency can be exhibited. For example, when a putter carton stored in a refrigerator is returned to a room at room temperature, dew condensation may form balls on the carton surface, and the polka dots may fall off the surface with a light wiping. it can. Also, there is no dampening of the carton due to the condensation water.
  • Example 11 corresponds to the second embodiment.
  • Example 11 under the following conditions, the flexibility of the bent portion and the presence or absence of tack in box assembly were examined. Table 10 shows the results.
  • Hydrophobic group hydrocarbons with 10 or more carbon atoms
  • Fiber structure base material T 260 g / m 2 coated card paper
  • Tack When the finger surface is stuck to the coated surface or when resistance is felt, "/ tack" is written to the right of the flexibility evaluation result ( ⁇ , ⁇ , or X). I do.
  • the polyester The glass transition point of the resin is within the range of 25 ° C to 15 ° C, and the glass transition point of the latex resin is within the range of 10 ° C to 140 ° C. We can see that it is good.
  • Example 12 corresponds to the 21st and 22nd embodiments.
  • Example 12 confirms that the resin layers R 0 and R 1 can be formed on a fibrous structure base material T having a large void like a pulp molded body under the following conditions.
  • Hydrophobic group hydrocarbons with 10 or more carbon atoms
  • SBR latex resin was applied at 30 g / m by dry spray coating to a pulp mono-retro tray with a capacity of 200 cc and dried at 100 ° C for 1 minute. . Thereafter, a polyester resin was applied to the SBR latex resin layer by a spray coat at 30 g / m 2 by dry and dried at 100 ° C. for 1 minute. According to Example 12, the surface of the fibrous structure base material T was sufficiently filled, and it was possible to form a pinhole-free barrier container in which the permeation of the liquid was completely blocked. ⁇ Example 13>
  • Example 13 corresponds to the 23rd embodiment.
  • Example 13 under the following conditions, the surface roughness (JISB 01001) and water absorption of the fiber structure base material T (JISP 8149 (1976), but the contact time was 10 seconds) under the following conditions: The oil resistance was examined when the temperature was changed. Table 11 shows the results.
  • Second resin SBR latex. Dispersion solvent; Water
  • a coating liquid was prepared by dispersing the first resin and the second resin to a solid content of 40% / water.
  • Fibrous structure base T 2 6 0 g Z m 2 of card paper
  • Coating surface roughness R max 5 to 28 ⁇
  • Coating surface water absorption 10 to 100 g Zm 2 ⁇ 10 seconds
  • Coating method Coating liquid with fiber structure substrate T It was applied to the coated surface of, and dried with hot air.
  • Oil resistance Evaluated using three test methods: kit method, salad oil, and castor oil.
  • Kit method According to JAP ANTA PPI No. 41 (kit method). One drop of the test solution of each kit number was dropped on the surface of the treated paper, and after 15 seconds, the test solution was wiped off with a tissue paper, and the presence or absence of soaking was evaluated.
  • Salad oil (high temperature); Salad oil (commercially available) heated to 180 ° C was dropped at 20 cc on the sample, allowed to stand for 24 hours, and evaluated for penetration through the back surface.
  • Castor oil low viscosity, room temperature
  • the present invention it is possible to provide a fibrous structure having oil resistance and water resistance and capable of easily recycling a fibrous structure base material without using a fluorine-based oilproofing agent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本発明の各実施形態は、フッ素系耐油剤を用いずに、耐油性・耐水性を有し、繊維構造基材を容易にリサイクルするための繊維構造物に関する。ある実施形態の繊維構造物(Ts1)では、平面状の繊維構造基材(T)と、塗料固形分が10%~60%の範囲内でポリエステル系樹脂を含んだ塗料が繊維構造基材の片面又は両面に塗工されて形成されたポリエステル系樹脂層(R1)とを備えている。このポリエステル系樹脂層は、リサイクル時に繊維構造基材Tから容易に分離可能である。

Description

繊維構造物
技 分野
本発明は、 紙又はセルロース らなる繊維構造物に係 り 、 特に 、 フ ッ素系耐油剤を用いず 、 耐水性及び耐油性を向上 し得る繊維構造物に関する明。
背 技術
従来、 紙などの繊維構造物に耐油性 - 耐水性を付与する方 法と しては、 長年にわた り 、 フ ッ ¾系耐油剤が用いられてい る フ ッ素系耐油剤は、 紙表面に塗布される と 紙の表層繊 維の表面張力を、 一般的な油脂や水な どの液体の表面張力よ り低く 改質する。 すなわち、 フ ッ ¾系耐油剤は 液体をは じ かせて濡れにく く する こ とで、 紙の繊維中に液体が浸透する - と を抑えている。
しかしなながが らら、、 最最近近のの研研究究にによ り 、 一部のフ ッ素系耐油剤 は 生物にに蓄蓄積積性性ののああるる化化学学物物質である こ と が懸念されてい る このたためめ、、 フフ ッッ素素系系耐耐油油剤剤は、 製造を見直す動きが大手 メ カーのの数数社社にに出出ててききてていいるる c
一方、 フ ッ素系耐油剤を用いずに耐油性 ■ 耐水性を付与す る技術と し て は、 ポ リ エ チ レ ン ( P E ) 、 ポ リ プ ロ ピ レ ン
( P P ) 等のプラスチック フ ィ ルムを紙に貼 り 合わせてなる 耐油紙がある (例えば、 実開平 6 — 3 2 0 2 7 号公報を参 照。 ) 。
し.かしなが ら、 以上のよ う なポ リ エチレン等を貼り 合わせ た耐油紙は、 コス トが安いものの、 紙と して リ サイ クルする こ とが困難となっている。
本発明の 目的は、 フ ッ素系耐油剤を用いずに 、 耐油性 . 耐 水性を有し、 繊維構造基材を容易に リ サィ クルし得る繊維構 造物を提供する こ とである。
発明の開示
目的を達成するために、 本発明の繊維構造物は下記の 如く構成されている。
本発明の第 1 の局面 ( a s p e c t )は、 平面状の繊維構造基材 を有する繊維構造物であって、 塗料固形分が 1 0 %〜 6 0 % の範囲内でポリ エス テル系樹脂を含んだ 料が目 U記繊維構造 基材の片面又は'両面に塗工されて形成されたポリ エステノレ系 樹脂層を備えた繊維構造物である。
このよ う に本発明の第 1 の局面は、 従来と は異な り 、 リ サ イ タ ル時に繊維構造基材から容易に分離可能なポリ エステル 系樹脂層を繊維構造基材の片面又は両面に形成した構成によ り 、 フ ッ素系耐油剤を用いずに、 耐油性 • 耐水牲を有し、 繊 維構造基材を容易に リ サイ クルでき る繊維構造物を提供する こ とができ る。
本発明の第 2 の局面は、 第 1 の局面にねいて 、 刖記ポ リ ェ ス テノレ系樹脂層と しては、 鎖式炭化水素の珠水基によ り 修飾 されている繊維構造物である。
これによ り 、 本発明の第 2 の局面は、 1 の局面の作用に カロえ、 ポ リ エステル系樹脂層が疎水基 ( 油基 ) をもつので 耐水性を向上させる こ とができ る。
本発明の第 3 の局面は、 第 2 の局面に いて 、 刖記疎水基 の炭素数が 8 ~ 2 4の範囲内にある繊維構造物である。
これによ り 、 本発明の第 3 の局面は、 第 2 の局面の作用に カロえヽ 粘性の高い油などの侵入を抑制するこ とができる。
ュ 本発明の第 4 の局面は、 第 1 〜第 3 の各局面において 、 刖
IDポ V ェステル系樹脂層 と しては、 ガラ ス転移点 ( J I S
K 7 1 2 1 ) が 2 5 °C〜 1 5 °Cの範囲内にある繊維構造物で める
これによ り 、 本発明の第 4 の局面は、 第 1 〜第 3 の各局面 の作用に加え、 耐油性 · 耐水性をよ り 向上させる こ と ができ る。
本発明の 5 の局面は、 第 1 〜第 4 の谷局面において、 前 記ポ リ ェステル系樹脂層 と しては、 ガラ ス転移点 ( J I s
K 7 1 2 1 ) が 1 0 °C〜 一 4 0 °Cの範囲內にある ラ テ ッ ク ス 系樹脂がグラフ ト又は混合されている繊維構造物である。
これに り 、 本発明の第 5 の局面は、 第 1 〜第 4 の各局面 の作用に加ぇ -, ラテ ツ ス系樹脂によ り 柔軟性を付与する こ とができ る。
本発明の第 6 の局面は、 第 1 〜第 5 の各局面において、 前 記ポ リ エス テル系樹脂層 と しては、 無機剤が混合されている 繊維構造物である。
これによ り 、 本発明の第 6 の局面は、 第 1 〜第 5 の各局面 の作用に加え、 無機剤の作用によ り 、 接着剤の接着性の向上 及び油の吸着性の向上を図る こ とができる。
本発明の第 7 の局面は、 第 6 の局面において、 前記無機剤 が 0 . 1 重量%〜 1 0重量%の範囲内で混合されている繊維 構造物である。
これによ り、 本発明の第 7 の局面は、 第 6 の局面の作用に 加え、 無機剤によ り 形成される ピンホールを問題の無い範囲 に抑制する こ とができる。
本発明の第 8 の局面は、 第 1 〜第 7 の局面のいずれかにお いて、 前記繊維構造基材の コ ッ プ吸水度 ( J I S 8 1 4 0 ) が当該繊維構造基材の秤量 ( g / m 2 ) 未満の値であ り 、 且つ前記ポ リ エステル系樹脂層の塗布量が 1 g / m 2 〜 3 0 g Z m 2の範囲内にある繊維構造物である。
これによ り 、 本発明の第 8 の局面は、 第 1 〜第 7 の各局面 の作用に加え、 秤量未満のコ ップ吸水度をもつ繊維構造基材 に関し、 塗布量の最適化を図る こ とができる。
本発明の第 9 の局面は、 第 1 〜第 7 の各局面において、 前 記繊維構造基材のコ ップ吸水度 ( J I S P 8 1 4 0 ) が当 該繊維構造基材の秤量 ( g / m 2 ) 以上の値であ り 、 且つ前 記ポ リ-エス テル系樹脂層の塗布量が 3 g Z m 2 〜 3 0 g /
2の範囲内にある繊維構造物である。
これによ り 、 本発明の第 9 の局面は、 第 1 〜第 7 の各局面 の作用に加え、 秤量以上のコ ップ吸水度をもつ繊維構造基材 に関 し、 塗布量の最適化を図る こ とができ る。
本発明の第 1 0 の局面は、 第 1 〜第 9 の各局面において、 コ ッブ吸水度 ( J I S P 8 1 4 0 ) が l O g Z m 2以下で ある繊維構造物である。 .
こ.れによ り 、 本発明の第 1 0 の局面は、 第 1 〜第 9 の各局 面の作用に加え、 コ ップ吸水度を規定したので、 優れた耐水 性を保証する こ とができる。
本発明の第 1 1 の局面は、 第 1 〜第 1 0 の各局面において、 撥水度 ( J I S P 8 1 3 7 ) が R 8 以上である繊維構造物 5め 。
これによ り 、 本発明の第 1 0 の局面は、 第 丄 9 の各局 面の作用に加え、 撥水度を規定したので、 れた撥水性を保 証する こ とができる。
本発明の第 1 2 の局面は、 平面状の繊維構造基材と 、 m記 繊維構造基 上に形成された S B R系ラテ ク タ ス系樹脂層と、 前記 S B R系ラテックス系樹脂層上に形成されたポ ェステ ル系樹脂層と、 を備えた繊維構造物である。
こ のよ つ に本発明の第 1 2 の局面は、 従来と は異な り ヽ リ サイ クル時に繊維構造基材から容易に分離可能な s B R系ラ テ ッ ク ス系樹脂層及びポ リ エステル系樹脂層を繊維構造基材 上に形成 した構成によ り 、 フ ッ素系耐油剤を用いずにヽ 耐油 性 ' 耐水性 -を-有し、 繊維構造基材を容易に サイ クルでき る 繊維構造物を提供する こ と ができ る。 また 、 本発明の第 1 2 の局面はヽ S B R系ラテ ッ ク ス系樹脂層を備えた構成によ り 、 柔軟性を向上させるこ とができる。
本発明の第 1 3 の局面は、 第 1 2 の局面におレヽて 、 IDポ リ エステル系樹脂層 と しては、 鎖式炭化水素の練水基によ り 修飾されている繊維構造物である。
これによ り 、 本発明の第 1 3 の局面は、 第 1 2 の局面の作 用に加えヽ ポリ エス テル系樹脂層が疎水基 (親油基 ) をもつ ので耐水性を向上させる こ とができる。 本発明の第 1 4 の局面は、 第 1 3 の局面において、 前記疎 水基の炭素数が 8 〜 2 4の範囲内にある繊維構造物である。
これによ り 、 本発明の第 1 4 の局面は、 第 1 3 の局面の作 用に加え、 粘性の高い油などの侵入を抑制する こ とができ る。
本発明の第 1 5 の局面は 、 第 1 2〜第 1 4 の各局面におい て、 前記ポ リ エス テノレ系樹脂層 と しては、 ガラス転移点 ( J
I S K 7 1 2 1 ) 力 S 2 5 °C〜 1 5 °Cの範囲内 ある繊維構 造物である。
これによ り 、 本発明の第 1 5 の局面は、 第 1 2 〜第 1 4 の 各局面の作用に加え、 耐油性 · 耐水性をよ り 向上させる こ と ができる。
本発明の第 1 6 の局面は 、 第 1 2〜第 1 5 の各局面におい て、 前記 S B R系ラテ ックス系樹脂層 と しては 、 ガラス転移 点 ( J I S K 7 1 2 1 ) が 1 0 °C 4 0 。cの範囲内にあ る繊維構造物である。
これによ り 、 本発明の第 1 6 の局面は、 第 1 2 〜第 1 -5 の 各局面の作用に加え、 ラテ ック ス系樹脂によ り 柔軟性を付与 する こ とができ る。
本発明の第 1 7 の局面は 、 平面状の下記 A繊維構造基材と、 予めポ リ エステル系樹脂と ラテ ックス系樹脂と を混合した 塗工液を前記 A繊維構造基材の片面又は両面に塗工し乾燥さ せて形成した混合樹脂層と、 > を備えた繊維構造物である。
A : 前記塗工液が塗工される面の表面粗さ ( J I S B 0
1 0 0 1 ) が最大高 さ ( R m a ) で 3 0 〜 5 μ m の範囲内にあ り 、 且つ前記塗工液が塗工される面をコ ップ吸水度 ( J I s P 8 1 4 0 ( 1 9 7 6 ) ) の試験方法における蒸留水と の接触時 間を 1 0秒間と して試験した場合、 得られる吸水度が 1 0 0 〜 1 0 [ g / m 2 · i 0秒] の範囲内にある繊維構造基材。
このよ う に本発明の第 1 7 の局面は、 従来と は異な り 、 ポ リ エステル系樹脂と ラテ ックス系樹脂との混合樹脂層を繊維 構造基材上に形成した構成によ り 、 前述した第 5 の局面と同 様の作用効果を得る こ と ができ る。 また、 本発明の第 1 7 の 局面は、 繊維構造基材の塗工面の表面粗さ と コ ップ吸水度と を規定した構成によ り 、 必要最小限の塗工量で済むので、 プ ラスチックの使用量の低減を図る こ とができる。
図面の簡単な説明
図 1 は本発明の第 1 の実施形態に係る繊維構造物の断面構 成を示す模式図である。
図 2〜図 4 は同実施形態の包装体の一例を説明するための 模式図である。
図 5 は同実施形態の-繊維構造物の変形構成を示す模式図で..… ある。
図 6 は本発明の第 2 の実施形態に係る繊維構造物の断面構 成を示す模式図である。
図 7 は本発明の第 3 の実施形態に係る繊維構造物の断面構 成を示す模式図である。
図 8 は同実施形態の繊維構造物の変形構成を示す模式図で ある。
図 9 は本発明の第 4 の実施形態に係る繊維構造物の断面構 成を示す模式図である。 図 1 0 は同実施形態の繊維構造物の変形構成を示す模式図 である。
図 1 1 は本発明の第 5 の実施形態に係る繊維構造物の断面 構成を示す模式図である。
図 1 2 は本発明の第 6 の実施形態に係る繊維構造物の断面 構成を示す模式図である。
図 1 3 は同実施形態の繊維構造物の変形構成を示す模式図 である。
図 1 4 は本発明の第 7 の実施形態に係る繊維構造物の断面 構成を示す模式図である。
図 1 5 は同実施形態の繊維構造物の変形構成を示す模式図 である。
図 1 6 は本発明の第 9 の実施形態に係る繊維構造物を説明 するための模式図である。
図 1 7 は本発明の第 1 0 の実施形態に係る繊維構造物の断 面構成を示す模式図である。
図 1 8 〜図 2 8 は、 同実施形態の繊維構造物の変形構成を 示す模式図である。
図 2 9 は本発明の第 1 7 の実施形態に係る繊維構造物の断 面構成を示す模式図である。
図 3 0 は同実施形態の繊維構造物の変形構成を示す模式図 である。
図 3 1 は本発明の第 1 8 の実施形態に係る繊維構造物の断 面構,成を示す模式図である。
図 3 2 は同実施形態の繊維構造物の変形構成を示す模式図 である。
図 3 3 は本発明の第 1 9 の実施形態に係る繊維構造物の断 面構成を示す模式図である。
図 3 4 は同実施形態の繊維構造物の変形構成を示す模式図 である ο
図 3 5 は本発明の第 2 1 の実施形態に係る繊維構造物を説 明するための模式図である。
発明を実施するための最良の形態
以下 、 本発明の各実施形態について図面を参照 しなが ら説 明する 。 なお、 第 1 〜第 1 6 , 第 2 3 の実施形態は 、 繊維構 造基材 Τ上にポ リ エス テル系樹脂層 R 1 を備えた構成に関す
Ό o 第 1 7 〜第 2 2 の実施形態は、 さ らに、 繊維構造基材 τ と ポ リ エステル系樹脂層 R 1 と の間に S B Rラテ ック ス樹脂 層 R 0 を備えた構成に関する。
( , 1 の実施形態)
図 1 は本発明の第 1 の実施形態に係る繊維構造物の断面構 成 示す模式図である。 こ の繊維構 物 T s 1 は、 平面状の 繊維構造基材 Τ と、 こ の繊維構造基材 Τ の片面に涂ェによ り 形成されたポ リ エステル系樹脂層 R 1 と を備えている。
こ こ で、 繊維構造基材 Τは、 紙又はセルロ ース構造物であ り 、 例えば、 広葉樹晒ク ラ フ トパルプ、 針葉樹晒ク ラ フ トパ ルプ等の化学パルプ、 G P (ground pulp: 砕木パルプ)、 R G P (refiner ground pulp: リ フ ァ イ ナー碎木パノレプ)、 T M P (thermomechanical pulp: サーモメ カ -力ノレノヽ0 ノレプ)等の機;!戒 パルプ、 又はこれらを原料と した原紙が使用可能となってい る。 この原紙の定義は、 公知の長網多筒型抄紙機、 長網ヤン キー型抄紙機、 円網抄紙機等で抄造される上質紙、 中質紙、 片艷紙及ぴク ラ フ ト紙等の酸性紙、 中性紙、 アルカ リ 性紙を 包含 している。 これらの原紙は、 紙力増強剤、 サイズ剤、 填 料、 歩留向上剤等の抄紙補助薬品が含まれていてもよい。
具体的には、 繊維構造基材 Tが紙の場合、 例と して、 上質 紙、 模造紙、 ク ラフ ト紙な どの薄紙や、 板紙、 段ボール、 不 織布などが挙げられる。 また、 繊維構造基材 Tがセルロース 構造物の場合、 例と して、 パルプモール ド等、 セルロース繊 維を主体と した構造物が挙げられる。
ポ リ エステル系樹脂層 R 1 は、 繊維構造基材 Tに耐水性及 ぴ耐油性を付与するための樹脂層であ り 、 塗料固形分 1 0 % 〜 6 0 %の範囲内でポ リ エステル樹脂が水分散された塗料が 塗工されて形成されている。
こ こで、 耐水性について述べる。 一般的に水酸基 ( O H ) をもつセノレロー スを主体と した紙や、 パノレプモーノレ ド体のよ う な繊維構造基材 Tは、 セルロ ース繊維同士が強固な水素結 合で結ばれて形状を保っている。 このため、 水蒸気や液体の 水が浸透 した際には、 水酸基が緩み、 繊維構造基材 Tに形態 の変化や千切れ等の破損を生じさせる。 従って、 耐水性は、 こ の よ う な破損の防止に加え、 水の浸透に よ る外観の変化 (しみ) の防止をも含んでいる。
耐油性は、 一般的には次の 2つの意味を持つ。 ( 1 ) 外観 の変化 ( しみ) を防ぐ (包装製品の衛生、 安全性、 商品ィ メ ージの保護) 。 ( 2 ) 油が繊維表面に しみ込んで裏面に突き 抜けて服や手な どに付着する可能性を少な < するために、 油 が繊維に浸透する速度を遅 < する 匕
曰 (フ ク素系耐油紙) 、 '又 は油の繊維への ϊ ^ を 兀全に防止する ( P E ラ ミネー ト) をい う
なお では耐油性はヽ 油が浸透した 合に、 繊維構造 基材 Tに強度の劣化や形態の変化など 生じさせない旨をい い、 逆に、 繊維構造基材 T の 1 隙 高分子が埋めて剛直にす る場合を含む
耐油性に優れる樹脂は 、 ポ V ェステル樹脂の他に、 アタ リ ル/ス チ レ ン系樹脂、 ラテ クク ス ( S B R ) 、 又はそれらに 油の吸着剤 と して無機剤 (灰酸力ルシクムヽ 水酸化アル ミ 二 ゥム、 アルミ ナ 、 力オリ ンヽ 又はタルク等 ) を添加した樹脂 がある 。 伹しヽ 本実施形態ではヽ ポ V ェステル系樹脂を主剤 とする材料を固形分 1 0 % 〜 6 0 %で分散させた塗料を繊維 構造基材 Tに 布し乾燥させる · - と によ り 、 耐油性をもつポ リ エステル樹脂層 R 1 を繊維構造基材 T の表面に形成した-。
ヽ 固形分 1 0 %未満の場合、 溶媒を ヽ 揮散させ るための乾燥ヱネルギ一が過剰にな り 生産の観点から好ま し
< ない。 一方、 固形分 7 0 %以上の場合 、 溶媒が揮発 、 揮散 させるための必要乾燥エネルギ一が低く な り 、 逆に塗ェ時に 版上で早乾し、 版詰ま り 等を生じ易いので、 生産の観点から 好ま しく なレヽ。 また、 固形分 6 1 % 〜 6 9 %の範囲は 、 使用 可能であるカ 、 本実施形態では 、 固形分 7 0 %以上の 合か ら離.す趣 で使用 しなかった。
また、 塗ェ方法と しては、 繊維構造基材 τ の表面を樹脂で 塗ら し、 繊維の空隙を埋めて樹脂層 (樹脂皮膜) を作成する 方法であれば、 いずれの方法を選択しても よ く 、 また異なる 方法と適宜組み合わせても良い。 具体的な塗工方法は、 ロー ルコー ト 、 グラ ビア コー ト、 カーテンコー ト 、 スプレーコー ト - ブレー ド、コー ト 、 口 、ソ ド、バーコー ト、 コ ンマ コー ト 、 ェ アブレ一 ドコー ト、 ダイ コー ト、 キャ ス ト コー ト な ど、 ほ と んど全ての塗工方法が使用可能と なっている。 また、 最近、 改良開発が進んでいるスプレーコー ト法にも良好に使用でき る。
以上のよ う な繊維構造物 T. s 1 は、 例えば、 印刷 ■ 情報用 紙、 包装用紙、 衛生用紙、 工業用紙な どの用途に使用可能と なっている。 伹し、 これらの用紙に限らず、 繊維構造物 T s 1 は、 紙容器、 袋、 合成樹脂フ ィ ルム と組合せた複合容器な どといった包装体と しても使用可能と なっている。
図 2〜図 4 は繊維構造物を用いた包装体 Pの一例を説明す るための模式図である。 この包装体 Pは、 ポ リ エステル系樹 脂層 R 1 が内側にあ り 、 繊維構造基材 Tが外側にある よ う に 製造される。
詳しく は、 図 2 に示す如き、 展開 した状態から繊維構造物 T s 1 の側部の a 〜 e 面に接する藓線部 (折り 曲げ部) f 1 を折り 曲げた後、 側部の b 面と e 面を接着する。 また、 底部 の a 1 面と b 1 ■ c 1 面を接着し、 側部の d 面と a 2面を互 いに接着する。 しかる後、 破線の薺線部 f 1 を外部から谷折 り する こ と によ り 、 図 3 に示すよ う に、 折 り 畳み状態に製造 される。 この折 り 畳み状態は、 例えば食品販売店への輸送時や保管 時に対応 してお り 、 使用時には、 図 4 に示す如き、 箱型の状 態に容易に組み立て可能と なっている。
なお、 繊維構造物 T s 1 は、 包装体 Pに用い られる場合、 図 5 に示すよ う に、 ポ リ エステル系樹脂層 R 1 を繊維構造基 材 T に選択的に塗工 し、 露出 させた繊維構造基材 T に糊層 (接着剤層) A d hを形成してもよい。
また、 いずれに しても、 以上のよ う な包装体 P は、 後述す る繊維構造物 T s 2 〜 T s 7 , T s 1 x〜 T s 7 x でも同様 に適用可能となっている。 さ らに、 包装体 P は、 図 4 に示す 構成に限らず、 例えば他の箱型形状又は袋型形状をもつ構成 といった任意の構成が適用可能である こ と は言 う までもない。 例えば包装体 Pは、 図 3 に例示 したよ う な折り 畳み状態を もつ必要はなく 、 例えば底部が蓋部よ り も小さい形状に設計 して積み重ね可能に実現しても よい。 但し、 この種の積み重 ね可能な構成も一例であ り 、 包装体 P に必須ではない。 すな わち、 包装体 P と しては、 例示 した折り 畳み状態や積み重ね 可能といった省スペース化を図る構成は必須ではない。
次に、 以上のよ う に構成された繊維構造物及び包装体の作 用について説明する。
(製造時)
始めに、 ポリ エステル系樹脂を主剤とする材料を固形分 1 0 %〜 6 0 %の範囲内で分散させた塗料を準備する。 また、 この塗料を塗工する繊維構造基材 τを準備する。
続いて、 図 1 に示すよ う に、 繊維構造基材 Tの片面に塗料 を塗工し、 乾燥させる こ と によ り 、 ポ リ エステル系樹脂層 R 1 を繊維構造基材 Tの表層に形成する。 これによ り 、 繊維構 造物 T s 1 の製造が完了する。
次に、 この繊維構造物 T s 1 は、 図 2 に示す如き、 藓線部 f 1 が形成された展開状態に裁断される。 しかる後、 S線部 f 1 が折 り 曲げられ、 側部及ぴ底部の重なる面が接着される こ と によ り 、 図 3 に示す如き、 折 り 畳み状態の包装体 P に加 ェされる。
(使用時)
包装体 Pは、 通常、 この折り 畳み状態で食品販売店に輸送 されて保管される。 しかる後、 販売した食品の包装時に、 図
4 に示す如き、 箱型の状態に組み立てられる。
そ して、 包装体 P は、 例えば、 から揚げ等の油物の食品を 収容した状態で、 利用者に渡される。
こ の と き、 包装体 P の内側では、 例えば繊維構造物 T s 1 のポ リ エステル系樹脂層 R 1 の表層に接触した水も し く は油 が浸透し難いため、 表層に塗れ広がる。 但し、 利用者は、 油 が包装体 Pの外側に浸み出すまでには、 包装体 P から食品を 取出 して食べるので、 手を汚すこ とが無い。
( リ サイ クル時)
使用後の包装体 P は、 ゴミ と して廃棄される。 廃棄された 包装体 P は、 リ サイ クル時に、 ポ リ エステル系樹脂層 R 1 と 、 繊維構造基材 Tの素材とが容易に分離される。 得られた繊維 構造基材 T の素材は、 例えば紙と してリ サイ クルされる。
上述したよ う に本実施形態によれば、 従来と は異な り 、 リ サイ クル時に繊維構造基材 Tから容易に分離可能なポ リ エス テル系樹脂層 R 1 を繊維構造基材の片面又は両面に形成 した 構成によ り 、 フ ッ素系耐油剤を用いずに、 耐油性 · 耐水性を 有し、 繊維構造基材を容易に リ サイ ク ルでき る繊維構造物を 提供する こ と ができ る。
特に、 優れた耐油性を平面部、 鄞線部 (折り 曲げ部) にも 付与した紙又はセルロース構造物を提供する こ とができる。
次に、 以上のよ う な第 1 の実施形態の変形例と して第 2 〜 第 7 の実施形態を説明する。 第 2 〜第 7 の実施形態は、 ポリ エステル系樹脂層 R 1 を備えた構成をもつ点で共通 し、 ポリ エステル系樹脂層 R 1 の備え方 (片面 · 両面 . 全域) や、 平 滑性を向上させるク レー層の備え方 (有り ; 片面 · 両面 · 全 域、 無し) といった付加的な構成が異なる点が相違している。 以下、 順に説明する。
(第 2 の実施形態)
図 6 は-本発明の第 2 の実施形態に係る繊維構造物の断面構 成を示す模式図であ り 、 図 1 と 同一部分には同一符号を付し てその詳 しい説明を省略し、 こ こでは異なる部分について主 に述べる。 なお、 以下の各実施形態も同様に して重複した説 明を省略する。
本実施形態は、 第 1 の実施形態の変形例であ り 、 図 6 に示 すよ う に、 繊維構造物 T s 2が繊維構造基材 Τの両面にポ リ エステル系樹脂層 R 1 を備えている。
こ.こで、 両面のポ リ エステル系樹脂層 R 1 は、 抄紙時にサ ィズプレスによ り 、 1 回の工程で繊維構造基材 Τの両面に微 塗工されて形成されている。 伹し、 これに限らず、 2 回のェ 程で両面に形成してもよい。
繊維構造基材 T と しては、 薄紙又は厚紙 (カ ップ) と、 一 般紙との 2通 り の原紙種類を個別に用いた。 なお、 薄紙又は 厚紙 (カ ップ) は、 コ ップ吸水度 ( J I S P 8 1 4 0 ) 力 S
4 0 [ g / m 2 · 2分] 以下のもの (撥水性の高いもの) を 用いた。 また、 一般紙は、 コ ップ吸水度が紙秤量と 同 じもの
(撥水性の低いもの) を用いた。 また、 ベック平滑度 ( J I
5 P 8 1 1 9 ) は、 薄紙又は厚紙 (カ ップ) と一般紙との 両者と もに、 3 〜 1 0秒程度と低いも の (粗いもの) を用い た。
次に、 以上のよ う に構成された繊維構造物の作用について 述べる。
繊維構造物 T s 2 は、 各繊維構造基材 Tに関し、 抄紙時に サイ ズプレスに よ り 、 図 6 に示すよ う に、 ポ リ エステル系樹 脂層 R 1-が繊維構造基材 Tの両面に微塗工されて形成される。 これによ り 、 繊維構造物 T s 2 の製造が完了する。
このよ う に得られた繊維構造物 T s 2 は、 次のよ う な特性 を有していた。
繊維構造基材 Tが薄紙又は厚紙 (カ ップ) の場合、 ポ リ エ ステル系樹脂層 R 1 を塗布量 4 g Z m 2 で形成した場合と 6 g / m 2 で形成 した場合とでは、 平面部の耐油性は共に低い ものの、 塗布量を多く した方が若干、 耐油性が向上した。 ま た、 .朞線部の耐油性は若干低く 、 平面部の撥水性も R 3 〜 R 4 と低かった。 一方、 繊維構造基材 Tが一般紙の場合、 ポ リ エス テル系樹 脂層 R 1 を塗布量 4 g Z m 2で塗布 した場合と 6 g / m 2 で 塗布 した場合と では、 平面部の耐油性は共に低かつた。 また、 穽線部の耐油性は低く 、 平面部の撥水性も R 3〜 R 4 と低か つ 7こ 0
また、 リ サイ クルの容易性は、 繊維構造基材 Tの原紙種類 とは無関係に得る こ とができたこ とは言う までもない。
上述したよ う に本実施形態によれば、 繊維構造基材 τが薄 紙又は厚紙 (カ ップ) の場合、 第 1 の実施形態の効果の う ち、 平面部の耐油性と リ サイ クルの容易性とが得られる ものの、 微塗工のためか、 鄞線部の耐油性が見られなかった。
また 、 繊維構造基材 τが一般紙の場合 、 第 1 の実施形態の 効果の う ち、 リ サイ クルの容易性が得られる のの、 平面部 及び暴線部の耐油性が見られなかった。
従つて、 本実施形態のよ う に微塗ェの場 Πヽ 繊維構 1H 材
T の う.ち.の コ ッブ吸水度が高いも のは不向きである こ と が分 かる。 また、 本実施形態のよ う に微塗ェの士 ¾县7 A口 、 折り 曲げ部 を有する包装体 P には不向きであるので 、 業務用紙や中敷き 紙等といった折り 曲げ部の無い用途に用いる こ と が好ま しい と考えられる。
(第 3の実施形態)
図 7 は本発明の第 3 の実施形態に係る繊維構 物の断面構 成を示す模式図である。 こ の繊維構造物 T s 3 は 、 片面にク レー層 Cを有する平面状の繊維構造基材 T と 、 ク レ一層 c と は反対側の繊維構造基材 Tの片面 (ノ一 一 ト面 ) に塗工に よ り 形成されたポ リ エステル系樹脂層 R l と を備えている。 伹し、 これに限らず、 前述同様に図 8 に示すよ う に、 繊維構 造基材 T上に部分的に糊層 A d hを形成してもよい。
こ こで、 繊維構造基材 T と しては、 厚紙 (カ ップ) 、 厚紙 (アイボ リ ー) 、 厚紙 (カー ド、 コー トボール) の 3 通 り の 紙を個別に用いた。 なお、 各厚紙は、 コ ップ吸水度が紙の秤 量以下のものを用いてお り 、 具 1 体的には、 コ ップ吸水度が 1
8
0 0 [ g / m 2 · 2分 ] 以下のもの (撥水性の高いもの) を 用いた。
次に、 以上のよ う に構成された繊維構造物の作用について ベる。
繊維構造物 T S 3 は、 ク レー層 Cを有する繊維構造基材 T に対し、 前述したポ リ エステル系樹脂からなる塗料が繊維構 造基材 Tのノーコー ト面に塗工され乾燥されて、 図 6 に示す よ う に、 ポ リ エステル系樹脂層 R 1 が形成される。 これによ り 、 繊維構造-物 T s 3 の製造が完了する。 - - - このよ う に得られた繊維構造物 T s 3 は、 次のよ う な特性 を有していた。
繊維構造物 T s 3 は、 ポリ エステル系樹脂層 R 1 を塗布量
4 g / m 2 で形成した場合と 6 g Z m 2 で形成した場合とで は、 両者共に平面部の耐油性が良好なものの、 藓線部の耐油 性が若干低かった。 また、 平面部及び鄞線部の撥水性は R 1 0 と高かった。 また、 リ サイ クルの容易性は前述同様に得る こ と.ができた。
上述したよ う に本実施形態によれば、 ク レー層 Cを片面に 有する繊維構造基材 Tにポ リ エステル系樹脂層 R 1 を形成し た構成と しても、 第 1 の実施形態と 同様の作用効果を得る こ とができる。
(第 4の実施形態)
図 9 は本発明の第 4 の実施形態に係る繊維構造物の断面構 成を示す模式図である。 こ の繊維構造物 T s 4 は、 両面にク レー層 C を有する平面状の繊維構造基材 T と、 こ の繊維構造 基材 Tの片面 (片方のク レー層 C表面) に塗工によ り 形成さ れたポリ エステル系樹脂層 R 1 と を備えている。 但し、 これ に限らず、 前述同様に図 1 0 に示すよ う に、 繊維構造基材 T の片面のク レー層 C上に部分的に糊層 A d h を形成しても よ い。
こ こ で、 繊維構造基材 T と しては、 厚紙 (カ ップ) 、 厚紙 (アイボ リ ー) 、 厚紙 (カー ド、 コー トポール) の 3通 り の 紙を個別に用いた。 なお、 各厚紙は、 コ ッブ吸水度が 7 0 [ g / m 2 . 2 -分] 以下のもの (撥水性の高いもの)' を用い た。 また、 各厚紙は、 ベ ッ ク 平滑度が 2 0 0 秒以下の も の (平滑性の高いもの) を用いた。
次に、 以上のよ う に構成された繊維構造物の作用について 述べる。
繊維構造物 T s 4 は、 ク レー層 Cを両面に有する繊維構造 基材 Tに対し、 前述したポ リ エス テル系樹脂からなる塗料が 繊維構造基材 τ の一方のク レー面に塗工され乾燥されて、 図 9 に示すよ う に、 ポ リ エス テル系樹脂層 R 1 が形成される。 これによ り 、 繊維構造物 T s 4の製造が完了する。 こ のよ う に得られた繊維構造物 T s 4は、 次の よ う な特性 を有していた。
繊維構造物 T s 4 は、 ポ リ エステル系樹脂層 R 1 を塗布量 4 g m 2 で形成した場合と 6 g ノ m 2で形成した場合とで は、 両者共に平面部の耐油性が優れていたものの、 暴線部の 耐油性が若干低かった。 また、 平面部及ぴ穽線部の撥水性は R 1 0 と高かった。 また、 リ サイ クルの容易性は前述同様に 得る こ とができた。
上述したよ う に本実施形態によれば、 ク レー層 Cを ί¾ί面に 有する繊維構造基材 Tにポ リ エステル系樹脂層 R 1 を形成し た構成と しても、 第 1 の実施形態と 同様の作用効果を得る こ とができる。
また、 本実施形態は、 ク レ一層 Cを両面に有する構成のた め、 第 3 の実施形態に比ベ 、 平面部の耐油性を向上させる こ とができ る。
(第 5 ·の実施形態) - - 図 1 1 は本発明の第 5 の実施形態に係る繊維構造物の断面
- 構成を示す模式図である ο の繊維構造物 T s 5 は 、 平面状 の繊維構造基材 T と、 この繊維構造基材 τの片面に印刷され たイ ンキ層 I k と、 このィ ンキ層 I k上に塗工によ り 形成さ れたポ リ エステル系樹脂層 R 1 と を備えている。
以上のよ う な構成と しても、 第 1 の実施形態と 同様の作用 効果を得る こ と ができ、 さ らに、 イ ンキ層 I k によ り 美観を 向上させる こ とができ る。
(第 6 の実施形態) 図 1 2 は本発明の第 6 の実施形態に係る繊維構造物の断面 構成を示す模式図である。 この繊維構造物 T s 6 は、 ク レー 層 C を片面に有する平面状の繊維構造基材 T と、 この繊維構 造基材 T のノ ーコー ト面に印刷されたイ ンキ層 I k と、 この イ ンキ層 I k上に塗工によ り形成されたポ リ エステル系樹脂 層 R 1 と を備えている。 但し、 これに限らず、 前述同様に図 1 3 に示すよ う に、 繊維構造基材 Tのノ ーコー ト面上に部分 的に糊層 A d h を形成してもよい。
こ こで、 繊維構造基材 T と しては、 厚紙 (カ ップ) 、 厚紙
(アイボ リ ー) 、 厚紙 (カー ド、 コー トポール) の 3 通 り の 紙を個別に用いた。 なお、 各厚紙は、 コ ッブ吸水度が 2 0
[ g / m 2 ■ 2 分] 以下のもの (撥水性の高いもの) を用い た。
次に、 以上のよ う に構成された繊維構造物の作用について べる。
繊維構造物 τ s 6 は、 ク レー層 Cを片面に有する繊維構造 基材 τに対し、 繊維構造基材 T のノーコー ト にィ ンキ層 I kが印刷された後、 前述したポ リ エステル系樹脂からなる塗 料がイ ンキ層 I k上に塗工され乾燥されて、 図 1 2 に示すよ う に、 ポ リ エステル系樹脂層 R 1 が形成される。 、 れによ り 、 繊維構造物 T s 6 の製造が完了する。
このよ う に得られた繊維構造物 T s 6 は、 次のよ う な特性 を有していた。
繊.維構造物 T s 6 は、 ポ リ エステル系樹脂層 R 1 を塗布量 4 g Z m 2 で形成した場合と 6 g / m 2 で形成した場合とで は、 両者共に平面部の耐油性が優れていたも のの、 昇線部の 耐油性が若干低かった。 また、 平面部及び朞線部の撥水性は R 1 0 と高かった。 また、 リ サイ クルの容易性は前述同様に 得るこ とができた。
上述したよ う に本実施形態によれば、 ク レー層 Cを片面に 有する繊維構造基材 Tにイ ンキ層 I k を介 してポ リ エステル 系樹脂層 R 1 を形成 した構成と しても、 第 1 及び第 3 の実施 形態と同様の作用効果を得るこ とができ る。
(第 7の実施形態)
図 1 4 は本発明の第 7 の実施形態に係る繊維構造物の断面 構成を示す模式図である。 この繊維構造物 T s 7 は、 両面に ク レー層 C を有する平面状の繊維構造基材丁 と、 この繊維構 造基材 Tの片方のク レー面上にイ ンキ層 I k が印刷形成され、 このイ ンキ層 I k 上に塗工によ り 形成されたポリ エステル系 樹脂層 R 1 と を備えている。 伹し、 これに限らず、 前述同様 に図 1 5 に示すよ う に、 繊維構造基材 Tの片方のク レー層 C 上に部分的に糊層 A d h を形成しても よい。
こ こで、 繊維構造基材 T と しては、 第 6 の実施形態と 同一 仕様の 3通 り の厚紙を用いた。 すなわち、 各厚紙のコ ップ吸 水度などの特性は第 6 の実施形態と同 じである。
次に、 以上のよ う に構成された繊維構造物の作用について 述べる。
繊維構造物 T s 7 は、 ク レー層 Cを両面に有する繊維構造 基材. Tに対 し、 イ ンキ層 I kが印刷によ り 形成され、 こ のィ ンキ層 I k 上に前述 したポ リ エステル系樹脂からなる塗料が 塗工され乾燥され、 図 1 4 に示すよ う に、 ポ リ エステル系樹 脂層 R 1 が形成される。 これによ り 、 繊維構造物 T s 7 の製 造が完了する。
こ のよ う に得られた繊維構造物 T S 7 は、 第 6 の実施形態 と同様の耐油性 (平面部、 薺線部) 、 撥水性、 及びリ サイ ク ルの容易性を有していた。
上述したよ う に本実施形態によれば、 ク レー層 Cを両面に 有する繊維構造基材 T の片面上にイ ンキ層 I k を介してポ リ エステル系樹脂層 R 1 を形成した構成と しても、 第 1 及び第 6 の実施形態と同様の作用効果を得るこ とができる。
(第 8 の実施形態)
次に、 本発明の第 8 の実施形態に係る繊維構造物について 説明する。 本実施形態は、 第 1 〜第 7 の実施形態の変形例で あ り 、 ポリ エステル系樹脂層 R 1 の耐水性の向上を図る もの である。
具体的には、-ポリ エステル系樹脂層 R 1 は.、 鎖式炭化水素 の疎水基によ り 修飾されて構成されている。 詳しく は、 ポリ エステル系樹脂層 R 1 は、 疎水基 (親油基) を有する こ と に よ り 耐水性が向上される。 また、 塗料の際には水を溶媒に し て分散されるために親水基が樹脂を修飾し、 溶液 (水分散) の時には安定した分散体となっている。
また、 疎水基と しての鎖式炭化水素の構造が油の炭化水素 基と形態が似てお り こ の構造から水と油の関係で互いに濡れ ない.こ とから耐水性を付与でき る。 また炭素、 水素からなる 構造であるので、 高い安全性を有している。 上述したよ う に本実施形態によれば、 第 1 〜第 7 の各実施 形態の作用効果に加え、 ポ リ エステル系樹脂層 R 1 が疎水基
(親油基) をもつので耐水性を向上させるこ とができる。
(第 9 の実施形態)
次に 、 本発明の第 9 の実施形態に係る繊維構造物について 説明する。 本実施形態は、 第 8 の実施形態の変形例であ り 、 疎水基の炭素数が 8 〜 2 4 の範囲内にある構成である。
これによ り 、 水をは じかせ、 油を紙に浸透させないために 図 1 6 に示す如き、 炭化水素基を疎水基にもつポ リ エステル 系樹脂層 R 1 で繊維構造基材 Tを被膜化する構成によ り ヽ 電 気化学的及び構造的に耐水性と耐油性を発現させている。
図示する よ う に、 疎水基は、 繊維表面に規則正 しく 縦に配 列させた方が、 疎水性を向上させるこ とができ る。
また 、 配列した疎水基は、 油な どの粘性の高い油が繊維表 面に侵入しにく く する観点から、 炭化水素の炭素数を 8 2
4 の範囲内と し、 よ り 望ま しく は炭素数を 1 2 〜 1 8 の.範囲 内と した構成が好ま しい。
伹し 、 樹脂製造の際に、 疎水基の炭素数を揃える こ と は製 造収率の観点から限界がある。 炭化水素は飽和、 不飽和共に 構わないが飽和である方が安定である。
上述したよ う に本実施形態によれば、 第 8 の実施形態の作 用効果に加え、 疎水基の炭素数を規定したこ と によ り 、 粘性 の高い油などの侵入を抑制するこ とができる。
(-第 1 0 の実施形態)
1 7 は本発明の第 1 0 の実施形態に係る繊維構造物の断 面構成を示す模式図である。 本実施形態は、 第 1 の実施形態 の変形例であ り 、 図 1 に示したポ リ エステル系樹脂層 R 1 に 代えて、 図 1 7 に示すよ う に、 ガ ラ ス転移点 ( T g ) が 2 5 。C〜 1 5 °Cの範囲内にあるポリ エステル系樹脂と、 ガラス 転移点 ( T g ) 力 S 1 0 °C〜一 4 0 °Cの範囲內にある ラテ ック ス系樹脂とがグラ フ ト又は混合されてなる混合樹脂層 R 1 X を備えている。 但し、 これに限らず、 前述同様に図 1 8 に示 すよ う に、 繊維構造基材 Tの片面上に部分的に糊層 A d h を 形成してもよい。
こ こで、 2つのガラス転移点 ( T g ) は、 各々次の特性を 混合樹脂層 R 1 に付与 している。 第 1 のガラ ス転移点 ( T g ; 2 5 °C ~ 1 5 °C ) は、 ポ リ エステル系樹脂に耐油性 · 耐 水性を向上させている。
第 2のガラス転移点 ( T g ; 1 0 〜一 4 0 °C ) は、 ラテ ツ タ ス系樹脂に柔軟性を付与 し、 ひいては混合樹脂層 R 1 X に 柔軟性を付与して、 繊維の変形に対応可能と している o な 、 ガラス転移点は、 J I S K 7 1 2 1 における D S C (示差 走査熱分析) 法によ り 測定されている。
こ こで、 ラテ ック ス系樹脂が 1 0 °C以下のガラス転移点 T g を持つこ とで、 耐油性 · 耐水性が悪く なる傾向にあるが、 ポリ エステル系樹脂と ラテ ック ス系樹脂との配合量によ り 耐 油性 · 耐水性を問題無いものに している。 なお、 配合量は、 ポ リ エステル系樹脂をラテ ック ス系樹脂よ り も多く する こ と が必.要であ り 、 こ こでは、 ポ リ エステル系樹脂を 9 0 固形重 量部と し、 ラテックス系樹脂を 1 0 固形重量部と している。 なお、 柔軟性が不要な用途 (折り 曲げ部の無い用途、 例、 下敷き紙な ど) の場合、 柔軟性を付与する必要がない。 この ため、 ラテ ッ ク ス系樹脂は省略しても良い。 また、 必要な柔 軟性にち幅があ る。 本実施形態では、 箱などの包装体 P の折 り 曲げ部 (朞線部) への柔軟性付与 (膜の欠損をおこ さ な い) を想定するが、 包装体 P の箱によ っても必要な柔軟性に 幅がめる o
例えば 、 段ボールライナ等の使用 されたピザ配送箱が包装 体 P の場合、 麥線の幅が広く 、 薺線の高さ も紙の厚みに対し て高 < ないので、 柔軟性が低く ても よい。
一方 例えば、 一般的なチョ コ菓子に使用 されるカー ト ン が包装体 P の場合、 薪線の幅が 0 . 7 m m〜 : L . O m mと狭
< 、 線の高さ ( 1 0 0 〜 2 0 0 /·ί πι ) も紙の厚み ( 3 3 0 μ m ) に対して高いので、 高い柔軟性が要求される。 の場 合にはヽ 要求される柔軟性に比例 してラテ ッ ク ス系樹脂の配 合量を増加させればよ 、。
上述したよ う に本実施形態によれば、 第 1 の実施形態の効 果に加 X. 、 ポ リ エステル系樹脂のガラス転移点を 2 5 °C 〜 1
5 °Cの車 B囲内に したので、 耐油性 · 耐水性をよ り 向上させる こ と ができ る。 また、 ガラス転移点が 1 0 °C〜一 4 0 °Cの範 囲内にめる ラテ ック ス系樹脂をグラ フ ト又は混合したので、 ラテックス系樹脂によ り柔軟性を付与する こ とができる。
なお、 本実施形態の混合樹脂層 R 1 X は、 第 1 の実施形態 の変形例に限らず、 図 1 9 〜図 2 8 に示すよ う に、 第 2 〜第 7 の各実施形態にも組合せる こ と ができ、 組合せた実施形態 と本実施形態と の効果を得る こ と ができ る。 また、 本実施形 態は、 図示しないが、 第 8 〜第 9 の実施形態に 組合せる - とができ 、 組合せた実施形態と本実施形態と の効果を得る とができる o
(第 1 1 の実施形態)
次に、 本発明の第 1 1 の実施形態に係る繊維構造物につい て説明する o
本実施形態は、 第 1 〜第 1 0 の各実施形態の変形例であ り 刖述したポ リ エス テル系樹脂層 R 1 又は混合樹脂層 R 1 X と しては、 無機剤が混合されたものとなっている。
無機剤は、 次の観点 は)〜 ( i i )か ら 、 例えば力 ォリ ン、 炭酸カ ルシ ウ ム、 水酸化アル ミ ニ ウ ム アル ミ ナ カオリ ン、 又はタルク等が使用可能と なっている。
( i ) 樹脂層 R l R l x と、 無機剤 と の乾燥時の収縮の 差を利用 し、 樹脂層 R 1 R 1 X への微細な空隙を形成する。
( i i ) 無機剤によ り 、 油の吸着性を向上させる-。
次に、 以上のよ う に構成された繊維構造物の作用を説明す る。
1 の観点 ( i )によ り 、 繊維構造基材 τは、 接 剤の接着 性を向上でき、 箱な どの包装体 P に加工する際の糊を選疋 し 易 < する こ と ができ る。 理由は、 無機剤の混合によ り 繊維に 生じた空隙に接着剤が入り 込むので、 接着力を向上でき るか ら め o
第 2 の観点 ( i i )によ り 、 無機剤の もつ多孔性によ り 油を 吸着して保持する ので、 微細なピ ンホールに油が進入した際 にも多大な性能劣化を引き起こす心配を解消する こ とができ る。
上述したよ う に本実施形態によれば、 第 1 〜第 1 0 の各実 施形態の効果に加え、 無機剤の作用によ り 、 接着剤の接着性 の向上及び油の吸着性の向上を図る こ とができ る。
(第 1 2の実施形態)
次に、 本発明の第 1 2 の実施形態に係る繊維構造物につい て説明する。
_、ム 本実施形態は、 第 1 1 の実施形態の変形例であ り 、 述し た無機剤と しては、 0 . 1重量%〜 1 0重量 %の範囲内で混 合されている構成である。
こ こで、 無機剤の配合量を規定した趣旨は 、 ハ、ヽ機剤にてピ ンホールを形成させる際に、 無機剤の量が過剰な 口 、 樹脂 層 R 1 , R 1 X に多数のピンホールを生じさせ、 耐油性 · 耐 水性の劣化を引き起こ してしま う からである。
しかしなが ら、 こ こでは、 無機剤の配合量を 0 1 %
〜 1 0重量。/。の範囲内に規定するので、 無機剤によ り 形成さ れる ピンホールを問題の無い範囲に抑制する 二 とができ る。
上述したよ う に本実施形態によれば、 無機剤によ り 形成さ れる ピンホールを問題の無い範囲に抑制 し、 耐油性 ■ 耐水性 の劣化を阻止する こ とができる。
(第 1 3 の実施形態)
次に、 本発明の第 1 3 の実施形態に係る繊維構造物につレ、 て説明する。
本実施形態は、 第 1 〜第 1 2 の各実施形態の変形例であ り 繊維構造基材 Tのコ ッブ吸水度が当該繊維構造基材 Τの秤量 ( g /m 2 ) 未満の値であ り 、 且つ樹脂層 R l , R l x と な る塗料の塗布量が 1 g Z m 2 〜 3 0 g Zm 2 の範囲内にある 構成となっている。
補足する と、 樹脂層 R l , R l x と なる塗料の塗布量と、 樹脂層 R 1 , R 1 X の厚さ と は相関関係があ り 、 また、 樹脂 層 R 1 , R 1 X の厚さ 、 耐水性 · 耐油性を保証する安定性 (膜の欠損箇所の多い、 少ない) に関係してく る。
概して塗布量の多い方が安定性が高いが、 紙 (例 、 坪量
2 0 g /m 2 〜 2 0 0 g Zm 2 ※明確な規疋は ^ハHゝ、 1ゝヽ ) は塗布 量が多いと、 湿潤強度がそれほど強く ないため 、 加ェの際に 基材にかかる引 っ張り テ ンショ ンによ り 千切れ等を引き起こ し易い。 また、 塗布量を増やすと 、 材料コス 卜の増加と、 乾 燥性の低下に伴 う生産ス ピー ドの低下による加ェコス トの増 加と を招 く 。 但し、 パルプモール ド体のよ う に空隙の大きい 繊維構造基材 Tに樹脂層 R 1 , R 1 X を形成する場合 、 スプ レーコ ー ト等でかな り の量の塗料を載せな く てはピンホーノレ フ リ ーにならない場合もある。
こ のため、 本実施形態は、 コ Vブ吸水度と繊維構造基材 Τ との関係から、 樹脂層 R 1 , R 1 X と なる塗料の塗 量を規 定したこ と によ り 、 耐油性 · 耐水性と加ェコス 卜 と をノ ラ ン ス良く 設計した繊維構造物 T s 1 〜 Γ s 7 , T s 1 X 〜 Γ s
7 X を実現している。
上述したよ う に本実施形態にぶ 第 1 第 1 2 の各実 施形態の効果に加え、 秤量未満のコ ッブ吸水度をもつ繊維構 造基材 Tに関し、 塗布量の最適化を図るこ とができる。
(第 1 4の実施形態)
次に、 本発明の第 1 4 の実施形態に係る繊維構造物につレ、 て説明する。
本実施形態は、 第 1 3 の実施形態 (又は第 1 〜第 1 2 の各 実施形態) の変形例であ り 、 繊維構造基材 Τの コ ッブ吸水度 が当該繊維構造基材 Τの秤量 ( g Z m 2 ) 以上の値であ り 、 且つ樹脂層 R 1 , R 1 X と なる塗料の塗布量が 3 g Zm 2〜 3 0 g /m 2 の範囲内にある構成と なっている。
以上のよ う な構成によれば、 第 1 〜第 1 2 の各実施形態の 効果に加え、 秤量以上のコ ップ吸水度をもつ繊維構造基材 T に関 し、 塗布量の最適化を図る こ とができる。
(第 1 5の実施形態)
次に、 本発明の第 1 5 の実施形態に係る繊維構造物につい て説明する。
本実施形態は、 第 1 〜第 1 4 の各実施形態の変形例であ り 、 コ ップ吸水度 ( J I S P 8 1 4 0 ) が l O g Zm 2 以下で ある繊維構造物 T s 1 〜 T s 7 , T s 1 x 〜 T s 7 x である。
補足する と、 コ ップ法によ り 、 各実施形態の繊維構造物 T s l 〜 T s 7 , T s l x〜 T s 7 x を測定した所、 1 0 g Z m 2 以下の良好な耐水性を得る こ とができた。 逆にい う と、 コ ップ吸水度が 1 0 g / m 2以下である と、 優れた耐水性を 保証でき る と考えられる。
なお、 コ ップ法を改案した形でも朞線部の破損を観察 して みた。 1 2 - 5 c m X 1 2 . 5 c mの繊維構 物 T s 1 〜 T s 7
T s 1 X 〜 T S ,· X の評価サンプルに対しヽ それぞれ鄞線巾
0 . 7 m mヽ 朞線高さ 2 0 0 μ m.なる鄞線を中央に 1 本入れ 十
しかる後ヽ コ ッブ法によ り 吸水 験を行つた 仮に樹脂 層 R 1 R 1 X が破壊されている場合にはヽ 破壊された箇所 から水が しみこみ重量変化を起こすはずでめ り ヽ その平米換 算した値では百 g / m Λォーダーでの増加が確認されるはず であ り ヽ また しみ込みが目視で黒点と して確認されるはずで め "3 。
しかしなが ら、 3 ップ法による吸水度 5式験の ロ果 、 コ ッブ 吸水度に 化 (増加 ) が見受け られず、 また 目視での黒点も 発生が皆無であつ 7こ '
上述したよ う に本実施形態によれば、 第 1 第 1 4 の各実 施形態の効果に加え 、 クブ吸水度を規定したのでヽ 優れた 耐水性を保証する こ とができ る。
(第 1 6 の実施形態)
次に、 本発明の第 1 6 の実施形態に係る繊維構造物につい て説明する。
本実施形態は、 第 1 〜第 1 5 の各実施形態の変形例であ り 、 撥水度 ( J I S P 8 1 3 7 ) が R 8 以上である繊維構造物 T s l 〜 T s 7 , T s l x 〜 T s 7 xである。
補足する と、 J I S P 8 1 3 7 の試験法によ り 、 各実施 形態の繊維構造物 T s 1 〜 T s 7 , T s 1 X 〜 T s 7 X を測 定した所、 R 8 以上の良好な撥水度を得る こ とができた。 逆 にい う と、 撥水度が R 8 以上でめる と 、 優れた撥水性を ί禾 正 でき る と考えられる。
なお 繊維構造基材 Tは、 炭化水素基を疎水基にもつ フ ッ素系 、 シ リ コ ン系のものと水に対する性質が似通つてい
Ό Ό 、 こ の性質は、 ポリ エステル系樹脂、 ラテ ツ ク ス系 樹脂、 機剤の割合によつて変化するが、 撥水度が R 8 以上 であれば問題ないと考えられる。
上述 したよ う に本実施形態によれば、 第 1 〜第 1 5 の各実 施形態の効果に加え、 撥水度を規定したので、 優れた撥水性 を保証する こ とができる。
(第 1 7 の実施形態)
図 2 9 は本発明の第 1 7 の実施形態に係る繊維構造物の断 面構成を示す模式図である。 この繊維構造物 T s 1 1 は 平 面状の繊維構造基材 T と、 この繊維構造基材 τ上に形成され た S B R ラ テ ッ ク ス樹脂層 R O と 、 この S B R ラテ ツ ク ス樹 脂層 R 0 上に形成されたポリ エステル系樹脂層 R 1 と .を備え てレヽる
で 、 繊維構造基材 τは、 紙又はセルロ ース構造物でめ り 、 例 X.ば、 第 1 の実施形態で述べた原紙が使用可能と なつ てレヽる
S B R系ラテ ッ ク ス系樹脂 R 0 は 、 優れた耐油性と柔軟性 と を有してお り 、 繊維構造物 T s 1 1 を折 り 曲げた際にも 折り 曲げ部の耐油性を維持させるためのものである。
ポ リ エステル系樹脂層 R 1 は、 繊維構造基材 Tに耐水性及 ぴ耐油性を付与するための樹脂層であ り 、 例えば第 1 の実施 形態と同様の塗料を用いて同様に形成されている。 但し、 図 2 9 中のポ リ エステル系樹脂層 R 1 は、 前述 したポリ エステ ル系樹脂と ラテ ックス系樹脂との混合樹脂層 R X 1 に置換可 能である。 ポ リ エステル系樹脂層 R 1 が混合樹脂層 R x 1 に 置換可能な旨は、 後述する図 3 0〜図 3 5 でも同様である。
また、 耐油性の意味は前述した通 り である。 耐水性は、 水 を吸水しない旨を意味 している。 また、 塗工方法は、 第 1 の 実施形態と同様の方法が使用可能と なっている。
以上のよ う な繊維構造物 T s 1 1 は、 第 1 の実施形態と 同 様の用途に使用可能と なってお り 、 例えば図 2〜図 4 に示し た包装体 P と しても よい。 ·
なお、 繊維構造物 T s 1 1 は、 包装体 P に用い られる場合、 図 3 0 に示すよ う に、 各樹脂層 R O , R 1 を繊維構造基材 T に選択的に塗工し、 露出させた繊維構造基材 Tに糊層 (接着 剤層) A d h を形成してもよい。
また、 いずれに しても、 以上のよ う な包装体 P は、 後述す る繊維構造物 T s 1 2 〜 T s 1 3 でも同様に適用可能と なつ ている。 さ らに、 包装体 Pは、 図 4 に示す構成に限らず、 任 意の構成が適用可能であるこ とは言う までもない。
次に、 以上のよ う に構成された繊維構造物及び包装体の作 用について説明する。
(製造時)
始めに、 S B Rラテ ックス樹脂を主剤とする材料を例えば 固形分 5 0 %で水分散させた第 1 塗料を準備する。 同様に、 ポ リ エステル系樹脂を主剤とする材料を例えば固形分 1 0 % 〜 6 0 %の範囲内で分散させた第 2塗料を準備する。 また、 これら塗料を塗工する繊維構造基材 Tを準備する。
続いて、 繊維構造基材 Tの片面に第 1 塗料を塗工し、 乾燥 させる こ と によ り 、 S B Rラテ ックス樹脂層 R 0 を繊維構造 基材 Tの表層に形成する。 続いて、 こ の S B R ラテ ッ ク ス樹 脂層 R 0上に第 2塗料を塗工し、 乾燥させる こ と によ り 、 ポ リ エステル系樹脂層 R 1 を S B R ラテ ッ ク ス樹脂層 R 0 の表 面に形成する。
これによ り 、 図 2 9 に示すよ う に、 繊維構造基材 T上に S B R ラテ ッ ク ス樹脂層 R 0及ぴポ リ エステル系樹脂層 R 1 を 順次積層させた繊維構造物 T S 1 1 の製造が完了する。
次に、 こ の繊維構造物 T s 1 1 は、 第 1 の実施形態と 同様 に、 図 3 に示す如き、 折り 畳み状態の包装体 P に加工される。
(使用時)
包装体 P は、 第 1 の実施形態と 同様に、 例えば油物の食品 を収容した状態で利用者に渡される。
この と き、 包装体 P の內側では、 例えば繊維構造物 T s 1 1 のポリ エステル系樹脂層 R 1 の表層に接触 した水も しく は 油が浸透し難いため、 表層に塗れ広がる。 但し、 利用者は、 第 1 の実施形態と 同様に、 手を汚すこ とが無い。
(リ サイクル時)
使用後の包装体 P は、 第 1 の実施形態と 同様に、 リ サイ ク ル時に、 各樹脂層 R 0 〜 R 1 と、 繊維構造基材 Tの素材とが 容易に分離される。 得られた繊維構造基材 τの素材は、 例え ば紙と して リ サイ クルされる。 上述したよ う に本実施形態によれば、 従来と は異な り 、 リ サイ ク ル時に繊維構造基材 Tから容易に分離可能な S B R ラ テ ッ ク ス樹脂層 R 0及ぴポ リ エス テル系樹脂層 R 1 を繊維構 造基材 T上に形成した構成によ り 、 フ ッ素系耐油剤を用いず に、 耐油性 · 耐水性を有し、 繊維構造基材を容易に リ サイ ク ルでき る繊維構造物を提供する こ と ができ る。
また、 S B Rラテ ックス樹脂層 R O を備えた構成によ り 、 柔軟性を向上させる こ とができ る。 すなわち、 優れた耐油性 を平面部、 藓線部 (折り 曲げ部) にも付与した紙又はセル口 ース構造物を提供する こ とができる。
次に、 以上のよ う な第 1 7 の実施形態の変形例 と して第 1 8 〜第 1 9 の実施形態を説明する。 第 1 8 〜第 1 9 の実施形 態は、 各樹脂層 R 0, R 1 を備えた構成をもつ点で共通 し、 平滑性を向上させる ク レー層の備え方 (片面 ' 両面 ' 全域) といった付加的な構成が異なる点が相違している。 以下、 順 に説明する。 ■
(第 1 8 の実施形態)
図 3 1 は本発明の第 1 8 の実施形態に係る繊維構造物の断 面構成を示す模式図である。 こ の繊維構造物 T s 1 2 は、 片 面にク レー層 Cを有する平面状の繊維構造基材 T と、 ク レー 層 C と は反対側の繊維構造基材 Tの片面 (ノ ーコー ト面) に 塗工によ り 形成された S B Rラテ ック ス樹脂層 R 0及びポリ エス テル系樹脂層 R 1 の積層構造と を備えている。 伹し、 こ れに.限らず、 前述同様に図 3 2 に示すよ う に、 繊維構造基材 T上に部分的に糊層 A d h を形成してもよい。 こ こで、 繊維構造基材 T と しては、 厚紙 (カ ップ) 、 厚紙 (アイ ボ リ ー) 、 厚紙 (カー ド、 コー トボール) の 3 通 り の 紙を個別に用いた。 なお、 各厚紙は、 コ ッブ吸水度が紙の秤 量以下のものを用いてお り 、 具体的には、 コ ップ吸水度が 5 0 [ g / m 2 ■ 2分 ] 以下のもの (撥水性の高いもの) を用 いた。
次に、 以上のよ う に構成された繊維構造物の作用について 述べる。
繊維構造物 T s 1 2 は 、 ク レー層 c を有する繊維構 la 材
Tのノ ーコー ト面に 、 m述 した S B R ラテ ックス樹脂からな る第 1 塗料が塗工され乾燥されて、 S B R ラテッ クス樹脂層
R 0 が形成される。 続いて 、 S B Rラテ ックス樹脂層 R 0上 に、 ポ リ エステノレ系樹脂からなる第 2塗料が塗ェされ乾燥さ れて、 ポ リ エステル系樹脂層 R 1 が形成される。
これによ り 、 図 3 1 に示すよ う に、 繊維構造物 T s 1 2 の 製造が完了する。
このよ う に得られた繊維構造物 T s 1 2 は、 次のよ う な特 性を有していた。
繊維構造物 τ s 1 2 は、 ポ リ エス テル系樹脂層 R 1 塗 ΪΪ 量 4 gノ m 2で形成した場合と 6 g Z m 2 で形成 した場合と では、 両者共に平面部の耐油性が優れてお り 、 線部の耐油 性が良好であつた。 また、 平面部及ぴ朞線部の撥水性は R 1
0 と高力 つに また、 リ サイ ク ルの容易性は前述 様に得る こ と.ができた。
上述 したよ う に本実施形態によれば、 ク レー μ Cを片面に 有する繊維構造基材 Tに S B R ラ テ ッ ク ス樹脂層 R 0及びポ リ エステル系樹脂層 R 1 を形成した構成と しても、 第 1 7 の 実施形態と同様の作用効果を得る こ とができ る。
(第 1 9 の実施形態)
図 3 3 は本発明の第 1 9 の実施形態に係る繊維構造物の断 面構成を示す模式図である。 この繊維構造物 T s 1 3 は、 両 面にク レー層 C を有する平面状の繊維構造基材 T と、 この繊 維構造基材 Tの片面 (片方のク レー層 C表面) に塗工によ り 形成された S B R ラテ ック ス樹脂層 R O 及びポ リ エステル系 樹脂層 R 1 の積層構造と を備えている。 但し、 これに限らず、 前述同様に図 3 4 に示すよ う に、 繊維構造基材 T の片面のク レー層 C上に部分的に糊層 A d h を形成してもよい。
こ こで、 繊維構造基材 T と しては、 厚紙 (カ ップ) 、 厚紙 (アイボ リ ー) 、 厚紙 (カー ド、 コー トポール) の 3 通 り の 紙を個別に用いた。 なお、 各厚紙は、 コ ッブ吸水度が 2 0
[ g / m 2 。 2分] 以下のもの (撥水性の高いもの) を用い た。
次に、 以上のよ う に構成された繊維構造物の作用について
¾iiベる。
繊維構造物 T s 1 3 は、 ク レー層 Cを両面に有する繊維構 造基材 T の片面上に、 前述 した S B R ラテ ッ ク ス樹脂からな る第 1 塗料が塗工され乾燥されて、 S B R ラテ ッ ク ス樹脂層 R O が形成される。 続いて、 S B R ラテ ッ ク ス樹脂層 R 0上 に、 .ポリ エステル系樹脂からなる第 2 塗料が塗工され乾燥さ れて、 ポ リ エステル系樹脂層 R 1 が形成される。 これによ り 、 図 3 3 に示すよ う に、 繊維構造物 T s 1 3 の 製造が完了する。
このよ う に得られた繊維構造物 T s 1 3 は、 次のよ う な特 性を有していた。
繊維構造物 T s 1 3 は、 ポ リ エステル系樹脂層 R 1 を塗布 量 4 g / m 2 で形成 した場合と 6 g m 2 で形成 した場合と では、 両者共に平面部の耐油性と鄞線部の耐油性とが優れて いた。 また、 平面部及び鄞線部の撥水性は R 1 0 と高かった。 また、 リ サイ クルの容易性は前述同様に得る こ とができた。
上述したよ う に本実施形態によれば、 ク レー層 Cを両面に 有する繊維構造基材 Tに S B R ラテ ッ ク ス樹脂層 R O及びポ リ エステル系樹脂層 R 1 を形成した構成と しても、 第 1 7 の 実施形態と同様の作用効果を得る こ とができる。
また、 本実施形態は、 ク レー層 Cを両面に有する構成のた め、 第 1 8 の実施形態に比べ、 藓線部の耐油性を向上させる こ とがでぎる。
(第 2 0の実施形態)
次に、 本発明の第 2 0 の実施形態に係る繊維構造物につい て説明する。 本実施形態は、 第 1 7〜第 1 9 の実施形態の変 形例であ り 、 ポ リ エステル系樹脂層 R 1 の耐水性の向上を図 る ものである。
具体的には、 ポ リ エステル系樹脂層 R 1 は、 鎖式炭化水素 の疎水基によ り 修飾されて構成されている。 詳しく は、 ポ リ エス.テル系樹脂層 R 1 は、 疎水基 (親油基) を有する こ と に よ り 耐水性が向上される。 また、 塗料の際には水を溶媒に し て分散されるために親水基が樹脂を修飾し、 溶液 (水分散 ) の時には安定した分散体となっている。
また 、 疎水基と しての鎖式炭化水素の構造が油の炭化水 基と形態が似てお り この構造から水と 油の関係で互いに濡れ ないこ とから耐水性を付与でき る。 また灰素、 水素からなる 構造であ.るので、 高い安全性を有している。
上述したよ う に本実施形態によれば、 第 1 7 ~第 1 9 の各 実施形態の作用効果に加え、 ポ リ エステル系樹脂層 R 1 が 水基 (親油基) をもつので耐水性を向上させる こ とができ る。
(第 2 1 の実施形態)
次に 、 本発明の第 2 1 の実施形態に係る繊維構造物につい て説明する。 本実施形態は、 第 2 0 の実施形態の変形例であ り 、 疎水基の炭素数が 8 〜 2 4の範囲内にある構成である。
れによ り 、 水をはじかせ、 油を紙に浸透させないために 図 3 5 に示す如き、 炭化水素基を疎水基にもつポ リ エステル 系樹脂層 R 1 で繊維構造基材 Tを被膜化する構成によ り 、 気化学的及び構造的に耐水性と耐油性を発現させている。
図示する よ う に、 疎水基は、 繊維表面に規則正 しく 縦に配 列させた方が、 疎水性を向上させるこ とができ る。
また、 配列した疎水基は、 油な どの粘性の高い油が繊維表 面に侵入しにく く する観点から、 炭化水素の炭素数を 8 〜 2
4 の範囲内 と し 、 よ り 望ま しく は炭素数を 1 2 〜 1 8 の範囲 内と した構成が好ま しい。
伹し、 樹脂製造の際に、 疎水基の炭素数を揃える こ と は製 造収率の観点から限界がある。 炭化水素は飽和、 不飽和 ヽに 構わないが飽和である方が安定である。
上述 した よ う に本実施形態に よれば、 第 2 0 の実施形態の 作用効果に加え、 疎水基の炭素数を規定した こ と によ り 、 粘 性の高い油な どの侵入を抑制する こ と ができ る。
(第 2 2 の実施形態)
次に、 本発明の第 2 2 の実施形態に係る繊維構造物にっレ、 て説明する。
本実施形態は、 第 1 7 〜第 2 1 の各実施形態の変形例であ り 、 S B R ラテ ッ ク ス樹脂層 R O 及びポ リ エステル系樹脂層 R 1 の各々 のガラス転移点を規定した構成と なっている。
こ こで、 S B R ラテ ッ ク ス樹脂層 R O は、 柔軟性を よ り 向 上 さ せる観点力ゝ ら 、 ガラ ス転移点 ( T g ) 力 S 1 0 °C 4
0 °Cの範囲内にある ものを用いる。
ポ リ エステル系樹脂層 R 1 は、 耐油性 ■ 耐水性をよ り 向上 させる観点から、 ガラ ス転移点 ( T g ) が 2 5 °C〜 1 5 °Cの 範囲内にあるもの.を用いる。 .
なお、 柔軟性が不要な用途 (折 り 曲げ部の無い用途、 例、 下敷き紙な ど) の場合、 柔軟性を向上する必要がない。 この 場合、 S B R ラ テ ッ ク ス樹脂層 R 0 のガラ ス転移点を 1 0 °C 4 0 °Cの範囲内に調整しな く ても良い。
上述 した よ う に本実施形態に よれば、 第 1 7 〜第 2 1 の各 実施形態の効果に加え、 S B R ラテ ッ ク ス樹脂層 R 0 のガラ ス転移点を 1 0 °C〜一 4 0 °Cの範囲内に したので、 柔軟性を よ り.向上させる こ と ができ る。 また、 ポ リ エステル系樹脂層 R 1 のガラ ス転移点を 2 5 ° ( 〜 1 5 °Cの範囲内に したので、 耐油性 · 耐水性をよ り 向上させるこ とができる。
(第 2 3 の実施形態 )
次に、 本発明の第 2 2 の実施形態に係る繊維構造物につい て図 1 7 〜図 2 1 の う ち、 図 1 7 を代表例に挙げて説明する。
本実施形態は、 混合樹脂層と なる塗工液を繊維構造基材 T に均一に塗布するため、 繊維構造基材 Tの塗工面の表面粗さ 及びコ ップ吸水度を規定した構成となっている。 以下、 具体 的に述べる。
本実施形態に係る繊維構造物 T s 1 X は、 平面状の繊維構 造基材 T と、 予めポ リ エステル系樹脂と ラテ ッ ク ス系樹脂と を混合した塗工液を繊維構造基材 Tの片面又は両面に塗工し 乾燥させて形成した混合樹脂層 R l x と、 を備えている。
こ こで、 繊維構造基材 Tは、 塗工液が塗工される面が次の 特性 (cl) (c2) を有する よ う に調整されている。
( cl) 表面粗さ ( J I S B 0 100 1 ) が最大高 さ ( R max) で 3 0 ~ 5 / mの範囲内にある。
( c2) コ ップ吸水度 ( J I S P 8 1 4 0 (1976) ) の試 験方法における蒸留水との接触時間を 1 0秒間 と して試験し た場合、 得られる吸水度力 S 1 0 0 〜 1 0 [ g / m 2 · 1 0 秒] の範囲内にある。
このよ う な繊維構造基材 Tは、 製紙用天然繊維を主体と し て周知の方法によ り作成可能と なっている。 例えば、 繊維構 造基材 Tの表面粗さの調整には、 原料叩解度 ( C S F ) ゃゥ ェ ッ.トプレス圧の制御、 ヤンキー ドライヤの使用、 顔料のプ レコー ト、 カ レンダー処理などが適用可能である。 また、 繊 維構造基材 Tのコ ップ吸水度の調整には、 酸性サイズ剤又は 中性サイ ズ剤の内添、 サイ ズプ レス による表面サイ ズコーテ ィ ング等が適用可能となっている。
表面粗さ と コ ッ プ吸水度の範囲について述べる 繊維構造基材 Τ の表面粗さ ( R m a x ) が 3 0 μ mを越 る と、 表面の凹凸の大き さが塗工膜の厚さ よ り 大き < なるため 凸部での塗ェ膜が極端に薄く なって機能低下が大き < なる。 従ってヽ 繊維構造基材 Tの表面粗さは、 3 0 [ μ m ] 以下が 望ま しレ、 o
またヽ 繊維構造基材 T の表面粗さ ( R m a x ) を 5 β m未滴 にするには、 過度のプ レス 、 カ レンダー処理の強化な どを必 要とする こ とから、 繊維構造基材 τが潰されて繊密にな り 、 薄く なつて剛度が低下してい る ので、 ト レーゃ容 に不適と なる。 従つ て、 繊維構造基材 T の表面粗さは、 5 [ β m ] 以 上が望ま しい。
一方 、 繊維構造基材 Tの吸水度が 1 0 0 [ g / m 2 ■ 1 0 秒] よ り 高い場合、 塗工液が多量に浸透して表面の塗ェ膜が 不均一と なるため、 ピンホールができ易く 、 不十分なロロ ¾と なる。
これを補 う には、 過剰の塗布量を用いるか、 又は乾燥炉ま での到 時間を短縮する (生産速度を上げる) こ と が必要と な 。 伹し、 乾燥炉が固定長である こ とから、 生産 度を上 げる と 乾燥不足が生じて混合樹脂層 R 1 X の品質を低下さ せる心配がある。 従って、 繊維構造基材 T の吸水度は 、 1 0
0 [ g / m 2 · 1 0秒] 以下が望ま しい。 また、 繊維構造基材 T の吸水度が 1 0 [ g , z m 2 • 1 0 秒] 未満の場合、 繊維構造基材 τへのエマノレジヨ ンの浸透が 少な く ヽ 混合樹脂層 R 1 X と繊維構造基材 T と の結合 、 いわ ゆるァンカー効果が弱く な 、 折り 曲げ加ェ時に混合榭脂層
R 1 が繊維構造基材 τから剥離し易 く なる o 従って 、 繊維 構造基材 T の吸水度は、 1 0 [ g / m 2 · 1 0秒] 以上が望 ま しい
以上のよ う な構成によれば、 ポリ エステル系樹脂と ラテ ツ タ ス系樹脂と の混合樹脂層 R 1 X を繊維構 基材 T上に形成 した構成によ り 、 前述 した第 1 0 の実施形態と同様の作用効 果を得る こ とができる。
またヽ 本実施形態によれば、 繊維構造基材 T の塗工面の表 面粗さ R m a x と コ ップ吸水度と を規定した 成によ り 、 塗工 液を極端に薄く せずに略均一に塗布しつつ 、 ァンカー効果を 発現でさ る。 このため、 塗ェ液が必要最小限の塗て量で済む ので、 プラスチックの.使用量の低減を図る こ とができる。
なお、 本 発明は 、 上記各実施形態に限定される ちのでな く 、 実施段階ではその要旨を 脱しない範囲で種々 に変形す る こ とが可能である o また、 各実施形 は可能な限り 適宜組 み合わせて実施 しても よ < 、 その逼 ¾八口 、 組み合わされた効果 が得られる o さ らに 、 上記各実施形態には種々 の段階の発明 が含まれて り 、 開示さ る複数の構成要件における適宜な 組み合わせによ り種々 の発明が抽出され得る。 例えば実施形 態に不 ^れる全構成要件 ら つ の構成要件が 略される こ と で発明が抽出された 口 には 、 その抽出された発明を実 施する場合には省略部分が周知慣用技術で適宜捕われる もの である。
その他、 本発明はその要旨を逸脱しない範囲で種々変形し て実施でき る。
[実施例]
以下、 各実施例によ り 説明する。 なお、 以下の各実施例に 記載のガラス転移点 T g [ °C ] は、 J I S K 7 1 2 1 にお け る D S C ( differential scanning calorimetry : 示差走査熱分析) 法によ り 測定された値である。 また、 各実 施例でい う T g は、 T g mを意味している。
<実施例 1 >
実施例 1 は、 第 1 の実施形態に対応 している。 実施例 1 は、 以下の条件によ り 、 塗料の塗布量と 固形分、 耐油耐水性の結 果を調べた。 その結果を表 1 に示す。
(実施例 1 の条件)
樹脂 ; ポ リ エステル系樹脂 .
T g ; 2 0 °C
固形分 ; 表 1 の通り
分散溶媒 ; 水
疎水基 ; 炭化水素の炭素数 1 0以上
繊維構造基材 T ; 2 6 0 g /m 2 コー トカー ド紙
ポ リ エス テル系樹脂を含む塗料はノ ーコー ト面に塗布 し、 オープンにて 1 0 0 °C 1 分の乾燥条件で乾燥させた。 表 1
Figure imgf000046_0001
実施例 1 によれば、 固形分 1 0 %以上の塗料から一般的な 塗工加工を行え、 且つ十分な耐油性 · 耐水性を得る こ と がで きた。
<実施例 2 >
実施例 2 は、 第 9 の実施形態に対応 している。 実施例 2 は、 以下の条件によ り 、 疎水基の性能を調べた。 その結果を表 2 に示す。
(実施例 2 の条件)
樹脂 ; ポ リ エステル系樹脂
T g ; 2 0 °C
疎水基 ; 炭化水素の炭素数 n は表 2 の通 り
固形分 ; 5 0 %
分散溶媒 ; 水
繊維構造基材 T ; 2 6 0 g / m 2 コー トカー ド紙 塗布量 ; 4 g Zm 2 · d r y
表 2
Figure imgf000047_0001
実施例 2 によれば、 ポ リ エステル系樹脂に修飾した疎水基 は炭素数が 8以上であれば、 良好な撥水性を発現させる こ と ができた。
<実施例 3 >
実施例 3 は、 第 1 0 の実施形態に対応している。 実施例 3 は、 以下の条件によ り 、 混合樹脂層 R l x の柔軟性と タ ック の有無を調べた。 その結果を表 3 に示す。
(実施例 3 の条件)
第 1樹脂 ; ポ リ エステル系樹脂
T g ; 2 0 °C
分散溶媒 ; 水
疎水基 ; 炭化水素の炭素数 1 0以上
第 2樹脂 ; S B R ラテ ッ ク ス
T g ; — 3 0。C
分散溶媒 ; 水
第 1樹脂及び第 2樹脂を固形分 5 0 % Z水になる よ う 分散。 割合は第 1樹脂/第 2樹脂 = 9 0 固形重量部 / 1 0 固形重 量部
繊維構造基材 T ; 2 6 0 g /m 2 コー トカー ド紙
塗'布量 ; 1 0 g / m 2 ■ d r y
評価法…混合樹脂層 R 1 X の塗工面を内側に折 り 曲げた後、 ひま し油を滴下して 目視 里、、点の有無を見る こ と によ り 、 ピ ノホ一ノレの有無を見る。 なお、 折り 曲げ線上に沿って全て黒 点になつた場合を Xと し 、 数点の黒点が見られた場合を△と し、 全 < 黒点が見られなかつた場合を〇 とする。 なお、 試験 長さは 2 0 c mである。
タ クク …指の表面を塗工面に付け、 張り ついた場合を X と し、 抵 を感じた場合を Δと し、 抵抗を感じない場合を〇 と する
表 3
Figure imgf000048_0001
評価結果は、 柔軟性/タ ック =〇 Z〇で表した。
なお、 藓線な どを入れない用途、 又は部分的に耐油性が必 要な場合は、 柔軟性は不要である。
実施例 3 によれば、 折り 曲げ用途の場合、 ポ リ エス テル系 樹脂のガラス転移点が 2 5 °C〜 1 5 °Cの範囲内で、 且つ、 ラ テックス系樹脂のガラス転移点が 1 0 °C 4 0 °Cの範囲内 であれば良いこ とが分かる。
なお、 非折り 曲げ用途の場合、 ポ リ エステル系樹脂のガラ ス転移点が 4 0。C〜 1 5 °Cの範囲内であれば良いこ とが分か るが、 折り 曲げ用途で良好だった範囲のガラス転移点 2 5 °C 〜 1 5 °Cを用いてもよい。
<実施例 4 >
実施例 4 は、 第 1 2 の実施形態に対応している。 実施例 4 は、 以下の条件によ り 、 無機剤を添加 した場合のタ ック性の 改善を調べた。 その結果を表 4 に示す。
(実施例 4 の条件)
第 1樹脂 ; ポリ エステル系樹脂
T g ; 2 0 °C , 1 5 °C
分散溶媒 ; 水
疎水基 ; 炭化水素 C数 1 0以上
第 2樹脂 ; S B Rラテ ック ス
T g ; - 3 0 °C
分散溶媒 ; 水
無機材 ; 粒径 1 0 μ mの炭酸カルシウム
第 1 樹脂、 第 2樹脂及び無機剤を固形分 5 0 % Z水になる よ う分散
割合は、 第 1 樹脂 /第 2 樹脂 ( 1 0 ) /無機剤 ( X ) = ( 9 0 - X ) 固形重量部ノ 1 0固形重量部 ZX固形重量部 無機剤の量 ; 表 4の通り
繊維構造基材 τ ; s e o g /m 2 コー トカー ド紙 塗布量 ; 1 0 g /m 2 · d r y
表 4
Figure imgf000050_0001
実施例 4 によれば、 無機剤を 0 . 1 重量%〜 1 0重量%の 範囲内とする と ピンホールを発生させずに、 タ ック を防止で き る こ と を確認できた。
<実施例 5 > .
実施例 5 は、 第 1 3及び第 1 4 の実施形態に対応している。 実施例 5 は、 以下の条件によ り 、 塗布量を変えた場合の耐油 性を調べた。 その結果を表 5 に示す。
(実施例 5 の条件)
第 1樹脂 ; ポ リ エステル系樹脂
T g ; 2 0 °C
分散溶媒 ; 水
疎水基 ; 炭化水素の炭素数 1 0以上
第 2樹脂 ; S B R ラ テ ッ ク ス T g ; - 3 0 °C
分散溶媒 ; 水
第 1 樹脂、 第 2樹脂、 無機剤を固形分 5 0 % Z水になる よ う分散。
無機材 ; 粒径 1 0 z mの炭酸カルシウム
第 1樹脂/第 2樹脂 Z無機剤 = 9 0 / 9 . 5 / 0 . 5 塗布量 ; 表 5 の通り
基材 ; 表 5 の原紙 2種類
樹脂塗工面 ; ノーコー ト面
表 5
Figure imgf000051_0001
評価結果は、 平面部耐油性 Z折曲部耐油性 == O / Δな どで記述した。
〇…塗工面にひま し油滴下で 6 0 °C X 3 ヶ月 で浸透の有無を 確認し変化 (しみ込みによる黒点) がない場合。
△… ピンホール程度の欠損 (黒点) がある場合。
X…大きな欠損 (黒点) がある場合。
実施例 5 によれば、 コ ップ吸水度が紙の秤量以上の場合に は^布量が 3 〜 3 0 g / m 2 の範囲内にあればよ く 、 コ ップ 吸水度が紙の秤量未満の場合には塗布量が 1 〜 3 0 g / m 2 の範囲内にあればよいこ とが分かった。
<実施例 6 >
実施例 6 は、 実施例 5 にて、 コ ップ吸水 °Cと撥水度を調べ たものである。 その結果を表 6 に示す。
¾ 6
Figure imgf000052_0001
実施例 6 によれば、 コ ップ吸水度が 1 0 g / m 2以下の場 合に耐水性が保証され、 撥水度が R 8 以上の場合に撥水度が 保証される よ う に、 混合樹脂層 R l x が形成されている こ と が分かる。
ぐ実施例 7 >
実施例 7 は、 次の条件によ り 、 実施例 6 の混合樹脂層 R 1 Xの耐油性を確認した。 その結果を表 7 に示す。
(実施例 7の条件)
実施例 6 のコ ッブ吸水試験ジグを用い、 水の代わ り にひま し油を使用 して、 6 0 °C X 3 ヶ月放置して表面の状態を観察 した。
試'験サ ンプルには、 実施例 6 のコ ップ吸水度 1 0 g / m 2 なるサンプルを使用 した。
表 7
Figure imgf000053_0001
実施例 7 によれば、 実施例 6 で耐水性及び撥水性が良好な ものが耐油性も良好なこ と を確認できた。
ぐ実施例 8 >
実施例 8 は、 第 1 3 の実施形態に対応してレ、る 。 芙施例 8 は、 以下の条件によ り 、 パルプモ一ル ド、体のよ う に空隙の大 きい繊維構造基材 Tに樹脂層 R 1 を形成でさ る ·>- と を確 s す る ものである。
(実施例 8の条件)
樹脂 ; ポ リ エステル系樹脂
T g ; 2 0 °C
分散溶媒 ; 水
疎水基 ; 炭化水素の炭素数 1 0以上
ポ リ エステル系樹脂を容量 2 0 0 c c になる よ う なパルプ モーノレ ド ト レーにスプレー コー ト によ り ドラ イ で 3 0 g / m
2塗布して 1 0 0 °C 1 分で乾燥した。
実施例 8 によれば、 繊維構造基材 Tの表面が十分埋め られ、 液体.の浸透を完全にブロ ック したピンホールフ リ ーのバ リ ァ 容器を形成するこ とができた。 ぐ実施例 9 〉
実施例 9 は、 第 1 7 の実施形態に対応している。 実施例 9 は、 以下の条件によ り 、 塗料の塗布量と 固形分、 耐油耐水性 の結果を調べた。 その結果を表 8 に示す。
(実施例 9 の条件)
第 1 塗料 ; S B R ラテ ック ス樹脂を主剤
T g ; - 2 0 °C
固形分 ; 5 0 %
分散溶媒 ; 水
第 2塗料 ; ポ リ エステル系樹脂を主剤
T g ; 2 0 °C
固形分 ; 4 0 %
分散溶媒 ; 水
疎水基 ; 炭化水素の炭素数 1 0以上
繊維構造基材 T ; 2 6 0 g / m 2 コー トカー ド紙
第 1 塗料をノ ーコー ト面に塗布 し、 オーブンにて 1 0 0 °C 1 分の乾燥条件で乾燥させた。 続いて同様に、 第 2塗料を S B R ラ テ ッ ク ス樹脂層 R 0 上に塗布 し、 オーブンにて 1 0 0 °C 1 分の乾燥条件で乾燥させた。
表 8
Figure imgf000055_0001
実施例 9 によれば、 塗布量 2 g 以上のものから実用に耐え う る耐油性を示すものが得られた。 また、 実施例 9 によれば、 フ ァ ース ト フ一 ドのポテ ト用カー ト ン等のよ う に短時間の耐 油性が必要なも のか ら 、 バターやチヨ コ菓子用カー ト ンな ど 長期の耐油性が必要なも の ま で、 要求される耐油性に応 じて 塗布量を増やせれば良い旨が確認できた。
<実施例 1 0 >
実施例 1 0 は、 第 2 1 の実施形態に対応している。 実施例 1 0 は、 以-下の条件によ り 、 疎水基の性能を調べた。 その結 果を表 9 に示す。
(実施例 1 0 の条件)
第 1 塗料 ; S B Rラテックス樹脂を主剤
T g ; — 2 0。C
固形分 ; 5 0 %
分散溶媒 ; 水
第 2塗料 ; ポ リ エステル系樹脂を主剤
T ' g ; 2 0。C 疎水基 ; 炭化水素の炭素数 n は表 9 の通 り
固形分 ; 5 0 %
分散溶媒 ; 水
繊維構造基材 T ; 2 6 0 g /m 2 コー トカー ド紙
塗布量 ; 4 g Zm ■ d r y
表 9
Figure imgf000056_0001
実施例 1 0 に よれば、 ポ リ エス テル系樹脂に修飾した疎水 基は炭素数が 8 以上であれば、 良好な撥水性を発現させる こ と ができ た。 例えば、 冷蔵庫にて保管されるパターカー ト ン を室温の部屋に戻 した際、 結露水がカー ト ン表面で玉になる こ と で、 軽く 払 う だけで水玉を表面か ら落 とすこ と ができ る。 また、 結露水の影響でカー ト ンを湿らせる こ とがない。
く実施例 1 1 >
<実施例 1 1 >
実施例 1 1 は、 第 2 2 の実施形態に対応 している。 実施例 1 1 は、 以下の条件に よ り 、 箱組みする際の折 り 曲げ部の柔 軟性と タ ック の有無を調べた。 その結果を表 1 0 に示す。
(実施例 1 1 の条件)
O C (over coating)樹脂 ; ポ リ エステル系樹脂
T g ; 2 0 °C
分散溶媒 ; 水
疎水基 ; 炭化水素の炭素数 1 0以上
固形分 4 0 % 塗布量 1 6 g / m 2
A C ( anchor coating)樹月旨 ; S B R ラ テ ッ ク ス
T g ; - 3 0 °C
分散溶媒 ; 水
固形分 5 0 %
塗布量 4 g /m 2
繊維構造基材 T ; 2 6 0 g / m 2 コー トカー ド紙
柔軟性…各樹脂層 R 0 , R 1 の塗工面を内側に折り 曲げた 後、 ひま し油を滴下して目視で黒点の有無を見る こ と によ り 、 ピンホールの有無を見る。 なお、 折り 曲げ線上に沿って全て 黒点になった場合を Xと し、 数点の黒点が見られた場合を△ と し、 全く 黒点が見られなかった場合を〇 とする。 なお、 試 験長さは 2 0 c mである。
タ ック …指の表面を塗工面に付けて張り ついた場合や抵抗 を感じた場合には、 柔軟性の評価結果 (〇, △又は X ) の右 側に "/タ ック " と併記する。
表 1 0
Figure imgf000057_0001
実施例 1 1 によれば、 折 り 曲げ用途の場合、 ポリ エステル 系樹脂のガラス転移点が 2 5 °C〜 1 5 °Cの範囲内で、 且つ、 ラ テ ッ ク ス系樹脂のガラス転移点が 1 0 °C〜 一 4 0 °Cの範囲 内であれば良いこ とが分かる。
<実施例 1 2 >
実施例 1 2 は、 第 2 1 及び第 2 2 の実施形態に対応 してい る。 実施例 1 2 は、 以下の条件によ り 、 パルプモール ド体の よ う に空隙の大きい繊維構造基材 Tに樹脂層 R 0 , R 1 を形 成できる こ と を確認する ものである。
(実施例 1 2 の条件)
O C樹脂 ; ポリ エステル系樹脂
T g ; 2 0 °C
分散溶媒 ; 水
疎水基 ; 炭化水素の炭素数 1 0以上
A C樹脂 S B Rラテ ック ス
T g ; — 3 0 °c
分散溶媒 , 水
固形分 5 0 %
S B R ラテ シ ク ス樹脂を容量 2 0 0 c c になる よ う なパル プモーノレ ド 卜 レ一にスプレーコー ト に よ り ドライ で 3 0 g / m 塗布して 1 0 0 °C 1 分で乾燥した。 その後、 ポリ エステ ル系樹脂を S B R ラテ ッ ク ス樹脂層にスプレーコ ー ト によ り ドライで 3 0 g / m 2塗布して 1 0 0 °C 1 分で乾燥した。 実施例 1 2 によれば、 繊維構造基材 Tの表面が十分埋め ら れ、 .液体の浸透を完全にブロ ッ ク したピンホールフ リ 一のバ リ ア容器を形成する こ とができた。 <実施例 1 3 >
実施例 1 3 は、 第 2 3 の実施形態に対応している。 実施例 1 3 では、 以下の条件下で、 繊維構造基材 Tの表面粗さ ( J I S B 0 1001 ) 及びコ ップ吸水度 ( J I S P 8 1 4 9 (1976)、 但し接触時間は 1 0秒間) を変えた場合に耐油性の 有無を調べた。 結果を表 1 1 に示す。
(実施例 1 3の条件)
第 1樹脂 ; ポリ エステル系樹脂
分散溶媒 ; 水
第 2樹脂 ; S B R ラテ ック ス . 分散溶媒 ; 水
第 1 樹脂及び第 2樹脂を固形分 4 0 % /水になる よ う 分散 して塗工液を作成。 樹脂の割合は第 1 樹脂/第 2樹脂 = 2 0 固形重量部 / 2 0 固形重量部
繊維構造基材 T ; 2 6 0 g Z m 2 のカー ド紙
塗工面の表面粗さ Rmax ; 5 〜 2 8 μ πι 塗工面のコ ップ吸水度 ; 1 0 〜 1 0 0 g Zm 2 · 1 0秒、 塗布方法 ; 塗工液を繊維構造基材 Tの塗工面に塗布し、 熱 風乾燥した。
塗布量の測定 ; 塗工前の繊維構造基材 T と、 塗工後の繊維 構造物 T s 1 X と を 1 2 0 °C X 6時間乾燥オーブンに入れ、 乾燥状態に した。 その後、 デシケータの中で 3 0分かけて温 度を室温に戻し、 両者の重量差を測定した。 得られた重量差 ( g-) から塗布量 ( g / m 2 ) を算出した。 表 1
Figure imgf000060_0002
「〇一M 面に変化 (しみ込みによる黒点) がない^
Figure imgf000060_0001
△…ピンホー/^ tの欠損 (黒点) がある:!^。
X···大きな欠損があるナ 。 ひ-剥 ϋ¾τΤ
スクラッチ耐个生 厶…少し剥離ぎみだが実用上、 問題無し
L χ···ひっかくと容易に剥離した
耐油性 ; キッ ト法、 サラダ油、 ひま し油の 3通り の試験方 法の油で評価した。
キッ ト法 ; J A P A N T A P P I N o . 4 1 (キッ ト法) による。 処理紙表面に各種キッ ト番号の試験液を 1滴 落と し、 1 5秒後、 試験液をティ ッシュペーパーで拭き取り 、 しみ込みの有無を評価した。
サラダ油 (高温) ; 1 8 0 °Cに加熱したサラダ油 (市販 品) を 2 0 c c だけ試料に滴下し、 2 4時間放置した後、 裏 面への突き抜けの有無を評価した。
ひま し油 (低粘度、 常温) ; 常温のひま し油 (関東化学 製、 鹿一級) を 2 0 c c だけ試料に滴下し、 室温下で 1 ヶ月 放置した後、 裏面への突き抜けの有無を評価した。
評価結果は、 表 1 1 に〇、 △、 Xで記述した。
スク ラ ッチ耐性 ; 樹脂層表面を爪で 1 0 回往復 しなが ら引 っ搔いた後、 密着性 (剥離の有無) を評価した。 評価結果は、 表 1 1 に〇、 △、 Xで記述した。 - 実施例 1 3 によれば、 塗工前に、 塗工面の表面粗さ R max が 5 〜 2 8 [ μ ] の範囲内にあ り 、 且つ塗工面のコ ップ吸 水度力 1 0 〜 1 0 0 [ g / m 2 · 1 0秒] の範囲内にあれば、 塗工後の耐油性に問題ないこ とが分かった。
産業上の利用可能性
本発明によれば、 フ ッ素系耐油剤を用いずに、 耐油性 · 耐 水性を有し、 繊維構造基材を容易に リ サイ クルし得る繊維構 造物を提供できる。

Claims

請 求 の 範 囲
1 . 平面状の繊維構造基材 ( T ) を有する繊維構造物 ( T s i ) であって、
塗料固形分が 1 0 %〜 6 0 % の範囲内でポ リ エステル系樹 脂を含んだ塗料が前記繊維構造基材の片面又は両面に塗工さ れて形成されたポリ エス テル系樹脂層 ( R 1 ) を備えたこ と を特徴とする繊維構造物。
2. 請求項 1 に記載の繊維構造物において、
前記ポリ エステル系樹脂層 ( R 1 ) は、 鎖式炭化水素の疎 水基によ り修飾されているこ と を特徴とする繊維構造物。
3 . 請求項 2 に記載の繊維構造物において、
前記疎水基の炭素数が 8 〜 2 4 の範囲内にある こ と を特徴 とする繊維構造物。
4. 請求項 1 に記載の繊維構造物において、
前記ポ リ エステル系樹脂層 ( R 1 ) は、 ガラス転移点 ( J I S K 7 1 2 1 ; T g ) が 2 5 °C〜 1 5 °Cの範囲内にある こ と を特徴とする繊維構造物。
5 . 請求項 1 に記載の繊維構造物において、
前記ポ リ エ ス テル系樹脂層 ( R 1 X ) は、 ガ ラ ス転移点
( J I S K 7 1 2 1 ) 力 S l O °C 4 0 °Cの範囲内にある ラテ ック ス系樹脂がグラ フ ト又は混合されている こ と を特徴 とする繊維構造物。
6 . 請求項 1 に記載の繊維構造物において、
前記ポ リ エス テル系樹脂層 ( R 1 ) は、 無機剤が混合され ている こ と を特徴とする繊維構造物。
7. 請求項 6 に記載の繊維構造物において、
前記無機剤は、 0 . 1 重量。/。〜 1 0重量%の範囲内で混合 されている こ と を特徴とする繊維構造物。
8 . 請求項 1 に記載の繊維構造物において、
前記繊維構造基材 ( T ) のコ ップ吸水度 ( J I S 8 1 4 0 ) が当該繊維構造基材の秤量 ( g / m 2 ) 未満の値であ り 、 且つ前記ポ リ エステル系樹脂層 ( R 1 ) の塗布量が I g Zm 2 〜 3 0 g Zm 2 の範囲内にある こ と を特徴とする繊維構造 物。
9 . 請求項 1 に記載の繊維構造物において、
前記繊維構造基材 ( T ) のコ ップ吸水度 ( J I S P 8 1
4 0 ) が当該繊維構造基材の秤量 ( g Z m 2 ) 以上の値であ り 、 且つ前記ポ リ エステル系樹脂層 ( R 1 ) の塗布量が 3 g
Zm 2 〜 3 0 g /m 2 の範囲内にある こ と を特徴とする繊維 構造物。
1 0 . 請求項 1 に記載の繊維構造物において、 · . コ ップ吸水度 ( J I S P 8 1 4 0 ) が 1 5 g /m 2以下 である こ と を特徴とする繊維構造物。
1 1 . 請求項 1 乃至請求項 1 0 のいずれか 1 項に記載の繊維 構造物において、
撥水度 ( J I S P 8 1 3 7 ) が R 6以上である こ と を特 徴とする繊維構造物。
1 2 . 平面状の繊維構造基材 ( T ) と、
前.記繊維構造基材上に形成された S B R系ラテ ック ス系樹 脂層 ( R 0 ) と、 前記 S B R系ラテッ クス系樹脂層上に形成されたポリ エス テル系樹脂層 ( R 1 ) と、
を備えたこ とを特徴とする繊維構造物 ( T s 1 1 ) 。
1 3. 請求項 1 2 に記載の繊維構造物において、
前記ポリエステル系樹脂層 ( R 1 ) は、 鎖式炭化水素の疎 水基によ り修飾されている ことを特徴とする繊維構造物。
1 4. 請求項 1 3 に記載の繊維構造物において、
前記疎水基の炭素数が 8〜 2 4の範囲内にある こ とを特徴 とする繊維構造物。
1 5. 請求項 1 2 に記載の繊維構造物において、
前記ポリエステル系樹脂層 ( R 1 ) は、 ガラス転移点 ( J I S K 7 1 2 1 ) が 2 5 °C〜 1 5 の範囲内にある こ とを 特徴とする繊維構造物。
1 6. 請求項 1 2乃至請求項 1 5のいずれか 1項に記載の繊 維構造物において、
前記 S B R系ラテッ クス系樹脂層 (R 0 ) は、 ガラス転移 点 ( J I S K 7 1 2 1 ) が 1 0 〜一 4 0 °Cの範囲内にあ る こ とを特徴とする繊維構造物。
1 7. 平面状の下記 A繊維構造基材と、
予めポリエステル系樹脂とラテックス系樹脂とを混合した 塗工液を前記 A繊維構造基材の片面又は両面に塗工し乾燥さ せて形成した混合樹脂層と、
を備えたことを特徴とする繊維構造物。
Λ : 前記塗工液が塗工される面の表面粗さ ( J I S B 0 loo l ) が最大高さ ( Rmax) で 3 0〜 5 mの範囲内にあ 64 り 、 且つ前記塗工液が塗工される面をコ ップ吸水度 ( J I S P 8 1 4 0 (1976) ) の試験方法における蒸留水と の接触時 間を 1 0秒間と して試験した場合、 得られる吸水度が 1 0 0 〜 : L 0 [ g / m 2 · 1 0秒] の範囲内にある繊維構造基材。
PCT/JP2004/003732 2003-03-20 2004-03-19 繊維構造物 WO2004083521A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005503753A JP4321521B2 (ja) 2003-03-20 2004-03-19 繊維構造物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-078043 2003-03-20
JP2003078044 2003-03-20
JP2003078043 2003-03-20
JP2003-078044 2003-03-20

Publications (1)

Publication Number Publication Date
WO2004083521A1 true WO2004083521A1 (ja) 2004-09-30

Family

ID=33032364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003732 WO2004083521A1 (ja) 2003-03-20 2004-03-19 繊維構造物

Country Status (2)

Country Link
JP (1) JP4321521B2 (ja)
WO (1) WO2004083521A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225772A (ja) * 2005-02-15 2006-08-31 Toppan Printing Co Ltd 繊維構造物およびその製造方法
JP2018199533A (ja) * 2018-10-02 2018-12-20 日本製紙クレシア株式会社 紙製品入りカートン

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504800B2 (ja) * 2014-11-28 2019-04-24 日本製紙クレシア株式会社 紙製品入りカートン

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268494A (ja) * 1996-03-27 1997-10-14 Oji Paper Co Ltd 防湿積層体
JP2000248494A (ja) * 1999-02-26 2000-09-12 Oji Paper Co Ltd 防湿積層体
JP2001510498A (ja) * 1997-01-31 2001-07-31 セイデル・リサーチ・インコーポレーテツド 水分散性/再分散性の疎水性ポリエステル樹脂およびコーティングにおけるそれらの応用
JP2002138395A (ja) * 2000-08-23 2002-05-14 Eastman Kodak Co 水性ポリエステルが塗布された像形成部材
JP2002179926A (ja) * 2000-12-14 2002-06-26 Dainippon Ink & Chem Inc 防湿加工用樹脂組成物および防湿材
JP2003221492A (ja) * 2002-01-31 2003-08-05 Dainippon Ink & Chem Inc ポリエステル樹脂粒子水性分散体、電子写真受像紙用コ−ティング剤、電子写真受像紙およびポリエステル樹脂粒子水性分散体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268494A (ja) * 1996-03-27 1997-10-14 Oji Paper Co Ltd 防湿積層体
JP2001510498A (ja) * 1997-01-31 2001-07-31 セイデル・リサーチ・インコーポレーテツド 水分散性/再分散性の疎水性ポリエステル樹脂およびコーティングにおけるそれらの応用
JP2000248494A (ja) * 1999-02-26 2000-09-12 Oji Paper Co Ltd 防湿積層体
JP2002138395A (ja) * 2000-08-23 2002-05-14 Eastman Kodak Co 水性ポリエステルが塗布された像形成部材
JP2002179926A (ja) * 2000-12-14 2002-06-26 Dainippon Ink & Chem Inc 防湿加工用樹脂組成物および防湿材
JP2003221492A (ja) * 2002-01-31 2003-08-05 Dainippon Ink & Chem Inc ポリエステル樹脂粒子水性分散体、電子写真受像紙用コ−ティング剤、電子写真受像紙およびポリエステル樹脂粒子水性分散体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225772A (ja) * 2005-02-15 2006-08-31 Toppan Printing Co Ltd 繊維構造物およびその製造方法
JP2018199533A (ja) * 2018-10-02 2018-12-20 日本製紙クレシア株式会社 紙製品入りカートン

Also Published As

Publication number Publication date
JPWO2004083521A1 (ja) 2006-06-22
JP4321521B2 (ja) 2009-08-26

Similar Documents

Publication Publication Date Title
US10378152B2 (en) Environment-friendly packaging paper for food
RU2490387C2 (ru) Картон с малой объемной плотностью
JP4694691B2 (ja) 紙または板紙の積層体および積層体を製造する方法
CA2692288C (en) Prepreg which is produced by impregnating a base paper with a combination of polymer latex and modified starch
US10760219B2 (en) Light packaging paper for food having improved resistance to fats
US4946372A (en) Composite paper
EP3396065B1 (en) Bread bag and method of manufacture thereof
RU2706064C1 (ru) Лист с улучшенной способностью сохранять несминаемые складки
US20110138753A1 (en) Container with Repulpable Moisture Resistant Barrier
JP2022518239A (ja) 水性バリアコーティングを有するコーティングされた板紙容器
JP3714124B2 (ja) 嵩高板紙
JP6846136B2 (ja) 耐水耐油紙、耐水耐油紙の製造方法及び紙製容器
US7348067B1 (en) Composite paperboards and method of making composite paperboards
JP6394511B2 (ja) 紙製基材
JP2005200773A (ja) ライナー
WO2004083521A1 (ja) 繊維構造物
JP2001098496A (ja) 嵩高板紙
JP7511359B2 (ja) ラミネート用包装紙、これを用いた積層体及び包装体
JP2004244729A (ja) 繊維構造物及び包装体
Kirwan Paper and Paperboard‐Raw Materials, Processing and Properties
US20090155560A1 (en) Scented paper laminated and method for manufacturing same
JP4009529B2 (ja) 耐水ライナー
JP4934970B2 (ja) 繊維構造物およびその製造方法
JP7245951B1 (ja) バリア紙、産業用材、包装材及び積層体
WO2003099548A1 (en) Composite paperboards and method of making composite paperboards

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005503753

Country of ref document: JP

122 Ep: pct application non-entry in european phase