WO2004082182A1 - Ofdm受信装置及びofdm受信方法 - Google Patents

Ofdm受信装置及びofdm受信方法 Download PDF

Info

Publication number
WO2004082182A1
WO2004082182A1 PCT/JP2004/003437 JP2004003437W WO2004082182A1 WO 2004082182 A1 WO2004082182 A1 WO 2004082182A1 JP 2004003437 W JP2004003437 W JP 2004003437W WO 2004082182 A1 WO2004082182 A1 WO 2004082182A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
signal
subcarrier
symbol
power
Prior art date
Application number
PCT/JP2004/003437
Other languages
English (en)
French (fr)
Inventor
Isamu Yoshii
Masaru Fukuoka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP04720758A priority Critical patent/EP1594240A1/en
Priority to JP2005503623A priority patent/JPWO2004082182A1/ja
Priority to US10/548,809 priority patent/US20060172716A1/en
Publication of WO2004082182A1 publication Critical patent/WO2004082182A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention particularly relates to an OFDM receiving apparatus and an OFDM receiving method used for an OFDM system of a frequency hopping system.
  • an MAP using a soft decision value such as a turbo code or an LDPC (Low Density Parity Check) code
  • a soft decision value such as a turbo code or an LDPC (Low Density Parity Check) code
  • LDPC Low Density Parity Check
  • An encoding method based on decoding is adopted.
  • the transmission path is derived as an AWGN (Additive White Gaussian Noise) environment.
  • AWGN Additional White Gaussian Noise
  • LLR Log Likelihood Ratio
  • Fig. 1 D [received value] is set on the horizontal axis and P [probability density] is set on the vertical axis.
  • the dashed line shows the Gaussian distribution of symbol “1” when noise is received. Shows Gaussian distribution of symbol “0”, both of which are distributed by ⁇ 2 .
  • "Hi” is The decision point (decision rate) of the symbol “0” and “_ ⁇ ” are the decision points (decision rate) of the symbol “1”, and indicate that P [probability density] at each of these decision points becomes the maximum value.
  • the probability density P of a certain received value Drx is Pl (Drx) on the broken line of the symbol “1”, and PO (Drx) on the dashed line of the symbol “0”.
  • Figure 2 shows the distribution of the symbols “0” and “1” when the noise power is large. As described above, when the noise power is large, the variance width of 2 is large, and the maximum value of each probability density P at the decision points a; and ⁇ of the symbols “0” and “1” is extremely small. There are cases.
  • FH-OFDM frequency-hopping OFDM
  • the symbols of that subcarrier are considered to be in the state shown in Fig. 2.
  • SNR Signal to Noise Ratio
  • errors tend to occur in the LLR values of the symbols "0" and "1".
  • the effect of this error may affect the LLR values of symbols of other subcarriers.
  • Figure 3 shows an example of user and pilot resource allocation in the base station of the own cell in an environment with two cells, and Fig. 4 for other cells.
  • one block in the frequency direction indicates one subcarrier
  • one block in the time direction indicates one burst period.
  • a user's hopping pattern and resource allocation are randomly determined between the own cell and another cell, so that there is a possibility of a collision (hit) at a certain subcarrier at a certain point in time.
  • Figure 5 shows the status of hits between the user 1 signal and the pilot signal of the own cell and the signal of the other cell. "0" indicates no hit, and "1" indicates a hit.
  • turbo codes and LDPC codes are designed on the premise of the AWG N channel, so hits are not generated because such hits are not assumed. If this occurs, the characteristics will be greatly deteriorated.
  • Patent Document 1 JP-A-11-355240
  • the data of that carrier is lost.
  • null data is input, a soft decision sequence is output, and the soft decision sequence is subjected to soft decision decoding using Viterbi decoding or the like.
  • the data of that carrier is regarded as lost, null data is output and a soft decision sequence is output, and the error correction effect when soft decision decoding is performed. Has been improved.
  • QAM modulation may be used in addition to PSK modulation.
  • the power value of the symbol differs depending on the data. Cannot be determined. In other words, it is not enough to apply to adaptive modulation using QAM-based modulation. Disclosure of the invention
  • the purpose of this effort is to accurately detect the interference position that actually causes the degradation of the error rate performance, and to improve the error correction capability at the time of soft decision decoding.
  • the purpose is to provide a receiving method.
  • the purpose of this is to detect the hopping position where interference occurs based on, for example, the hopping pattern information of the adjacent cell or adjacent sector and the hopping pattern of the own cell or own sector, and to determine whether each subcarrier of the received frequency hopping OFDM signal Extract the pilot signal from the pilot signal, measure the received power of the desired signal based on the extracted pilot signal sequence and the known pilot signal sequence, and determine the received power of the signal at the detected interference position and the measured received power of the desired signal. This is achieved by comparing values with each subcarrier, and performing turbo decoding by selecting whether to use the received power of the symbol of each subcarrier as it is or to set it to 0 based on the comparison result.
  • the received power of the signal at the detected interference position is compared with the measured received power of the desired signal for each subcarrier, and based on the comparison result, the received power of each subcarrier symbol is used as it is or 0.
  • the symbols to be treated as interference symbols can be detected accurately.
  • the error correction capability at the time of soft decision decoding can be improved. In other words, symbols that do not adversely affect the error rate characteristics even when used for decoding even at the interference position can be prevented from being unnecessarily excluded from decoding targets. Can be improved in error correction capability.
  • Figure 1 shows a conventional model for calculating LLR values
  • Figure 2 shows a conventional model for calculating LLR values when noise is large
  • Figure 3 shows an example of the own cell hopping pattern
  • Figure 5 is a diagram showing the situation of the hit between the signal and pilot signal of user 1 of the own cell and the signal of another cell;
  • Figure 6 is a diagram showing the error rate characteristics when calculating the conventional LLR value
  • FIG. 7 is a block diagram showing a configuration of a transmitting apparatus according to Embodiment 1 of the present invention
  • FIG. 8 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 1
  • FIG. 10 is a diagram showing an example of a hopping pattern of the own cell according to the second embodiment
  • FIG. 11 is a diagram showing an example of a hobbing pattern of another cell according to the second embodiment
  • FIG. 12 is a user 1 of the own cell Diagram showing the situation of hits between the signal of another cell and the signal of another cell;
  • FIG. 13 is a block diagram showing the configuration of the transmitting apparatus according to the second embodiment
  • FIG. 14 is a block diagram showing the configuration of the transmitting apparatus according to the third embodiment
  • FIG. 15 is (1) of the third embodiment. Diagram schematically showing the formula
  • FIG. 16 is a diagram showing an error rate characteristic when calculating an LLR value (est sigma) according to the third embodiment
  • FIG. 17 is a diagram schematically showing equation (2) of the fourth embodiment.
  • FIG. 18 is a diagram showing an error rate characteristic when an LLR value is calculated (est sigma) according to the fourth embodiment
  • FIG. 19 is a flowchart for explaining operations of an interference symbol determination unit and a turbo decoding unit in the receiving apparatus according to Embodiment 5;
  • FIG. 20 is a flowchart for explaining operations of an interference symbol determination unit and a turbo decoding unit in the receiving apparatus according to Embodiment 6;
  • FIG. 21 is a diagram illustrating an interference symbol / re deciding unit and a turbo in a receiving apparatus according to Embodiment 7.
  • 5 is a flowchart for explaining the operation of the decoding unit.
  • FIG. 7 is a block diagram showing a configuration of a transmitting apparatus compatible with the frequency hopping OFDM system (hereinafter, referred to as FH-OFDM system) according to the embodiment of the present invention.
  • FIG. FIG. 2 is a block diagram showing a configuration of a receiving apparatus compatible with the FH-OFDM scheme according to the embodiment.
  • transmitting apparatus 100 is provided in a base station
  • receiving apparatus 200 is provided in a communication terminal.
  • Transmitting apparatus 100 provided in a base station includes turbo encoding sections 101-1, 101-12, modulating sections 102-1, 102-2, subcarrier matting sections 103-1, 103-2, multiplexer 104, Frequency interleave section 105, serial / parallel (S / P) conversion section 106, inverse fast Fourier transform (IFFT) section 107, guard interval pal (GI) input section 108, wireless processing section 109, antenna 110, and adjacent interference position notification It mainly includes a signal generation unit 111.
  • Turbo coding sections 101-1, 101-2 perform turbo coding processing on transmission data of user 1 and user 2, and output turbo code signals to modulation sections 102-1, 102-2, respectively.
  • the modulators 102-1, 102-2 have different code modulation functions, for example, 16 QAM (Quad Amplitude Modulation), 64 QAM as a QAM system, BPSK (Binary Phase Shift Keying), Modulation methods such as QPSK (Quad Phase Shift Keying) and 8 PSK are adopted.
  • 16 QAM Quadrature Modulation
  • 64 QAM QAM as a QAM system
  • BPSK Binary Phase Shift Keying
  • Modulation methods such as QPSK (Quad Phase Shift Keying) and 8 PSK are adopted.
  • Modulating sections 102-1 and 102-2 perform adaptive modulation processing on the turbo code signals input from turbo encoding sections 101-1 and 101-2, respectively, and apply the resulting modulated signals to subcarrier mapping.
  • Bing section 103 Output to 1, 103-2 I do.
  • the subcarrier mapping sections 103-1 and 103-2 perform a mubbing process of assigning each modulated signal input from the modulation sections 102-1 and 102-2 to the subcarrier according to a predetermined hobbing pattern.
  • the mapping signal is output to multiplexer 104.
  • the outputs of the subcarrier mapping sections 103-1, 103-2, the pilot sequence, and the output of the adjacent interference position notification signal generation section 111 are input to the multiplexer 104, and the multiplexer 104 multiplexes these.
  • the serial signal is transmitted to the frequency interleaving unit 105.
  • the adjacent interference position notification signal generation unit 111 generates hopping pattern information of the own cell as the adjacent interference position notification signal.
  • the transmitting device provided in the base station of the adjacent cell (other cell)
  • the position where the interference occurs (that is, the subcarrier and time at which the interference occurs) is determined. We can recognize.
  • Frequency interleaving section 105 reads the serial signal input from multiplexer 104 such that the arrangement directions of a plurality of data sequences included in the serial signal are interlaced, and outputs the interleaved signal to S / P conversion section 106. .
  • IF FT section 107 performs an inverse fast Fourier transform on each subcarrier component of the plurality of data series signals input from S / P conversion section 106, thereby converting the data of each subcarrier into the time domain and converting the time waveform signal into a GI. Output to input unit 108.
  • GI insertion section 108 inserts a guard interval for improving the characteristic with respect to the delay into the time waveform signal input from IFFT section 107 and outputs the time interval to radio processing section 109.
  • Radio processing section 109 up-converts the time waveform signal input from GI input section 108 to an RF band and transmits an OFDM signal from antenna 110.
  • the receiver 200 shown in FIG. 8 is provided in a communication terminal, and includes an antenna 201, a radio processing unit 202, a guard interval (GI) removing unit 203, a fast Fourier transform (FFT) unit 2 4, a frequency interleaving section 205, a channel separation section 206, a demodulation section 207, an interference symbol determination section 208 and a turbo decoding section 209.
  • GI guard interval
  • FFT fast Fourier transform
  • the wireless processor (3202) receives the OFDM signal from the antenna 201 and outputs the OFDM signal to the GI remover 203.
  • the GI remover 203 removes the guard interval from the OFDM signal input from the wireless processor 202 and outputs the signal to the FFT 204.
  • the FFT section 204 transforms the OFDM signal after the guardinterval removal inputted from the GI removal section 203 into a fast Fourier transform (FFT) from the time domain to the frequency domain.
  • the FFT unit 204 extracts a data sequence signal transmitted by a plurality of subcarriers, and outputs the data sequence signal to the frequency deinterleave unit 205.
  • Frequency interleaving section 205 reads out a plurality of data series signals input from FFT section 204 in the reverse arrangement direction when interleaving in transmitting apparatus 100, and returns the original serial arrangement. The signal is returned to the channel separation unit 206 by returning to the serial signal including the data sequence of the above.
  • the channel separation unit 206 separates a serial signal including a plurality of subcarrier signals input from the frequency interleaving unit 205 into respective subcarrier signals, and among these, the signal of user 1 (ie, a signal addressed to the own station). Is output to the demodulation unit 207 and the interference signal determination unit 208.
  • Demodulation section 207 demodulates each subcarrier signal input from channel separation section 206 and outputs it to turbo decoding section 209.
  • the interference symbol determination unit 208 determines a symbol to be actually treated as an interference symbol, among the symbols in which a hopping pattern collides with an adjacent cell. Specifically, the hopping pattern at which interference occurs from the hopping pattern of the neighboring cell notified by the interference position determination unit 208A and the hopping pattern of the own station (that is, the hopping pattern where the hopping patterns collide with each other).
  • the interference position information is transmitted to the interference position reception power measuring section 208A.
  • the interference position received power measuring section 208A measures the received power at the interference position and sends it to the comparing section 208E.
  • the interference symbol determination unit 208 extracts the pilot signal by the pilot extraction unit 208C, and the desired signal measurement unit 208D subsequently determines the pilot signal based on the received power of the pilot signal.
  • the received power of the desired signal is obtained, and the received power of the desired signal is transmitted to the comparing section 208E.
  • the comparison unit 208E compares the received power of the pilot signal (received power of the desired signal) with the received power of the symbol at the hopping position where interference occurs for each subcarrier, and thus actually compares the interference symbol. Is determined, and a comparison result representing the symbol is notified to the turbo decoding unit 209.
  • the difference between the received signal and the desired signal is calculated for each subcarrier, and when the difference is large, it is regarded as an interference symbol.
  • the interference symbol determination unit 208 does not simply determine the interference symbol based on the hopping pattern. Considering whether the Signal to Interference Ratio is good or bad, only when the interference position is based on the hobbing pattern and the SIR is bad, the tarpo decoding unit sets the received power of the symbol to 0 and performs turbo decoding. To do so. As a result, even in a situation in which both the interference power and the received power fluctuate due to fading, for example, in a situation in which both the received power and the interference power are reduced due to fading, it is possible to obtain a subcarrier for each subcarrier. Since the interference symbols are compared and determined, the interference symbols can be accurately detected.
  • the power measurement of the desired signal based on the pilot signal is performed by, for example, For each rear, it can be performed using a method of dividing the power of the desired signal from the received signal.
  • the magnitude of the interference signal can be obtained from the difference between the received signal and the desired signal.
  • the turbo decoding unit 209 determines whether to use the received power of each subcarrier symbol as it is or to set it to 0. Perform turbo decoding by selecting and calculating the LLR value. Specifically, turbo decoding is performed on the subcarrier symbols determined to be interference symbols by interference symbol determination section 208 with the received power set to 0.
  • Figure 9 shows the case where the modulation method is QPSK and the carrier ratio where interference is present is 5%.
  • the reception power of the signal at the interference position measured by interference position reception power measurement section 208B and the reception power of the desired signal measured by desired signal measurement section 208D are described.
  • the symbol to be used as the actual interference symbol can be accurately selected even in a fading environment.
  • Embodiment 1 above mainly assumes a PSK-based modulation scheme. Then, in Embodiment 1, after setting the position of the interference by notifying the interference position, the magnitude of the interference signal is estimated from the difference between the received signal and the desired signal. And then this This method is difficult to apply to the QAM modulation method, in which the power of each received signal symbol changes depending on the data.
  • FIGS. 10 and 11 it is assumed that the positions of subcarriers for allocating a pilot sequence in the own cell and the other cells are the same, and orthogonal sequences are allocated to the respective sequences.
  • Figure 10 shows the allocation of resources for base station users and pilots in the own cell, and Figure 11 for other cells.
  • the terminals 1 and 2 can measure the average power of the own cell and the other cells.
  • the adjacent interference position and interference number notification signal generation unit 112 shown in FIG. 13 notifies the interference position as shown in FIG. 12 and information on which base station received interference. I do. By this means, it is possible to know the position of interference and which base station is receiving interference with respect to the unit defined in the time and frequency domain of user 1.
  • the interference power is obtained from the received power of the symbol at the unit 1 where the interference is occurring.
  • the pilot power from the base station of another cell is obtained from the pilot. Since the received power is known and corresponds to the interference power, this value is reflected in the calculation of ⁇ 2 of LLR.
  • the interference position can be known by decoding the interference position notification signal on the receiving side.In this embodiment, however, the power and threshold of the received signal are determined to determine the interference position. Perform interference position determination and interference power estimation.
  • the transmitting apparatus 400 differs from the transmitting apparatus 100 in FIG. 7 in that the adjacent interference position notification signal generating section 111 is not connected.
  • the actual received symbol is calculated from the received signal power obtained from the pilot.
  • the threshold value is set as the interference power + noise power for each symbol, and the symbol position that is equal to or greater than the threshold value is treated as an interference reception symbol.
  • the interference power + noise power for each symbol can be expressed by the following equation.
  • Equation (1) r (k, m) represents the m-th OFDM symbol in the k-th subcarrier.
  • I h (k) I is the magnitude of fading of the desired signal obtained from the pilot signal
  • I s I is the magnitude of the transmission signal. Equation (1) is schematically shown in FIG.
  • T p be the magnitude of the threshold, and if the result of equation (1) is greater than the threshold T p, determine that interference has occurred, and let the magnitude of equation (1) be the value of ⁇ 2 in the LLR calculation. .
  • FIG. 16 shows the error rate characteristics when the LLR value is calculated (est sigma) in this embodiment. Therefore, according to the present embodiment, as compared with the conventional method, the method of setting the magnitude of ⁇ 2 at the time of calculating the LLR to the magnitude of the noise (Normal) or the method described in Patent Document 1 The characteristics can be improved.
  • the interference position is determined using one threshold. In the present embodiment, the interference position is determined based on the modulation method determination point and the noise level.
  • Equation (2) is schematically shown in FIG. For example, in FIG. 17, if the received signal falls in the first quadrant, it is determined that there is interference if it is outside the determination circle in the first quadrant.
  • the magnitude of the interference power + noise power is the magnitude of Equation (2). This value is used for the magnitude of ⁇ 2 when calculating the LLR.
  • FIG. 8 shows the error rate characteristics at the time of calculating the LLR value (est sigma) in this embodiment. Therefore, according to the present embodiment, as compared with the conventional method, the method of setting the magnitude of ⁇ 2 at the time of LLR calculation to the magnitude of the noise (Normal) and the method described in Patent Document 1 are more characteristic. Can be improved.
  • the method of estimating the interference position and estimating the interference power by blind judgment from the received power is similar to that in Embodiments 1 and 2. Deterioration is greater than the method of notifying the interference position and estimating the interference power (see the error rate characteristic diagrams in Figs. 16 and 18). Therefore, in the present embodiment, when the transmitting apparatus 400 in FIG. 14 is used (in the case where the interference position is determined by blind determination), compared with Embodiments 3 and 4, We propose a receiver that can further improve the error rate performance.
  • the processing in the interference symbol determining unit 208 differs only by not receiving the hopping pattern information.
  • the operation of the interference symbol determination unit 208 and the tap decoding unit 209 in the receiving apparatus 200 of this embodiment will be described with reference to the flowchart shown in FIG.
  • step S101 the interference symbol determination unit 208 extracts a pilot signal from each subcarrier signal input from the channel separation unit 206.
  • step S 102 since the pilot sequence is known, the inner product of the extracted pilot signal sequence and the known pilot signal is calculated.
  • interference symbol determination section 208 measures the reception power of the desired signal by dividing the calculated inner product of the pilot sequence by the length of the pilot sequence.
  • the influence of the interference signal on the desired signal is determined in consideration of the measured received power value of the desired signal + the margin. Set the threshold to perform.
  • step S105 the interference symbol determination unit 208 compares the received power value with the set threshold for each subcarrier, and determines whether the received power value is equal to or greater than the threshold. If the received power value is not equal to or larger than the threshold value (step S105: NO), it is determined that the influence of dispersion due to interference is small, and this is notified to the turbo decoding unit 209. In this case, in step S106, the turbo decoding unit 209 calculates the LLR value of the symphony of the subcarrier.
  • step S105 when the received power value is equal to or larger than the threshold (step S105: YES), the interference symbol determination unit 208 determines that the influence of the variance due to the interference is large, and determines that this is the case. Notify the decryption unit 209. In this case, the tapo decoding unit 209 sets the soft decision value of the symbol of the subcarrier to “0” in step S107.
  • the influence of interference on the symbol for each subcarrier is An accurate determination can be made, and error correction during soft-decision decoding can be reliably executed.
  • the desired signal power is estimated using all pilot signals, but in the present embodiment, a method of setting a threshold by calculating an average power of an extracted symbol based on a known interference symbol Do with.
  • Turbo decryption processing according to the present embodiment will be described with reference to the flowchart in FIG.
  • the transmitting device 100 in FIG. 1 is used as the transmitting device.
  • step S201 of the subcarrier signals input from the channel demultiplexing unit 206, of the subcarrier signals that are being interfered by the adjacent cell notified by the adjacent interference position notification signal generation unit 111, Identify interfering symbols.
  • step S202 a symbol that is not subject to interference is extracted from the pilot signal of the cell whose interference symbol has been identified. Then, step S 20 In step 3, the average power of the extracted symbols is calculated.
  • step S204 based on the calculated average power of the symbols, a threshold value for determining the influence of the interference signal on the desired signal is set in consideration of the average power + margin.
  • step S205 the calculated average power value of the data signal is compared with the set threshold value for each subcarrier to determine whether the received power value is equal to or greater than the threshold value. If the received power value is not equal to or larger than the threshold value (step S205: NO), it is determined that the influence of dispersion due to interference is small, and in step S206, the LLR value of the symbol of the subcarrier is calculated.
  • step S205 If the received power value is equal to or larger than the threshold (step S205: YES), it is determined that the influence of the variance due to the interference is large, and the soft decision value of the symbol of the subcarrier is set to “0” in step S207. "
  • the influence of interference on each symbol is considered in consideration of the interference state for each cell. Can be accurately determined, and error correction during soft-decision decoding can be executed reliably.
  • interference symbol determination section 208 and tapo decoding section 209 that can satisfactorily improve the error rate characteristics even if the received signal is an adaptively modulated signal is described in FIG. This will be described with reference to a flowchart.
  • the environment in which PSK-based modulation (BPSK, QPSK, 8PSK) is selected from the adaptive modulation schemes is an environment where there is much interference and the SNR value is small.
  • the LLR value is set to “0” by setting the threshold value as in the above turbo decoding process, the soft decision value is not set to “0”, and the value of 2 when calculating the LLR value is not set.
  • the error rate performance is worse than the turbo decoding process that reflects the amount of interference.
  • QAM modulation (16QAM, 64QAM) is selected among the adaptive modulation methods.
  • the selected environment is an environment with low interference and high Eb / NO.
  • I interference power
  • N thermal noise power
  • the LLR value is calculated without setting the threshold value, and when the modulation method is QAM, the threshold is set. To set the soft decision value to “0”.
  • step S301 in FIG. 21 a pilot signal is extracted from each subcarrier signal input from channel separation section 206.
  • step S302 since the Pilot sequence is already known, the inner product of the extracted Pilot signal sequence and the known pilot signal is calculated.
  • step S303 the received power of the desired signal is measured by dividing the calculated dot product of the pilot sequence by the pilot sequence length.
  • step S304 it is determined whether the modulation scheme of the received data sequence is PSK (BPSK, QPSK, 8PSK, etc.) or QAM (16QAM, 64QAM, etc.).
  • step S305 a threshold for determining the influence of the interference signal on the desired signal is set in consideration of the reception power value of the desired signal + the margin measured in step S303. I do.
  • step S306 the received power value is compared with the set threshold value for each subcarrier to determine whether the received power value is equal to or greater than the threshold value. If the received power value is not equal to or greater than the threshold value (step S306: NO), it is determined that the influence of dispersion due to interference is small, and in step S307, the LLR value of the symbol of the subcarrier is calculated. .
  • step S306 If the received power value is equal to or larger than the threshold (step S306: YES), it is determined that the influence of the variance due to the interference is large, and in step S308, the soft decision value of the symbol of the subcarrier is set to “0”.
  • step S304 if the determined modulation scheme is a PSK system, in step S309, I (interference power) + N (thermal noise power) is calculated for each symbol.
  • step S310 LLR ⁇ fiS for each symbol is calculated based on I + N for each symbol calculated in step S309.
  • the interference power calculation unit 208 and the tapo decoding unit 209 in the reception apparatus 200 of the present embodiment adaptive modulation of QAM system, PSK system, etc.
  • the interference state is classified for each modulation scheme, the influence of interference on the symbol of each subcarrier is determined, and the soft decision value of the symbol with a large interference is set to 0.
  • the influence of interference on each symbol can be accurately determined, and the error correction capability at the time of soft-decision decoding can be improved.
  • the interference position is determined by the blind determination in the receiving device 200 using the transmitting device 400 in FIG. 14, but the transmitting device 100 in FIG. 7 is used.
  • the LLR value may be calculated based on the level of the interference power.
  • the ⁇ FDM receiving apparatus and method of the present invention are applied to a single-antenna FH-OFDM system, but the present invention is not limited to this.
  • MIMO Multiple-Input Multiple-Output
  • the same effects as in the embodiment can be obtained.
  • even when a collision of a hobbing pattern occurs between cells adjacent to each other the error correction capability at the time of soft-decision decoding can be improved by accurately determining a symbol to be an actual interference symbol.
  • the apparatus and method that can improve the performance have been described.
  • the communication terminal can easily recognize the collision position of the hopping pattern between the sectors by, for example, the hopping pattern information notified from the base station of the own cell.
  • the point is, based on the hopping pattern of the own sector and the hopping pattern of the instantaneous sector, an interference position determining means for determining a hopping position at which interference occurs, and a sub-carrier from each subcarrier of the received frequency hobbing OFDM signal.
  • Extracting means for extracting a signal
  • measuring means for measuring the reception power of a desired signal based on a pilot signal sequence extracted by the extracting means and a known pilot signal sequence, and an interference position determined by the interference position determining means.
  • a comparison means for comparing the received power of the signal with the received power of the desired signal measured by the measuring means for each subcarrier, and based on the comparison result, whether to use the received power of the symbol for each subcarrier as it is
  • decoding means for performing turbo decoding by selecting 0 or 0.
  • interference position determining means for determining a hopping position where interference occurs
  • Extraction means for extracting a pilot signal from each subcarrier of the received frequency hobbing OFDM signal, and measuring the reception power of the desired signal based on the pilot signal sequence extracted by the extraction means and a known pilot signal sequence Measuring means; comparing means for comparing the received power of the signal at the interference position determined by the interference position determining means with the received power value of the desired signal measured by the measuring means for each subcarrier; Decoding means for decoding each subcarrier symbol based on the comparison result; Is adopted.
  • One aspect of the OFDM receiving apparatus includes: an interference position determining unit that determines a hopping position at which interference occurs based on a hopping pattern of the own sector and a hopping pattern of an adjacent sector; and the frequency hobbing OFDM.
  • Extracting means for extracting a pilot signal from each subcarrier of the signal; measuring means for measuring the reception power of a desired signal based on the pilot signal sequence extracted by the extracting means and a known pilot signal sequence Comparing means for comparing the received power of the signal at the interference position determined by the interference position determining means with the received power value of the desired signal measured by the measuring means for each subcarrier, and each subcarrier based on the comparison result.
  • Decoding means for decoding the rear symbol.
  • the extracting unit is configured to generate interference from a sub-carrier PiT signal of each subcarrier of the frequency hobbing OFDM signal transmitted from a known interference cell among the plurality of cells.
  • the symbol which has not been received is extracted, the comparing means calculates the average power of the symbol extracted by the extracting means, and based on the calculated average power of the symbol, a threshold for determining the influence of the interference signal on the desired signal Is set, and the average power of the calculated data signal is compared with the set threshold value for each subcarrier.
  • One aspect of the OFDM signal receiving apparatus is an OFDM receiving apparatus that receives a frequency hopping OFDM signal transmitted from a plurality of cells, wherein the pilot signal is transmitted from each subcarrier of the frequency hopping OFDM signal.
  • Extracting means for extracting the desired signal received power based on the pilot signal sequence extracted by the extracting means and a known pilot signal sequence; and the frequency hobbing OFDM signal.
  • Discriminating means for discriminating the modulation method of the above, and when the modulation method discriminated by the discriminating means is the QAM method, Setting means for setting a threshold for judging the influence of the interference signal on the desired signal based on the measured reception power of the desired signal; and a reception power value when the modulation method determined by the determination means is the QAM method.
  • a threshold value set by the setting means for each subcarrier If the modulation method determined by the determination means is the PSK method, the reception power of the desired signal measured by the measurement means is determined. Calculation means for calculating the interference power for each symbol based on the above, and when the modulation scheme determined by the determination means is the QAM scheme, the received power of each of the subcarrier symbols is directly used based on the comparison result. Select whether to use or set to 0 and perform turbo decoding. If the modulation method determined by the determination means is the PSK method, the decoding method calculated by the calculation means is used. Based on the power, it adopts a configuration comprising a decoding means for turbo decoding the symbols of the respective Sabukiya rear.
  • the influence of interference on each symbol can be accurately determined in consideration of the interference state for each adaptive modulation scheme, and the error correction capability at the time of soft decision decoding can be improved.
  • a symbol to be treated as an interference symbol can be accurately detected, so that an error correction capability at the time of soft decision decoding can be improved.
  • the method can be realized.
  • the present specification is based on Japanese Patent Application No. 2003-71016 filed on Mar. 14, 2003. All its contents are included here.
  • the present invention is suitable for application to, for example, a portable information terminal such as a mobile phone and a base station thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

干渉シンボル決定部208は、干渉位置受信電力測定部208Bによって測定した干渉位置の信号の受信電力と、希望信号測定部208Dによって測定した希望信号の受信電力値とを、サブキャリア毎に比較することで、実際に干渉シンボルとするシンボルを決定し、これをターボ復号化部209に出力する。ターボ復号化部209は、干渉シンボル決定部208の比較結果に基づいて、復調部207から入力された各サブキャリア信号のシンボルのLLR値を算出するか、LLR値を「0」にするかを決定して、復号化処理を実行する。

Description

W
O F DM受信装置及ぴ O F DM受信方法 技術分野
本発明は、 特に周波数ホッピング方式の O F DMシステムに用いられる O F DM受信装置及ぴ O F DM受信方法に関する。
明 背景技術 田
近年、 移動体通信システムにおいて、 周波数ホッピングを適用した O F DM 方式が検討されている。 周波数ホッピングを適用した O F DMシステムは、 複 数のセル間で異なるホッビングパターンを用いることにより、 セル間の干渉を 平均化して通信を行うようになっている。
周波数ホッピング O F D M方式を含むマルチキヤリァ方式を使用した移動 通信システムでは、 送信情報の符号化にターボ符号や L D P C (Low Density Parity Check:低密度パリティ検査) 符号のように、 軟判定値を利用した MA P (Maximum a posteriori:最大事後確率)復号を前提とした符号化方式が採 用されている。
また、 ターボ符号の復号処理では、 伝送路が AW G N (Additive White Gaussian Noise :加法性白色ガウス雑音) 環境であるものとして導出されて おり、 例えば、 図 1に示す L L R (Log Likelihood Ratio) 算出モデルにより ターボ符号の L L R値を求めることができる(例えば、松本 渉、落合 秀樹: 「O F DM変調方式の応用」 , トリケップス, WS No.216(2001-10),pp.80参 照) 。
図 1において、 横軸に D [受信値] 、 縦軸に P [確率密度] を設定し、 破線 が雑音を受けたときのシンボル 「1」 のガウス分布、 一点鎖線が雑音を受けた ときのシンボル 「0」 のガウス分布を示し、 共に σ 2で分散する。 「ひ」 はシ ンボル 「0」 の判定点 (decision rate) 、 「_ α」 はシンポル 「1」 の判定点 (decision rate) であり、 これら各判定点における P [確率密度] が最大値に なることを示す。 また、 図中では、 ある受信値 Drxの確率密度 Pが、 シンポル 「 1」 の破線上では P l(Drx)、 シンボル「 0」 の一点鎖線上では P O(Drx)であ ることを示す。
また、 雑音電力が大きいときのシンポル 「0」 、 「1」 の分布状態を図 2に 示す。 このように、 雑音電力が大き <なると、 び 2の分散幅が大きくなり、 シ ンボル 「0」 、 「1」 の判定点 a;、 —αにおける各確率密度 Pの最大値が極端 に小さくなる場合がある。
周波数ホッピングの O F DM (以下これを F H— O F DMと呼ぶ) の場合、 あるサブキヤリァで衝突が生じると、 そのサブキヤリァのシンボルは図 2のよ うな状態になると考えられる。 この場合、 周りのサブキャリアよりも S N R (Signal to Noise Ratio ) が悪レ、ということなので、 シンボル 「 0」 、 「 1」 の L L R値に誤りが発生しやすくなる。 さらに、 シンポルの判定に誤りが発生 すると、 この誤りの影響が他のサブキャリアのシンボルの L L R値にも影響し てしまう可能性がある。
2つのセルの環境で、 自セルの基地局のユーザとパイロットのリソースの割 当例を図 3に、他セルについては図 4に示す。因みに、図 3及び図 4において、 周波数方向の 1プロックは 1サブキャリアを示し、 時間方向の 1プロックは 1 バースト期間を示す。
通常、 ユーザのホッピングパターン及びリソース割当は、 自セルと他セルで ランダムに決められているので、 ある時点のあるサブキャリアで偶然衝突 (ヒ ット) する可能性がある。 自セルのユーザ 1の信号及びパイ口ット信号と、 他 セルの信号との間でのヒットの状況を図 5に示す。 " 0 " は、 ヒットしていな. いことを示し、 " 1 " は、 ヒットしていることを示す。
上述したように、 ターボ符号や L D P C符号は AWG Nチャネルを前提とし て設計されているので、 このようなヒットを想定していないため、 ヒットが生 じると大きな特性の劣化を引き起こすことになる。
そこで、 LLR値に誤りを発生させるような誤りデータの有無を判定して、 未然に誤りを訂正する OF DM受信装置が、 例えば特開平 1 1— 355240 号公報 (以下、 特許文献 1と呼ぶ) に提案されている。
この OF DM受信装置では、 搬送波ごとに得られる参照デ一タ、 あるいは差 動復調のための前シンボルの振幅が、 与えられた閾値よりも小さい搬送波につ いては、 その搬送波のデータを消失とみなし、 ヌルデータを揷入して軟判定系 列を出力し、 その軟判定系列をビタビ復号などで軟判定復号を行う。 また、 別 に与えられた閾値よりも大きい搬送波については、 その搬送波のデータを消失 とみなし、 ヌルデータを揷入して軟判定系列を出力するようにして、 軟判定復 号したときの誤り訂正効果を向上させている。
しかしながら、 従来の OF DM受信装置においては、 ?31:系の1っの変調 方式のみを想定して、 閾値を二つ用意して、 フェージングの落ち込みや干渉に よる受信信号の雑音が大きなものの軟判定値をヌル信号 (ゼロ: 0) にしてい る。
このとき、 2つの問題点があると考える。
1) 干渉判定が完全であったとしても、 干渉量次第で必ずしも特性がよくな るわけではない (図 6) 。 これは、 あまりにも "0" としてしまう数が多いと 復号特性が悪くなるためである。 図 6は、 変調方式が Q P S K、 干渉が存在す るキャリア割合が 40° /。の場合で、 通常の LLR値算出時の誤り率 (図中のプ ロット "Normal:□" ) と、 軟判定値を 0とした L L R値算出時の誤り率特 性 (図中のプロット "softvalue=0 :〇" ) と、 干渉がない場合の L L R値算 出時の誤り率特性 (図中のプロット "No change: X" 理想カーブ) とを示し た図である。
2) データ伝送効率を高めるために適応変調を用いた場合、 PSK系のみな らず、 Q AM系の変調が用いられることがある。 Q AM系の変調を想定した場 合には、 データによってシンボルの電力値が異なるため、 2つの閾値では干渉 判定することができない。 つまり、 Q AM系の変調を使用する適応変調に適用 するには不十分である。 発明の開示
本努明の目的は、 実際に誤り率特性の劣化要因となるような干渉位置を的確 に検出し、 軟判定復号時の誤り訂正能力を向上させることができる〇F DM受 信装置及び O F DM受信方法を提供することである。
この目的は、 例えば隣接セル又は隣接セクタのホッビングパターン情報と自 セル又は自セクタのホッピングパターンとに基づいて、 干渉が生じるホッピン グ位置を検出し、 受信した周波数ホッビング O F DM信号の各サブキヤリァか らパイロット信号を抽出する抽出し、 抽出したパイロット信号系列と既知のパ イロット信号系列に基づいて希望信号の受信電力を測定し、 検出した干渉位置 の信号の受信電力と測定した希望信号の受信電力値とをサブキャリア毎に比 較し、 比較結果に基づいて、 各サブキャリアのシンポルの受信電力をそのまま 用いるか又は 0にするかを選択してターボ復号することにより達成される。 このように、 検出した干渉位置の信号の受信電力と測定した希望信号の受信 電力値とをサブキヤリァ毎に比較して、 比較結果に基づいて、 各サブキヤリァ のシンボルの受信電力をそのまま用いるか又は 0にするかを選択するように したので、 干渉シンボルとして扱うべきシンボルを的確に検出することができ. 軟判定復号時の誤り訂正能力を向上させることができるようになる。 つまり、 干渉位置であっても復号に使っても誤り率特性に悪影響を及ぼさないような シンボルを、 不必要に復号対象から除外してしまうことを回避することができ るので、 軟判定復号時の誤り訂正能力を向上させることができるようになる。 図面の簡単な説明
図 1は、 従来の L L R値の算出モデルを示す図;
図 2は、 従来の雑音が大きいときの L L R値の算出モデルを示す図; 図 3は、 自セルホッピングパターン例を示す図;
' 図 4は、 他セルホッピングパタ一ン例を示す図;
図 5は、 自セルのユーザ 1の信号及びパイロット信号と、 他セルの信号との 間でのヒットの状況を示す図;
図 6は、 従来の L L R値算出時の誤り率特性を示す図;
図 7は、 本宪明の実施の形態 1に係る送信装置の構成を示すプロック図; 図 8は、 実施の形態 1に係る受信装置の構成を示すブ口ック図; 図 9は、実施の形態 1による L L R値算出時(est sigma) の誤り率特性を示 す図;
図 1 0は 実施の形態 2による自セルのホッピングパタ一ン例を示す図; 図 1 1は 実施の形態 2による他セノレのホッビングパターン例を示す図; 図 1 2は 自セルのユーザ 1の信号と他セルの信号との間でのヒットの状況 を示す図;
図 1 3は 実施の形態 2に係る送信装置の構成を示すプロック図; 図 1 4は 実施の形態 3に係る送信装置の構成を示すブロック図; 図 1 5は 実施の形態 3の (1 ) 式を模式的に示した図;
図 1 6は 実施の形態 3に係る L L R値算出時(est sigma) の誤り率特性を 示す図;
図 1 7は 実施の形態 4の (2 ) 式を模式的に示した図;
図 1 8は 実施の形態 4における L L R値算出時(est sigma) の誤り率特性 を示す図;
図 1 9は 実施の形態 5に係る受信装置内の干渉シンボル決定部及びターボ 復号化部の動作を説明するためのフローチャート ;
図 2 0は、 実施の形態 6に係る受信装置内の干渉シンボル決定部及びターボ 復号化部の動作を説明するためのフローチャート ;
及び
図 2 1は、 実施の形態 7に係る受信装置内の干渉シンポ/レ決定部及びターボ 復号化部の動作を説明するためのフローチヤ一トである。 発明を実施するための最良の形態
以下、 本発明の実施形態について、 添付図面を参照して詳細に説明する。
(実施の形態 1 )
以下、 本発明の実施の形態について、 図面を参照して詳細に説明する。 図 7 は、 本発明の実施の形態に係る周波数ホッピング OF DM方式 (以下、 FH— OF DM方式と呼ぶ) 対応の送信装置の構成を示すプロック図、 図 8は、 ユー ザ 1に関する本実施の形態に係る F H— O F DM方式対応の受信装置の構成 を示すブロック図である。 ここで、 送信装置 100は基地局に設けられ、 受信 装置 200は通信端末に設けられる。
基地局に設けられた送信装置 100は、 ターボ符号化部 101— 1, 101 一 2、変調部 102—1, 102— 2、サブキヤリアマツビング部 103— 1, 103— 2、 多重器 104、 周波数ィンターリーブ部 105、 シリアルパラレ ル (S/P) 変換部 106、 逆高速フーリエ変換 (I FFT) 部 107、 ガー ドィンターパル (G I ) 揷入部 108、 無線処理部 109、 アンテナ 110及 ぴ隣接干渉位置通知信号生成部 111とから主に構成される。
ターボ符号化部 101-1, 101— 2は、 ユーザ 1, ユーザ 2の各送信デ ータをターボ符号化処理してターボ符号信号をそれぞれ変調部 102— 1, 1 02— 2に出力する。
変調部 102— 1, 102— 2は、各々異なる符号変調機能を有し、例えば、 QAM系として 16 QAM (Quad Amplitude Modulation) , 64 QAM、 ま た、 PSK系として BPSK (Binary Phase Shift Keying) , Q P S K (Quad Phase Shift Keying) , 8 PSK, などといつた変調方式を採用する。
変調部 102— 1, 102— 2は、 ターボ符号化部 101— 1, 101— 2 からそれぞれ入力されたターボ符号信号に対して適応変調処理を施し、 これに より得た変調信号をサブキヤリアマッビング部 103— 1, 103-2に出力 する。
サブキヤリアマッビング部 103— 1, 103— 2は、 予め定められたホッ ビングパターンに従って、 変調部 102- 1, 102— 2から入力された各変 調信号をサブキヤリァに割り当てるマツビング処理を行い、 そのマッビング信 号を多重器 104に出力する。
多重器 104には、 サブキヤリアマッビング部 103— 1、 103-2の出 力、 パイロット系列、 隣接干渉位置通知信号生成部 1 1 1の出力が入力され、 多重器 104はこれらを多重化したシリアル信号を周波数インターリーブ部 105に送出する。
この実施の形態の場合、 隣接干渉位置通知信号生成部 1 1 1は、 隣接干渉位 置通知信号として、自セルのホッピングパターン情報を生成する。これにより、 通信端末においては、 隣接するセル (他セル) の基地局に設けられた送信装置
100から送られてくる隣接干渉位置通知信号(ホッピングパターン情報) と、 現在位置するセル (自セル) のホッピングパターン情報に基づき、 干渉が生じ る位置 (すなわち干渉が生じるサブキャリア及ぴ時間) を認識することができ る。
周波数ィンターリーブ部 105は、 多重器 104から入力されたシリアル信 号を、 当該シリアル信号に含まれる複数のデータ系列の配列方向が交錯するよ うに読み出してインターリーブ信号として S/P変換部 106に出力する。
I F FT部 107は、 S/P変換部 106から入力された複数のデータ系列 信号の各サブキヤリァ成分を逆高速フーリェ変換することで、 各サブキヤリァ のデータを時間領域に変換して時間波形信号を G I揷入部 108に出力する。
G I挿入部 108は、 I FFT部 107から入力された時間波形信号に、 遅 延に対する特性を改善するためのガードインタ一バルを揷入して無線処理部 109に出力する。
無線処理部 109は、 G I揷入部 108から入力された時間波形信号を R F 帯にアップコンバージョンしてアンテナ 1 10から OF DM信号を送信する。 図 8に示す受信装置 2 0 0は通信端末に設けられており、 アンテナ 2 0 1、 無線処理部 2 0 2、 ガードィンターバル (G I ) 除去部 2 0 3、 高速フーリェ 変換 (F F T) 部 2 0 4、 周波数ディンターリーブ部 2 0 5、 チャネル分離部 2 0 6、 復調部 2 0 7、 干渉シンボル決定部 2 0 8及ぴターボ復号化部 2 0 9 とから主に構成される。
無線処理咅 (3 2 0 2は、 アンテナ 2 0 1から O F DM信号を受信して G I除去 部 2 0 3に出力する。
G I除去部 2 0 3は、 無線処理部 2 0 2から入力された O F DM信号からガ 一ドィンターパルを除去して F F T部 2 0 4に出力する。
F F T部 2 0 4は、 G I除去部 2 0 3力、ら入力されたガードィンタ一バル除 去後の O F DM信号を高速フーリエ変換 (F F T) することにより、 時間領域 から周波数領域に変換する。 この F F T部 2 0 4により複数のサブキャリアに より伝送されたデータ系列信号が取り出され、 このデータ系列信号が周波数デ インターリーブ部 2 0 5に出力される。
周波数ディンターリープ部 2 0 5は、 F F T部 2 0 4から入力された複数の データ系列信号を、 送信装置 1 0 0においてインターリーブされる際の逆の配 列方向で読み出して、 元のシリアノレ配置のデータ系列を含むシリアノレ信号に戻 してチャネル分離部 2 0 6に出力する。
チャネル分離部 2 0 6は、 周波数ディンターリーブ部 2 0 5から入力された 複数のサブキヤリァ信号を含むシリアル信号を各サブキヤリァ信号に分離し、 このうちユーザ 1の信号 (すなわち自局宛の信号) を、 復調部 2 0 7と干渉シ ンポノレ決定部 2 0 8に出力する。
復調部 2 0 7は、 チャネル分離部 2 0 6から入力された各サブキャリァ信号 をそれぞれ復調してターボ復号化部 2 0 9に出力する。
干渉シンボル決定部 2 0 8は、 隣接セルとの間でホッピングパタ一ンが衝突 しているシンポルの中で、 実際に干渉シンポルとして扱うべきシンボルを決定 する。 具体的には、 干渉位置決定部 2 0 8 Aが通知された隣接セルのホッピングパ ターンと自局のホッピングパターンとから干渉が生じるホッピング位置 (すな わちホッピングパターン同士が衝突するホッピングパタ一ン位置) を決定し、 この干渉位置情報を干渉位置受信電力測定部 2 0 8 Aに送出する。 干渉位置受 信電力測定部 2 0 8 Aは、 干渉位置の受信電力を測定し、 これを比較部 2 0 8 Eに送出する。
また干渉シンボル決定部 2 0 8は、 パイ口ット抽出部 2 0 8 Cによってパイ 口ット信号を抽出し、続く希望信号測定部 2 0 8 Dによってパイ口ット信号の 受信電力に基づいて希望信号の受信電力を求め、 この希望信号の受信電力を比 較部 2 0 8 Eに送出する。
比較部 2 0 8 Eは、 パイロット信号の受信電力 (希望信号の受信電力) と、 干渉が生じるホッピング位置のシンポ <レの受信電力とを、 サブキヤリァ毎に比 較することで、 実際に干渉シンボルとすべきシンボルを決定し、 そのシンボル を表す比較結果をターボ復号化部 2 0 9に通知する。 この実施の形態の場合に は、 サブキャリア毎に、 受信信号と希望信号の差を算出し、 この差が大きいと きに干渉シンポルとみなす。
これにより、 干渉シンボル決定部 2 0 8においては、 単純にホッピングパタ ーンに基づいて干渉シンボルを決定するのではなく、 ホッピングパターンに基 づく干渉位置であっても、 フェージング等の影響により S I R (Signal to Interference Ratio) が良いこともあり悪いこともあることも考慮して、 ホッ ビングパターンに基づく干渉位置でかつ S I Rが悪いときのみ、 ターポ復号化 部にそのシンポルの受信電力を 0としてターボ復号することを指示する。 この 結果、 例えばフェージングによって、 干渉電力と受信電力の両方が変動してい るような状況下、 例えばフエージングにより受信電力と干渉電力の両方の値が 落ち込んでいるような状況下でも、 サブキヤリァ毎に干渉シンボルの比較判定 を行うので、 的確に干渉シンボルを検出することができるようになる。
因みに、 パイロット信号に基づく希望信号の電力測定は、 例えば、 サブキヤ リア毎に、 受信信号から希望信号の電力を除算する方法を用いて行うことがで きる。 また干渉信号の大きさは、 受信信号と希望信号の差から求めることがで さる。
ターボ復号化部 2 0 9は、 干渉シンボル決定部 2 0 8から通知された干渉シ ンポル位置 (比較結果) に基づき、 各サブキヤリァのシンボルの受信電力をそ のまま用いるか又は 0にするかを選択して L L R値を算出することで、 ターボ 復号を行う。 具体的には、 干渉シンボル決定部 2 0 8により干渉シンボルと判 定されたサブキヤリァのシンボルについては、 受信電力を 0としてターボ復号 を行う。
図 9は、変調方式が Q P S K、干渉が存在するキヤリァ割合が 5 %の場合で、 通常の L L R値算出時の誤り率 (図中のプロット "Normal :□" ) と、 軟判 定値を 0とした L L R値算出時の誤り率特性(図中のプロット "Softvalue=0: 〇") と、干渉がない場合の L L R値算出時の誤り率特性(図中のプロット "No change: X "理想カーブ) と、 本実施の形態の干渉値の推定による L L R値算 出時の誤り率特性 (図中のプロット "est sigma:△" ) とを示した図である。 したがって、 本実施の形態によれば、 干渉位置受信電力測定部 2 0 8 Bによ つて測定した干渉位置の信号の受信電力と、希望信号測定部 2 0 8 Dによって 測定した希望信号の受信電力値とを、 サブキャリア毎に比較することで、 実際 に干渉シンボルとするシンボルを決定するようにしたことにより、 フェージン グ環境等でも実際に干渉シンボルとすべきシンボルを的確に選択できるので、 従来のように、 L L R算出の際の σ 2の大きさを雑音の大きさに設定する方法 (Normal)や特許文献 1で掲げられている方法 (soft value = 0)よりも特性を改 善することができる。
(実施の形態 2 )
上記実施の形態 1は、 主に P S K系の変調方式を想定したものである。 そし て実施の形態 1では、干渉位置を通知することによって干渉の位置を設定した 後、 受信信号と希望信号の差から干渉信号の大きさを推定した。 し力 し、 この 方法では、 データによって受信信号のシンボル毎の電力が変わる QAM系の変 調方式では適用が難しい。
そこで、 本実施の形態では、 図 1 0及び図 1 1に示すように自セルと他セル でパイ口ット系列を割り当てるサブキヤリァの位置を同じとして、 それぞれの 系列を直交する系列を割当てるとする。 自セルの基地局のユーザとパイロット のリソースの割当を図 1 0に、 他セルについては図 1 1に示している。
そうすると、 ユーザ 1やユーザ 2の端末で自セル及び他セルの平均電力を測 定することができる。
また、 本実施の形態では、 図 1 3の隣接千渉位置及び干渉数通知信号生成部 1 1 2により図 1 2に示すような干渉位置及びどの基地局から干渉を受けた かの情報を通知する。 これにより、 ユーザ 1の時間と周波数の領域で定義され るユニットに関して干渉の位置及びどの基地局から干渉を受けているかを知 ることができる。
実施の形態 1では、干渉が起こっているュニッ 1、でのシンボルの受信電力か ら干渉の電力を求めたが、 本実施の形態 2では、 上述のようにパイロットから 他セルの基地局からの受信電力が分かり、 これが干渉電力に相当するので、 こ の値を L L Rの σ 2の計算に反映する。
したがって、 本実施の形態によれば、 干渉信号及び希望信号の変調方式に依 存せずに計算することができる。
(実施の形態 3 )
実施の形態 1及び 2においては、 受信側で干渉位置通知信号を復号すること で、 干渉位置を知ることができたが、 本実施の形態では、 受信信号の電力と閾 値を判定することにより、 干渉位置判定及び干渉電力の推定を行う。
本実施の形態の送信装置は、 図 1 4に示すものとする。 送信装置 4 0 0は、 図 7の送信装置 1 0 0とは異なり、 隣接干渉位置通知信号生成部 1 1 1を接続 していない。
受信装置では、 パイロットから求めた受信信号電力から実際の受信シンボル の電力を引いた値を、 シンボル毎の干渉波電力 +雑音電力として閾値を設定し、 その閾値以上であるシンボル位置を干渉受信シンポルとして扱うものとする。 このシンボル毎の干渉電力 +雑音電力は次式で示すことができる。
APr (k, m ) = (jr ," z )卜 卜 |) … (1)
数式 (1) において、 r (k, m) は、 k番目のサブキヤリァでの m番目の O F DMシンボルを表している。
I h (k) Iは、 パイロット信号から求められる希望信号のフェージングの大 きさ、 I s Iは送信信号の大きさである。 数式 (1) を模式的に示したのが図 1 5である。
閾値の大きさを T pとし、 数式 ( 1 ) の結果が閾値 T pよりも大きい場合に は干渉が起こったと判定し、 数式 (1) の大きさを L L R計算時の σ2の値と する。
この実施の形態における L L R値算出時(est sigma) の誤り率特性を図 1 6 に示す。 したがって、 本実施の形態によれば、 従来のように、 L LR算出の際 の σ 2の大きさを雑音の大きさに設定する方法 (Normal) や特許文献 1で掲げ られている方法よりも特性を改善することができる。
(実施の形態 4)
実施の形態 3では、 1つの閾値を用いて干渉位置判定を行ったが、 本実施の 形態では、 変調方式の判定点と雑音レベルの大きさに基づいて干渉位置の判定 を行う。
Figure imgf000014_0001
数式 (2) を模式的に示したのが図 1 7である。 例えば、 図 1 7において、 受信信号が第一象限にあつた場合には、 第一象限にある判定円の中の外にあれ ば干渉が存在すると判定する。 干渉電力 +雑音電力の大きさは数式 (2) の大 きさとなり、 L L R計算時の σ 2の大きさにこの値を使用する。
この実施の形態における L L R値算出時(est sigma)の誤り率特性を図 Γ 8 に示す。 したがって、 本実施の形態によれば、 従来のように、 L L R算出の際 の σ 2の大きさを雑音の大きさに設定する方法 (Normal) や特許文献 1で掲げ られている方法よりも特性を改善することができる。
(実施の形態 5 )
上述の実施の形態 3や実施の形態 4のように、 受信電力からのプラインド判 定によって、 干渉位置の推定及び干渉電力の推定を行う方法は、 実施の形態 1 や実施の形態 2のように、 干渉位置を通知し、 干渉電力の推定を行う方法に比 ベて劣化が大きい (図 1 6、 図 1 8の誤り率特性図を参照) 。 そこで、 本実施 の形態では、 図 1 4の送信装置 4 0 0を利用した場合 (干渉位置の判定をブラ インド判定により行う場合) に、 実施の形態 3や実施の形態 4と比較して、一 段と誤り率特性を改善できる受信装置を提案する。
この実施の形態では、 実施の形態 1で説明した図 8の受信装置 2 0 0を流用 して説明する。 但し、 この実施の形態の受信装置 2 0 0は、 ホッピングパター ン情報を受信しないぶんだけ、 干渉シンポル決定部 2 0 8での処理が異なる。 この実施の形態の受信装置 2 0 0内の干渉シンポル決定部 2 0 8及びター ポ複号化部 2 0 9の動作について、 図 1 9に示すフローチャートを用いて説明 する。
干渉シンボル決定部 2 0 8は、 ステップ S 1 0 1で、 チャネル分離部 2 0 6 から入力された各サブキャリア信号からパイロット信号を抽出する。 次いで、 ステップ S 1 0 2では、 パイ口ット系列は既知であるので、 抽出したパイ口ッ ト信号系列と既知のパイ口ット信号との内積を算出する。
次いで、 干渉シンボル決定部 2 0 8は、 ステップ S 1 0 3で、 算出したパイ ロット系列の内積を、 そのパイ口ット系列長で除算することによって、 希望信 号の受信電力を測定する。 次いで、 ステップ S 1 0 4では、 測定した希望信号 の受信電力値 +マージンを考慮して、 希望信号に対する干渉信号の影響を判定 する閾値を設定する。
次いで、干渉シンボル決定部 2 0 8は、ステップ S 1 0 5で、受信電力値と、 設定した閾値とをサブキャリア毎に比較して、 受信電力値が閾値以上か否かを 判別する。 受信電力値が閾値以上でない場合は (ステップ S 1 0 5 : N O) 、 干渉による分散の影響は少ないものと判断し、 このことをターボ復号化部 2 0 9に通知する。 この場合、 ターボ復号化部 2 0 9は、 ステップ S 1 0 6におい て、 当該サブキヤリァのシンポノレの L L R値を算出する。
これに対して、 干渉シンボル決定部 2 0 8は、 受信電力値が閾値以上である 場合は (ステップ S 1 0 5 : Y E S ) 、 干渉による分散の影響は大きいものと 判断し、 このことをターボ復号ィ匕部 2 0 9に通知する。 この場合、 ターポ復号 化部 2 0 9は、 ステップ S 1 0 7において、 当該サブキャリアのシンポルの軟 判定値を 「0」 にする。
以上のように、 本実施の形態の受信装置 2 0 0内の干渉シンポル決定部 2 0 8及びターボ復号化部 2 0 9による復号処理によれば、 サブキャリア毎にシン ボルに対する干渉の影響を的確に判定することができ、軟判定復号時の誤り訂 正を確実に実行することができる。
(実施の形態 6 )
実施の形態 5では、希望信号電力の推定をすベてのパイロット信号を用いて 行ったが、 本実施の形態では、 既知の干渉シンポルに基づく抽出シンポルの平 均電力算出により閾値を設定する方法で行う。 本実施の形態に対応するターボ 複号化処理について、 図 2 0のフローチャートを用いて説明する。 送信装置と しては図 1の送信装置 1 0 0を用いる。
ステップ S 2 0 1では、 チャネル分離部 2 0 6から入力された各サブキヤリ ァ信号のうち、 隣接干渉位置通知信号生成部 1 1 1より通知された隣接セルの 干渉を受けている各サブキャリァ信号の干渉シンボルを識別する。
次いで、 ステップ S 2 0 2では、 干渉シンボルが識別されたセルのパイ口ッ ト信号から干渉を受けていないシンボルを抽出する。 次いで、 ステップ S 2 0 3では、 抽出したシンボルの平均電力を算出する。
次いで、 ステップ S 204では、 算出したシンボルの平均電力に基づいて、 平均電力 +マージンを考慮して、 希望信号に対する干渉信号の影響を判定する 閾値を設定する。
次いで、 ステップ S 205では、 算出したデータ信号の平均電力値と、 設定 した閾値とをサブキヤリァ毎に比較して、 受信電力値が閾値以上か否かを判別 する。 受信電力値が閾値以上でない場合は (ステップ S 205 : NO) 、 干渉 による分散の影響は少ないものと判断して、 ステップ S 206において、 当該 サブキヤリァのシンボルの L L R値を算出する。
また、 受信電力値が閾値以上である場合は (ステップ S 205 : YES) 、 干渉による分散の影響は大きいものと判断して、 ステップ S 207において、 当該サブキャリアのシンボルの軟判定値を 「0」 にする。
以上のように、本実施の形態の受信装置 200内の干渉電力算出部 208及 びターボ複号化部 209による復号処理によれば、 セル毎に干渉状態を考慮し て各シンボルに対する干渉の影響を的確に判定することができ、 軟判定復号時 の誤り訂正を確実に実行することができる。
(実施の形態 7)
本実施の形態は、 受信信号が適応変調された信号であっても、 良好に誤り率 特性を向上させることができる、干渉シンポル決定部 208及ぴターポ復号化 部 209の処理について、 図 21のフローチャートを用いて説明する。
ここで、 適応変調方式のうち PSK系の変調 (BPSK, QP SK, 8 PS K) が選択される環境は、 干渉が多く SNR値が小さい環境である。 このよう な環境において、 上記のターボ復号化処理のように閾値を設定して L LR値を 「0」 としてしまうと、 軟判定値を 「0」 とせず、 LLR値算出の際のび2の 値に干渉量を反映するターボ復号化処理よりも、 誤り率特性が悪くなってしま ラ。
また、 適応変調方式のうち Q AM系の変調 (16QAM, 64QAM) が選 択される環境は、 干渉が少なく Eb/NO が大きい環境である。 し力 し、 QAM 変調の場合はデータによる振幅変動があるため、 受信信号から I (干渉電力) + N (熱雑音電力) を算出することは困難である。
そこで、 図 21のターボ復号化処理では、 変調方式が P SK系の場合は、 閾 値を設定せずに LLR値を算出する処理を実行し、 変調方式が QAM系の場合 は、 閾値を設定して軟判定値を 「0」 にする処理を実行する。
図 21のステップ S 301では、 チャネル分離部 206から入力された各サ ブキャリア信号からパイロット信号を抽出する。 次いで、 ステップ S 302で は、 パイ口ット系列は既知であるので、 抽出したパイ口ット信号系列と既知の パイロット信号との内積を算出する。
次いで、 ステップ S 303では、 算出したパイ口ット系列の内積を、 そのパ ィロット系列長で除算することによって、 希望信号の受信電力を測定する。 次 いで、 ステップ S 304では、 受信したデータ系列の変調方式が P SK系 (B PSK, QP SK, 8 PSKなど) 力、、 QAM系 (16QAM, 64QAMな ど) かを判別する。
判別した変調方式が Q AM系の場合は、 ステップ S 305において、 ステツ プ S 303で測定した希望信号の受信電力値 +マージンを考慮して、 希望信号 に対する干渉信号の影響を判定する閾値を設定する。
次いで、 ステップ S 306では、 受信電力値と、 設定した閾値とをサブキヤ リア毎に比較して、 受信電力値が閾値以上か否かを判別する。 受信電力値が閾 値以上でない場合は (ステップ S 306 : NO) 、 干渉による分散の影響は少 ないものと判断して、 ステップ S 307において、 当該サブキャリアのシンポ ルの L LR値を算出する。
また、 受信電力値が閾値以上である場合は (ステップ S 306 : Y E S ) 、 干渉による分散の影響は大きいものと判断して、 ステップ S 308において、 当該サブキヤリァのシンボルの軟判定値を 「0」 にする。
また、 ステップ S 304において、 判別した変調方式が P SK系の場合は、 ステップ S 3 0 9において、 シンボル毎の I (干渉電力) + N (熱雑音電力) を算出する。
この場合、 各セルの干渉状態が既知であるものとすると、 各セル内ではパイ ロッ ト部分に干渉信号のない受信信号が存在し、 この受信信号の受信電力を算 出して、 この受信信号内の希望信号部分の受信電力を算出し、 受信信号電力か ら希望信号電力を減算することにより、 シンボル毎の I + Nを求めることが可 能である。
次いで、 ステップ S 3 1 0では、 ステップ S 3 0 9で算出したシンボル毎の I + Nに基づいて、 シンポル毎の L L R^fiSを算出する。
以上のように、 本実施の形態の受信装置 2 0 0内の干渉電力算出部 2 0 8及 びターポ復号化部 2 0 9による復号処理によれば、 Q AM系や P S K系などの 適応変調方式が用いられた場合において、 変調方式毎に干渉状態の場合分けを 行い、 各サブキャリアのシンボルに対する干渉の影響を判定して、 干渉の影響 が大きいシンボルの軟判定値は 0とする復号処理を実行したため、 各シンボル に対する干渉の影響を的確に判定でき、 軟判定復号時の誤り訂正能力を向上さ せることができる。
なお、 本実施の形態では、 図 1 4の送信装置 4 0 0を用いて、 受信装置 2 0 0において干渉位置の判定をブラインド判定によって行ったが、 図 7の送信装 置 1 0 0を用いて干渉位置を通知し、 干渉電力の大きさに基づいて L L R値の 算出を行ってもよい。
本発明は、 上述した実施の形態に限定されずに、 種々変更して実施すること ができる。
上述した実施の形態では、 本発明の〇 F DM受信装置及び方法を、 シングル アンテナの F H— O F D Mシステムに適用した場合について述べたが、 本発明 はこれに限らず、 例えば M I MO (Multiple-Input Multiple-Output) —O F D Mシステム等のマルチアンテナを用いた F H—〇 F DMシステムに適用し た場合も、 実施の形態と同様の効果を得ることができる。 また上述した実施の形態では、 互いに隣接するセル間でホッビングパターン の衝突が生じた場合でも、 実際に干渉シンボルとすべきシンボルを的確に判定 することで、 軟判定復号時の誤り訂正能力を向上させることができる装置及び 方法について説明したが、 互いに隣接するセクタ間でホッビングパターンの衝 突が生じた場合でも、 同様の構成で軟判定復号時の誤り訂正能力を向上させる ことができる。 因みに、 セクタ間でのホッピングパターンの衝突位置について は、 通信端末は、 例えば自セルの基地局から通知されるホッピングパターン情 報により容易に認識することができる。
要は、 自セクタのホッピングパターンと瞬接セクタのホッピングパターンと に基づいて、 干渉が生じるホッピング位置を決定する干渉位置決定手段と、 受 信した周波数ホッビング O F DM信号の各サブキヤリァからパイ口ット信号 を抽出する抽出手段と、 抽出手段によって抽出したパイロット信号系列と既知 のパイ口ット信号系列に基づいて希望信号の受信電力を測定する測定手段と、 干渉位置決定手段によって決定した干渉位置の信号の受信電力と測定手段に よって測定した希望信号の受信電力値とを、 サブキヤリァ毎に比較する比較手 段と、 比較結果に基づいて、 各サブキャリアのシンポ^^の受信電力をそのまま 用いるか又は 0にするかを選択してターボ復号する復号手段と、 を設けるよう にすればよい。
本発明の O F DM受信装置の一つの態様は、 隣接セルの基地局から送信され たホッピングパターン情報と自セルのホッピングパターンとに基づいて、 干渉 が生じるホッビング位置を決定する干渉位置決定手段と、 受信した周波数ホッ ビング O F D M信号の各サブキヤリァからパイ口ット信号を抽出する抽出手 段と、 前記抽出手段によって抽出したパイロット信号系列と既知のパイロット 信号系列に基づいて希望信号の受信電力を測定する測定手段と、 前記干渉位置 決定手段によつて決定した干渉位置の信号の受信電力と前記測定手段によつ て測定した希望信号の受信電力値とを、 サブキヤリァ毎に比較する比較手段と、 前記比較結果に基づいて、 各サブキヤリアのシンボルを復号する復号手段と、 を具備する構成を採る。
本発明の O F DM受信装置の一つの態様は、 自セクタのホッビングパターン と隣接セクタのホッピングパターンとに基づいて、 干渉が生じるホッピング位 置を決定する干渉位置決定手段と、 前記周波数ホッビング O F DM信号の各サ ブキャリアからパイロット信号を抽出する抽出手段と、 前記抽出手段によって 抽出したパイ口ット信号系列と既知のパイ口ット信号系列に基づいて希望信 号の受信電力を測定する測定手段と、干渉位置決定手段によつて決定した干渉 位置の信号の受信電力と測定手段によって測定した希望信号の受信電力値と を、 サブキヤリァ毎に比較する比較手段と、 比較結果に基づいて、 各サブキヤ リアのシンボルを復号する復号手段と、 を具備する構成を採る。
これらの構成によれば、 周波数ホッビング方式の各シンポルに対する干渉の 影響を的確に判定することができ、 軟判定復号時の誤り訂正能力を向上させる ことができる。
本発明の O F DM受信装置の一つの態様は、 前記抽出手段は、 前記複数のセ ルのうち既知の干渉セルから送信された前記周波数ホッビング O F D M信号 の各サブキヤリァのパイ口ット信号から干渉を受けていないシンボルを抽出 し、 前記比較手段は、 前記抽出手段によって抽出したシンポルの平均電力を算 出し、 この算出したシンポルの平均電力に基づいて、 希望信号に対する干渉信 号の影響を判定する閾値を設定し、 前記算出したデータ信号の平均電力と前記 設定した閾値とを、 サブキャリア毎に比較する構成を採る。
本発明の O F DM信号受信装置の一つの態様は、 複数のセルから送信された 周波数ホッビング O F DM信号を受信する O F DM受信装置において、 前記周 波数ホッピング O F D M信号の各サブキヤリァからパイ口ット信号を抽出す る抽出手段と、 前記抽出手段によって抽出したパイ口ット信号系列と既知のパ イロット信号系列とに基づいて希望信号の受信電力を測定する測定手段と、 前 記周波数ホッビング O F DM信号の変調方式を判別する判別手段と、 前記判別 手段によつて判別した変調方式が Q AM方式の場合は、 前記測定手段によって 測定した希望信号の受信電力に基づいて、 希望信号に対する干渉信号の影響を 判定する閾値を設定する設定手段と、 前記判別手段によつて判別した変調方式 が Q AM方式の場合は、 受信電力値と前記設定手段によつて設定した閾値とを サブキヤリァ毎に比較する比較手段と、 前記判別手段によって判別した変調方 式が P S K方式の場合は、 前記測定手段によつて測定した希望信号の受信電力 に基づいて、 シンボル毎の干渉電力を算出する算出手段と、 前記判別手段によ つて判別した変調方式が Q AM方式の場合は、 前記比較結果に基づいて前記各 サブキヤリァのシンボルの受信電力をそのまま用いるか又は 0にするかを選 択してターボ復号し、 前記判別手段によって判別した変調方式が P S K方式の 場合は、 前記算出手段によって算出した干渉電力に基づいて、 前記各サブキヤ リアのシンボルをターボ復号する復号手段と、 を具備する構成を採る。
この構成によれば、適応変調方式毎に干渉状態を考慮して各シンボルに対す る干渉の影響を的確に判定することができ、 軟判定復号時の誤り訂正能力を向 上させることができる。
以上説明したように本発明によれば、 干渉シンポルとして扱うべきシンボル を的確に検出することができるようになるので、 軟判定復号時の誤り訂正能力 を向上させることができる O F DM信号受信装置及び方法を実現できる。 本明細書は、 2 0 0 3年 3月 1 4日出願の特願 2 0 0 3— 7 1 0 1 6に基づ く。 その内容はすべてここに含めておく。 産業上の利用可能性
本発明は、 例えば携帯電話機等の携帯情報端末やその基地局等に適用して好 適なものである。

Claims

請求の範囲
1 . 隣接セルの基地局から送信されたホッピングパターン情報と自セルのホッ ビングパターンとに基づいて、 干渉が生じるホッピング位置を決定する干渉位 置決定手段と、
受信した周波数ホッピング O F DM信号の各サブキャリアからパイロット 信号を抽出する抽出手段と、
前記抽出手段によって抽出したパイ口ット信号系列と既知のパイロット信 号系列に基づいて希望信号の受信電力を測定する測定手段と、
前記干渉位置決定手段によつて決定した干渉位置の信号の受信電力と前記 測定手段によって測定した希望信号の受信電力 とを、 サブキャリア毎に比較 する比較手段と、
前記比較結果に基づいて、 前記各サブキヤリァのシンボルの受信電力をその まま用いるか又は 0にするかを選択してターポ復号する復号手段と、
を具備する O F DM受信装置。
2 , 自セクタのホッピングパターンと隣接セクタのホッピングパターンとに基 づいて、 干渉が生じるホッビング位置を決定する干渉位置決定手段と、 受信した周波数ホッビング O F DM信号の各サブキヤリァからパイロット 信号を抽出する抽出手段と >
前記抽出手段によって抽出したパイロット信号系列と既知のパイロット信 号系列に基づいて希望信号の受信電力を測定する測定手段と、
前記干渉位置決定手段によつて決定した干渉位置の信号の受信電力と前記 測定手段によって測定した希望信号の受信電力値とを、 サブキヤリァ毎に比較 する比較手段と、
前記比較結果に基づいて、 前記各サブキヤリァのシンボルの受信電力をその まま用いるか又は 0にするかを選択してターボ復号する復号手段と、
を具備する O F D M受信装置。
3 . 前記比較手段は、 前記測定手段によって測定した希望信号の受信電力に基 づいて、 希望信号に対する干渉信号の影響を判定する閾値を設定し、 前記測定 手段によって測定した希望信号の受信電力値と前記設定した閾値とをサブキ ャリァ毎に比較する
請求項 1又は請求項 2に記載の◦ F DM受信装置。
4 . 前記抽出手段は、 前記複数の隣接セルの基地局から送信された周波数ホッ ビング O F D M信号の各サブキヤリァのパイ口ット信号から互いの干渉を受 けていないシンボルを抽出し、
前記比較手段は、 前記抽出手段によって抽出したシンボルの平均電力を算出 し、 この算出したシンボルの平均電力に基づいて、 希望信号に対する干渉信号 の影響を判定する閾値を設定し、 前記算出したデータ信号の平均電力と前記設 定した閾ィ直とをサブキヤリァ毎に比較する
請求項 1に記載の O F DM受信装置。
5 . 前記抽出手段は、 前記隣接セクタの基地局から送信された周波数ホッピン グ O F DM信号の各サブキヤリァのパイ口ット信号から互いの干渉を受けて いないシンポルを抽出し、
前記比較手段は、 前記抽出手段によって抽出したシンボルの平均電力を算出 し、 この算出したシンボルの平均電力に基づいて、 希望信号に対する干渉信号 の影響を判定する閾値を設定し、 前記算出したデータ信号の平均電力と前記設 定した閾値とをサブキャリア毎に比較する
請求項 2に記載の O F DM受信装置。
6 . 受信した周波数ホッビング O F DM信号の変調方式を判別する判別手段と、 前記判別手段によつて判別した変調方式が Q AM方式の場合は、 前記測定手 段によって測定した希望信号の受信電力に基づいて、 希望信号に対する干渉信 号の影響を判定する閾値を設定する設定手段と、
前記判別手段によつて判別した変調方式が Q AM方式の場合は、 受信電力値 と、 前記設定手段によって設定した閾値とを、 サブキャリア毎に比較する比較 手段と、 前記判別手段によって判別した変調方式が P S K方式の場合は、 前記測定手 段によって測定した希望信号の受信電力に基づいて、 シンポル毎の干渉電力を 算出する算出手段と、 をさらに具備し、
前記復号手段は、 前記判別手段によつて判別した変調方式が Q AM方式の場 合は、 前記比較結果に基づいて前記各サブキヤリァのシンボルの受信電力をそ のまま用いるか又は 0にするかを選択してターボ復号し、 前記判別手段によつ て判別した変調方式が P S K方式の場合は、 前記算出手段によって算出した干 渉電力に基づいて、 前記各サブキヤリァのシンボルをターボ復号する
請求項 1又は請求項 2に記載の O F DM受信装置。
7 . 隣接セル又は隣接セクタのホッピングパターン情報と自セル又は自セクタ のホッビングパターンとに基づいて、干渉が生じるホッビング位置を決定する 干渉位置決定ステップと、
受信した周波数ホッビング O F DM信号の各サブキヤリァからパイロット 信号を抽出する抽出ステップと、
前記抽出ステップによって抽出したパイロット信号系列と既知のパイロッ ト信号系列に基づ ヽて希望信号の受信電力を測定する測定ステツプと、 前記干渉位置決定ステップで決定した干渉位置の信号の受信電力と前記測 定ステップで測定した希望信号の受信電力値とを、 サブキヤリァ毎に比較する 比較ステップと、
前記比較結果に基づいて、 前記各サブキヤリァのシンポルの受信電力をその まま用いるか又は 0にするかを選択してターボ復号する復号ステップと、 を含む O F DM受信方法。
PCT/JP2004/003437 2003-03-14 2004-03-15 Ofdm受信装置及びofdm受信方法 WO2004082182A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04720758A EP1594240A1 (en) 2003-03-14 2004-03-15 Apparatus and method for ofdm reception
JP2005503623A JPWO2004082182A1 (ja) 2003-03-14 2004-03-15 Ofdm受信装置及びofdm受信方法
US10/548,809 US20060172716A1 (en) 2003-03-14 2004-03-15 Ofdm reception device and ofdm reception method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-071016 2003-03-14
JP2003071016 2003-03-14

Publications (1)

Publication Number Publication Date
WO2004082182A1 true WO2004082182A1 (ja) 2004-09-23

Family

ID=32984675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003437 WO2004082182A1 (ja) 2003-03-14 2004-03-15 Ofdm受信装置及びofdm受信方法

Country Status (5)

Country Link
US (1) US20060172716A1 (ja)
EP (1) EP1594240A1 (ja)
JP (1) JPWO2004082182A1 (ja)
CN (1) CN1762118A (ja)
WO (1) WO2004082182A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006116A (ja) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd 受信装置および受信方法
JP2006165697A (ja) * 2004-12-02 2006-06-22 Toshiba Corp 無線通信システムおよび受信装置
WO2006106619A1 (ja) * 2005-04-01 2006-10-12 Ntt Docomo, Inc. 送信装置、送信方法、受信装置及び受信方法
US20070002959A1 (en) * 2005-06-29 2007-01-04 Samsung Electronics Co., Ltd. Apparatus and method for detecting user in a communication system
WO2007052767A1 (ja) * 2005-11-04 2007-05-10 Matsushita Electric Industrial Co., Ltd. 無線送信装置および無線送信方法
JP2008061149A (ja) * 2006-09-04 2008-03-13 Nippon Telegr & Teleph Corp <Ntt> 光通信システム
JP2008131363A (ja) * 2006-11-21 2008-06-05 Denso Corp 受信方式,受信装置,プログラム
WO2009028604A1 (ja) 2007-08-29 2009-03-05 Kyocera Corporation 無線通信装置および無線受信方法
WO2009028603A1 (ja) 2007-08-29 2009-03-05 Kyocera Corporation 無線通信装置および無線受信方法
JP2009284313A (ja) * 2008-05-23 2009-12-03 Sharp Corp 無線通信システム、通信装置、無線通信方法、及び無線通信プログラム
JP2010226382A (ja) * 2009-03-23 2010-10-07 Kddi Corp 復号化装置及び復号化方法
JP2011504070A (ja) * 2007-11-20 2011-01-27 インターデイジタル パテント ホールディングス インコーポレイテッド ハンドオーバ中のシーケンスホッピングパターン変更に関するシグナリングおよび手順の方法および装置
JP2011109278A (ja) * 2009-11-13 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> 受信装置及び受信方法
JP2012054938A (ja) * 2007-02-05 2012-03-15 Nec Corp セルラ通信システム
US8325862B2 (en) 2007-10-23 2012-12-04 Kyocera Corporation Wireless communication apparatus and wireless reception method
JP2013145966A (ja) * 2012-01-13 2013-07-25 Nippon Hoso Kyokai <Nhk> 受信装置及びプログラム
JP2013145969A (ja) * 2012-01-13 2013-07-25 Nippon Hoso Kyokai <Nhk> 受信装置及びプログラム
US8516328B2 (en) 2008-07-22 2013-08-20 Nippon Telegraph And Telephone Corporation Reception method and reception device
JP2015201875A (ja) * 2011-07-18 2015-11-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated 半二重動作を可能にすること

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643740B1 (ko) * 2004-04-09 2006-11-10 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서기지국 구분을 위한 파일럿 코드 패턴 송수신 장치 및 방법
EP1803269A1 (en) * 2004-10-15 2007-07-04 Telefonaktiebolaget L M Ericsson (Publ) Method and system of radio communicationswith various resolution levels of signal modulation depending on propagation conditions
KR100872043B1 (ko) * 2005-12-29 2008-12-05 삼성전자주식회사 광대역 무선접속 통신시스템에서 파일럿 패턴 결정 장치 및방법
CN1866800B (zh) * 2006-03-22 2010-04-14 华为技术有限公司 对发射机的指标进行测试的方法和测试系统
WO2008051018A1 (en) * 2006-10-25 2008-05-02 Samsung Electronics Co., Ltd. Method and apparatus for cdma control segment hopping in a mobile communication system
KR100850821B1 (ko) * 2006-10-25 2008-08-06 엘지전자 주식회사 다중 접속을 지원하는 디지털 데이터 송수신 방법 및 장치
KR100932456B1 (ko) * 2006-12-05 2009-12-16 한국전자통신연구원 직교주파수분할다중접속 시스템의 셀간 간섭 완화 장치 및방법
WO2008069505A1 (en) * 2006-12-05 2008-06-12 Electronics And Telecommunications Research Institute Intercell interference mitigation apparatus and method
US7899399B2 (en) * 2006-12-30 2011-03-01 Broadcom Corporation Frequency division multiple access communications within a device
US9215669B2 (en) * 2007-11-16 2015-12-15 Qualcomm Incorporated Preamble design for a wireless signal
US8918112B2 (en) 2007-11-16 2014-12-23 Qualcomm Incorporated Preamble design for a wireless signal
US20090129333A1 (en) * 2007-11-16 2009-05-21 Qualcomm Incorporated Preamble design for a wireless signal
US9264976B2 (en) * 2007-11-16 2016-02-16 Qualcomm Incorporated Preamble design for a wireless signal
US7558054B1 (en) * 2008-01-03 2009-07-07 Apple Inc. Display window securing system
US9801188B2 (en) * 2008-02-01 2017-10-24 Qualcomm Incorporated Backhaul signaling for interference avoidance
US20110255467A1 (en) * 2008-02-07 2011-10-20 Peter Larsson Method and system of radio communications with various resolution levels of signal modulation depending on propagation conditions
US8768372B2 (en) * 2008-02-13 2014-07-01 Qualcomm Incorporated Sector interference management based on inter-sector performance
US8379706B2 (en) * 2009-07-28 2013-02-19 Qualcomm Incorporated Signal and noise power estimation
JP5992916B2 (ja) * 2012-03-13 2016-09-14 パナソニック株式会社 無線通信装置
US10219090B2 (en) * 2013-02-27 2019-02-26 Analog Devices Global Method and detector of loudspeaker diaphragm excursion
US9215017B2 (en) * 2013-06-18 2015-12-15 Samsung Electronics Co., Ltd. Computing system with decoding sequence mechanism and method of operation thereof
KR102136288B1 (ko) * 2013-07-17 2020-07-22 삼성전자주식회사 무선 통신 시스템에서 채널 추정 방법 및 그 장치
US9980068B2 (en) 2013-11-06 2018-05-22 Analog Devices Global Method of estimating diaphragm excursion of a loudspeaker
US9548836B2 (en) * 2013-11-26 2017-01-17 Broadcom Corporation Upstream burst noise detection
US9813812B2 (en) 2014-12-12 2017-11-07 Analog Devices Global Method of controlling diaphragm excursion of electrodynamic loudspeakers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343066A (ja) * 1993-06-01 1994-12-13 Nippon Telegr & Teleph Corp <Ntt> スペクトラム拡散無線通信方式
JPH0964884A (ja) * 1995-08-24 1997-03-07 Toshiba Corp 通信システム及びこれに用いる送信機、受信機
JPH11355240A (ja) * 1998-06-04 1999-12-24 Nippon Hoso Kyokai <Nhk> Ofdm受信装置
WO2001073999A1 (en) * 2000-03-24 2001-10-04 Atheros Communications, Inc. Decoding system and method for digital communications
JP2001358695A (ja) * 2000-04-18 2001-12-26 Lucent Technol Inc 直交周波数分割多重ベースのスペクトル拡散多重アクセスシステムにおけるパイロット使用
JP2001358694A (ja) * 2000-04-18 2001-12-26 Lucent Technol Inc 直交周波数分割多重(ofdm)方式に基づくスペクトラム拡散多元接続ワイヤレスシステムにおける移動ユーザユニットで用いられる装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647833B4 (de) * 1996-11-19 2005-07-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur gleichzeitigen Funkübertragung digitaler Daten zwischen mehreren Teilnehmerstationen und einer Basisstation
US6507619B1 (en) * 2000-03-24 2003-01-14 Atheros Communications, Inc. Decoding system and method for digital communications
US7154936B2 (en) * 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
US7042858B1 (en) * 2002-03-22 2006-05-09 Jianglei Ma Soft handoff for OFDM
US8218609B2 (en) * 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343066A (ja) * 1993-06-01 1994-12-13 Nippon Telegr & Teleph Corp <Ntt> スペクトラム拡散無線通信方式
JPH0964884A (ja) * 1995-08-24 1997-03-07 Toshiba Corp 通信システム及びこれに用いる送信機、受信機
JPH11355240A (ja) * 1998-06-04 1999-12-24 Nippon Hoso Kyokai <Nhk> Ofdm受信装置
WO2001073999A1 (en) * 2000-03-24 2001-10-04 Atheros Communications, Inc. Decoding system and method for digital communications
JP2001358695A (ja) * 2000-04-18 2001-12-26 Lucent Technol Inc 直交周波数分割多重ベースのスペクトル拡散多重アクセスシステムにおけるパイロット使用
JP2001358694A (ja) * 2000-04-18 2001-12-26 Lucent Technol Inc 直交周波数分割多重(ofdm)方式に基づくスペクトラム拡散多元接続ワイヤレスシステムにおける移動ユーザユニットで用いられる装置

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006116A (ja) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd 受信装置および受信方法
JP2006165697A (ja) * 2004-12-02 2006-06-22 Toshiba Corp 無線通信システムおよび受信装置
WO2006106619A1 (ja) * 2005-04-01 2006-10-12 Ntt Docomo, Inc. 送信装置、送信方法、受信装置及び受信方法
US8477706B2 (en) 2005-04-01 2013-07-02 Ntt Docomo, Inc. Transmission apparatus, transmission method, reception apparatus and reception method
US7881410B2 (en) * 2005-06-29 2011-02-01 Samsung Electronics Co., Ltd. Apparatus and method for detecting user in a communication system
US20070002959A1 (en) * 2005-06-29 2007-01-04 Samsung Electronics Co., Ltd. Apparatus and method for detecting user in a communication system
WO2007052767A1 (ja) * 2005-11-04 2007-05-10 Matsushita Electric Industrial Co., Ltd. 無線送信装置および無線送信方法
JP2008061149A (ja) * 2006-09-04 2008-03-13 Nippon Telegr & Teleph Corp <Ntt> 光通信システム
JP4641013B2 (ja) * 2006-09-04 2011-03-02 日本電信電話株式会社 光通信システム
JP2008131363A (ja) * 2006-11-21 2008-06-05 Denso Corp 受信方式,受信装置,プログラム
US8891587B2 (en) 2007-02-05 2014-11-18 Nec Corporation Frequency hopping
US8774250B2 (en) 2007-02-05 2014-07-08 Nec Corporation Frequency hopping
US10833726B2 (en) 2007-02-05 2020-11-10 Nec Corporation Frequency hopping
US10554250B2 (en) 2007-02-05 2020-02-04 Nec Corporation Frequency hopping
US10530419B2 (en) 2007-02-05 2020-01-07 Nec Corporation Frequency hopping
JP2012054938A (ja) * 2007-02-05 2012-03-15 Nec Corp セルラ通信システム
JP2012095346A (ja) * 2007-02-05 2012-05-17 Nec Corp Eutraアップリンクのための周波数ホッピング技法
JP2012124908A (ja) * 2007-02-05 2012-06-28 Nec Corp Eutraアップリンクのための周波数ホッピング技法
JP2012124909A (ja) * 2007-02-05 2012-06-28 Nec Corp Eutraアップリンクのための周波数ホッピング技法
US10886967B2 (en) 2007-02-05 2021-01-05 Nec Corporation Frequency hopping
US10027373B2 (en) 2007-02-05 2018-07-17 Nec Corporation Frequency hopping
US11863228B2 (en) 2007-02-05 2024-01-02 Nec Corporation Frequency hopping
US11374617B2 (en) 2007-02-05 2022-06-28 Nec Corporation Frequency hopping
US9584270B2 (en) 2007-02-05 2017-02-28 Nec Corporation Frequency hopping
US9584269B2 (en) 2007-02-05 2017-02-28 Nec Corporation Frequency hopping
US11251831B2 (en) 2007-02-05 2022-02-15 Nec Corporation Frequency hopping
US8982925B2 (en) 2007-02-05 2015-03-17 Nec Corporation Frequency hopping
US10855330B2 (en) 2007-02-05 2020-12-01 Nec Corporation Frequency hopping
US8971377B2 (en) 2007-02-05 2015-03-03 Nec Corporation Frequency hopping
US8503589B2 (en) 2007-08-29 2013-08-06 Kyocera Corporation Wireless communication apparatus and wireless reception method
WO2009028604A1 (ja) 2007-08-29 2009-03-05 Kyocera Corporation 無線通信装置および無線受信方法
WO2009028603A1 (ja) 2007-08-29 2009-03-05 Kyocera Corporation 無線通信装置および無線受信方法
US8325862B2 (en) 2007-10-23 2012-12-04 Kyocera Corporation Wireless communication apparatus and wireless reception method
JP2011504070A (ja) * 2007-11-20 2011-01-27 インターデイジタル パテント ホールディングス インコーポレイテッド ハンドオーバ中のシーケンスホッピングパターン変更に関するシグナリングおよび手順の方法および装置
JP2009284313A (ja) * 2008-05-23 2009-12-03 Sharp Corp 無線通信システム、通信装置、無線通信方法、及び無線通信プログラム
JP5558355B2 (ja) * 2008-07-22 2014-07-23 日本電信電話株式会社 受信方法、及び、受信装置
US8516328B2 (en) 2008-07-22 2013-08-20 Nippon Telegraph And Telephone Corporation Reception method and reception device
JP2010226382A (ja) * 2009-03-23 2010-10-07 Kddi Corp 復号化装置及び復号化方法
JP2011109278A (ja) * 2009-11-13 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> 受信装置及び受信方法
US9749121B2 (en) 2011-07-18 2017-08-29 Qualcomm Incorporated Enabling half-duplex operation
US10298378B2 (en) 2011-07-18 2019-05-21 Qualcomm Incorporated Enabling half-duplex operation
JP2015201875A (ja) * 2011-07-18 2015-11-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated 半二重動作を可能にすること
JP2013145969A (ja) * 2012-01-13 2013-07-25 Nippon Hoso Kyokai <Nhk> 受信装置及びプログラム
JP2013145966A (ja) * 2012-01-13 2013-07-25 Nippon Hoso Kyokai <Nhk> 受信装置及びプログラム

Also Published As

Publication number Publication date
US20060172716A1 (en) 2006-08-03
CN1762118A (zh) 2006-04-19
JPWO2004082182A1 (ja) 2006-06-15
EP1594240A1 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
WO2004082182A1 (ja) Ofdm受信装置及びofdm受信方法
JP5307070B2 (ja) 無線通信システムのためのデータ検出および復調
US9473268B2 (en) Transmitting apparatus, receiving apparatus, transmission method, and reception method
US8170513B2 (en) Data detection and demodulation for wireless communication systems
EP1793507B1 (en) Method and apparatus for cancelling neighbor cell interference signals in an orthogonal frequency division multiple access system
RU2536371C2 (ru) Определение качества беспроводного канала связи на основе принятых данных
EP1598971A1 (en) Apparatus and method for ofdm reception
US6879626B1 (en) Transmission/reception apparatus and modulation system estimation method
US7453959B2 (en) Apparatus and method for erasure detection and soft-decision decoding in cellular system receiver
JP2012142932A (ja) 狭帯域干渉を受けるofdm信号を復号する方法
Epple et al. Adaptive threshold optimization for a blanking nonlinearity in OFDM receivers
US9628303B2 (en) Receiver apparatus and frequency selectivity interference correction method
Bronk et al. Simulation and measurement studies of the VDES system’s terrestrial component
KR20070064933A (ko) 직교 주파수 다중 접속 시스템에서 인접 셀 간섭신호 제거방법 및 장치
JP6411966B2 (ja) 受信装置及び干渉推定方法
KR102217030B1 (ko) 무선 통신 시스템에서 신호 송수신을 위한 변조/복조 장치 및 방법
KR100975742B1 (ko) 무선 통신 시스템에서 간섭 제거 장치 및 방법
JP2007158805A (ja) Ofdm送信装置および方法、ofdm受信装置および方法、並びに、通信プログラム
US9166841B2 (en) Receiving apparatus and receiving method
WO2008000187A1 (fr) Procédé, dispositif et système pour la détection d&#39;une interférence dans un système mrof
JP2006191701A (ja) 送信装置及び送信方法
Ohtsuki Superposed Multicarrier Transmission
JP2006074081A (ja) Ofdm通信装置
JP2008219118A (ja) Ofdm通信システム、ofdm信号送信装置およびofdm信号受信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005503623

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004720758

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006172716

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10548809

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048069726

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004720758

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10548809

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004720758

Country of ref document: EP