WO2004079323A1 - 液晶素子評価方法および評価装置 - Google Patents

液晶素子評価方法および評価装置 Download PDF

Info

Publication number
WO2004079323A1
WO2004079323A1 PCT/JP1997/001651 JP9701651W WO2004079323A1 WO 2004079323 A1 WO2004079323 A1 WO 2004079323A1 JP 9701651 W JP9701651 W JP 9701651W WO 2004079323 A1 WO2004079323 A1 WO 2004079323A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
liquid crystal
light
time
change
Prior art date
Application number
PCT/JP1997/001651
Other languages
English (en)
French (fr)
Inventor
Taeko Urano
Shigeru Machida
Kenji Sano
Original Assignee
Taeko Urano
Shigeru Machida
Kenji Sano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taeko Urano, Shigeru Machida, Kenji Sano filed Critical Taeko Urano
Priority to US08/981,832 priority Critical patent/US6054870A/en
Publication of WO2004079323A1 publication Critical patent/WO2004079323A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Definitions

  • the present invention relates to a method and an apparatus for evaluating a liquid crystal element, and particularly to a method and an apparatus for detecting impurities mixed in a liquid crystal element.
  • an electric field responsive impurity is a chemical species that has the ability to move in a device or move an electric charge when an electric field is applied.
  • the field-responsive impurities include protons, organic ions, inorganic ions, compounds having hydrogen bonding ability, compounds having electron transfer ability, compounds having a large dipole moment, and large polarizabilities. And the like.
  • An object of the present invention is to provide a liquid crystal element evaluation method capable of easily and highly sensitively identifying an electric field responsive impurity contained in a liquid crystal element, and an apparatus for realizing the evaluation method.
  • the method for evaluating a liquid crystal element includes the steps of continuously applying an action electric field to a liquid crystal element having a liquid crystal layer between a pair of electrodes, and removing the action electric field, and then applying an alternating current to the liquid crystal element over time.
  • an action electric field By irradiating light in a specific wavelength range while applying a pulsed electric field and measuring the time-resolved light that has passed through the liquid crystal layer, the change in light intensity over time within one cycle of the AC pulsed electric field can be measured.
  • the liquid crystal device evaluation apparatus of the present invention includes a means for applying an action electric field to a liquid crystal element having a liquid crystal layer between a pair of electrodes, a means for applying an AC pulse electric field to the liquid crystal element, and an AC pulse after removing the action electric field.
  • Means for controlling the application of an electric field a light source for irradiating the liquid crystal layer with light, spectral means for extracting light in a specific wavelength range from the light emitted from the light source, and spectral means for irradiating light from the light source.
  • the light in a specific wavelength range that has passed through the liquid crystal layer is converted to an electric signal by light detection means, and the electric signal converted by the light detection means is time-resolved and integrated to increase the light intensity.
  • FIG. 1 is a block diagram showing an example of the liquid crystal device evaluation apparatus of the present invention.
  • 2A and 2B are characteristic diagrams showing an AC pulse electric field applied by the method of the present invention and a measured electric field response curve.
  • FIG. 3 is a characteristic diagram showing the change with time in the amount of change in transmitted light intensity obtained from the electric field response curve of the liquid crystal cell measured by the method of the present invention.
  • the detection sensitivity is not significantly improved when the electric field responsive impurities are uniformly present in the liquid crystal and the amount of impurities near the electrodes is small. Therefore, in the present invention, an action electric field is applied to the liquid crystal element in advance before measuring the electric field response curve.
  • the electric field responsive impurity in the liquid crystal is moved to the vicinity of one of the electrodes. After removing the working electric field, the electric field responsive impurity gradually diffuses, so the electric field response curve changes with time. Therefore, by examining the change with time from the time when the action electric field is removed for a specific amount of change in the electric field response curve, electric field responsive impurities can be detected with high sensitivity.
  • an action electric field specifically, a DC electric field is continuously applied to a liquid crystal element having a liquid crystal layer between a pair of electrodes.
  • a DC electric field is used because it is most preferable to move electric field responsive impurities to the vicinity of one electrode.
  • the electric field responsive impurity mixed in the liquid crystal is moved to the vicinity of one electrode.
  • the DC electric field applied in this step is sufficient if the electric field responsive impurity can be moved, and the application time is preferably 60 minutes or less. If the application time is long, the whole measurement time is long, and the liquid crystal is affected and becomes an impurity, which is not preferable. However, when the amount of the electric field responsive impurity is small, it is preferable to make the application time as long as possible within the range of 60 minutes or less from the viewpoint of increasing the measurement sensitivity. Note that the applied voltage does not need to be constant.
  • the electric field response curve is measured at predetermined time intervals or continuously. Specifically, in a state where an AC pulse electric field is applied to the liquid crystal element and the liquid crystal molecules are aligned, the liquid crystal element is irradiated with light in a specific wavelength range that is absorbed by the liquid crystal molecules, and the light passes through the liquid crystal layer. Detects the intensity of light in the wavelength range and responds to this light intensity.
  • the electric field response curve within one cycle of the AC pulse electric field of light intensity is obtained by time-resolving and integrating the electric signals.
  • the degree of light absorption by the liquid crystal molecules depends on the alignment state of the liquid crystal molecules.
  • the electric field response curve obtained from the measurement of the light intensity transmitted through the liquid crystal layer corresponds to the change over time in the alignment state of the liquid crystal molecules. It is.
  • the magnitude of the electric field that is effectively applied to the liquid crystal molecules according to the polarity of the electric field of the AC pulse electric field. Is reduced or increased, so that the alignment state of the liquid crystal molecules also changes.
  • the slope of the electric field response curve of the liquid crystal element with the electric field responsive impurity is different before and after the polarity reversal of the AC pulse electric field compared to the liquid crystal element without the impurity. .
  • the manner in which the slope of the electric field response curve changes depends on the type and amount of impurities.
  • infrared light is particularly preferable from the viewpoint of the measurement sensitivity of the electric field response curve.
  • a wavelength range of light a wavelength range including an infrared absorption band (for example, 222 5 cm “ 1 " in the latter case) attributed to CH stretching vibration and CN stretching vibration of liquid crystal molecules is selected.
  • Such light in a specific wavelength range can be extracted by dispersing the light emitted from the light source using an arbitrary spectroscopic means, in which case the liquid crystal element emits light in an extra wavelength range other than the specific wavelength range.
  • the temperature of the liquid crystal element can be suppressed from rising because the light is not irradiated
  • the light to be detected may be light transmitted through the liquid crystal element or light reflected from the liquid crystal element.
  • the waveform of the AC pulse electric field used in this step is not particularly limited, A rectangular wave, a triangular wave, a sine wave, or a composite wave thereof can be used.
  • the manner of changing the slope of the electric field response curve described above also depends on the pulse width of the applied AC pulse electric field, and the manner of changing depending on the pulse width is peculiar to each impurity. Therefore, by observing the electric field response curve while changing the pulse width of the AC pulse electric field, useful information for identifying impurities mixed in the liquid crystal layer can be obtained.
  • the electric field response curve is measured over time as described above, and the point in time when the DC electric field is removed for a specific change amount in the electric field response curve from the measurement result. From time to time.
  • the specific amount of change in the electric field response curve is not particularly limited as long as it is a change amount based on a certain standard.
  • the electric field obtained by a liquid crystal element having a slope or a function form or an impurity without impurities is included.
  • the magnitude of the difference from the response curve As described above, after removing the DC electric field, the electric-field-responsive impurities concentrated near the electrodes gradually diffuse, and the time-dependent change from the time when the DC electric field was removed was examined.
  • the specific change in is gradually attenuated. Therefore, it is possible to detect with high sensitivity that an electric field responsive impurity is mixed in the liquid crystal layer by attenuating the temporal change of the specific change amount in the electric field response curve. Also, Since this attenuation depends on how impurities are diffused, it is possible to obtain useful information for identifying the type of impurities.
  • the evaluation device of the present invention includes a means for applying a DC electric field to a liquid crystal element, a means for applying an AC pulsed electric field to a liquid crystal element, a light source, a spectroscopic means, and a specific wavelength that has passed through the liquid crystal layer.
  • Light detection means for converting the light in the region into an electric signal, and the time-resolved integration of the electric signal converted by the light detection means within one cycle of the AC pulse electric field
  • the means for applying a DC electric field and the means for applying an AC pulse electric field can be realized by using the same device and controlling this device.
  • an infrared light source As described above, any spectroscope (dispersion element) such as a diffraction grating, a prism, and an interference filter is used. From the viewpoint of suppressing the temperature rise of the liquid crystal element, it is preferable to provide these dispersing means between the light source and the liquid crystal element and irradiate the liquid crystal element after separating the light from the light source. Further, it is preferable that a polarizer is provided between the spectral device and the liquid crystal element, and the liquid crystal element is irradiated with polarized light whose vibration direction corresponds to the major axis direction of the liquid crystal molecules at the time of alignment.
  • a polarizer is provided between the spectral device and the liquid crystal element, and the liquid crystal element is irradiated with polarized light whose vibration direction corresponds to the major axis direction of the liquid crystal molecules at the time of alignment.
  • the light detection means for example, among the infrared light detectors, a highly sensitive MCT (mercury, cadmium, tellurium) detector is used. It is preferable to use it.
  • the light to be measured is infrared light
  • the detected infrared light is weak, and thus the electric signal converted by the infrared light detector is generally amplified by an amplifier.
  • a Poxcar integrator or a digital sampling oscilloscope As a means for measuring the electric field response curve by time-resolving and integrating the electric signal converted by the light detecting means, for example, a Poxcar integrator or a digital sampling oscilloscope is used.
  • a computer is used as a means to calculate a specific change in the electric field response curve and to analyze this change as a function of the elapsed time since the DC electric field was removed.
  • a combined AC pulse electric field obtained by combining a plurality of pulse trains having different pulse widths by an AC pulse electric field applying means is applied to detect infrared light. It is also possible to convert the electric signal converted by the converter into a plurality of electric signals corresponding to the respective pulse trains constituting the combined AC pulse electric field.
  • a DC electric field is applied to the liquid crystal element 10 by a DC power supply 1
  • an AC pulse electric field is applied to the liquid crystal element 10 by a pulse generator (or a synthesizer) 2.
  • the infrared light from the infrared light source 3 is separated by the dispersive element 4 to extract the infrared light of a specific wavelength range, irradiate the liquid crystal cell 10 through the polarizer 5, and transmit through the liquid crystal cell 10.
  • the infrared light is detected by the MCT detector 6 and converted into an electric signal. This electric signal is amplified by amplifier 7.
  • the input signal is input to the digital sampling oscilloscope 8 and time-resolved to obtain an electric field response curve.
  • the computer 9 calculates a specific amount of change in the electric field response curve, and obtains a change with time from the time when the DC electric field is removed. Also, the entire evaluation device is controlled by the computer 9.
  • a DC electric field may be applied to the liquid crystal element 10 using the pulse generator 2.
  • the pulse generator 2 generates a combined AC pulse electric field by combining a plurality of pulse trains having different pulse widths, and converts the electric signal converted by the MCT detector 6 into a plurality of pulse trains corresponding to each pulse train constituting the combined AC pulse electric field. Control by computer 9 is also performed when decomposing into electrical signals.
  • charge-responsive impurities mixed into the liquid crystal element were evaluated as follows.
  • a glass substrate with an ITO (indium tin oxide) transparent electrode was used as the substrate, a liquid crystal alignment film made of polyimide was formed on the surface of the glass substrate, and a rubbing treatment was performed.
  • ITO indium tin oxide
  • a 10 m liquid crystal cell was produced.
  • a typical fluorine-based mixed liquid crystal ZLI-4792 (manufactured by Merck) was prepared. Ethanol as an electric field responsive impurity was mixed into the liquid crystal at the following ratio.
  • one electrode was grounded, the other electrode was set at ⁇ 10 V, a DC electric field was applied to the liquid crystal layer for 30 minutes, and then the DC electric field was removed. After removing the DC electric field, the electric field response curve of the liquid crystal was measured every 30 seconds as follows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

明細書
液晶素子評価方法および評価装置
技術の分野
本発明は液晶素子の評価方法および評価装置に関し、 特に 液晶素子中に混入した不純物を検出する方法および装置に関 する 0
背景技術
液晶素子では、 例えば液晶に電場に応答する不純物 (以下、 電場応答性不純物という) が混入すると、 応答速度、 コ ン ト ラス トなどの素子性能が低下し、 寿命も短縮するという問題 が生じる。 電場応答性不純物とは、 電場の印加に伴って素子 内を移動、 または電荷を移動させる能力を有する化学種のこ とである。 電場応答性不純物と しては、 プロ ト ン、 有機物ィ オン、 無機物イオ ン、 水素結合能を有する化合物、 電子移動 能を有する化合物、 大きな双極子モ一メ ン トを有する化合物、 大きな分極率を有する化合物などが挙げられる。 そこで、 素 子に混入する電場応答性不純物を検出、 同定、 定量して、 そ の混入を防ぐようにプロセスを改善することが不可欠である。 この際、 多く のプロセスのうちどのプロセスをどのように改 善すべきかを的確に判断するためには、 混入する不純物を同 定できることが重要になつてく る。
従来、 この不純物の評価には、 高温における液晶素子の電 圧保持率の測定が用いられてきた。 この方法では素子と して 構成された最終状態での評価が可能である。 しかし、 この方 法は、 時間および手間がかかる うえ、 不純物の原因物質ゃ不 純物が混入するプロセスを特定するこ とが困難である。
本発明は液晶素子に含まれる電場応答性不純物を簡便かつ 高感度に同定することができる液晶素子評価方法、 およびこ の評価方法を実現する装置を提供することを目的とする。
発明の開示
本発明の液晶素子評価方法は、 1対の電極間に液晶層を有 する液晶素子に作用電場を連続的に印加する工程と、 作用電 場を除去した後、 経時的に、 液晶素子に交流パルス電場を印 加しながら特定波長域の光を照射して液晶層を通過した光を 時間分解して測定するこ とによ り、 光強度の交流パルス電場 の一周期内での経時変化に相当する電場応答曲線を求めるェ 程とを有し、 電場応答曲線における特定の変化量について作 用電場を除去した時点からの経時変化に基づいて液晶素子中 に混入した不純物を検出する ものである。
本発明の液晶素子評価装置は、 1対の電極間に液晶層を有 する液晶素子に作用電場を印加する手段と 液晶素子に交流 パルス電場を印加する手段と、 作用電場を除去した後に交流 パルス電場を印加するよう制御する手段と、 液晶層に光を照 射するための光源と、 光源から照射された光から特定波長域 の光を取り出す分光手段と、 光源から照射され分光手段によ り取り出された後、 液晶層を通過した特定波長域の光を電気 信号に変換する光検出手段と、 光検出手段により変換された 電気信号を時間分解して積算するこ とによ り光強度の交流パ ルス電場の一周期内での経時変化に相当する電場応答曲線を 求める手段と、 電場応答曲線における特定の変化量を算出し、 この変化量を作用電場を除去した時点からの経過時間の関数 と して解析する手段とを具備したものである。
図面の簡単な説明
図 1 は本発明の液晶素子評価装置の一例を示すプロ ッ ク図 め 0
図 2 Aおよび Bは本発明の方法により印加される交流パル ス電場と測定された電場応答曲線を示す特性図である。
図 3は本発明の方法により測定される液晶セルの電場応答 曲線から求められた透過光強度の変化量の経時変化を示す特 性図である。
発明を実施するための最良の形態 最初に、 本発明の原理を簡単に説明する。
1対の電極間に液晶層を有する液晶素子に電場を印加する と、 液晶分子は電場の方向に配向する。 このとき液晶中に電 場応答性不純物が混入していると、 不純物が混入していない 場合と比較して、 液晶分子に印加される実効的な電場の大き さが変化するため、 液晶分子の配向運動も影響を受ける。 こ のため、 後述するように交流パルス電場を印加して液晶分子 の配向運動状態を示す電場応答曲線を測定すると、 液晶中に 電場応答性不純物が混入していない場合の電場応答曲線との 比較から電場応答性不純物を検出することができる。 ただし、 液晶中に電場応答性不純物が均一に存在し、 電極近傍におけ る不純物量が少ない場合には、 検出感度がそれほど向上しな いこ とがわかってきた。 そこで、 本発明においては電場応答 曲線の測定前に予め液晶素子に作用電場を印加する ことによ り、 液晶中の電場応答性不純物を一方の電極近傍に移動させ る。 また、 作用電場を除去した後には、 電場応答性不純物は 徐々に拡散するので、 電場応答曲線は経時的に変化する。 し たがつて、 電場応答曲線における特定の変化量について作用 電場を除去した時点からの経時変化を調べるこ とにより、 電 場応答性不純物を高感度に検出できる。
以下、 本発明の方法をより詳細に説明する。 まず、 1対の 電極間に液晶層を有する液晶素子に作用電場、 具体的には直 流電場を連続的に印加する。 直流電場を用いるのは、 電場応 答性不純物を一方の電極近傍に移動させるのに最も好ま しい からである。 この工程により、 液晶中に混入した電場応答性 不純物を一方の電極近傍に移動させる。 この工程で印加され る直流電場は電場応答性不純物を移動させることができれば 十分であり、 印加時間は 6 0分以下であることが好ま しい。 印加時間が長く なると測定全体の時間が長く なつてしまい、 また液晶が影響を受けィォン性の不純物となってしま うので 好ま しく ない。 ただし、 電場応答性不純物の量が少ない場合 には、 6 0分以下の範囲内でできるだけ印加時間を長く する 方が、 測定感度を上げる観点から好ま しい。 なお、 印加する 電圧は一定でなく てもよい。
次に、 直流電場を除去した後、 所定時間毎または連続的に 電場応答曲線を測定する。 具体的には、 液晶素子に交流パル ス電場を印加して液晶分子を配向させた状態で、 液晶分子に 吸収される特定波長域の光を液晶素子に照射し、 液晶層を通 過した特定波長域の光の強度を検出し、 この光強度に対応す る電気信号を時間分解し積算する こ とによ り、 光強度の交流 パルス電場の一周期内での電場応答曲線を求める。 このとき、 液晶分子による光の吸収度合は液晶分子の配向状態に依存す るので、 液晶層を通過した光強度の測定から求められる電場 応答曲線は液晶分子の配向状態の経時変化に対応するもので ある。 こ こで、 液晶層中に所定の極性を有する電場応答性不 純物が存在する場合には、 交流パルス電場の電場の極性に応 じて液晶分子に実効的に印加される電場の大きさが低減また は増大するため、 液晶分子の配向状態も変化する。 したがつ て、 電場応答性不純物が混入した液晶素子の電場応答曲線は、 不純物が混入していない液晶素子のものと比較する と、 交流 パルス電場の極性反転の前および後でそれぞれ傾きが異なる。 この電場応答曲線の傾きの変化の し方は、 不純物の種類や量 によっても異なる。
この工程で液晶素子に照射する光と しては、 電場応答曲線 の測定感度の観点から赤外光が特に好ま しい。 光の波長域と しては、 液晶分子の C H伸縮振動や C N伸縮振動に帰属さ れる赤外吸収帯 (例えば後者の場合 2 2 2 5 c m "1) を含む 波長域が選択される。 このよ う な特定波長域の光は、 光源か ら発する光を任意の分光手段で分光するこ とにより取り出す ことができる。 この場合、 液晶素子には特定波長域以外の余 分な波長域の光が照射されるこ とがないため、 液晶素子の温 度上昇を抑制することができる。 検出すべき光は、 液晶素子 を透過した光でも液晶素子から反射される光でもよい。
この工程で用いる交流パルス電場の波形は特に限定されず、 矩形波、 三角波、 正弦波やこれらの合成波などを用いるこ と ができる。 上述した電場応答曲線の傾きの変化のし方は、 印 加される交流パルス電場のパルス幅によっても異なり、 しか もパルス幅に依存する変化のし方は個々の不純物で特有であ る。 したがって、 交流パルス電場のパルス幅を変化させて電 場応答曲線を観測するこ とによ り、 液晶層中に混入した不純 物を特定するのに有用な情報が得られる。 また、 パルス幅の 異なる複数のパルス列を合成した合成交流パルス電場を印加 し、 この合成交流パルス電場を構成する各パルス列に対応す る電場応答曲線を観測すれば、 液晶素子中に混入した複数の 不純物に対応するこ ともできる。
さ らに、 本発明においては、 直流電場を除去した後に上述 したように電場応答曲線を経時的に測定し、 その測定結果か ら電場応答曲線における特定の変化量について直流電場を除 去した時点からの経時変化を求める。 こ こで、 電場応答曲線 における特定の変化量は 一定の基準による変化量であれば 特に限定されず、 例えば曲線の傾きも しく は関数形、 または 不純物が混入していない液晶素子で得られる電場応答曲線と の差の大きさなどが挙げられる。 上述したよ うに、 直流電場 を除去した後には、 電極近傍に集中していた電場応答性不純 物は徐々に拡散するので、 直流電場を除去した時点からの経 時変化を調べると、 電場応答曲線における特定変化量は徐々 に減衰する。 したがって、 電場応答曲線における特定変化量 の経時変化の減衰によつて、 液晶層中に電場応答性不純物が 混入していることを高感度に検出するこ とができる。 また、 この減衰のし方は不純物の拡散のし方に依存するので、 不純 物の種類を特定するのに有用な情報を得ることもできる。
次に、 本発明の液晶素子の評価装置について説明する。 上 述したように本発明の評価装置は、 液晶素子に直流電場を印 加する手段と、 液晶素子に交流パルス電場を印加する手段と、 光源と、 分光手段と、 液晶層を通過した特定波長域の光を電 気信号に変換する光検出手段と、 光検出手段により変換され た電気信号を時間分解して積算するこ とにより光強度の交流 パルス電場の一周期内での経時変化に相当する電場応答曲線 を求める手段と、 電場応答曲線における特定の変化量を算出 し、 この変化量を直流電場を除去した時点からの経過時間の 関数と して解析する手段とを有するものである。
直流電場を印加する手段および交流パルス電場を印加する 手段は同一の装置を用いて、 この装置を制御するこ とによ り 実現するこ ともできる。
光源と しては 上述したように赤外光源を用いることが好 ま しい。 分光手段と しては、 例えば回折格子、 プリズム、 干 渉フィ ルタ一など、 任意の分光器 (分散素子) が用いられる。 液晶素子の温度上昇を抑制する観点からは、 これらの分光手 段を光源と液晶素子との間に設けて、 光源からの光を分光し た後に液晶素子に照射することが好ま しい。 また、 分光手段 と液晶素子との間に偏光子を設け、 振動方向が配向時の液晶 分子の長軸方向に対応する偏光を液晶素子に照射することが 好ま しい。 光検出手段と しては、 例えば赤外光検出器のうち でも高感度な M C T (水銀 · カ ドミ ウム · テルル) 検出器を 用いるこ とが好ま しい。 測定対象となる光が赤外光である場 合、 検出される赤外光は微弱であるので、 一般的には赤外光 検出器で変換された電気信号を増幅器で増幅する。
光検出手段により変換された電気信号を時間分解して積算 し、 電場応答曲線を測定するための手段と しては、 例えばポ ッ クスカー積分器またはデジタルサンプリ ングオシロスコー プが用いられる。 電場応答曲線における特定の変化量を算出 し、 この変化量を直流電場を除去した時点からの経過時間の 関数と して解析する手段と してはコ ンピュータ一が用いられ る o
なお、 上述したように液晶素子中に混入した複数の不純物 を同定するために、 交流パルス電場の印加手段によりパルス 幅の異なる複数のパルス列を合成した合成交流パルス電場を 印加し、 赤外光検出器により変換された電気信号を合成交流 パルス電場を構成する各パルス列に対応する複数の電気信号 に復 し もよい。
以下、 本発明の実施例を説明する。
本発明に係る液晶素子評価素子の一例について図 1を参照 して説明する。 図 1 においては、 液晶素子 1 0に、 直流電源 1 により直流電場を、 パルスジェネ レーター (またはシンセ サイザ一) 2により交流パルス電場をそれぞれ印加する。 一 方、 赤外光源 3からの赤外光を分散素子 4で分光して特定波 長域の赤外光を取り出し、 偏光子 5を通して液晶セル 1 0 に 照射し、 液晶セル 1 0を透過した赤外光を M C T検出器 6で 検出して電気信号に変換する。 この電気信号を増幅器 7で増 幅し、 デジタルサンプリ ングオシロスコープ 8へ入力して時 間分解して積算するこ とによ り電場応答曲線を求める。 そし て、 コ ンピュータ 9 により、 電場応答曲線における特定の変 化量を算出し、 この変化量について直流電場を除去した時点 からの経時変化を求める。 また、 評価装置の全体もコンビュ —タ 9で制御する。
なお、 パルスジェネレーター 2を用いて液晶素子 1 0 に直 流電場を印加するようにしてもよい。 また、 パルスジエネレ 一ター 2 によりパルス幅の異なる複数のパルス列を合成した 合成交流パルス電場を発生させ、 M C T検出器 6により変換 された電気信号を合成交流パルス電場を構成する各パルス列 に対応する複数の電気信号に分解する場合にもコ ン ピュータ 9による制御を行う。
本実施例では、 以下のようにして液晶素子中に混入した電 荷応答性不純物について評価した。
基板と して、 I T 0 (ィ ンジゥムースズ酸化物) 透明電極 付きガラス基板を用い、 その表面にポ リイ ミ ドからなる液晶 配向膜を形成してラ ビング処理を行つた後、 セルギャ ップ約
1 0 mの液晶セルを作製した。 一方、 液晶と して、 代表的 なフ ッ素系混合液晶である Z L I — 4 7 9 2 (メルク社製) を用意した。 この液晶に、 電場応答性不純物と してエタノ ー ルを以下に示す比率で混入した。
1 . 3 8 X 0— 3モル Z L
2 1 . 3 8 X 0一7モル/ L
3 1 . 3 8 X 0— 8モル Z L 4 : 1 . 3 8 X 1 0— 9モル Z L
5 : 0 モル Z L
上記の各液晶材料をそれぞれ液晶セルに注入し、 試料 1 〜 5の液晶素子を作製した。 得られた試料 1〜 5の各液晶素子 について図 1 に示す評価装置による評価を行った。
まず、 一方の電極を接地し、 他方の電極を— 1 0 Vに設定 して、 液晶層に 3 0分間にわたって直流電場を印加した後、 直流電場を除去した。 直流電場を除去した後、 3 0秒おきに、 以下のようにして液晶の電場応答曲線を測定した。 すなわち、 赤外光源からの光を分光し、 C H伸縮振動の吸収波長域の赤 外光を偏光子を通して液晶素子に照射しながら、 図 2 Aに示 すようにパルス幅 T = 1 m s (周期 2 0 0 m s ) 、 振幅土 5 Vの交流パルス電場を印加し、 液晶層を通過した透過光強度 に相当する電気信号を時間分解し積算するこ とにより、 交流 パルス電場の一周期内での透過光強度の経時変化に相当する 電場応答曲線を求めた。 試料 1 について 直流電場を除去し た直後に測定した電場応答曲線を図 2 Bに示す。 図 2 Bに示 されるように、 交流パルス電場の極性が反転する前後で電場 応答曲線の傾きが変化することが確認された。 試料 2につい ても、 試料 1 と同様に、 交流パルス電場の極性が反転する前 後での電場応答曲線の傾きに変化が認められたが、 変化の程 度は試料 1 と比較して小さかった。 一方、 試料 3〜 5につい ては交流パルス電場の極性が反転する前後での電場応答曲線 の傾きに有意な変化は認められなかった。
しかし、 試料 1 および 2についても、 直流電場を除去した 後の経過時間が長く なるにつれて、 交流パルス電場の極性が 反転する前後での電場応答曲線の傾きの変化が徐々に小さ く なり、 図 2 において Xで表示する透過光強度の変化量 (試料 5の電場応答曲線との差) の大きさ も小さ く なつた。 試料 1 について、 直流電場を除去した時点からの透過光強度の変化 量 Xの経時変化曲線を図 3に示す。 この場合、 約 1 0分後に は透過光強度の変化量がゼロになった。 また、 図示しないが、 試料 2についての経時変化曲線は図 3 に示す試料 1の経時変 化曲線より下側に位置している。
次いで、 試料 3および 4の各液晶素子について、 直流電場 の印加時間を 6 0分に設定した以外は、 上記と同様にして電 場応答曲線を求めた。 この結果、 試料 3の場合には試料 1 お よび 2の場合と同様な傾向を示す電場応答曲線および透過光 強度の変化量 Xに経時変化が認められた。 一方、 試料 4の場 合には、 直流電場の印加時間を 3 0分と した場合と同様に有 意な変化は認められなかつた。
液晶へのエタノ ールの混入量がゼロかまたは非常に少ない 試料 5または試料 4では有意な変化が認められないことから、 液晶素子を構成する液晶材料、 配向膜材料などには検出感度 以上の電場応答性不純物は含まれていない。 したがって、 図 2および図 3 に示される変化は液晶に混入したエタノールに 起因する ものであると結論づけることができる。 これらの変 化は不純物が電場に応答した結果として検出されているので、 この場合の不純物は中性分子であるエタノールではなく、 ェ タノ ールまたはェタノ ールに含まれる水分からごく わずかに 解離しているプロ ト ンである。
以上の測定結果をまとめると、 液晶 (Z L I — 4 7 9 2 ) 中に混入したエタノ ールに関しては、 直流電場を 3 0分間印 加した場合には 1. 3 8 X 1 0 7モル/ L以上の濃度であれ ば検出でき、 直流電場を 6 0分間印加した場合にはさ らに 1 桁低濃度であつても検出できる ことがわかる。

Claims

請求の範囲
1 . 1対の電極間に液晶層を有する液晶素子に作用電場 を連続的に印加する工程と、 作用電場を除去した後、 経時的 に、 液晶素子に交流パルス電場を印加しながら特定波長域の 光を照射して液晶層を通過した光を時間分解して測定するこ とにより、 光強度の交流パルス電場の一周期内での経時変化 に相当する電場応答曲線を求める工程とを有し、 電場応答曲 線における特定の変化量について作用電場を除去した時点か らの経時変化に基づいて液晶素子中に混入した不純物を検出 する液晶素子評価方法。
2 . 1対の電極間に液晶層を有する液晶素子に作用電場 を印加する手段と、 液晶素子に交流パルス電場を印加する手 段と、 作用電場を除去した後に交流パルス電場を印加するよ う制御する手段と、 液晶層に光を照射するための光源と、 光 源から照射された光から特定波長域の光を取り出す分光手段 と 光源から照射され分光手段により取り 出された後 液晶 層を通過した特定波長域の光を電気信号に変換する光検出手 段と、 光検出手段により変換された電気信号を時間分解して 積算するこ とにより光強度の交流パルス電場の一周期内での 経時変化に相当する電場応答曲線を求める手段と、 電場応答 曲線における特定の変化量を算出し、 この変化量を作用電場 を除去した時点からの経過時間の関数と して解析する手段と を具備した液晶素子評価装置。
PCT/JP1997/001651 1996-05-16 1997-05-16 液晶素子評価方法および評価装置 WO2004079323A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/981,832 US6054870A (en) 1996-05-16 1997-05-16 Liquid crystal device evaluation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8121917A JP2744221B2 (ja) 1996-05-16 1996-05-16 液晶素子評価方法および評価装置
JP8/121917 1996-05-16

Publications (1)

Publication Number Publication Date
WO2004079323A1 true WO2004079323A1 (ja) 2004-09-16

Family

ID=14823117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001651 WO2004079323A1 (ja) 1996-05-16 1997-05-16 液晶素子評価方法および評価装置

Country Status (3)

Country Link
US (1) US6054870A (ja)
JP (1) JP2744221B2 (ja)
WO (1) WO2004079323A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1648286B1 (en) * 2003-07-12 2017-12-20 Accelerate Diagnostics, Inc. Sensitive and rapid biodetection
EP1660932B1 (en) * 2003-08-28 2014-05-21 Chi Mei Optoelectronics Corporation Lateral ion pumping in liquid crystal displays
CN105403797B (zh) * 2015-12-23 2018-07-20 成都信息工程大学 基于欧姆定律的土壤电离临界电场强度的估计方法
JP2022190312A (ja) * 2021-06-14 2022-12-26 セイコーエプソン株式会社 表示装置及び表示装置の制御方法
CN117250784B (zh) * 2023-11-18 2024-02-02 深圳市华远显示器件有限公司 一种液晶显示器测试方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566376A (ja) * 1991-09-06 1993-03-19 Tokyo Noukou Univ 液晶素子の過渡的誘電率測定法及び測定装置
JPH06110027A (ja) * 1992-03-30 1994-04-22 Shunsuke Kobayashi 液晶セルの特性測定方法
JPH08262385A (ja) * 1994-09-30 1996-10-11 Toshiba Corp 液晶素子評価方法および評価装置
JPH09105703A (ja) * 1995-10-12 1997-04-22 Toshiba Corp 液晶素子評価方法および評価装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726993B2 (ja) * 1987-01-23 1995-03-29 松下電器産業株式会社 液晶表示装置の検査装置
JP2882530B2 (ja) * 1989-04-28 1999-04-12 日立化成工業株式会社 改良された時間分解赤外分光光度計及び改良された時間分解赤外分光光度測定法
JP2776584B2 (ja) * 1989-10-06 1998-07-16 松下電器産業株式会社 液晶パネルの検査装置および検査方法
JPH04295824A (ja) * 1991-03-25 1992-10-20 Seiko Instr Inc 液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566376A (ja) * 1991-09-06 1993-03-19 Tokyo Noukou Univ 液晶素子の過渡的誘電率測定法及び測定装置
JPH06110027A (ja) * 1992-03-30 1994-04-22 Shunsuke Kobayashi 液晶セルの特性測定方法
JPH08262385A (ja) * 1994-09-30 1996-10-11 Toshiba Corp 液晶素子評価方法および評価装置
JPH09105703A (ja) * 1995-10-12 1997-04-22 Toshiba Corp 液晶素子評価方法および評価装置

Also Published As

Publication number Publication date
US6054870A (en) 2000-04-25
JPH09304227A (ja) 1997-11-28
JP2744221B2 (ja) 1998-04-28

Similar Documents

Publication Publication Date Title
US3032654A (en) Emission spectrometer
Dewey Jr Opto-acoustic spectroscopy
WO2004079323A1 (ja) 液晶素子評価方法および評価装置
US3738756A (en) Magneto-optic rotation analyzer
JP2685425B2 (ja) 液晶素子評価方法
Tu et al. Novel method for correcting light intensity fluctuation in the TDLAS system
JPS58180941A (ja) 光反応の電気化学的測定方法
CN109596679B (zh) 一种现场快速检测土壤重金属含量的检测装置
RU2383012C1 (ru) Способ контроля газовой среды и устройство для его осуществления
US4446719A (en) Electroreflectance vibrational spectroscopy
JP2004020539A (ja) 赤外円二色性測定装置および赤外円二色性測定方法
JP2703524B2 (ja) 液晶素子評価方法および評価装置
JP2883593B2 (ja) 液晶素子評価装置
Cvijin et al. Determination of gaseous formic acid and acetic acid by pulsed ultraviolet photoacoustic spectroscopy
JPH1114543A (ja) 半導体シリコン結晶中の酸素濃度評価方法及び装置
Dumas Recent aspects of surface infrared spectroscopy
Johnston A polarimeter for measurement of transient retardation changes
JP4634596B2 (ja) 溶存オゾン濃度測定装置
JPH09145612A (ja) 電場応答性不純物の検査装置および検査方法
RU79182U1 (ru) Газовый сенсор и устройство для контроля газовой среды
US20230408447A1 (en) Multi-dimensional rydberg fingerprint spectroscopy
JPH02195235A (ja) 蛍光測定装置
JPH1010047A (ja) 界面分析方法
Zhang et al. High-sensitivity determination of ethanol concentration based on weak measurement system with Faraday effect
Shi et al. Research and Design of Signal Processing and Control System of Infrared Gas Analyzer Based on Internet of Things Technology

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08981832

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): US