WO2004076850A1 - Buse d'injection a trou borgne et a siege perfore destinee a un moteur a combustion interne et presentant un cone de transition entre le trou borgne et le siege d'aiguille de buse - Google Patents

Buse d'injection a trou borgne et a siege perfore destinee a un moteur a combustion interne et presentant un cone de transition entre le trou borgne et le siege d'aiguille de buse Download PDF

Info

Publication number
WO2004076850A1
WO2004076850A1 PCT/DE2003/002790 DE0302790W WO2004076850A1 WO 2004076850 A1 WO2004076850 A1 WO 2004076850A1 DE 0302790 W DE0302790 W DE 0302790W WO 2004076850 A1 WO2004076850 A1 WO 2004076850A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle needle
blind hole
nozzle
needle seat
injection
Prior art date
Application number
PCT/DE2003/002790
Other languages
German (de)
English (en)
Inventor
Wilfried Roth
Heidi Arleth
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE50309436T priority Critical patent/DE50309436D1/de
Priority to EP03816024A priority patent/EP1599670B1/fr
Publication of WO2004076850A1 publication Critical patent/WO2004076850A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the invention is based on an injection nozzle for internal combustion engines with a blind hole or at least one injection hole or a seat hole injection nozzle and with a nozzle needle seat adjoining the blind hole.
  • Blind hole injection nozzles of the generic type have a large scatter in the flow resistance and thus also in the amount of fuel injected, especially in the partial stroke area of the nozzle needle. As a result, the emission and consumption behavior of many of the internal combustion engines equipped with these blind-hole injection nozzles is not optimal.
  • a blind hole injection nozzle is known in which the spreading of the flow resistance in the partial stroke area is reduced by rounding the transition between blind hole and nozzle needle seat.
  • From DE 196 09 218 AI is a blind hole injection nozzle known in which a cylindrical ring web is formed between the blind hole and the nozzle needle seat.
  • a transition cone according to the invention is provided between the blind hole and the nozzle needle seat.
  • the transition cone according to the invention can also be used successfully with seat hole injection nozzles.
  • the transition cone according to the invention greatly reduces the frustoconical annular gap between the nozzle needle and the nozzle needle seat, so that its flow resistance is greatly reduced.
  • the proportion of the flow resistance of this frustoconical annular gap in the total flow resistance of the injection nozzle decreases during the injection process in the part-load range of the internal combustion engine. The result thus have an effect
  • the operating behavior of all other blind hole injection nozzles of the same type can be predicted with much greater accuracy and the control of the injection process can be optimized accordingly.
  • the transition can be designed not only as a transition cone, but also in a curve.
  • the cone angle of the transition cone roughly corresponds to the bisector between the blind hole and the nozzle needle seat.
  • the configuration according to the invention of the transition between blind hole and nozzle needle seat can be used both with injection nozzles with a conical and with a cylindrical blind hole.
  • the nozzle needle seat is frustoconical, in particular with a conical seat of approximately 60 °, since then a good sealing effect and good centering of the nozzle needle in the nozzle needle seat results.
  • one end of a nozzle needle interacting with the nozzle needle seat is frustoconical, in a particularly advantageous embodiment of the invention the cone angle is up to 1 °, preferably 15 angle minutes - 30 angle minutes, greater than the cone angle of the nozzle needle seat that the sealing surface is reduced and moved into the area of the largest diameter of the nozzle needle.
  • the end of the nozzle needle which interacts with the nozzle needle seat can be designed in the shape of a truncated cone.
  • the nozzle needle seat is where the two truncated cones connect to one another.
  • the one or more blind holes of the injection nozzle according to the invention can be designed as a mini blind hole or micro blind hole or seat hole.
  • FIG. 1 shows a first exemplary embodiment of an injection nozzle according to the invention in section
  • FIG. 2 shows a second exemplary embodiment of an injection nozzle according to the invention
  • Figure 3 is a characteristic curve of the hydraulic diameter of the injection nozzle over the stroke of the nozzle needle
  • Figure 4 is a schematic representation of a fuel injection system for an internal combustion engine.
  • FIG. 1 an injection nozzle 1 with a conical blind hole 2 is shown in section.
  • An injection nozzle according to the prior art is shown in the left half of FIG. 1, while a first exemplary embodiment of an injection nozzle 1 according to the invention is shown on the right side of FIG.
  • FIG. 1 The left half of FIG. 1 is first described below and the differences according to the invention are subsequently explained.
  • the blind hole 2 can also be cylindrical or it can be designed as a mini or micro blind hole 2.
  • the spray holes can also be arranged in a nozzle needle seat 4. The latter is the volume of the
  • Blind holes 2 compared to the m shown in Figure 1 reduced. As a result, less fuel evaporates into the combustion chamber when the internal combustion engine is switched off.
  • a conical nozzle needle seat 4 connects to the conical blind hole 2.
  • the nozzle needle seat 4 can have a cone angle of, for example, 60 °.
  • a nozzle needle 5 rests on the nozzle needle seat 4. It can be clearly seen in FIG. 1 that the cone angle of the nozzle needle 5 is greater than the cone angle of the nozzle needle seat. As a result, the contact zone 6 between the nozzle needle 5 and the nozzle needle seat 4 lies in the region of the largest diameter of the nozzle needle 5 and the surface pressure between the nozzle needle 5 and the nozzle needle seat 4 is increased.
  • the difference between the cone angles of the nozzle needle 5 and the nozzle needle seat 4 is exaggerated in FIG. 1. As a rule, this difference is less than 1 ° and ranges from, for example, 15 angular minutes to 30 angular minutes.
  • edge 7 On the left side of FIG. 1, a transition between blind hole 2 and nozzle needle seat 4 according to the prior art is shown as edge 7.
  • This edge 7 arises when grinding the nozzle needle seat 4.
  • the edge 7 can be a sharp degree or a smooth edge.
  • the flow resistance of the edge 7 is significantly influenced by the nature of the same.
  • the transition between blind hole 2 and nozzle needle seat 4 is designed differently.
  • a transition cone 8 is formed between the nozzle needle seat 4 and the blind hole 2.
  • This transition cone 8 has the result that the part of the nozzle needle seat 4 lying below the contact zone 6 in FIG. 1 is shortened.
  • the length of the part of the nozzle needle seat 4 below the contact zone 6 is denoted by "x" in FIG. 1 (right side).
  • the already mentioned transition cone 8 adjoins the nozzle needle seat 4, which then merges into the blind hole 2.
  • a narrow frustoconical annular gap is formed between the nozzle needle seat 4 and the nozzle needle 5 in the injection nozzle 1 according to the invention.
  • the frustoconical annular gap (not shown) has the length in a prior art nozzle needle. y ", while in a blind hole injection nozzle 1 according to the invention it has only a length" x ",” x “being less than” y ".
  • the dimensions x, y are variable in relation to the ratio; or and depending on the requirements depending on the test points of the injection system.
  • the one or more spray holes 3 can also be arranged in the nozzle needle seat 4 or in the transition cone 8 (neither of which is shown).
  • FIG. 2 shows a second exemplary embodiment of an injection nozzle 1 according to the invention.
  • the essential difference from the exemplary embodiment according to the invention according to the right side of FIG. 1 is that the end of the nozzle needle 5 which interacts with the nozzle needle seat 4 is designed as a double cone.
  • a first cone 15 is followed by a second cone 16.
  • the cone angle is the first.
  • This transition area has been given the reference symbol 17 in FIG.
  • the length x of the frustoconical annular gap between the nozzle needle 5 and the nozzle needle seat 4 is shortened again in this exemplary embodiment compared to the first exemplary embodiment (see right side of FIG. 1). This reduces the influence of the
  • the transition cone 8 can be produced simply and inexpensively by grinding, countersinking, embossing or another cutting or non-cutting processing method become .
  • the nozzle needle 5 will work somewhat into the nozzle needle seat 4 in the region of the contact zone 6 by plastically deforming the nozzle needle seat 4 and removing and / or displacing some material from the nozzle needle seat 4.
  • the length "x" of the annular gap between the nozzle needle 5 and the nozzle needle seat 4 shortens with increasing operating time of the injection nozzle 1 according to the invention Transition cone 8 has shifted, the wear limit of the injector 1 according to the invention has been reached.
  • the hydraulic diameter 10 of a blind hole injection nozzle 1 is plotted qualitatively over the nozzle needle stroke 9.
  • the hydraulic diameter 10 is a size by means of which any cross-sections that are flowed through can be made comparable in terms of their flow resistance.
  • the flow resistance of a pipe with a circular cross-section serves as a reference.
  • a cross section with a large hydraulic diameter has a low flow resistance and vice versa.
  • the nozzle needle stroke 9 was divided into two areas. A first area extends from zero to "a”, the second area, hereinafter referred to as partial stroke area, extends from “a” to "b”. At “c” it is full nozzle needle stroke reached.
  • the flow resistance of the injector 1 is largely determined by the length of the frustoconical annular gap between the nozzle needle 5 and the nozzle needle seat 4.
  • the length of this annular gap is designated in FIGS. 1 and 2 with “x” for an injection nozzle 1 according to the invention and with “y” for an injection nozzle 1 according to the prior art.
  • the length "x" in the partial stroke range 1 is therefore also of great importance for the hydraulic diameter 10 of the injection nozzle 1. This means that, for example, changes in the surface roughness of the nozzle needle seat 4 or the frustoconical end of the nozzle needle 5 with a large length “x” have a great influence on the scattering of the hydraulic diameter 10.
  • the characteristic curve 11 of the injector 1 changes, especially in the partial stroke range between "a” and "b".
  • the effects of different surface roughness in the area of the frustoconical annular gap between the nozzle needle seat 4 and the nozzle needle 5 on the hydraulic diameter in the partial stroke area were represented by the characteristic curves 11, 12 and 13.
  • the characteristic curve 12 shown in broken lines represents an injection nozzle 1 in which the annular gap has a larger hydraulic diameter than the characteristic curve 11 and consequently has lower throttle losses.
  • the characteristic curve 13 shown in dashed lines shows the effects of an annular gap, which has a stronger throttling effect relative to the characteristic curve 11 in FIG.
  • the characteristic diagram of the internal combustion engine and the associated injection system is determined by measurements using one or more selected reference injection nozzles 1.
  • the characteristic maps determined in this way are used as a basis for all injection systems of the same type.
  • the characteristic curve 11 is a measured characteristic curve of a reference injection nozzle, and that this characteristic curve 11 is stored in the control unit of the injection system. It is further assumed that two injection nozzles 1 taken from series production have the characteristic curves 12 and 13. If the injection nozzles 1 with the characteristic curves 12 and 13 cooperate with a control unit in which the characteristic curve 11 is stored, then the actual injection quantity in the partial stroke range does not match the optimal injection quantity measured in the test specimens according to the characteristic curve 11, so that the output and / or the emission behavior of the internal combustion engine deteriorates becomes.
  • Transition cone 8 the scattering of the "characteristic curves 11, 12 and 13 is reduced.
  • the match is markedly improved between the data stored in the control unit 11 and the characteristic curves 12 and 13 of two series production removed injectors.
  • the quantity of fuel actually injected corresponds exactly to the injection quantity specified by the control unit, and the consumption and emission behavior of the internal combustion engine is optimal.
  • the fuel injection system 102 comprises a fuel tank 104, from which fuel 106 is conveyed by an electrical or mechanical fuel pump 108.
  • the fuel 106 is conveyed to a high-pressure fuel pump 111 via a low-pressure fuel line 110.
  • the fuel 106 passes via a high-pressure fuel line 112 to a Com on-Rail 114.
  • a plurality of fuel injection nozzles 1 according to the invention are connected to the Com on-Rail 114, which do not direct the fuel 106 directly into combustion chambers 118 Inject the internal combustion engine shown.
  • the injection nozzle according to the invention can be used in a wide variety of injection systems 102 and in various designs. Your advantages are particularly important High-pressure fuel injection systems with injection pressures> 1600 bar to day.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

L'invention concerne une buse d'injection (1) pourvue d'un trou borgne (2), un cône de transition (8) étant situé entre le trou borgne (2) et le siège d'aiguille de buse (4). Cela réduit la tolérance de la résistance à l'écoulement de la buse d'injection (1) dans la course partielle de l'aiguille de buse (5) et permet ainsi un dosage plus précis de la quantité de carburant injectée.
PCT/DE2003/002790 2003-02-25 2003-08-21 Buse d'injection a trou borgne et a siege perfore destinee a un moteur a combustion interne et presentant un cone de transition entre le trou borgne et le siege d'aiguille de buse WO2004076850A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE50309436T DE50309436D1 (de) 2003-02-25 2003-08-21 Sackloch- und sitzloch-einspritzdüse für eine brennkraftmaschine mit einem übergangskegel zwischen sackloch und düsennadelsitz
EP03816024A EP1599670B1 (fr) 2003-02-25 2003-08-21 Buse d'injection a trou borgne et a siege perfore destinee a un moteur a combustion interne et presentant un cone de transition entre le trou borgne et le siege d'aiguille de buse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10307873.8 2003-02-25
DE2003107873 DE10307873A1 (de) 2003-02-25 2003-02-25 Sackloch- und Sitzloch-Einspritzdüse für eine Brennkraftmaschine mit einem Übergangskegel zwischen Sackloch und Düsennadelsitz

Publications (1)

Publication Number Publication Date
WO2004076850A1 true WO2004076850A1 (fr) 2004-09-10

Family

ID=32797715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002790 WO2004076850A1 (fr) 2003-02-25 2003-08-21 Buse d'injection a trou borgne et a siege perfore destinee a un moteur a combustion interne et presentant un cone de transition entre le trou borgne et le siege d'aiguille de buse

Country Status (3)

Country Link
EP (1) EP1599670B1 (fr)
DE (2) DE10307873A1 (fr)
WO (1) WO2004076850A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013006386B4 (de) 2012-04-16 2023-08-31 Cummins Intellectual Property, Inc. Kraftstoffeinspritzdüsenvorrichtungen

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004063166A1 (de) * 2004-12-29 2006-07-13 Robert Bosch Gmbh Dosierungsvorrichtung für Flüssigkeiten
JP2007224746A (ja) * 2006-02-21 2007-09-06 Isuzu Motors Ltd インジェクタノズル
DE102010026687A1 (de) * 2010-07-09 2012-01-12 Continental Automotive Gmbh Düsenkörper für einen Kraftstoffinjektor und Herstellungsverfahren für einen Düsenkörper
DE102013217371A1 (de) * 2013-08-30 2015-03-05 Robert Bosch Gmbh Kraftstoffinjektor
DE102015205423A1 (de) 2015-03-25 2016-09-29 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen und Verwendung des Kraftstoffeinspritzventils
DE102015205416A1 (de) 2015-03-25 2016-09-29 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE932209C (de) * 1952-04-13 1955-08-25 Bosch Gmbh Robert Kraftstoffeinspritzventil
DE3014958A1 (de) * 1980-04-18 1981-10-29 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoff-einspritzduese, insbesondere lochduese, fuer brennkraftmaschinen
EP0283154A1 (fr) * 1987-03-14 1988-09-21 LUCAS INDUSTRIES public limited company Injecteur de combustible
JPH10281041A (ja) * 1997-04-01 1998-10-20 Mitsubishi Heavy Ind Ltd 燃料噴射弁
DE19820513A1 (de) * 1998-05-08 1999-11-11 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzdüse für eine Brennkraftmaschine
JP2000320429A (ja) * 1999-05-13 2000-11-21 Denso Corp 燃料噴射ノズル
DE19931761A1 (de) * 1999-07-08 2001-01-18 Bosch Gmbh Robert Sackloch-Einspritzdüse für Brennkraftmaschinen mit abgerundetem Übergang zwischen Sackloch und Düsennadelsitz

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE932209C (de) * 1952-04-13 1955-08-25 Bosch Gmbh Robert Kraftstoffeinspritzventil
DE3014958A1 (de) * 1980-04-18 1981-10-29 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoff-einspritzduese, insbesondere lochduese, fuer brennkraftmaschinen
EP0283154A1 (fr) * 1987-03-14 1988-09-21 LUCAS INDUSTRIES public limited company Injecteur de combustible
JPH10281041A (ja) * 1997-04-01 1998-10-20 Mitsubishi Heavy Ind Ltd 燃料噴射弁
DE19820513A1 (de) * 1998-05-08 1999-11-11 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzdüse für eine Brennkraftmaschine
JP2000320429A (ja) * 1999-05-13 2000-11-21 Denso Corp 燃料噴射ノズル
DE19931761A1 (de) * 1999-07-08 2001-01-18 Bosch Gmbh Robert Sackloch-Einspritzdüse für Brennkraftmaschinen mit abgerundetem Übergang zwischen Sackloch und Düsennadelsitz

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 01 29 January 1999 (1999-01-29) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 14 5 March 2001 (2001-03-05) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013006386B4 (de) 2012-04-16 2023-08-31 Cummins Intellectual Property, Inc. Kraftstoffeinspritzdüsenvorrichtungen

Also Published As

Publication number Publication date
DE10307873A1 (de) 2004-09-02
DE50309436D1 (de) 2008-04-30
EP1599670A1 (fr) 2005-11-30
EP1599670B1 (fr) 2008-03-19

Similar Documents

Publication Publication Date Title
DE10336223B4 (de) Filter zum Einführen in eine Bohrung eines Fluidkanalkörpers
EP1129287B1 (fr) Buse d'injection pour moteurs a combustion interne avec pointeau pourvu d'une rainure annulaire
DE10123775A1 (de) Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen, insbesondere Common-Rail-Injektor, sowie Kraftstoffsystem und Brennkraftmaschine
EP0688950A1 (fr) Système d'injection de carburant
DE3151020C2 (fr)
EP1599670B1 (fr) Buse d'injection a trou borgne et a siege perfore destinee a un moteur a combustion interne et presentant un cone de transition entre le trou borgne et le siege d'aiguille de buse
DE19843616B4 (de) Kraftstoffeinspritzdüse
EP1537324B1 (fr) Dispositif pour ventiler une unite d'acheminement
DE10328331A1 (de) Kraftstoffeinspritzdüse
EP2519368B1 (fr) Procédé de production d'un élément d'injection de carburant présentant des canaux et élément d'injection de carburant
WO2002079636A1 (fr) Soupape d'injection
WO2005108773A1 (fr) Soupape d'injection de carburant destinee a des moteurs a combustion interne
DE10346075B4 (de) Verfahren zur Herstellung eines Kraftstoffeinspritzventils und nach diesem Verfahren hergestelltes Kraftstoffeinspritzventil
EP1157208B1 (fr) Buse d'injection a trou borgne pour moteurs a combustion interne a passage arrondi entre le trou borgne et le siege de l'aiguille d'injecteur
EP1572420B1 (fr) Procedes d'usinage d'une arete d'un composant resistant aux pressions elevees, notamment procedes d'arrondissage hydro-erosif d'une arete, et dispositif correspondant
DE19940558C2 (de) Vorrichtung zum Verzögern des Auslenkens der Düsennadel eines Kraftstoffeinspritzventils
DE102018208361A1 (de) Verfahren zum Betreiben eines Kraftstoffinjektors, Kraftstoffinjektor
EP1518050B1 (fr) Injecteur pour un systeme d'injection
DE19843912B4 (de) Kraftstoffeinspritzdüse
EP1373713B1 (fr) Dispositif d'injection de carburant, notamment injecteur, pour moteurs a combustion interne
WO2003083285A1 (fr) Composant, en particulier logement d'une pompe a carburant haute pression, et son procede de production
EP1759115A1 (fr) Pompe a haute pression pour un dispositif d'injection de carburant d'un moteur a combustion interne
EP3980639B1 (fr) Injecteur de carburant et procédé pour faire fonctionner un injecteur de carburant
EP1771655B1 (fr) Ecrou de serrage
DE10029425B4 (de) Bohrungsanordnung mit einer aus mindestens drei Bohrungen gebildeten Verschneidung sowie Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003816024

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003816024

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2003816024

Country of ref document: EP