WO2004076404A1 - 2位に置換基を有する光学活性化合物の製造法 - Google Patents

2位に置換基を有する光学活性化合物の製造法 Download PDF

Info

Publication number
WO2004076404A1
WO2004076404A1 PCT/JP2004/002231 JP2004002231W WO2004076404A1 WO 2004076404 A1 WO2004076404 A1 WO 2004076404A1 JP 2004002231 W JP2004002231 W JP 2004002231W WO 2004076404 A1 WO2004076404 A1 WO 2004076404A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optically active
carbon atoms
solvent
substituent
Prior art date
Application number
PCT/JP2004/002231
Other languages
English (en)
French (fr)
Inventor
Shogo Yamamoto
Toshihiro Takeda
Yoshihide Fuse
Yasuyoshi Ueda
Original Assignee
Kaneka Corpration
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corpration filed Critical Kaneka Corpration
Priority to JP2005502911A priority Critical patent/JPWO2004076404A1/ja
Priority to US10/546,823 priority patent/US20060247458A1/en
Priority to EP04714501A priority patent/EP1600438A4/en
Publication of WO2004076404A1 publication Critical patent/WO2004076404A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/363Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a method for producing an optically active compound having a substituent at the 2-position, which is important as an intermediate for producing pharmaceuticals and the like.
  • optically active carboxylic acids having a thio group at the 2-position in particular, (S) —2-dodecylthiophenenylacetic acid are used as pharmaceuticals, especially atherosclerosis or It is a useful compound as an intermediate for the production of a prophylactic agent (ACAT inhibitor) for hypercholesterolemia (WO 97/19918 pan fret).
  • ACAT inhibitor prophylactic agent
  • the racemization may be violent during the series of steps from the bromination reaction to the introduction of the thio group, and the The method for obtaining an optically active carboxylic acid having a thio group at the 2-position of purity was not a general-purpose method.
  • the present invention minimizes racemization of an optically active compound having a substituent at the 2-position, such as an optically active carboxylic acid having a thio group at the 2-position, by minimizing racemization and achieving high yield. It is an object of the present invention to provide an industrially preferable method for producing at a low cost at a low cost. Disclosure of the invention
  • the present inventors have conducted intensive studies and found that as a method for producing an optically active compound having a thio group at the 2-position, an optically active compound having a hydroxyl group at the 2-position was chlorinated with inversion of the configuration at the 2-position. Then, the method of reacting the optically active compound having a chlorine atom at the 2-position with a thiometal salt to introduce a thio group with inversion of the configuration at the 2-position is the only method that minimizes racemization. It has been found that this is a method for producing a high yield at low cost.
  • the metal salt of an optically active carboxylic acid having a thio group at the 2-position is treated with a mixed solvent system consisting of water and an ester-based solvent and / or an ether-based solvent to form a thio group at the 2-position.
  • the optically active carboxylic acid can be extracted as a metal salt thereof into the organic layer.
  • the coexisting inorganic compounds such as the metal base used in the reaction can be efficiently removed from the aqueous layer. It has been found that it is possible to reduce the amount of acid used when neutralizing a metal salt of an optically active carboxylic acid having a thio group at the 2-position, and to dramatically reduce waste inorganic salts and the like. .
  • an optically active carboxylic acid having a thio group at the 2-position is dissolved in an aliphatic hydrocarbon-based solvent.
  • Crystallization as a salt with a free acid or a base using an agent and a sulfur-containing solvent can efficiently remove coexisting impurities such as optical isomers, and improve optical purity and Z or chemical purity. Have been found to be obtained as crystals with improved.
  • R 1 is an alkyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group having 6 to 14 carbon atoms which may have a substituent, Represents an aralkyl group having 7 to 15 carbon atoms, and R 2 represents a carboxyl group, an alkyloxycarbonyl group, an aralkyloxycarbonyl group, an acyl halide group, or a nitrinole group.
  • R 3 is an alkyl group having 1 to 15 carbon atoms which may have a substituent, an aryl group having 6 to 14 carbon atoms which may have a substituent, or a substituent.
  • R 3 and M are the same as defined above, and a thio group is introduced with inversion of the 2-position configuration.
  • a mixture comprising water, an ester solvent and a Z or ether solvent, using rubric acid as a metal salt having a thio group at the 2-position represented by
  • the present invention relates to the above method for extracting or distributing an optically active carboxylic acid having a thio group at the 2-position as a metal salt to an organic layer by treating with a solvent system.
  • the present invention also provides a compound represented by the general formula (5) containing at least an enantiomer thereof as an impurity:
  • the present invention relates to a general compound containing at least its optical isomer as an impurity.
  • the present invention relates to a method for producing (isolating and purifying) an optically active 2-chlorocarboxylic acid (6), characterized in that the method is obtained as an isolated crystal.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
  • the compound used in the present invention is represented by the following formulas (1), (6) and (7), and represented by the formulas (1), (2), (4), (5), (6) and (7).
  • R 1 represents an alkyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group having 614 carbon atoms which may have a substituent, or even having a substituent It is an aralkyl group having a good carbon number of 715.
  • alkyl group having 16 carbon atoms which may have a substituent include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert.
  • examples include a butyl group, a pentyl group, and a hexyl group. It is preferably an alkyl group having 14 carbon atoms.
  • aryl group having 614 carbon atoms which may have a substituent include a phenyl group, a p-hydroxyphenyl group, a naphthinole group, a biphenyl group and the like. It is preferably an aryl group having 6 to 8 carbon atoms, and more preferably a phenyl group.
  • Examples of the aralkyl group having 715 carbon atoms which may have a substituent include, for example, Examples include a benzinole group, a p-chlorobenzinole group, a p-hydroxybenzylinole group, a p-fluorobenzyl group, an m, m-difluorobenzyl group, and a phenylethyl group. It is preferably an aralkyl group having 7 to 8 carbon atoms, and more preferably a benzyl group.
  • Examples of the substituent for the alkyl group, aryl group and aralkyl group of R 1 include halogen such as fluorine, chlorine, bromine and iodine, nitro group, nitroso group, cyano group, amino group, hydroxyamino group and carbon number.
  • the alkyl group may be selected so that the total carbon number of the two alkyl groups is 2 to 10.
  • protecting groups for N-protected amino groups include, for example, Protective Groups Organic Synthesis 2nd Edition, 2nd Ed. Protective groups described in "Teodora W. Green", published by John Wiley & Sons, 1990, pp. 309-384.
  • an aralkyl-type protecting group such as a benzyl group, a phenylethyl group, and a triphenylmethyl group; a methanesulfonyl group, a trifluoromethanesnolefuryl group, a benzenesnolehoninole group, and a p-tonolenes Sulfonyl-type protecting groups such as norefhoenole, o-nitrobenzenesnolehoninole, m-nitrobenzenesnolehoninole, p-trobenzenesulfonyl, etc .; methoxycarbinole, ethoxycarbonyl, tert-butoxycarbonyl And protecting groups such as benzyloxycarbonyl group and the like; acetyl protecting groups such as phthaloyl group, acetyl group, chloroacetyl group, trifluoroace
  • R 1 is preferably an aryl group having 6 to 14 carbon atoms which may have a substituent, more preferably an aryl group having 6 to 8 carbon atoms, and further preferably a phenyl group.
  • R 2 in the above formulas (1), (2) and (4) is, for example, a propyloxyl group; a methyloxycarbonyl group, an ethyloxycarbonyl group, an n-propynoleoxycarboxyl group, an iso group Alkyloxycarbonyl groups such as propyloxycarbonyl group and butyloxycarbonyl group; aralkyloxycarbonyl groups such as benzyloxycarbonyl group; halogenated acyl groups such as chloroforminole group and bromoformyl group; nitrile group and the like. No.
  • R 2 is preferably a carboxyl group.
  • R 3 in the formulas (3), (4) and (5) is an alkyl group having 1 to 15 carbon atoms which may have a substituent, or 6 to 6 carbon atoms which may have a substituent. It is an aryl group of 14 or an aralkyl group of 7 to 15 carbon atoms which may have a substituent.
  • alkyl group having 1 to 15 carbon atoms which may have a substituent in R 3 include, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group Group, a Noel group, a decyl group, a pendecyl group, a dodecyl group, a tridecyl group, a pentadecyl group, etc., preferably an alkyl group having 4 to 12 carbon atoms, and more preferably an alkyl group having 6 to 12 carbon atoms. And furthermore Preferably it is a dodecyl group.
  • the aryl group having 6 to 14 carbon atoms which may have a substituent in R 3 is the same as the aryl group having 6 to 14 carbon atoms which may have a substituent described above in R 1. And is preferably an aryl group having 6 to 8 carbon atoms, more preferably a phenyl group.
  • the aralkyl group having 7 to 15 carbon atoms which may have a substituent in R 3 is an aralkyl group having 7 to 15 carbon atoms which may have a substituent described in R 1. And preferably an aralkyl group having 7 to 8 carbon atoms, and more preferably a benzyl group.
  • R 3 is preferably an alkyl group having 1 to 15 carbon atoms which may have a substituent, more preferably an alkyl group having 4 to 12 carbon atoms, and further preferably an alkyl group having 4 to 12 carbon atoms. It is an alkyl group of 6 to 12, particularly preferably a dodecyl group.
  • M in the above formula (3) is an alkali metal or an alkaline earth metal. Examples of the alkaline earth metal include lithium, sodium, potassium and the like.
  • alkaline earth metal examples include magnesium and calcium.
  • M is preferably an alkali metal, and particularly preferably potassium.
  • the optically active compound (2) having a chlorine atom at the 2-position can be efficiently synthesized, for example, using the following chlorination method.
  • an optically active compound (1) having a hydroxyl group at the 2-position can be chlorinated using thionyl chloride with inversion of the 2-position configuration.
  • the solvent used in the reaction is not particularly limited as long as it is an organic solvent, and examples thereof include ether solvents and / or aromatic hydrocarbon solvents.
  • the ether solvent is not particularly restricted but includes, for example, tetrahydrofuran, 1,4-dioxane, methyl t-butyl ether and the like.
  • the aromatic hydrocarbon solvent is not particularly limited, and examples thereof include tonolen and xylene.
  • an optically active compound (2) having a chlorine atom at the 2-position can be synthesized at a higher yield.
  • the basic compound is not particularly restricted but includes, for example, N, N-dimethylformamide, tetrabutylammonium-dimethyl fluoride and the like.
  • reaction temperature is not particularly limited, it is generally from 120 to 100 ° C, preferably from 110 to 50 ° C, more preferably from 0 to 30 ° C.
  • the reaction time is not particularly limited, but is generally 1 to 100 hours, preferably 1 to 48 hours, and more preferably 1 to 24 hours.
  • the optically active compound having a chlorine atom at the 2-position (2) may be a (R) -form or an (S) -form.
  • the optically-active compound having a chlorine atom at the 2-position of the (R) configuration is
  • An optically active compound having a chlorine atom at the 2-position of the (S) configuration has a hydroxyl group at the 2-position of the (R) configuration. It can be synthesized from an optically active compound having the compound.
  • the optically active compound (2) having a chlorine atom at the 2-position is not particularly limited, but is preferably, for example, optically active 2-chlorocarboxylic acid (6) or the like, particularly preferably optically active 2-chlorophenylphenylacetic acid or the like. Can be cited.
  • the optically active 2-chlorocarboxylic acid (6) can be produced by chlorinating the optically active 2-hydroxycarboxylic acid (7).
  • general post-treatment may be performed.
  • water and an extraction solvent can be added to the reaction-terminated liquid to extract the organic layer.
  • the extraction solvent is not particularly limited.
  • toluene, ethyl acetate examples thereof include methyl tert-butyl ether and methylene chloride.
  • toluene and ethyl acetate are preferred, and particularly ethyl acetate is suitably used.
  • R 2 in the general formula (2) is a carboxyl group, that is, in the case of the optically active 2-chlorocarboxylic acid represented by the formula (6), for the purpose of improving chemical purity and reducing coloring
  • the extract or the concentrated solution is preferably treated with a base to convert it into a salt of an optically active 2-chlorocarboxylic acid (6) and a base, transferred to an aqueous layer, and washed with an organic solvent.
  • the salt of the optically active 2-chlorocarboxylic acid (6) transferred to the aqueous layer is demineralized (for example, a mineral acid such as hydrochloric acid or sulfuric acid having a higher acidity than the optically active 2-chlorocarboxylic acid (6)).
  • Neutralization with a high acid can convert it into the free acid of optically active 2-chlorocarboxylic acid (6).
  • the free acid of this optically active 2-chlorocarboxylic acid (6) is extracted into an organic solvent, and if necessary, the solvent is removed to improve the chemical purity and reduce the coloration of the optically active acid.
  • Sex 2-chlorocarboxylic acid (6) can be obtained.
  • the optically active carboxylic acid (5) having a thio group at the 2-position is synthesized using the thus obtained optically active 2-chlorocarboxylic acid (6) having a high purity, the thio group at the 2-position is obtained.
  • Optical activity Since the impurities that may cause difficult crystallization are removed in advance when crystallizing rubonic acid (5), high purity of optically active carboxylic acid (5) having a thio group at the 2-position is obtained. Crystals can be obtained efficiently.
  • the salt of the optically active 2-chlorocarboxylic acid (6) and a base may be obtained as an aqueous solution or a crystal thereof, and a preferred form can be selected according to the purpose.
  • the base used for the neutralization is not particularly limited, and examples thereof include an alkali metal compound and an alkaline earth metal compound.
  • an alkali such as lithium hydroxide, sodium hydroxide, and potassium hydroxide may be used.
  • Metal hydroxides; alkaline earth hydroxides such as magnesium hydroxide and calcium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate and carbon dioxide rim; sodium hydrogen carbonate and hydrogen carbonate lime Limetal bicarbonates can be mentioned.
  • the neutralization with the above base is preferably carried out under weakly acidic to basic conditions in the presence of water, and the lower limit is usually pH4, preferably pH5, more preferably pH6, and still more preferably.
  • the upper limit is not particularly limited, but is usually pH 4, preferably 13.
  • optically active compound (2) having a chlorine atom at the 2-position and / or the optically active 2-chlorocarboxylic acid (6) may be used as such as an extract or a concentrate, but may be purified by crystallization if necessary. Purification may be performed by a general method such as distillation, purification and column chromatography to further increase the purity.
  • optically active 2-chlorocarboxylic acid (6) it is preferable to efficiently increase the purity (particularly the optical purity) by crystallization.
  • the solvent examples include, but are not particularly limited to, hydrocarbon solvents such as aromatic hydrocarbon solvents and aliphatic hydrocarbon solvents, ester solvents, and ether solvents.
  • the aromatic hydrocarbon solvent is not particularly limited, but is preferably an aromatic hydrocarbon having 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and still more preferably 6 to 8 carbon atoms.
  • aromatic hydrocarbons having 7 or 8 carbon atoms, specifically, toluene and xylene are particularly preferable, and toluene is most preferably used.
  • the aliphatic hydrocarbon-based solvent is not particularly limited, but is preferably an aliphatic hydrocarbon having 5 to 12 carbon atoms, more preferably an aliphatic hydrocarbon having 5 to 8 carbon atoms.
  • pentane examples thereof include xane, heptane, and methylcyclohexane.
  • aliphatic hydrocarbons having 6 or 7 carbon atoms specifically, hexane, heptane, and methylcyclohexane are more preferred.
  • the ester solvent is not particularly limited, but is preferably an ester having 2 to 8 carbon atoms, more preferably an ester having 4 to 6 carbon atoms, and specifically, for example, ethyl acetate Butyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, tert-butyl acetate and the like, among which ethyl acetate is preferred.
  • the ether solvent is not particularly limited, but preferably includes an acyclic ether solvent.
  • Preferred examples of the acyclic ether solvent include methyl tert-butyl ether, dibutyl ether and the like. Among them, methyl tert-butyl ether can be mentioned.
  • aromatic hydrocarbon solvents and ester solvents are preferable, and specifically, toluene and ethyl acetate are preferable.
  • the above-mentioned crystallization solvent may be used alone, or two or more thereof may be used in combination.
  • the crystallization method is, for example, a cooling crystallization method, a concentration crystallization method, a crystallization method using solvent replacement, a crystallization method in which a poor solvent is mixed, a crystallization method generally used such as a salting-out method, It can be carried out alone or in combination as appropriate.
  • the crystallization temperature is not particularly limited, but is usually 60 ° C. or lower, preferably 40 ° C. or lower, more preferably 20 ° C. or lower, and the lower limit is the solidification temperature of the crystallization liquid. Usually, it can be suitably carried out at a temperature of from 120 to 40 ° C, preferably from _10 to 20 ° C.
  • the crystallization time is not particularly limited, but is generally 1 to 100 hours, preferably 1 to 48 hours, and more preferably 1 to 24 hours.
  • the crystallization is usually carried out with stirring, but the stirring intensity per unit volume is not particularly limited, and is, for example, 0.05 kW / m 3 or more, preferably 0.1 lk WZm 3 or more, and more preferably 0. 3 kW / m 3 or more.
  • the crystals can be separated using a common solid-liquid separation such as centrifugation, pressure filtration, and vacuum filtration.
  • optical purity of the optically active 2-chlorocarboxylic acid (6) obtained by the above crystallization is preferably at least 97% e e, more preferably at least 98% e e, further preferably at least 99% e e.
  • a thio group is introduced into the optically active compound (2) having a chlorine atom at the 2-position with inversion of the configuration at the 2-position by using a thiometal salt (3), thereby obtaining a 2-position at the 2-position.
  • the method for producing the optically active compound (4) having a thio group will be described.
  • the configuration at the 2-position is inverted means that when the configuration at the 2-position in the general formula (2) is (S), When the configuration at position 2 in (4) is (R) and the configuration at position 2 in general formula (2) is (R), the configuration at position 2 in general formula (4) is (S) Means that The configuration at the 2-position in the general formula (2) may be either (S) or (R).
  • stereo reversal ratio in the present invention is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the stereo inversion ratio as used herein refers to a general formula having a configuration opposite to the enantiomeric excess (% ee) of an optically active compound having a chlorine atom at the 2-position represented by the general formula (2). It is represented by the ratio (percentage) of the enantiomeric excess (% ee) of the optically active compound having a thio group at the 2-position represented by (4).
  • the thiometal salt (3) is not particularly limited, but may be a salt prepared from a thiol compound and a base, and is preferably a thiometal salt such as a thiolithium salt, a thoonatrium salt, a thiopotassium salt, or a thiocesium salt. Of these, thiopotassium salts are preferably used.
  • the thio metal salt (3) may be prepared in a reaction system by reacting a thiol compound with a base in a reaction system.
  • the thiol compound is not particularly limited as long as it is represented by HSR 3 (wherein, R 3 is the same as described above).
  • R 3 is the same as described above.
  • the base is not particularly limited, but includes, for example, hydroxides, carbonates, hydrides and the like of the alkali metal or alkaline earth metal described for M in the general formula (3).
  • alkali metal hydroxides are preferred, and potassium hydroxide is more preferred, in order to increase the reactivity of the thio group introduction reaction.
  • the amount of the thiometal salt (3) to be used is not particularly limited, but is 0.8 to 5 times the equivalent of the optically active compound (2) having a chlorine atom at the 2-position. 1-2 equivalents.
  • the amount of the thiol compound used is based on the amount of the optically active compound (2) having a chlorine atom at the 2-position. It is usually 0.7 to 5 equivalents, preferably 0.9 to 3 equivalents, and more preferably 1 to 2 equivalents.
  • the amount of the base used in this case is not particularly limited, but is usually 1 to 10 equivalents, preferably 1 to 5 equivalents, relative to the optically active compound (2) having a chlorine atom at the 2-position. Preferably it is 1 to 3 equivalents.
  • the thio group introduction reaction carried out by reacting the thiometal salt (3) with the optically active compound (2) having a chlorine atom at the 2-position is characterized by water or polar organic compounds from the viewpoint of suppressing racemization and improving the yield. It is preferable to carry out in the presence of a solvent.
  • the polar organic solvent is not particularly limited, but is preferably an ether solvent, an ester solvent, a ketone solvent, a nitrogen-containing solvent, a sulfur-containing solvent, or an alcohol solvent.
  • ether-based solvent examples include getyl ether, diisopropyl ether, di-n-butynole ether, dimethoxetane, diethylene glycolone resin methyl ether ether, tetrahydrofuran, 1,4-dioxane, methynole tert-butyl ether, and the like. And preferably tetrahydrofuran.
  • ester solvents examples include formate esters such as ethyl formate; methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, and vinegar.
  • Acetates such as tert-butyl acid; propionates such as methyl propionate, ethyl propionate, n-propyl propionate, isopropyl propionate, 11-butyl propionate, isobutyl propionate; ⁇ -butyrolactone And the like.
  • Ester solvents and the like can be mentioned, and acetic acid esters are preferred, and ethyl acetate is more preferred.
  • ketone-based solvent examples include acetone, methyl ketone, getyl ketone, cyclopentanone, cyclohexanone, dibutyl ketone, etc., and preferably acetone.
  • nitrogen-containing solvent examples include ⁇ , ⁇ -dimethylformamide, acetamide, formamide, acetonitrile, propio-tolyl, etc., and preferably ⁇ , ⁇ -dimethylformamide.
  • sulfur-containing solvent examples include thiols such as hexyl thiol and dodecyl thiol; sulfides such as dihexyl sulfide and didodecyl sulfide; disulfides such as dihexyl disulfide and didodecyl disulphide. And thiols, more preferably dodecyl thiol.
  • alcohol-based solvent examples include methanol, ethanol, isopropanol, butanol, ethylene glycol, methoxy alcohol and the like, and preferably methanol, ethanol and isopropyl alcohol.
  • the amount of water used is not particularly limited, but the lower limit of the volume ratio of water (water + polar organic solvent) is preferably 0.01, more preferably 0.02, and still more preferably 0.02. 3, particularly preferably 0.05, and the upper limit is preferably 0.90, more preferably 0.70, and even more preferably 0.50.
  • the total amount of water and the polar organic solvent is not particularly limited. However, in consideration of economical efficiency, etc., 1 part by weight of the optically active compound (2) having a chlorine atom at the 2-position is used.
  • the lower limit is, for example, 0.05 part by weight, preferably 0.15 part by weight, more preferably 0.5 part by weight, and still more preferably 1 part by weight.
  • the upper limit is, for example, 100 parts by weight, preferably 30 parts by weight, more preferably 10 parts by weight, and still more preferably 5 parts by weight.
  • the other organic solvent is not particularly restricted but includes, for example, hydrocarbon solvents such as benzene, toluene, n-hexane, heptane, cyclohexane and methylcyclohexane; methylene chloride, chloroform, 1,1, 1 Halogen-based solvents such as trichloroethane, carbon tetrachloride, 1,2-dichloroethane, and monochlorobenzene are listed. These may be used alone or in combination of two or more.
  • the reaction temperature is not particularly limited, but the upper limit is usually 60 ° C., preferably 40 ° C., more preferably 30 ° C., and the reaction can be suitably performed.
  • the lower limit is the solidification temperature of the system, usually at 120 ° C, preferably at 110 ° C, more preferably at 0 ° C.
  • reaction time is not particularly limited, it is generally 1 to 100 hours, preferably 1 to 48 hours.
  • the reaction is usually carried out with stirring, but the stirring intensity per unit volume is not particularly limited, and is usually carried out at 0.05 kW / m 3 or more.
  • a general post-treatment may be performed to obtain a product from the reaction solution.
  • extraction can be carried out using an organic solvent in the presence of water used during the reaction or water added separately after the reaction as required.
  • the above-mentioned organic solvent preferably functions also as part or all of the organic solvent used in the reaction, but may be added separately at the time of extraction.
  • the extraction solvent examples include, but are not particularly limited to, hydrocarbon solvents such as hexane, heptane, and toluene; halogen solvents such as methylene chloride; and ethyl ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, and butyl acetate.
  • hydrocarbon solvents such as hexane, heptane, and toluene
  • halogen solvents such as methylene chloride
  • ethyl ethyl formate methyl acetate, ethyl acetate, isopropyl acetate, and butyl acetate.
  • Ester solvents; ether solvents such as ethyl ether, diisopropyl ether, methyl tert-butyl ether, tetrahydrofuran and the like are preferred.
  • R 2 of the optically active compound (4) having a thio group at the 2-position is a carboxyl group, that is, when R 2 is an optically active carboxylic acid (5) having a thio group at the 2-position
  • the compound (5) is Either the free acid or the metal salt can be transferred to the organic layer during extraction, and after completion of the reaction, it can be easily stirred by stirring in a mixed solvent of water and an organic solvent. It has been found that the base used in the reaction or the inorganic salt by-produced in the reaction can be removed to the aqueous layer.
  • the metal salt of the optically active carboxylic acid (5) having a thio group at the 2-position can be de-salted with a minimum amount of acid, thereby shortening the de-salt time and reducing waste. This is extremely convenient from the viewpoint of improving productivity at the level or reducing the burden on the environment.
  • organic solvent examples include, but are not particularly limited to, ester solvents such as ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, and butyl acetate; getyl ether, diisopropinole ether, methionole tert-butyl ether, Suitable examples include ether solvents such as tetrahydrofuran, and among them, ethyl acetate and tetrahydrofuran are more preferable. These solvents may be used alone or as a mixture of two or more solvents.
  • the acid used in the above-described salt-reaction is not particularly limited, and for example, a mineral acid such as hydrochloric acid or sulfuric acid is preferably used.
  • the pH at the time of treatment with an acid is, for example, preferably pH 6 to 6, more preferably pH 1 to 4.
  • the extract of the optically active carboxylic acid (5) having a thio group at the 2-position obtained as described above can be distilled off the reaction solvent, the extraction solvent and water by an operation such as heating under reduced pressure. As a result, an optically active carboxylic acid (5) having a thio group at the 2-position can be obtained.
  • the above-mentioned extract or concentrate of the optically active carboxylic acid (5) having a thio group at the 2-position is preferably washed with water or various aqueous solutions such as saline or sodium sulfate for the purpose of removing coexisting contaminants. .
  • optically active carboxylic acid (5) having a thio group at the 2-position is crystallized to convert the optically active carboxylic acid (5) having a thio group at the 2-position into a crystal of the free acid.
  • the crystallization method of the present invention can be used for the purpose of collecting the optically active carboxylic acid (5) having a thio group at the 2-position from the reaction solution, and can also be used for the purpose of recrystallization. it can.
  • optically active carboxylic acid (5) having a thio group at position 2 is collected as a salt crystal with a base, coexisting impurities are removed in advance, and the thus obtained position 2
  • the salt of the optically active carboxylic acid (5) having a thio group is salted and then crystallized or crystallized to obtain a highly pure optically active carboxylic acid (5) having a thio group at the 2-position.
  • the solvent used in the present invention is preferably a solvent substantially composed of an aliphatic hydrocarbon-based solvent and / or a sulfur-containing solvent from the viewpoint of removing coexisting enantiomers and improving the crystallization yield. That is, the solvent may be an aliphatic hydrocarbon solvent, a sulfur-containing solvent, or a combination of an aliphatic hydrocarbon solvent and a sulfur-containing solvent.
  • “substantially” means that a solvent other than the aliphatic hydrocarbon-based solvent and the sulfur-containing solvent may coexist in a range that does not adversely affect the solvent.
  • the aliphatic hydrocarbon-based solvent is not particularly limited.
  • an aliphatic hydrocarbon having 5 to 12 carbon atoms can be used.
  • pentane, hexane, heptane, octane, decane, pentadecane, dodecane, cyclohexane, methylcyclohexane, ethylcyclohexane and the like can be mentioned, and hexane and heptane are preferred. .
  • the sulfur-containing solvent is not particularly limited, and examples thereof include a thiol solvent, a sulfide solvent, a disulfide solvent, and a polysulfide solvent. Among them, a thiol solvent and a disulfide solvent are preferable.
  • the thiol-based solvent is not particularly limited, but is preferably an alkyl thiol having 6 to 12 carbon atoms, for example, hexyl thiol, heptyl thiol, octinole thionore, noninole thionore, desinole thionore, ⁇ Ndecinolethione, dodecinolethiol and the like.
  • alkylthiols having 8 to 12 carbon atoms are more preferable, and alkylthiols having 10 to 12 carbon atoms are more preferable. Examples include decylthiol, pendecylthiol, and dodecylthiol.
  • the Surufi de solvents is not particularly limited but is preferably di ⁇ Rukirusurufi de having 1 2-2 4 carbon atoms, for example, Kishirusurufi de to di-, Puchirusuru Fi de to di, di O lipped sulfide, Jinoninoresu Examples include norephide, didecinoresnolefide, didecyl sulfide, and zidodecyl sulfide. Of these, dialkyl sulfides having 16 to 24 carbon atoms are preferable, and dialkyl sulfides having 20 to 24 carbon atoms are more preferable. Specific examples thereof include didecyl sulfide, dibenzyl sulfide, and didodecyl sulfide. Luffid.
  • the disulfide-based solvent is not particularly limited, but is preferably a dialkyl disulfide having 12 to 24 carbon atoms, for example, dihexyl disulfide, diheptinoresin sulfide, and dioctinoresin sulfide. , Zinoninoresin sulfide, zipesi / resin sulfide, zindesinoresin sulfide, zidodesinoresin sulfide and the like.
  • a carbon number of 1624 is preferable, and a carbon number of 20 to 24 is more preferable.
  • Specific examples thereof include didesinoresin sulfide, do, and didodecyl disulphide.
  • the polysulfide solvent is not particularly restricted but includes, for example, trihexyl trisulfide, tridodecyl trisulfide, polydodecyl polysulfide and the like.
  • the thiol compound or its sulfide compound used in the reaction of the present invention may also serve as the crystallization solvent.
  • the reaction when dodecyl thiol is used in the reaction, dodecyl thiol, didodecyl sulfide, didodecyl disulfide, tridodecyl trisulfide, or the like can be used as a crystallization solvent as it is.
  • the above-mentioned crystallization may be performed by a commonly used crystallization method such as a cooling crystallization method, a concentration crystallization method, a crystallization method using solvent substitution, a crystallization method in which a poor solvent is mixed, or a salting-out method. It can be implemented in any suitable combination.
  • the crystallization temperature is not particularly limited, but is usually 60 ° C or lower, preferably 40 ° C or lower, more preferably 20 ° C or lower, and the lower limit is the solidification temperature of the crystallization liquid. Preferably, it can be suitably carried out at 20 to 40 ° C, more preferably at 1 to 20 ° C.
  • the crystallization time is not particularly limited, but is generally 1 to 100 hours, preferably 1 to 48 hours, more preferably 1 to 24 hours.
  • Crystallization is preferably carried out under normal agitation, agitation intensity per unit volume is not especially restricted, for example, 0. 05 kWZm 3 or more, preferably 0. 1 kWZm 3 or more on, and more preferably 0. It is preferable to precipitate under stirring of 3 kW / m 3 or more.
  • the crystals are separated using a common solid-liquid separation method such as centrifugation, pressure filtration, and vacuum filtration, and if necessary, for example, an aliphatic hydrocarbon solvent (eg, hexane Or heptane).
  • the washing solvent may be cooled to a low temperature of, for example, 0 ° C. or less, in order to reduce loss due to dissolution of precipitated crystals in the washing solution.
  • the wet crystal of the optically active carboxylic acid (5) having a thio group at the 2-position can be obtained as a dry crystal, for example, by drying at 50 ° C. or lower. Needless to say, the drying may be performed, for example, under reduced pressure.
  • the optically active carboxylic acid (5) having a thio group at the 2-position obtained as described above has a high purity of 90% ee or more, preferably 95% ee or more, more preferably 98% ee or more.
  • the optically active rubonic acid (5) having a thio group at the 2-position may be in the (R) form or the (S) form.
  • the free acid of the high-purity optically active carboxylic acid (2) having a thio group at the 2-position can be collected as a crystal.
  • the optically active carboxylic acid having a thio group at the 2-position can be collected as a crystal.
  • the optically active carboxylic acid (5) having a thio group at the 2-position may be collected as a metal salt or a salt with a base to increase the purity.
  • optically active carboxylic acid (5) having a thio group at the 2-position is converted to a metal salt or a salt.
  • a method of crystallizing as a salt with a group will be described.
  • the metal salt of the optically active carboxylic acid (5) having a thio group at the 2-position or a salt with a base is not particularly limited, and examples thereof include metal salts such as alkali metal salts and alkaline earth metal salts; alkylamine salts And amine salts such as alkylenediamine salts, aralkylamine salts, arylamine salts, salts with amino acid esters and salts with amino acid amides; and ammonium salts.
  • alkali metal salts such as potassium salts
  • alkylamine salts such as cyclohexylamine and cyclohexylamine salts
  • aralkylamine salts such as 1-phenylethylamine salt
  • the base used for converting the optically active carboxylic acid (5) having a thio group at the 2-position into a metal salt or a salt with a base is not particularly limited, and examples thereof include an alkali metal hydroxide, an alkali metal carbonate, and an alkali.
  • Preferable examples include metal bicarbonate, alkaline earth metal hydroxide, alkaline earth metal carbonate, alkylamine, alkylenediamine, aralkylamine, arylamine, amino acid ester, amino acid amide, and ammonia.
  • alkyl metal hydroxides such as potassium hydroxide
  • alkylamines such as cyclohexylamine and dicyclohexylamine
  • aralkylamines such as 1-phenylethylamine are preferred.
  • the amount of the base to be used may be suitably 1 to 2 equivalents to the optically active carboxylic acid (5) having a thio group at the 2-position, preferably 0.8 to 1.4 equivalents. More preferably, it is 0.8 to 1.2 equivalents.
  • the above base may be added as it is, or may be dissolved in another solvent and added as a solution.
  • the crystallization of a metal salt of an optically active carboxylic acid (5) having a thio group at the 2-position or a salt with a base is carried out by mixing the optically active carboxylic acid (5) having a thio group at the 2-position with the above base.
  • Other commonly used crystallization methods such as cooling crystallization, concentration crystallization, crystallization using solvent replacement, crystallization by mixing a poor solvent, and salting-out Can be carried out alone or in an appropriate combination. In this crystallization, a seed crystal can be added as needed.
  • the above crystallization method is usually performed in the presence of a solvent.
  • the solvent is not particularly limited, and examples thereof include hydrocarbon solvents such as aliphatic hydrocarbon solvents and aromatic hydrocarbon solvents, ester solvents, alcohol solvents, ether solvents, and water.
  • the aliphatic hydrocarbon solvent is not particularly limited, but is preferably an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, more preferably an aliphatic hydrocarbon solvent having 5 to 8 carbon atoms, for example, pentane, hexane, heptane, Methylcyclohexane and the like can be mentioned. Among them, aliphatic hydrocarbon solvents having 6 or 7 carbon atoms, specifically, hexane and heptane are preferred.
  • the aromatic hydrocarbon solvent is not particularly limited, but is preferably an aromatic hydrocarbon solvent having 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and still more preferably 6 to 8 carbon atoms.
  • aromatic hydrocarbon solvents having 7 or 8 carbon atoms, specifically, toluene and xylene are preferred, and toluene is particularly preferred.
  • the ester solvent is not particularly limited, but is preferably an ester having 2 to 8 carbon atoms, more preferably an ester having 4 to 6 carbon atoms.
  • Examples of the ester solvent include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, Examples include tert-butyl acetate and the like, and among them, ethyl acetate is preferable.
  • the alcohol solvent is not particularly limited, but is preferably an alcohol having 1 to 6 carbon atoms, more preferably an alcohol having 1 to 4 carbon atoms, and examples thereof include methanol, ethanol, n-propanol, isopropanol, and butanol. Among them, methanol is preferred.
  • the ether solvent is not particularly limited, but preferably includes an acyclic ether solvent.
  • examples of the acyclic ether solvent include methyl tert-butyl ether, dibutyl ether and the like.
  • the above solvents may be used alone, but may also be used as a mixture of two or more solvents.
  • the crystallization temperature is not particularly limited, but is usually 60 ° C. or lower, preferably 40 ° C. or lower, more preferably 20 ° C. or lower, and the lower limit is the solidification temperature of the crystallization liquid. Preferably, it can be suitably carried out at a temperature of 120 to 40 ° C, more preferably at a temperature of 110 to 20 ° C.
  • the crystallization time is not particularly limited, but is preferably 1 to 100 hours, more preferably 1 to 48 hours, and still more preferably 1 to 24 hours.
  • seed crystals can be added as necessary to promote nucleation.
  • Crystallization is preferably carried out under normal agitation, agitation intensity per unit volume is not especially restricted, for example, 0. 0 5 k WZm 3 or more, preferably 0. 1 k WZm 3 than on, more preferably It is preferable to precipitate under stirring of 0.3 kWZm 3 or more.
  • the metal salt or base of the optically active carboxylic acid (5) having a thio group at the 2-position precipitated by the above crystallization method may be obtained as crystals by a separation operation such as pressure filtration or centrifugation. Can be.
  • the optical activity having a thio group The metal salt of the acidic carboxylic acid (5) or the salt with a base may be washed with the above organic solvent or water to increase the purity.
  • the thus-obtained metal salt or base of the optically active carboxylic acid (5) having a thio group at the 2-position is dissolved (for example, mineral acid such as hydrochloric acid or sulfuric acid, etc. Neutralization with an acid having a higher acidity than the optically active carboxylic acid having a thio group (5)) to convert it into the free acid of the optically active carboxylic acid (5) having a thio group at the 2-position. it can.
  • the free acid of the optically active carboxylic acid (5) having a thio group at the 2-position is extracted into an organic solvent and, if necessary, the solvent is removed to obtain an optically active carboxylic acid having a thio group at the 2-position ( 5) can be collected as a concentrate or a solution thereof.
  • the organic solvent used for the extraction is not particularly limited, but is preferably a hydrocarbon solvent such as an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, a halogenated hydrocarbon solvent, an ester solvent, or the like. Examples thereof include alcohol solvents and ether solvents.
  • the aliphatic hydrocarbon solvent is not particularly limited, but preferably has 5 carbon atoms.
  • an aliphatic hydrocarbon solvent having 5 to 8 carbon atoms examples thereof include pentane, hexane, heptane, and methylhexane hexane.
  • aliphatic hydrocarbon solvents having 6 or 7 carbon atoms are preferable, and for example, hexane, heptane, and methylcyclohexane are suitably used.
  • the aromatic hydrocarbon solvent is not particularly limited, but preferably has 6 carbon atoms.
  • Examples 12 more preferably 6 to 10 carbon atoms, and still more preferably 6 to 8 carbon atoms.
  • Examples include aromatic solvents such as benzene, toluene and xylene. Is preferably used.
  • the halogenated hydrocarbon solvent is not particularly limited, but is preferably a halogenated hydrocarbon solvent having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and still more preferably chlorine having 1 to 4 carbon atoms. Hydrocarbonated solvents are preferred, with methylene chloride being particularly preferred.
  • the ester solvent is not particularly limited, but preferably has 2 to 8 carbon atoms. More preferred are esters having 4 to 6 carbon atoms, examples of which include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, tert-butyl acetate and the like, among which ethyl acetate is preferred.
  • the alcohol solvent is not particularly limited, but is preferably an alcohol having 1 to 6 carbon atoms, more preferably an alcohol having 1 to 4 carbon atoms, such as methanol, ethanol, n-propanol, isopropanol, butanol and the like. Among them, methanol is preferable.
  • the ether solvent is not particularly limited, but preferably includes an acyclic ether solvent.
  • Preferred examples of the acyclic ether solvent include methyl tert_butyl ether, dibutyl ether and the like.
  • the above-described neutralization (desalting) with an acid can be performed in the presence of the above-mentioned organic solvent.
  • the metal salt of an optically active carboxylic acid (5) having a thio group at the 2-position or a salt thereof with a base is an amine salt, especially expensive 1-phenylethylamine, 1_ (1-naphthyl) ethylamine, amino acid ester
  • optically active amine salts such as amides and amino acid amides
  • it is preferable that the amine is recovered as a free amine by a general method and reused.
  • a salt of an amine and an acid obtained by subjecting the amine salt of an optically active carboxylic acid (5) having a thio group at the 2-position to the above-described salting operation is subjected to solid-liquid separation or extraction into water.
  • a base in a mixed solvent of water and an organic solvent or in an organic solvent, it can be extracted as a free amine into the organic layer, and if necessary, the solvent is removed
  • a free amine or a solution thereof can be obtained.
  • the metal salt of the optically active carboxylic acid (5) having a thio group at the 2-position or a salt thereof with a base, or the free acid thereof has an optical purity of 95% ee or more, preferably 97%. It has a high purity of at least% ee, more preferably at least 99 ° / 0 ee.
  • optically active rubonic acid (5) having a thio group at the 2-position obtained in this manner is recrystallized based on the above-mentioned crystallization method, the purity is further increased.
  • An improved free acid of an optically active carboxylic acid (5) having a thio group at the 2-position can be obtained.
  • an optically active carboxylic acid having a high purity of 99% ee or more, preferably 99.5% ee or more, and more preferably 99.8% ee or more having a thio group at the 2-position having a high purity of 99.8% ee or more ( 5) can be obtained.
  • optically active carboxylic acids (5) having a thio group at the 2-position that can be produced by the present invention aryls having 6 to 14 carbon atoms in which R 1 may have a substituent are mentioned.
  • a phenyl group which may have a substituent is more preferable, and a phenyl group is more preferable, and R 3 has 1 to 15 carbon atoms which may have a substituent.
  • An alkyl group is preferable, and a dodecyl group is more preferable.
  • optically active 2-dodecylthioacetic acid is used.
  • Dodecylthiol was added to 30 g of a solution of 3.0 g (1.6 mmol 1, 92.7% ee) of ethyl acetate (R) —2-cyclomouth obtained separately according to the method of Example 1.
  • 1 g (35.2 mmo 1) was added and stirred. After adjusting the internal temperature to 20 ° C, 5.8 g of 85% hydroxide hydroxide dissolved in 4.0 g of water was added over 2 hours, followed by stirring for 1 hour. After adding 6 g of water and stirring for 30 minutes, the layers were separated and the aqueous layer was discarded.
  • (S) _2-dodecylthiophenenylacetic acid concentrate (heptane solution) (154 g) was obtained. This concentrate was once warmed to 40 ° C, then cooled slowly, and when the internal temperature reached 33 ° C, it was separately obtained as a seed crystal (S) —2_dodecylthiophenylacetic acid. Was added, and crystals were precipitated. After maintaining the same temperature for 30 minutes, the temperature was slowly lowered again and cooled to an internal temperature of 5 ° C.
  • an optically active compound having a thio group at the 2-position which is important in the production of pharmaceuticals and the like, can be produced economically and efficiently with high optical purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

医薬品等の製造上重要な2位にチオ基を有する光学活性化合物の製造法を提供する。2位にヒドロキシ基を有する光学活性化合物を、2位の立体配置の反転を伴って塩素化し、得られた2位に塩素原子を有する光学活性化合物を、チオ金属塩と反応させて、2位の立体配置の反転を伴ってチオ基を導入することにより、ラセミ化を最小化し、高収率で安価に2位にチオ基を有する光学活性化合物を製造できる。また、2位に塩素原子を有する光学活性化合物をチオ金属塩と反応させる際に、反応系中に水を共存させることにより、さらに光学純度を高め、より高収率で2位にチオ基を有する光学活性化合物を製造できる。2位にチオ基を有する光学活性カルボン酸は、脂肪族炭化水素系溶剤及び/又は含硫黄系溶剤下で晶析することにより、光学異性体等の共存不純物を効率的に除去し、さらに純度が向上した2位にチオ基を有する光学活性カルボン酸を結晶として取得すことができる。

Description

明細書
2位に置換基を有する光学活性化合物の製造法 技術分野
本発明は、 医薬品等の製造中間体として重要な、 2位に置換基を有する光学 活性化合物の製造法に関する。 背景技術
2位に置換基を有する光学活性化合物のうち、 2位にチォ基を有する光学活 性カルボン酸、 とりわけ (S) — 2—ドデシルチオフエニル酢酸は、 医薬品、 特 にァテローム性動脈硬化症又は高コレステロール血症の予防薬( A CAT阻害剤) の製造中間体として有用な化合物である (国際公開第 9 7/1 9 9 1 8号パンフ レツ 卜) 。 また、 2位にチォ基を有する光学活性カルボン酸の製造法としては、 従来、 以下のような方法が用いられている。
( i ) ラセミの 2—アルキルチオカルボン酸を用いた化学的光学分割法 ( J o u r n a 1 o f O r g a n i c Ch em i s t r y (1 967) , 32 (8) , p . 2496— 2501) 。
(ii) 光学活性アミノ酸の立体保持プロモ化反応により得た光学活性ブロモ カルボン酸をアルキルチオ化する方法 (国際公開第 9 2/13843号パンフレ ッ 卜) 。 しかし、 ( i )' の方法では、 光学分割の効率が悪く工業的製法としては必ず しも好ましいものではなかった。
また、 (ii) の方法は、 用いるアミノ酸の種類によっては、 ブロモ化反応か らチォ基導入反応の一連の過程において激しくラセミ化する場合があり、 高光学 純度の 2位にチォ基を有する光学活性カルボン酸を取得する方法としては、 汎用 的な方法ではなかった。 本発明は、 上記課題に鑑み、 2位に置換基を有する光学活性化合物、 例えば 2位にチォ基を有する光学活性カルボン酸のような極めてラセミ化し易い化合物 に関して、 ラセミ化を最小化し、 高収率で安価に製造する為の工業的に好ましい 方法を提供することを目的とする。 発明の開示
本発明者らは鋭意検討した結果、 2位にチォ基を有する光学活性化合物の製 造法として、 2位にヒドロキシル基を有する光学活性化合物を、 2位の立体配置 の反転を伴って塩素化し、 続いて、 この 2位に塩素原子を有する光学活性化合物 を、 チォ金属塩と反応させて、 2位の立体配置の反転を伴ってチォ基を導入する 方法が、 唯一、 ラセミ化を最小化し、 高収率で安価に製造する方法であることを 見出した。
また、 2位に塩素原子を有する光学活性化合物をチォ金属塩と反応させて、 2位の立体配置の反転を伴ってチォ基を導入するに際し、 反応系中に水を共存さ せることにより、 反応時間の短縮を図ることができるとともに、 光学純度及び/ 又は収率のより高い、 2位にチォ基を有する光学活性化合物を製造できることを 見出した。
さらに、 2位にチォ基を有する光学活性カルボン酸の金属塩は、 水とエステ ル系溶剤及び 又はエーテル系溶剤とからなる混合溶剤系にて処理することによ り、 2位にチォ基を有する光学活性カルボン酸をその金属塩として有機層に抽出 することができ、 その結果、 反応で使用した金属塩基等の共存する無機化合物を 水層に効率的に除去できること、 また、 以降の工程で 2位にチォ基を有する光学 活性カルボン酸の金属塩を中和する際に使用する酸の使用量を削減することがで き、 廃棄物である無機塩等を劇的に削減できることを見出した。
さらに、 2位にチォ基を有する光学活性カルボン酸を、 脂肪族炭化水素系溶 剤及びノ又は含硫黄系溶剤を用いて、 その遊離酸、 又は塩基との塩として晶析す ることにより、 光学異性体等の共存不純物を効率的に除去でき、 光学純度及び Z 又は化学純度が向上した結晶として取得できることを見出した。
また、 光学活性 2—クロロカルボン酸を、 芳香族炭化水素系溶剤及び 又は エステル系溶剤を用いて晶析することにより、 光学異性体等の共存不純物が除去 された結晶として取得できることを見出した。 以上の一連の知見に基づき、 本発明を完成するに至った。 すなわち、 本発明は、
一般式 (1 )
OH
( 1 )
RJ
(式中、 R 1は、 置換基を有していても良い炭素数 1〜 6のアルキル基、 置換基 を有していても良い炭素数 6〜1 4のァリール基、 置換基を有していても良い炭 素数 7 ~ 1 5のァラルキル基を表し、 R 2は、 カルボキシル基、 アルキルォキシ カルボニル基、 ァラルキルォキシカルボニル基、 ハロゲン化ァシル基、 二トリノレ 基を表す) で表される 2位にヒドロキシル基を有する光学活性化合物を、 2位の 立体配置の反転を伴って塩素化することにより、
一般式 (2 ) ;
Figure imgf000004_0001
(式中、 R R 2は前記と同じ) で表される 2位に塩素原子を有する光学活性 化合物に変換し、 続いて、 2位に塩素原子を有する光学活性化合物 (2) を、 一般式 (3) ;
MSR3 (3)
(式中、 R3は、 置換基を有していても良い炭素数 1〜 1 5のアルキル基、 置換 基を有していても良い炭素数 6〜 14のァリール基、 又は、 置換基を有していて も良い炭素数 7〜1 5のァラルキル基を示し、 Mは、 アルカリ金属又はアルカリ 土類金属を示す) で表されるチォ金属塩と反応させることにより、 2位の立体配 置の反転を伴ってチォ基を導入することを特徴とする、
一般式 (4) ;
Figure imgf000005_0001
(式中、 R R2、 R 3は前記と同じ) で表される 2位にチォ基を有する光学 活性化合物の製造法に関する。 また、 本発明は、 一般式 (2) ;
Figure imgf000005_0002
(式中、 I 1、 R2は前記と同じ) で表される 2位に塩素原子を有する光学活性 化合物 (2) を、 水存在下に、
一般式 (3) ;
MSR3 (3)
(式中、 R3、 Mは前記と同じ) で表されるチォ金属塩と反応させて、 2位の立 体配置の反転を伴ってチォ基を導入することを特徴とする、
一般式 (4) ; ( 4 )
j 人 ,
(式中、 R R 2、 R 3は前記と同じ) で表される 2位にチォ基を有する光学 活性化合物の製造法に関する。 さらに、 本発明は、 一般式 (5 ) ;
Figure imgf000006_0001
(式中、 I 1、 R 3は前記と同じ) で表される 2位にチォ基を有する光学活性力 ルボン酸を金属塩として、 水とエステル系溶剤及び Z又はエーテル系溶剤とから なる混合溶剤系にて処理することにより、 2位にチォ基を有する光学活性カルボ ン酸を金属塩として有機層に抽出又は分配する上記製造法に関する。 また、 本発明は、 不純物として少なくともその鏡像異性体を含有する、 一般式 (5 ) ;
Figure imgf000006_0002
(式中、 I 1、 R 3は前記と同じ) で表される 2位にチォ基を有する光学活性力 ルボン酸を、 脂肪族炭化水素系溶剤及び/又は含硫黄系溶剤からなる溶剤を用い て晶析することを特徴とする、 2位にチォ基を有する光学活性カルボン酸の製造 法 (単離、 精製法) に関する。
さらに、 本発明は、 不純物として少なくともその光学異性体を含有する一般
Figure imgf000007_0001
(式中、 R1は前記と同じ) で表される光学活性 2—クロロカルボン酸を、 芳香族炭化水素系溶剤及び Z又はエステル系溶剤を用いて晶析することにより、 光学純度を向上させた結晶として取得することを特徴とする、 光学活性 2—クロ ロカルボン酸 (6) の製造法 (単離、 精製法) に関する。 発明を実施するための最良の形態 以下に、 本発明を詳述する。 本発明に使用される化合物は、 ( 1 ) (6) および (7) で表される, 前記式 (1) 、 (2) 、 (4) 、 (5) 、 (6) 、 (7) において、 R1は、 置換基を有していても良い炭素数 1から 6のアルキル基、 置換基を有していても 良い炭素数 6 14のァリール基、 又は、 置換基を有していても良い炭素数 7 1 5のァラルキル基である。
置換基を有していても良い炭素数 1 6のアルキル基としては、 例えば、 メ チル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 s e c— ブチル基、 t e r .t一ブチル基、 ペンチル基、 へキシル基等が挙げられる。 好ま しくは炭素数 1 4のアルキル基である。
置換基を有していても良い炭素数 6 14のァリール基としては、 例えば、 フエニル基、 p—ヒドロキシフエニル基、 ナフチノレ基、 ビフエニル基等が挙げら れる。 好ましくは炭素数 6 ~ 8のァリール基であり、 より好ましくはフエニル基 である。
置換基を有していても良い炭素数 7 1 5のァラルキル基としては、 例えば、 ベンジノレ基、 p—クロ口べンジノレ基、 p—ヒ ドロキシべンジノレ基、 p—フルォロ ベンジル基、 m, m—ジフルォロベンジル基、フエニルェチル基等が挙げられる。 好ましくは炭素数 7〜 8のァラルキル基であり、 より好ましくはべンジル基であ る。
上記 R1のアルキル基、 ァリール基、 ァラルキル基の置換基としては、 例え ば、 フッ素、 塩素、 臭素、 ヨウ素等のハロゲン、 ニトロ基、 ニトロソ基、 シァノ 基、 アミノ基、 ヒ ドロキシァミノ基、 炭素数 1〜1 2のアルキルアミノ基、 炭素 数 2〜 1 0のジアルキルアミノ基、 N—保護ァミノ基、 アジド基、 トリフルォロ メチル基、 カルボキシル基、 ホルミル基、 ァセチル基、 ベンゾィル基、 ヒドロキ シル基、 炭素数 1〜1 2のアルキル基、 炭素数 1〜1 2のアルキルォキシ基、 炭 素数 1〜 1 2のアルキルチオ基等が挙げられる。好ましくはハロゲン、二トロ基、 N—保護ァミノ基、 炭素数 1〜1 2のアルキルォキシ基等である。 また、 置換基 の数は 0〜 3個が挙げられる。
上記置換基としての炭素数 1〜1 2のアルキルァミノ基、 炭素数 1〜 1 2の アルキル基、 炭素数 1〜 1 2のアルキルォキシ基、 炭素数 1〜 1 2のアルキルチ ォ基における、 炭素数 1〜 1 2のアルキル部分としては、 例えば、 メチル基、 ェ チル基、 プロピル基、 プチル基、 ペンチル基、 へキシル基、 ヘプチル基、 ォクチ ル基、 ノエル基、 デシル基、 ゥンデシル基、 ドデシル基等が挙げられる。 また、 炭素数 2〜10のジアルキルアミノ基においては、 2つのアルキル基の合計炭素 数が 2〜 10となるようにアルキル基を選択すればよい。
N—保護ァミノ基の保護基としては、例えば、プロテクテイヴ'グループス - ィン■オーガ二ック ·シンセシス第 2版 (P r o t e c t i v e G r o u s i n O r g a n i c S y n t h e s i s , 2 n d E d. ) 、 テオドラダブ リュ. グリーン (T e o d o r a W. G r e e n) 著、 ジョン - ウィリー -ァ ンド ' サンズ (J OHN WI LEY & SONS) 出版、 1 990年の 30 9〜384頁に記載された保護基が挙げられる。 具体的には、 ベンジル基、 フエ ニルェチル基、 トリフエニルメチル基等ァラルキル型保護基;メタンスルホニル 基、 トリフルォロメタンスノレホュル基、 ベンゼンスノレホニノレ基、 p—トノレエンス ノレホェノレ基、 o —ニトロベンゼンスノレホニノレ基、 m—二トロベンゼンスノレホニノレ 基、 p—-トロベンゼンスルホニル基等のスルホニル型保護基; メ トキシカルポ 二ノレ基、 エトキシカルボニル基、 t e r t—プトキシカルボニル基、 ベンジロキ シカルボニル基等の力ルバメート型保護基; フタロイル基、 ァセチル基、 クロ口 ァセチル基、 トリフルォロアセチル基、 ビバロイル基、 ベンゾィル基等のァセチ ル型保護基が挙げられる。
R 1として、 好ましくは置換基を有していても良い炭素数 6〜1 4のァリー ル基であり、 より好ましくは炭素数 6〜 8のァリール基であり、 さらに好ましく はフエニル基である。 前記式 (1 ) 、 (2 ) 、 (4 ) における R 2は、 例えば、 力ルポキシル基; メチルォキシカルボニル基、 ェチルォキシカルボニル基、 n—プロピノレオキシカ ルポ二ル基、 ィソプロピルォキシカルボニル基、 ブチルォキシカルボニル基等の アルキルォキシカルボニル基;ベンジルォキシカルポ-ル基等のァラルキルォキ シカルポニル基;クロロホルミノレ基、ブロモホルミル基等のハロゲン化ァシル基; 二トリル基等が挙げられる。
R 2として、 好ましくはカルボキシル基である。 前記式 (3 ) 、 (4 ) 、 ( 5 ) における R 3は、 置換基を有していても良い 炭素数 1〜 1 5のアルキル基、 置換基を有していても良い炭素数 6〜 1 4のァリ ール基、又は、置換基を有していても良い炭素数 7〜 1 5のァラルキル基である。
R 3における置換基を有していても良い炭素数 1〜1 5のアルキル基として は、 例えば、 メチル基、 ェチル基、 プロピル基、 ブチル基、 ペンチル基、 へキシ ル基、 ヘプチル基、 ォクチル基、 ノエル基、 デシル基、 ゥンデシル基、 ドデシル 基、 トリデシル基、 ペンタデシル基等が挙げられ、 好ましくは炭素数 4〜1 2の アルキル基であり、 より好ましくは炭素数 6〜1 2のアルキル基であり、 さらに 好ましくはドデシル基である。
R 3における置換基を有していても良い炭素数 6 ~ 1 4のァリール基は、 前 記 R 1で説明した置換基を有していても良い炭素数 6〜1 4のァリール基と同じ ものが挙げられ、 好ましくは炭素数 6〜 8のァリール基であり、 より好ましくは フエニル基である。
また、 R 3における置換基を有していても良い炭素数 7〜 1 5のァラルキル 基は、 前記 R 1で説明した置換基を有していても良い炭素数 7〜1 5のァラルキ ル基と同じものが挙げられ、 好ましくは炭素数 7〜 8のァラルキル基であり、 よ り好ましくはべンジル基である。
R 3として、 好ましくは置換基を有していても良い炭素数 1〜1 5のアルキ ル基であり、 より好ましくは炭素数 4〜 1 2のアルキル基であり、 さらに好まし くは炭素数 6〜1 2のアルキル基であり、 特に好ましくはドデシル基である。 前記式 (3 ) における Mは、 アルカリ金属又はアルカリ土類金属である。 アルカリ土類金属としては、 例えば、 リチウム、 ナトリウム、 カリウム等が 挙げられる。
アル力リ土類金属としては、 例えば、 マグネシウム、 カルシウム等が挙げら れる。
Mとしては、 好ましくはアルカリ金属であり、 特に好ましくはカリウムであ る。 以下、 本発明の各工程について詳述する。
まず、 2位に塩素原子を有する光学活性化合物 (2 ) は、 例えば、 下記のク ロロ化方法を用いて効率的に合成することができる。 例えば、 2位にヒドロキシ ル基を有する光学活性化合物 (1 ) を、 塩化チォニルを用いて、 2位の立体配置 の反転を伴って塩素化することができる。 当該反応に用いる溶剤としては、 有機溶剤であれば特に制限されないが、 例 えば、エーテル系溶剤及び/又は芳香族炭化水素系溶剤等を挙げることができる。
エーテル系溶剤としては、 特に制限されないが、 例えば、 テトラヒドロフラ ン、 1 , 4一ジォキサン、 メチル t一ブチルエーテル等が挙げられる。
芳香族炭化水素系溶剤としては、 特に制限されないが、 例えば、 トノレェン、 キシレン等が挙げられる。
また、 当該反応を塩基性化合物存在下に行うと、 さらに高収率で 2位に塩素 原子を有する光学活性化合物 (2 ) を合成することができる。
塩基性化合物としては、 特に制限されないが、 例えば、 N, N—ジメチルホ ルムアミ ド、 テトラプチルアンモ -ゥムフルオライド等が挙げられる。
反応温度は、 特に制限されないが、 普通一 2 0〜1 0 0 °C、 好ましくは一 1 0〜5 0 °C、 より好ましくは 0〜3 0 °Cである。 また、 反応時間としては、 特に 制限されないが、 普通 1〜1 0 0時間、 好ましくは 1〜4 8時間、 より好ましく は 1〜2 4時間である。
上記 2位に塩素原子を有する光学活性化合物 (2 ) は、 (R ) 体でも (S ) 体でもよく、 例えば、 (R ) 配置の 2位に塩素原子を有する光学活性化合物は、
( S ) 配置の 2位にヒドロキシル基を有する光学活性化合物より合成することが でき、 (S ) 配置の 2位に塩素原子を有する光学活性化合物は、 (R ) 配置の 2 位にヒドロキシル基を有する光学活性化合物より合成することができる。
上記 2位に塩素原子を有する光学活性化合物 (2 ) としては、 特に制限され ないが、 例えば、 光学活性 2—クロロカルボン酸 (6 ) 等、 特には光学活性 2— クロ口フエニル酢酸等を好適に挙げることができる。 ここで、 光学活性 2—クロ ロカルボン酸 (6 ) は、 光学活性 2—ヒドロキシカルボン酸 (7 ) を塩素化する ことにより製造することができる。
2位に塩素原子を有する光学活性化合物 (2 ) の反応液から、 生成物を分離 する為には、 一般的な後処理を行えばよい。 例えば、 反応終了液に水及び抽出溶 剤を添加し、 有機層に抽出することができる。
抽出溶剤としては、 特に制限されないが、 例えば、 トルエン、 酢酸ェチル、 メチル t e r t一プチルエーテル、 塩化メチレン等を挙げることができる。 なか でもトルエン、 酢酸ェチルが好ましく、 特に酢酸ェチルが好適に用いられる。
一般式 (2 ) における R 2がカルボキシル基の場合、 すなわち、 前記式 (6 ) で表される光学活性 2—クロロカルボン酸の場合、 化学純度を向上させる及ぴ 又は着色を低減する目的で、 抽出液又は濃縮液を塩基で処理することにより、 光 学活性 2—クロロカルボン酸 (6 ) と塩基との塩に変換して水層に移行させ、 有 機溶剤で洗浄するのが好ましい。 水層に移行した該光学活性 2—クロロカルボン 酸 (6 ) の塩は、 解塩する (例えば、 塩酸や硫酸等の鉱酸等、 光学活性 2—クロ ロカルボン酸 (6 ) よりも酸性度の高い酸を用いて中和する) ことにより、 光学 活性 2 _クロロカルボン酸 (6 ) の遊離酸に変換することができる。 この光学活 性 2—クロロカルボン酸 (6 ) の遊離酸は、 有機溶剤に抽出し、 さらに必要に応 じ、 溶剤を除去することにより、 化学純度が向上し、 且つ、 着色が減じた光学活 性 2—クロロカルボン酸 ( 6 ) を取得することができる。 このようにして得られ た純度の高い光学活性 2—クロロカルボン酸 ( 6 ) を用いて、 2位にチォ基を有 する光学活性カルボン酸 (5 ) を合成すると、 2位にチォ基を有する光学活性力 ルボン酸 (5 ) を晶析する際に、 難結晶化の要因となりうる不純物が予め除去さ れている為、 2位にチォ基を有する光学活性カルボン酸 (5 ) の高純度の結晶を 効率的に取得することができる。
なお、 上記光学活性 2 _クロロカルボン酸 (6 ) と塩基との塩は、 水溶液又 はその結晶として取得してもよく、 目的に応じて、 好ましい形態を選択すること ができる。
上記中和に用いる塩基としては、 特に制限されないが、 アルカリ金属化合物 又はアルカリ土類金属化合物を挙げることができ、 具体的には、 例えば、 水酸化 リチウム、 水酸化ナトリウム、 水酸化カリウム等のアルカリ金属水酸化物;水酸 化マグネシウム、 水酸化カルシウム等のアルカリ土類水酸化物;炭酸リチウム、 炭酸ナトリウム、 炭酸力リゥム等のアルカリ金属炭酸塩;炭酸水素ナトリウム、 炭酸水素力リゥム等のアル力リ金属炭酸水素塩を挙げることができる。 好ましく はアルカリ金属水酸化物であり、 より好ましくは水酸化ナトリウム、 水酸化カリ ゥムである。
上記塩基による中和は、 水存在下に弱酸性〜塩基性条件下で行うのが好まし く、 下限は、 普通 p H 4、 好ましくは p H 5、 より好ましくは p H 6、 さらに好 ましくは p H 7であり、 上限は特に制限されないが、 普通 p H I 4、 好ましくは 1 3である。
2位に塩素原子を有する光学活性化合物 (2 ) 及び/又は光学活性 2—クロ ロカルボン酸 ( 6 ) は、 抽出液又は濃縮物としてそのまま使用しても良いが、 必 要に応じて晶析精製、 蒸留精製、 カラムクロマトグラフィー等の一般的な手法に よって精製を加え、 さらに純度を高めても良い。
光学活性 2—クロロカルボン酸 (6 ) に関しては、 晶析することにより効率 的に純度 (特に光学純度) を高めるのが好ましい。
以下、 光学活性 2—クロロカルボン酸 (6 ) の晶析法について説明する。 上記晶析法は、 通常、 溶剤存在下にて実施される。
溶剤としては、 特に制限されないが、 芳香族炭化水素系溶剤、 脂肪族炭化水 素系溶剤等の炭化水素系溶剤、 エステル系溶剤、 エーテル系溶剤を挙げることが できる。
芳香族炭化水素系溶剤としては、 特に制限されないが、 好ましくは炭素数 6 〜 1 2、 より好ましくは炭素数 6〜 1 0、 さらに好ましくは炭素数 6〜 8の芳香 族炭化水素であり、 具体的には、 例えば、 ベンゼン、 トルエン、 キシレン等を挙 げることができる。 なかでも、 炭素数 7又は 8の芳香族炭化水素、 具体的には、 トルエン、 キシレンが特に好ましく、 トルエンが最も好適に用いられる。
脂肪族炭化水素系溶剤としては、 特に制限されないが、 好ましくは炭素数 5 〜1 2、 より好ましくは炭素数 5〜 8の脂肪族炭化水素であり、 具体的には、 例 えば、 ペンタン、 へキサン、 ヘプタン、 メチルシクロへキサン等を挙げることが できる。 なかでも炭素数 6又は 7の脂肪族炭化水素、 具体的には、 へキサン、 へ プタン、 メチルシクロへキサンがさらに好ましい。
エステル系溶剤としては、 特に制限されないが、 好ましくは炭素数 2〜8、 より好ましくは炭素数 4〜 6のエステルであり、 具体的には、 例えば、 酢酸ェチ ル、 酢酸 n—プロピル、 酢酸イソプロピル、 酢酸 n—プチル、 酢酸 t e r t—ブ チル等が挙げられ、 なかでも酢酸ェチルが好ましい。
エーテル系溶剤としては、 特に制限されないが、 好ましくは非環状エーテル 系溶剤を挙げることができる。 非環状エーテル系溶剤としては、 好ましくは、 メ チル t e r t—プチルエーテル、 ジブチルエーテル等を挙げることができる。 な かでも、 メチル t e r t一プチルエーテルを挙げることができる。
上記溶剤のなかでも、 光学純度向上の観点から、 芳香族炭化水素系溶剤、 ェ ステル系溶剤が好ましく、 具体的には、 トルエン、 酢酸ェチルが好ましい。
なお、 言うまでもなく上記晶析溶剤は単独で用いても良いが、 2種以上併用 することもできる。
上記晶析法は、例えば、冷却晶析法、濃縮晶析法、溶媒置換を用いる晶析法、 貧溶剤を混合する晶析法、塩析法等の一般的に用いられる晶析法を、単独、又は、 適宜組み合わせて実施することができる。
晶析温度は、特に制限されないが、通常 6 0 °C以下、好ましくは 4 0 °C以下、 より好ましくは 2 0 °C以下であり、 下限は晶析液の固化温度である。 通常、 一 2 0〜4 0 °C、 好ましくは _ 1 0〜2 0 °Cで好適に実施できる。
晶析時間は、 特に制限されないが、 普通 1〜 1 0 0時間、 好ましくは 1〜4 8時間、 より好ましくは 1〜 2 4時間である。
晶析は、 普通攪拌下に行われるが、 単位容積当たりの攪拌強度は特に制限さ れず、 例えば、 0 . 0 5 k W/m 3以上、 好ましくは 0 . l k WZm 3以上、 より 好ましくは 0 . 3 k W/m 3以上である。
晶析終了後は、 遠心分離、 加圧濾過、 減圧濾過等の一般的な固液分離を用い て結晶を分離することができる。
上記晶析により得られた光学活性 2—クロロカルボン酸( 6 ) の光学純度は、 好ましくは 9 7 % e e以上、 より好ましくは 9 8 % e e以上、 さらに好ましくは 9 9 % e e以上である。
次に、 2位に塩素原子を有する光学活性化合物 (2 ) に、 チォ金属塩 (3 ) を用いて、 2位の立体配置の反転を伴ってチォ基を導入することにより、 2位に チォ基を有する光学活性化合物 (4) を製造する方法について説明する。
上記一般式 (2) から (4) への反応において、 「2位の立体配置が反転す る」 とは、一般式(2) における 2位の立体配置が (S) であるとき、一般式(4) における 2位の立体配置は (R) 、 又、 一般式 (2) における 2位の立体配置が (R) であるとき、 一般式 (4) における 2位の立体配置は (S) となることを 意味する。 なお、 一般式 (2) における 2位の立体配置は、 (S) 又は (R) の いずれでもよレ、。
又、 本発明における立体反転率は 90%以上であることが好ましく、 より好 ましくは 95%以上であり、 さらに好ましくは 98%以上である。
ここでいう立体反転率とは、 一般式 (2) で表される 2位に塩素原子を有す る光学活性化合物の鏡像体過剰率 (%e e) に対する、 逆の立体配置を有する一 般式 (4) で表される 2位にチォ基を有する光学活性化合物の鏡像体過剰率 (% e e) の比 (百分率) で表される。
チォ金属塩 (3) としては、 特に制限されないが、 チオール化合物と塩基と から調製される塩を挙げることができ、 好ましくは、 チォリチウム塩、 チォナト リウム塩、 チォカリウム塩、 チォセシウム塩等のチォ金属塩であり、 なかでもチ ォカリウム塩が好適に用いられる。
また、 上記チォ金属塩 (3) は、 チオール化合物と塩基を反応系中で反応さ せて、 系中で調製しても良い。
この場合、 チオール化合物としては、 HSR3 (式中、 R3は前記と同じ) で 表されるものであれば特に限定されないが、 例えば、 メチルチオール、 ェチルチ ォーノレ、 プロピルチオール、 プチノレチォーノレ、 ペンチノレチォーノレ、 へキシノレチォ 一ノレ、 へプチルチオール、 ォクチルチオール、 デシルチオール、 ドデシルチオ一 ル、 フエ二ルチオール、 ベンジルチオール等が挙げられる。
また、 塩基としては、 特に限定されないが、 例えば、 一般式 (3) の Mで説 明したアルカリ金属又はアルカリ土類金属の水酸化物、 炭酸塩、 水素化物等が挙 げられる。
具体的には、 例えば、 水酸化リチウム、 水酸化ナトリウム、 水酸化力リウ ム等のアル力リ金属水酸化物;水酸化マグネシウム、 水酸化カルシウム等のアル カリ土類金属水酸化物;炭酸リチウム、 炭酸ナトリウム、 炭酸カリウム等のアル カリ金属炭酸塩;炭酸マグネシウム、 炭酸カルシウム等のアル力リ土類金属炭酸 塩;水素化リチウム、 水素化ナトリウム、 水素化カリウム等のアルカリ金属の水 素化物等が挙げられる。 なかでもチォ基導入反応の反応性を高める為には、 アル カリ金属水酸化物が好ましく、 より好ましくは水酸化カリゥムである。
本発明において、 チォ金属塩 (3 ) の使用量は、 特に制限されないが、 2位 に塩素原子を有する光学活性化合物 (2 ) に対して 0 . 8〜5倍当量であり、 好 ましくは 1〜2倍当量である。
なお、 チォ金属塩 (3 ) を、 チオール化合物と塩基との反応により反応系中 で調製する場合、 チオール化合物の使用量は、 2位に塩素原子を有する光学活性 化合物 (2 ) に対して、 普通 0 . 7〜 5倍当量であり、 好ましくは 0 . 9〜3倍 当量であり、 より好ましくは 1 ~ 2倍当量である。
また、 この場合の塩基の使用量は、 特に制限されないが、 2位に塩素原子を 有する光学活性化合物 (2 ) に対して、 普通 1〜1 0倍当量、 好ましくは 1〜5 倍当量、 さらに好ましくは 1〜3倍当量である。
本発明における 2位に塩素原子を有する光学活性化合物 (2 ) にチォ金属塩 ( 3 ) を作用させて行われるチォ基導入反応は、 ラセミ化抑制、 収率向上の観点 から、 水や極性有機溶剤存在下で行うことが好ましい。
上記極性有機溶剤としては、 特に制限されないが、 エーテル系溶剤、 エステ ル系溶剤、 ケトン系溶剤、 含窒素系溶剤、 含硫黄系溶剤、 アルコール系溶剤が好 ましい。
エーテル系溶剤としては、 例えば、 ジェチルエーテル、 ジイソプロピルエー テノレ、 ジ n—ブチノレエーテル、 ジメ トキシェタン、 ジエチレングリコーノレジメチ ノレエーテノレ、 テトラヒドロフラン、 1 , 4—ジォキサン、 メチノレ t e r t—ブチ ルエーテル等を挙げることができ、 好ましくはテトラヒドロフランである。
エステル系溶剤としては、 例えば、 ギ酸ェチル等のギ酸エステル類;酢酸メ チル、 酢酸ェチル、 酢酸 n—プロピル、 酢酸イソプロピル、 酢酸 n—プチル、 酢 酸 t e r t—ブチル等の酢酸エステル類;プロピオン酸メチル、 プロピオン酸ェ チル、 プロピオン酸 n—プロピル、 プロピオン酸イソプロピル、 プロピオン酸 11 —プチル、 プロピオン酸イソブチル等のプロピオン酸エステル類; γ —プチロラ ク トン等のエステル系溶剤等を挙げることができ、 好ましくは酢酸エステル類で あり、 さらに好ましくは酢酸ェチルである。
ケトン系溶剤としては、例えば、ァセトン、 メチルケトン、ジェチルケトン、 シクロペンタノン、 シクロへキサノン、 ジブチルケトン等を挙げることができ、 好ましくはァセトンである。
含窒素系溶剤としては、 例えば、 Ν , Ν—ジメチルホルムアミ ド、 ァセトァ ミ ド、ホルムアミ ド、ァセトニトリル、プロピオ-トリル等を挙げることができ、 好ましくは Ν, Ν—ジメチルホルムアミ ドである。
含硫黄系溶剤としては、 例えば、 へキシルチオール、 ドデシルチオール等の チオール類;ジへキシルスルフィ ド、 ジドデシルスルフィ ド等のスルフィ ド類; ジへキシルジスルフィ ド、 ジドデシルジスルブイ ド等のジスルフィ ド類等を挙げ ることができ、好ましくはチオール類、より好ましくはドデシルチオールである。
アルコール系溶剤としては、 例えば、 メタノール、 エタノール、 イソプロパ ノール、 ブタノ一ル、 エチレングリコール、 メ トキシアルコール等を挙げること ができ、 好ましくはメタノール、 エタノール、 ィソプロピルアルコールである。
これらは単独で用いてもよく、 2種類以上を併用しても良い。
なかでも溶剤として、水、又は、水と極性有機溶剤の混合溶剤を用いる場合、 反応時間を大幅に短縮することができるとともに、 光学純度及び/又は収率のよ り高い、 2位にチォ基を有する光学活性化合物 (4 ) の合成が可能となる。
上記水の使用量としては、 特に制限されないが、 水 Ζ (水 +極性有機溶剤) の容量比として、 下限が好ましくは 0 . 0 1、 より好ましくは 0 . 0 2、 さらに 好ましくは 0 . 0 3、 特に好ましくは 0 . 0 5であり、 上限が、 好ましくは 0 . 9 0、 より好ましくは 0 . 7 0、 さらに好ましくは 0 . 5 0である。
また、 水及び極性有機溶剤の合計使用量は、 特に制限されないが、 経済性等 を考慮して、 2位に塩素原子を有する光学活性化合物(2 )の 1重量部に対して、 下限は、 例えば、 0 . 0 5重量部、 好ましくは 0 . 1 5重量部、 より好ましくは 0 . 5重量部、 さらに好ましくは 1重量部である。上限は、例えば 1 0 0重量部、 好ましくは 3 0重量部、 より好ましくは 1 0重量部、 さらに好ましくは 5重量部 である。
また、 上記反応においては、 水、 極性有機溶剤以外に、 必要に応じて他の有 機溶剤を用いることもできる。
他の有機溶剤としては特に制限されず、 例えば、 ベンゼン、 トルエン、 n— へキサン、 ヘプタン、 シクロへキサン、 メチルシクロへキサン等の炭化水素系溶 剤;塩化メチレン、 クロ口ホルム、 1 , 1, 1一トリクロロェタン、 四塩化炭素、 1, 2—ジクロロェタン、 モノクロ口ベンゼン等のハロゲン系溶剤等を挙げるこ とができる。 これらは単独でもよく、 2種類以上を併用しても良い。
反応温度は特に限定されないが、上限は、普通、 6 0 °C、好ましくは 4 0 °C、 より好ましく 3 0 °Cで好適に実施することができる。 下限は、 系の固化温度であ り、 普通一 2 0 °C、 好ましくは一 1 0 °C、 より好ましくは 0 °Cである。
反応時間は特に限定されないが、 普通 1〜1 0 0時間、 好ましくは 1〜4 8 時間である。
反応は通常攪拌下に行われるが、 単位容積当たりの攪拌強度は特に制限され ず、 普通、 0 . 0 5 k W/m 3以上で行われる。
反応終了後、 反応液から生成物を取得する為には、 一般的な後処理を行えば よい。 例えば、 反応時に用いた水、 或いは必要に応じて反応終了後に別途添加し た水の共存下、 有機溶剤を用いて抽出することができる。
上記有機溶剤は、 反応時に用いた有機溶剤の一部又は全部を兼ねるのが好ま しいが、 抽出に際して別途添加したものであっても良い。
上記抽出溶剤としては、 特に制限されないが、 へキサン、 ヘプタン、 トルェ ン等の炭化水素系溶剤;塩化メチレン等のハロゲン系溶剤;ギ酸ェチル、 酢酸メ チル、 酢酸ェチル、 酢酸イソプロピル、 酢酸プチル等のエステル系溶剤;ジェチ ルエーテル、 ジイソプロピルエーテル、 メチル t e r t—ブチルエーテル、 テト ラヒドロフラン等のエーテル系溶剤を好適に挙げることができる。 なお、 2位にチォ基を有する光学活性化合物 (4 ) の R 2がカルボキシル基 の場合、 すなわち、 2位にチォ基を有する光学活性カルボン酸 (5 ) の場合、 該 化合物 (5 ) は、 その遊離酸、 又は、 金属塩のいずれの状態でも、 抽出に際して は、 有機層に移行させることができ、 反応終了後、 水と有機溶剤との混合溶剤中 で攪拌するといつた簡単な操作で、 反応で使用した塩基、 又は、 反応で副生した 無機塩等を、 水層に除去できることを見いだした。 この場合、 上記 2位にチォ基 を有する光学活性カルボン酸 (5 ) の金属塩の解塩を、 最少量化した酸量で行う ことができ、 解塩時間の短縮、 廃棄物削減等、 工業的レベルでの生産性向上、 又 は、 環境への負担低減の観点から、 極めて都合が良い。
上記有機溶剤としては、 特に制限されないが、 ギ酸ェチル、 酢酸メチル、 酢 酸ェチル、 酢酸イソプロピル、 酢酸プチル等のエステル系溶剤;ジェチルエーテ ノレ、 ジイ ソプロピノレエーテノレ、 メチノレ t e r t—プチノレエーテノレ、 テトラヒドロ フラン等のエーテル系溶剤を好適に挙げることができ、 なかでも酢酸ェチル、 テ トラヒドロフランがより好ましい。なお、これらの溶剤は、単独で用いてもよく、 2種以上の混合溶剤として用いてもよい。
上記解塩反応で用いる酸としては、 特に制限されないが、 例えば、 塩酸、 硫 酸等の鉱酸が好適に用いられる。 酸で処理する際の p Hは、 例えば、 p H O〜6 が好ましく、 より好ましくは p H 1〜4である。
上記のようにして得られた 2位にチォ基を有する光学活性カルボン酸 (5 ) の抽出液は、 減圧加熱等の操作により、 反応溶剤、 抽出溶剤及び水を留去するこ とができ、 これにより 2位にチォ基を有する光学活性カルボン酸 (5 ) を取得す ることができる。
上記 2位にチォ基を有する光学活性カルボン酸( 5 )の抽出液又は濃縮物は、 共存する夾雑物を除く目的で、 水或いは食塩水や芒硝水等の各種水溶液で洗浄す るのが好ましい。
このようにして得られた 2位にチォ基を有する光学活性カルボン酸(5 )は、 晶析することにより、 2位にチォ基を有する光学活性カルボン酸 (5 ) を、 その 遊離酸の結晶として採取することができる。 なお、 本発明の晶析法は、 2位にチォ基を有する光学活性カルボン酸 (5 ) の反応液からの採取を目的として使用することができるほか、 再結晶を目的とし て使用することもできる。例えば、 2位にチォ基を有する光学活性カルボン酸(5 ) を塩基との塩の結晶として一旦採取することにより共存する夾雑物を予め除去し ておき、 このようにして得られた 2位にチォ基を有する光学活性カルボン酸 (5 ) を解塩後、 結晶化又は晶析することにより、 さらに純度の高い 2位にチォ基を 有する光学活性カルボン酸 (5 ) を取得することもできる。
まずは、 2位にチォ基を有する光学活性カルボン酸 (5 ) を遊離酸の結晶と して晶析する方法について説明する。
本発明に用いる溶剤は、 共存する鏡像異性体の除去、 晶析収率向上の観点か ら、 実質的に脂肪族炭化水素系溶剤及び/又は含硫黄系溶剤からなる溶剤である ことが好ましい。 つまり、 脂肪族炭化水素系溶剤であってもよく、 また、 含硫黄 系溶剤であってもよく、 さらに、 脂肪族炭化水素系溶剤と含硫黄系溶剤を併用し ても良い。 ここで、 「実質的に」 とは、 脂肪族炭化水素系溶剤及び含硫黄系溶剤 以外の溶剤が、 悪影響のない範囲で共存していても良いことを表す。
上記脂肪族炭化水素系溶剤としては、 特に制限されないが、 例えば、 炭素数 5〜1 2の脂肪族炭化水素を用いることができる。 具体的には、 例えば、 ペンタ ン、 へキサン、 ヘプタン、 オクタン、 デカン、 ゥンデカン、 ドデカン、 シクロへ キサン、 メチルシクロへキサン、 ェチルシクロへキサン等を挙げることができ、 好ましくは、 へキサン、 ヘプタンである。
上記含硫黄系溶剤としては、特に制限されないが、例えば、チオール系溶剤、 スルフィド系溶剤、 ジスルフィド系溶剤、 ポリスルフィ ド系溶剤等を挙げること ができ、 なかでもチオール溶剤、 ジスルフイド系溶剤が好ましい。
チオール系溶剤としては、 特に制限されないが、 炭素数 6〜1 2のアルキル チオールが好ましく、 例えば、 へキシルチオ一ノレ、 へプチルチオール、 ォクチノレ チォーノレ、 ノニノレチォーノレ、 デシノレチォーノレ、 ゥンデシノレチォーノレ、 ドデシノレチ オール等が挙げられる。 なかでも炭素数 8〜1 2のアルキルチオールがより好ま しく、 さらに好ましくは炭素数 1 0〜 1 2のアルキルチオールであり、 具体的に は、 デシルチオール、 ゥンデシルチオール、 ドデシルチオールが挙げられる。 スルフィ ド系溶剤としては、 特に制限されないが、 炭素数 1 2〜2 4のジァ ルキルスルフィ ドが好ましく、 例えば、 ジへキシルスルフィ ド、 ジへプチルスル フィ ド、 ジォクチルスルフィ ド、 ジノニノレスノレフィ ド、 ジデシノレスノレフィ ド、 ジ ゥンデシルスルフイド、 ジドデシルスルフイド等が挙げられる。 なかでも炭素数 1 6〜2 4のジアルキルスルフィ ドが好ましく、 より好ましくは炭素数 2 0〜2 4のジアルキルスルフィ ドであり、 具体的には、 ジデシルスルフィ ド、 ジゥンデ シルスルフィ ド、 ジドデシルスルフィ ドが挙げられる。
ジスルフィ ド系溶剤としては、 特に制限されないが、 炭素数 1 2〜2 4のジ アルキルジスルフイドが好ましく、 例えば、 ジへキシルジスルフイド、 ジへプチ ノレジスノレフィ ド、 ジォクチノレジスノレフィ ド、 ジノニノレジスノレフィ ド、 ジデシ/レジ スノレフィ ド、 ジゥンデシノレジスノレフィ ド、 ジドデシノレジスルフィ ド等が挙げられ る。
なかでも炭素数 1 6 2 4 ドが好ましく、 より好ま しくは炭素数 2 0〜 2 4 ドであり、 具体的には、 ジデシ ノレジスノレフィ ド、 ド、 ジドデシルジス レフィ ドが挙げら れる。
ポリスルフィ ド系溶剤としては、 特に制限されないが、 例えば、 トリへキシ ルトリスルフイ ド、 ト リ ドデシルトリスルフィ ド、 ポリ ドデシルポリスルフィ ド 等が挙げられる。
なお、 上記晶析溶剤として使用する含硫黄系溶剤は、 本発明の反応で使用す るチオール化合物又はそのスルフィ ド系化合物が上記晶析溶剤を兼ねてもよい。 具体的には、 例えば、 反応でドデシルチオールを使用した場合は、 ドデシルチオ ール、 ジドデシルスルフィ ド、 ジドデシルジスルフィ ド、 トリ ドデシルトリスル ブイド等がそのまま晶析溶剤になりうる。
上記晶析は、 例えば、 冷却晶析法、 濃縮晶析法、 溶媒置換を用いる晶析法、 貧溶剤を混合する晶析法、 塩析法等の一般に用いられる晶析法を、 単独、 又は適 宜組み合わせて実施することができる。 晶析温度は、特に制限されないが、通常 60°C以下、好ましくは 40°C以下、 より好ましくは 20°C以下であり、 下限は晶析液の固化温度である。 好ましくは — 20〜40°C、 より好ましくは一 10〜 20°Cで好適に実施できる。
晶析時間は、 特に制限されないが、 普通 1〜 100時間、 好ましくは 1〜4 8時間、 より好ましくは 1〜24時間である。
また、 結晶化に際しては、 必要に応じて種晶を添加して核化を促進させるこ とができる。 . 晶析は通常攪拌下に行うのが好ましく、 単位容積当たりの攪拌強度は特に制 限されないが、 例えば、 0. 05 kWZm3以上、 好ましくは 0. 1 kWZm3以 上、 より好ましくは 0. 3 kW/m3以上の攪拌下で析出させるのが好ましい。
晶析終了後は、 遠心分離、 加圧濾過、 減圧濾過等の一般的な固液分離を用い て結晶を分離し、 必要に応じて、 例えば、 脂肪族炭化水素系溶剤 (例えば、 へキ サンやヘプタン等) で洗浄することができる。 洗浄に際しては、 析出した結晶の 洗浄液への溶解による損失を低減する為に、 上記洗浄溶剤を例えば 0 °c以下の低 温に冷却しておいてもよい。 さらに、 このようにして得られた 2位にチォ基を有 する光学活性カルボン酸 (5) の湿結晶は、 例えば、 50°C以下で乾燥すること により、 乾燥結晶として取得することができる。 言うまでもなく、 上記乾燥は、 例えば、 減圧下で実施しても良い。
上記のようにして得られる 2位にチォ基を有する光学活性カルボン酸 (5) は、 光学純度が 90 % e e以上、 好ましくは 95 % e e以上、 より好ましくは 9 8% e e以上の高い純度を有する。 なお、 上記 2位にチォ基を有する光学活性力 ルボン酸 (5) は、 (R) 体であっても、 (S) 体であっても良い。
このようにして高純度の 2位にチォ基を有する光学活性カルボン酸 (5) の 遊離酸を結晶として採取することができるが、 必要に応じて、 上記 2位にチォ基 を有する光学活性カルボン酸 (5) を晶析に供する前に、 一旦 2位にチォ基を有 する光学活性カルボン酸 (5) を金属塩又は塩基との塩として採取し、 純度を高 めておいても良い。
次に、 上記 2位にチォ基を有する光学活性カルボン酸 (5) を金属塩又は塩 基との塩として晶析する方法について説明する。
上記 2位にチォ基を有する光学活性カルボン酸 (5 ) の金属塩又は塩基との 塩としては、 特に制限されず、 例えば、 アルカリ金属塩、 アルカリ土類金属塩等 の金属塩;アルキルアミン塩、 アルキレンジァミン塩、 ァラルキルアミン塩、 ァ リールアミン塩、アミノ酸エステルとの塩、アミノ酸アミ ドとの塩等のアミン塩; アンモニゥム塩等を挙げることができる。
具体的には、 例えば、 2位にチォ基を有する光学活性カルボン酸 (5 ) のリ チウム塩、 ナトリウム塩、 カリウム塩、 セシウム塩、 マグネシウム塩、 カルシゥ ム塩、 シクロへキシルァミン塩、 ジシクロへキシルァミン塩、 エチレンジァミン 塩、 1一フエニルェチルァミン塩、 1一 (1一ナフチル) ェチルァミン塩、 ベン ジルァミン塩、 ァニリン塩、 フエ二ルァラニンメチルエステル塩、 フエ二ルァラ ニンェチルエステル塩、 フエニルグリシンメチルエステル塩、 フエ二ルァラニン アミ ド塩、フエニルグリシンアミ ド塩、アンモニゥム塩等を挙げることができる。
なかでも、 カリウム塩等のアルカリ金属塩、 シクロへキシルァミン、 ジシク 口へキシルァミン塩等のアルキルアミン塩、 1 _フエニルェチルァミン塩等のァ ラルキルアミン塩が好ましい。
2位にチォ基を有する光学活性カルボン酸 (5 ) を金属塩又は塩基との塩と する為に使用する塩基としては特に制限されず、例えば、アルカリ金属水酸化物、 アルカリ金属炭酸塩、 アルカリ金属炭酸水素塩、 アルカリ土類金属水酸化物、 ァ ルカリ土類金属炭酸塩、 アルキルァミン、 アルキレンジァミン、 ァラルキルアミ ン、 ァリールァミン、 アミノ酸エステル、 アミノ酸アミ ド、 アンモニア等が好ま しく挙げられる。
具体的には、例えば、水酸化リチウム、水酸化ナトリゥム、水酸化力リウム、 炭酸リチウム、 炭酸ナトリウム、 炭酸カリウム、 炭酸セシウム、 炭酸水素ナトリ ゥム、 炭酸水素カリウム、 水酸化マグネシウム、 水酸化カルシウム、 炭酸マグネ シゥム、 炭酸カルシウム、 シクロへキシルァミン、 ジシクロへキシルァミン、 ェ チレンジァミン、 1—フエニルェチルァミン、 1— ( 1—ナフチル) ェチルアミ ン、 ベンジ/レアミン、 ァニリン、 フエニノレアラニンメチノレエステル、 フエニノレア ラニンェチノレエステノレ、 フエ-ノレグリシンメチノレエステノレ、 フエ二ノレグリシンェ チルエステル、 フエ二ルァラニンアミ ド、 フエ-ルグリシンアミ ド、 アンモニア 等を挙げることができる。
なかでも、 水酸化カリウム等のアルキル金属水酸化物、 シクロへキシルアミ ン、 ジシクロへキシルァミン等のアルキルァミン、 1一フエニルェチルァミン等 のァラルキルァミンが好ましい。
上記塩基の使用量としては、 2位にチォ基を有する光学活性カルボン酸(5 ) に対して 1〜2当量で好適に実施することができるが、 好ましくは 0 . 8〜1 . 4当量、 より好ましくは 0 . 8〜1 . 2当量である。 なお、 上記塩基はそのまま 添加しても、 他の溶剤に溶解して溶液として添カ卩してもよい。
2位にチォ基を有する光学活性カルボン酸 (5 ) の金属塩又は塩基との塩の 晶析は、 2位にチォ基を有する光学活性カルボン酸 (5 ) と上記塩基を混合する ことにより行うことができるが、 さらに、 例えば、 冷却晶析法、 濃縮晶析法、 溶 媒置換を用いる晶析法、 貧溶剤を混合することによる晶析法、 塩析法等の一般に 用いられる晶析法を、 単独又は適宜組み合わせて実施することができる。 なお、 本晶析では必要に応じて種晶を添加することもできる。
上記晶析法は、 通常、 溶剤存在下にて実施される。 溶剤としては、 特に制限 されないが、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤等の炭化水素系溶剤、 エステル系溶剤、 アルコール系溶剤、 エーテル系溶剤、 水等を挙げることができ る。
脂肪族炭化水素系溶剤としては、 特に制限されないが、 好ましくは炭素数 5 〜1 2、 より好ましくは炭素数 5〜 8の脂肪族炭化水素系溶剤であり、 例えば、 ペンタン、へキサン、ヘプタン、メチルシクロへキサン等を挙げることができる。 なかでも炭素数 6又は 7の脂肪族炭化水素系溶剤、 具体的には、 へキサン、 ヘプ タンが好ましい。
芳香族炭化水素系溶剤としては、 特に制限されないが、 好ましくは炭素数 6 ~ 1 2、 より好ましくは炭素数 6〜1 0、 さらに好ましくは炭素数 6〜8の芳香 族炭化水素系溶剤であり、 例えば、 ベンゼン、 トルエン、 キシレン等を挙げるこ とができる。 なかでも、 炭素数 7又は 8の芳香族炭化水素系溶剤、 具体的には、 トルエン、 キシレンが好ましく、 とりわけトルエンが好適に用いられる。
エステル系溶剤としては、 特に制限されないが、 好ましくは炭素数 2〜 8、 より好ましくは炭素数 4〜 6のエステルであり、 例えば、 酢酸ェチル、 酢酸 n— プロピル、 酢酸イソプロピル、 酢酸 n—ブチル、 酢酸 t e r t一ブチル等が挙げ られ、 なかでも酢酸ェチルが好ましい。
アルコール系溶剤としては、特に制限されないが、好ましくは炭素数 1〜6、 より好ましくは炭素数 1〜4のアルコールであり、 例えば、 メタノール、 ェタノ ール、 n—プロパノール、 イソプロパノール、 ブタノール等が挙げられ、 なかで もメタノールが好ましレ、。
エーテル系溶剤としては、 特に制限されないが、 好ましくは非環状エーテル 系溶剤を挙げることができる。 非環状エーテル系溶剤としては、 例えば、 メチル t e r t一ブチルエーテル、 ジプチルエーテル等を挙げることができる。
上記溶剤は単独で用いても良いが、 2種以上の混合溶剤として使用すること もできる。
晶析温度は、特に制限されないが、通常 6 0 °C以下、好ましくは 4 0 °C以下、 より好ましくは 2 0 °C以下であり、下限は晶析液の固化温度である。好ましくは、 一 2 0〜4 0 °C、 より好ましくは一 1 0〜2 0 °Cで好適に実施できる。
晶析時間は、 特に制限されないが、 好ましくは 1〜1 0 0時間、 より好まし くは 1〜 4 8時間、 さらに好ましくは 1〜 2 4時間である。
また、 結晶化に際しては必要に応じ種晶を添加して核化を促進させることが できる。
晶析は通常攪拌下に行うのが好ましく、 単位容積当たりの攪拌強度は特に制 限されないが、 例えば、 0 . 0 5 k WZm 3以上、 好ましくは 0 . 1 k WZm 3以 上、 より好ましくは 0 . 3 k WZm 3以上の攪拌下で析出させるのが好ましい。
上記晶析法によって析出した 2位にチォ基を有する光学活性カルボン酸 ( 5 ) の金属塩又は塩基との塩は、 例えば、 加圧濾過、 遠心分離等の分離操作に より結晶として取得することができる。 また、 上記 2位にチォ基を有する光学活 性カルボン酸 (5 ) の金属塩又は塩基との塩は、 上記有機溶剤や水を用いて洗浄 し、 純度を高めても良い。
このようにして得られた上記 2位にチォ基を有する光学活性カルボン酸 ( 5 ) の金属塩又は塩基との塩は、 解塩する (例えば、 塩酸や硫酸等の鉱酸等、 2位にチォ基を有する光学活性カルボン酸 (5 ) よりも酸性度の高い酸を用いて 中和する) ことにより、 2位にチォ基を有する光学活性カルボン酸 (5 ) の遊離 酸に変換することができる。 この 2位にチォ基を有する光学活性カルボン酸(5 ) の遊離酸は、有機溶剤に抽出し、さらに必要に応じて溶剤を除去することにより、 2位にチォ基を有する光学活性カルボン酸 (5 ) の濃縮物又はその溶液として採 取することができる。
抽出に使用する上記有機溶剤としては、 特に制限されないが、 好ましくは脂 肪族炭化水素系溶剤、 芳香族炭化水素系溶剤、 ハロゲン化炭化水素系溶剤等の炭 化水素系溶剤、 エステル系溶剤、 アルコール系溶剤、 エーテル系溶剤を挙げるこ とができる。
脂肪族炭化水素系溶剤としては、 特に制限されないが、 好ましくは炭素数 5
〜 1 2、 より好ましくは炭素数 5〜 8の脂肪族炭化水素系溶剤であり、 例えば、 ペンタン、へキサン、ヘプタン、メチルシク口へキサン等を挙げることができる。 なかでも炭素数 6又は 7の脂肪族炭化水素系溶剤が好ましく、例えば、へキサン、 ヘプタン、 メチルシクロへキサンが好適に用いられる。
芳香族炭化水素系溶剤としては、 特に制限されないが、 好ましくは炭素数 6
〜1 2、 より好ましくは炭素数 6 ~ 1 0、 さらに好ましくは炭素数 6〜 8の芳香 族炭化水素系溶剤であり、 例えば、 ベンゼン、 トルエン、 キシレン等を挙げるこ とができ、 なかでもトルエンが好適に用いられる。
ハロゲン化炭化水素系溶剤としては、 特に制限されないが、 好ましくは炭素 数 1〜6、 より好ましくは炭素数 1 ~ 4のハロゲン化炭化水素系溶剤、 さらに好 ましくは炭素数 1〜 4の塩素化炭化水素系溶剤が好ましく、 なかでも塩化メチレ ンが特に好適に用いられる。
エステル系溶剤としては、 特に制限されないが、 好ましくは炭素数 2〜8、 より好ましくは炭素数 4〜 6のエステルであり、 例えば、 酢酸ェチル、 酢酸 n— プロピル、 酢酸イソプロピル、 酢酸 n—プチル、 酢酸 t e r t—ブチル等を挙げ ることができ、 なかでも酢酸ェチルが好ましい。
アルコール系溶剤としては、特に制限されないが、好ましくは炭素数 1〜6、 より好ましくは炭素数 1〜4のアルコールであり、 例えば、 メタノール、 ェタノ ール、 n—プロパノール、ィソプロパノール、ブタノール等を挙げることができ、 なかでもメタノールが好ましい。
エーテル系溶剤としては、 特に制限されないが、 好ましくは非環状エーテル 系溶剤を挙げることができる。 非環状エーテル系溶剤としては、 好ましくは、 メ チル t e r t _プチルエーテル、 ジブチルエーテル等を挙げることができる。
言うまでもなく、 上記酸による中和 (解塩) は、 上記有機溶剤の共存下に実 施することができる。
なお、 2位にチォ基を有する光学活性カルボン酸 (5 ) の金属塩又は塩基と の塩が、 アミン塩、 とりわけ高価な 1一フエ-ルェチルァミン、 1 _ ( 1—ナフ チル) ェチルァミン、 アミノ酸エステル、 及びアミノ酸アミド等の光学活性アミ ン塩の場合、 上記アミンは一般的な方法で遊離体のァミンとして回収し、 再利用 するのが好ましい。
具体的には、 例えば、 2位にチォ基を有する光学活性カルボン酸 (5 ) のァ ミン塩に上記解塩操作を行って得られるァミンと酸との塩を、 固液分離あるいは 水に抽出することによって回収し、 水と有機溶剤の混合溶剤又は有機溶剤中で塩 基にて中和することにより、遊離体のァミンとして有機層に抽出することができ、 さらに必要に応じ、 溶剤を除去することにより、 遊離体ァミン又はその溶液とし て得ることができる。
このようにして採取した 2位にチォ基を有する光学活性カルボン酸 (5 ) の 金属塩又は塩基との塩、 又は、 その遊離酸は、 光学純度が 9 5 % e e以上、 好ま しくは 9 7 % e e以上、 より好ましくは 9 9 °/0 e e以上の高い純度を有する。
言うまでもなく、 このようにして得られた 2位にチォ基を有する光学活性力 ルボン酸 (5 ) を用いて、 上記晶析法に基づき再結晶化した場合、 さらに純度が 向上した 2位にチォ基を有する光学活性カルボン酸 (5) の遊離酸を取得するこ とができる。 具体的には、 光学純度が 9 9 % e e以上、 好ましくは 9 9. 5%e e以上、 さらに好ましくは 99. 8% e e以上の高い純度を有する 2位にチォ基 を有する光学活性カルボン酸 (5) を取得できる。
なお、 本発明により製造できる代表的な 2位にチォ基を有する光学活性カル ボン酸 (5) としては、 R1が置換基を有していてもよい炭素数 6〜 14のァリ —ル基であるものが好ましく、 置換基を有していても良いフエニル基がより好ま しく、 フエニル基がさらに好ましく、 また、 R3が置換基を有していても良い炭 素数 1〜1 5のアルキル基であるものが好ましく、 ドデシル基がより好ましく、 具体的には、 光学活性 2—ドデシルチオフ エル酢酸である。
以上の説明及び後述の実施例の記載から明らかなように、 本発明の方法によ れば、 高い光学純度を有する 2位にチォ基を有する光学活性化合物 (4) を効率 的に取得することができる。
発明を実施するための最良の形態
以下に実施例を挙げて本発明を詳細に説明するが、 本発明はこれらに限定さ れるものではない。
(実施例 1 ) (R) — 2—クロ口フエニル酢酸
テトラヒドロフラン (THF) 50 gに L一 (一) 一マンデル酸 ( 5 g , 3 2. 91111110 1 ) 及び1^, N—ジメチルホルムアミ ド (0. 48 g, 6. 6 mm o 1) を添加し、 内温 20 °Cに調整した。 次に、 塩化チォニル (1 1. 7 g, 9 8. 3mmo 1 ) をゆっくり添カ卩し、 20°Cでー晚攪拌した。 反応液に水 20m 1及びトルエン 50m lを加えてしばらく攪拌し、 分液後、 水層を廃棄した。 得 られた有機層を水 20m 1で 2回洗浄し、 有機層を濃縮し、 黄色の濃縮物 ( (R) 一 2—クロ口フエエル酢酸 5. 3 7 g、 収率 95. 8%) を得た。 HP LC分析 にて光学純度を評価した結果、 92. 4%e eであった。
上記濃縮液にトルエン 100m lを入れ、 約半分量に減圧濃縮後、 再度トル ェン 50m lを入れて、 約半分量に減圧濃縮し、 内温 5 °Cに冷却し攪拌しておく と、 (R) — 2—クロ口フエニル酢酸の結晶が析出した。 桐山ロートで減圧ろ過 し、 内温一 1 5°Cに冷却したトルエン l m 1で 2回洗浄した。 得られた湿結晶を 減圧乾燥し、 (R) — 2—クロ口フエニル酢酸の結晶 2. 2 7 g (収率 4 2. 3 %) を取得した。 HP L C分析にて光学純度を評価すると、 9 9. 5% e eであり、 又、 化学純度は 9 9. 1 a r e a ° /。であった。
XH-NMR (40 OMH z , CDC 1 3) δ ( p m) 5. 3 7 ( 1 H) , 7. 34- 7. 5 3 (5 H, m) , 1 0. 6 8 ( 1 H) 。
なお、 2—クロ口フエエル酢酸の定量、 及ぴ化学純度測定、 また (R) - 2 一クロ口フ -ル酢酸の光学純度の評価は、 以下の分析系を用いて行った。
[カラム ダイセル化学製 {C h i r a l p a k AD 2 5 0 X 4. 6mm } X 2、 移動相:へキサン/イソプロパノール/トリフルォロ酢酸 = 9 5Z5/ 0. 1、 流速: 0. 5 m 1 / i n、 検出: UV 2 1 0 n m、 カラム温度: 1 0°C、 保持時間: R体 44. 6分、 S体 5 1. 8分]
なお、 上述の化学純度とは、 上記分析系において、
化学純度 = (2—クロ口フエニル酢酸の面積値/検出された全化合物の面積値の 和) X 1 00 (a r e a %)
で表される。
(実施例 2 ) (R) 一 2—クロ口フエニル酢酸
実施例 1に準じた方法で別途取得した (R) — 2—クロ口フエニル酢酸 (1 0. 9 g, 6 3. 9 mm o 1、 化学純度 9 3. 8 a r e a %) の酢酸ェチル溶液 (淡赤色に着色) 1 0 9 gに水 3 0m 1を加えて、 内温 2 0°Cに調整し、 3 0 °/0 水酸化ナトリウム水溶液 7. 8 gを添加して 3 0分攪拌後、 分液して水層を取得 した。 酢酸ェチル 20m lで洗浄後、 内温 5 °Cに冷却し、 3 5 %塩酸を 6. 6 g 添加して 3 0分攪拌後、分液して有機層を取得した。これを水 2 5m lで洗浄後、 減圧濃縮して、 (R) — 2—クロ口フエニル酢酸(9. 2 g, 5 3. 9mmo l、 9 2. 5 % e e) を含有する無色透明の濃縮物を得た。 H P LC分析で化学純度 を評価した結果、 9 5. 5 a r e a %であった。
上記濃縮液を内温 5°Cに冷却し静置しておくと、 (R) — 2—クロ口フエ二 ル酢酸の結晶が析出した。 桐山ロートで減圧ろ過し、 内温一 1 5°Cに冷却した酢 酸ェチル lm 1で 2回洗浄した。 得られた湿結晶を減圧乾燥し、 (R) —2—ク ロロフェニル酢酸の結晶 4. 75 g (収率 5 1. 6%) を取得した。 HPLC分 析にて光学純度を評価すると、 98. 3%e eであり、 又、 化学純度は 99. 5 a r e a %でめつ 7こ。
(実施例 3 ) (S) — 2—ドデシルチオフエニル酢酸
L—マンデル酸 (5. 0 g , 3 2. 9 mm o 1 ) に THF 5 Om 1及び N, N—ジメチルホルムアミド 0. 48 g (6. 6mmo 1 ) を添加した。 内温 20°C に調整後、 塩化チォニル 1 1. 7 g (98. 7mmo 1 ) をゆっくり添加し、 反 応液を 20 °Cで 22時間攪拌した。 水 20 m 1を添加して、 反応を停止し、 トル ェン 10 Om lを添加して、 分液した。 水層を廃棄し、 得られた有機層を水 1 0 m lで 2回洗浄し、 有機層を減圧濃縮して溶媒を留去し、 (R) _2—クロロフ ェニル酢酸の濃縮物 (5. 05 g , 29. 6mmo l , 収率 90°ん 94 % e e ) を得た。 1, 4 _ジォキサン 1 0 Om 1に、 炭酸力リウム 10. 2 g (74. 0 mmo 1 ) 及び 1—ドデシルチオール 1 0. 6m l (44. 4 mm o 1 ) を添加 した後、 (R) _ 2—クロ口フエニル酢酸の濃縮物をゆっくり添加し、 20°Cで 40時間攪拌した。 その結果、 光学純度 90 % e e (立体反転率 95. 77 %) 、 化学純度 93. 4 a r e a%の (S) — 2—ドデシルチオフ ニル酢酸 ( 7. 96 g , 23. 7 mmo 1 , 収率 80%) が得られた。
なお、 2—ドデシルチオフ エル酢酸の定量、 及び化学純度測定、 また (S) 一 2—ドデシルチオフエエル酢酸の光学純度の評価は、 以下の分析系を用いて行 つた。
[カラム ダイセル化学製 {C h i r a 1 p a k AD 250 X 4. 6mm } X 2、 移動相:へキサン Zイソプロパノール/トリフルォロ酢酸 = 95Z 5 Z 0. 1、 流速: 0. 5 m 1 i n、 検出: UV 2 10 n m、 カラム温度: 1 0°C、 保持時間: S体 30. 9分、 R体 27. 0分]
なお、 上述の化学純度とは、 上記分析系において、
化学純度 = (2—ドデシルチオフユニル酢酸の面積値 検出された全化合物 面積値の和) X 100 ( a r e a %) で表される。
(比較例 1 ) (S) 一 2—ドデシルチオフエニル酢酸
D—フエニルグリシン (1 9 g, 0. 0 6 6 m o 1 ) 及び KB r (3 1. 5 g , 0. 2 6 4m o 1 ) を 1 3 2m lの 2. 5 M硫酸 ( 0. 3 3 m o 1 ) に溶解し、 0 °Cに冷却後、 水 1 6. 5 m lに溶解した亜硝酸ナトリウム (9. 2 g, 0. 1 3 2mo 1 ) を添加した。 反応液を 0°Cで 3 0分攪拌後、 室温で 2時間攪拌した 。 反応液にトルエン 5 Om 1を加え、 分液した。 水層を廃棄し、 得られた有機層 を水 3 Om 1で 2回洗浄し、 有機層を減圧濃縮して溶媒を留去し、 (R) — 2— ブロモフエニル酢酸の濃縮物 (6. 4 g , 0. 0 3 Om o 1 ) を得た。 得られた (R) — 2—ブロモフエニル酢酸を THF 1 2 Om 1に溶解し、 0°Cに冷却した 。 水酸化力リウム (5. 9 g、 0. 0 9 O m o 1 ) を添加し、 1 5分後にドデシ ルチオール (1 8. O g、 0. 0 8 9 mo 1 ) を添加した。 反応液を室温まで徐 々に昇温し、 2 0時間攪拌した。 その結果、 収率 3 6 %で、 光学純度 2 % e eの (S) 一 2—ドデシルチオフエ-ル酢酸が得られた。
(実施例 4) (S) 一 2—ドデシルチオフエ二ル齚酸
炭酸カリウム 0. 2 O gに酢酸ェチル 2. 2 5 §及ぴ水0. 2 5 gを加え、 約 2 0°C下で、 ドデシルチオール 0. 0 9 gを添加し、 1時間攪拌した。続いて、 (R) — 2—クロ口フエニル酢酸(0. 2 5 g, 0. 1 4 6 mm o 1、 9 2. 0 % e ) を入れ、 2 0時間攪拌した。 その結果、 収率 9 2. 7%で、 化学純度 8 9 . 6 a r e a %、 光学純度 8 5. 1 % e e (立体反転率 9 1. 8 %) の ( S ) — 2—ドデシルチオフエニル酢酸が得られた。
(実施例 5 ) (S) - 2 -ドデシルチオフエニル酢酸
炭酸カリウム 0. 2 0 gに THF 2. 2 5 及ぴ水0. 2 5 §を入れ、 約2 0で 下で、 ドデシルチオール 0. 0 9 gを添加し、 1時間攪拌した。 続いて、 (R) 一 2—クロロフェニノレ酢酸 (0. 2 5 g , 0. 1 4 6 mm o 1、 9 2. 0 % e e ) を入れ、 2 0時間攪拌した。 その結果、 収率 9 0 ° /。で、 化学純度 9 2. 2 a r e a %、 光学純度 9 0. 5 % e e (立体反転率 9 7. 6 %) の (S) — 2—ドデ シルチオフエ二ル酢酸が得られた。 (実施例 6 ) (S) 一 2—ドデシルチオフエニル酢酸
炭酸カリウム 0. 20 gに、 THF l. 1 5 §、 酢酸ェチル1. 1 5 g及ぴ 水 0. 25 gを入れ、 約 20°C下で、 ドデシルチオール 0. 0 9 gを添カ卩し、 1 時間攪拌した。 続いて、 (R) — 2_クロ口フエニル酢酸 (0. 25 g, 0. 1 46mmo l、 92. 0 % e e ) を入れ、 20時間攪拌した。 その結果、 収率 9 2. 7%s 化学純度 9 5. 8 a r e a%、 光学純度 9 1. 8 % e e (立体反転率 99. 0%) の (S) — 2—ドデシルチオフエニル酢酸が得られた。
(実施例 Ί ) (S) 一 2—ドデシルチオフエエル酢酸
実施例 1の方法に準じて別途取得した (R) — 2—クロ口フエニル酢酸 3. 0 g (1 . 6 mm o 1、 92. 7 % e e ) の酢酸ェチル溶液 30 gにドデシルチオ ール 7. 1 g (35. 2mmo 1 ) を入れて攪拌した。 内温 20°Cに調整後、 水 4. 0 gに溶解した 8 5 %水酸化力リウム 5 · 8 gを 2時間かけて添加し、 1時 間攪拌した。 水 6 gを入れて 30分攪拌後、 分液して水層を廃棄した。 得られた 有機層に 35%塩酸を 2. 0 g入れ、 1時間攪拌後、 水層を廃棄し、 得られた有 機層を水 6 gで洗浄した。 有機層を減圧濃縮し、 (S) _2—ドデシルチオフエ ニル酢酸 5. 7 g (1 6. 9mmo 1 , 収率 96%) を含有する濃縮物 10 gを 得た。 HP LCにて光学純度を評価した結果、 9 1. 8 % e e (立体反転率 9 9 . 0%) であった。
(実施例 8 ) (S) - 2-ドデシルチオフエニル酢酸
別途取得した (S) — 2—ドデシルチオフエニル酢酸 10. 0 gを含有する 濃縮物 (T H F溶液) 1 3. 3 g (86. 5 % e e 化学純度は 67. 4 a r e a % (2—クロ口フエ -ル酢酸: 3. 3 a r e a %、 ドデシルチオール: 5. 7 6 a r e a %、 ジドデシルジスルフィ ド: 8. 8 a r e a %、 その他不純物: 1 4. 7 a r e a %) ) に、 ヘプタン 20. 0 gを入れ、 溶剤の留出がなくなるま で減圧濃縮を行った。 ヘプタン 20. 0 gを添加して、 溶剤の留出がなくなるま での減圧濃縮をさらに 2回行い、 (S) — 2—ドデシルチオフエニル酢酸の濃縮 物 14. 2 gを得た。 この濃縮物に、 種晶として別途取得した (S) — 2—ドデ シルチオフエニル酢酸の結晶を約 1 Omg添加して結晶化させ、 一晩 0°Cで攪拌 した。 これを桐山ロートで減圧ろ過し、 内温一 1 5°Cに冷却した。 得られた湿結 晶を 40°C下、 減圧乾燥し、 (S) — 2—ドデシルチオフエニル酢酸の結晶 6.
7 g (晶析収率 67%) を取得した。 HP LCにて光学純度を評価すると、 94. 5 % e eであり、又、化学純度は 9 9. 3 a r e a% (2—クロ口フエニル酢酸: 不検出、 ドデシルチオール:不検出、 ジドデシルジスルフイド:不検出、 その他 不純物: 0. 7 a r e a °/。) であった。
(実施例 9 ) (S) 一 2—ドデシルチオフエニル酢酸
実施例 7の方法に準じて別途取得した (S) — 2—ドデシルチオフ ニル酢 酸 77. 1 g (0. 229 mo 1 , 9 2. 2 % e e ) の酢酸ェチル溶液 250 g (化学純度は 9 1. 5 a r e a % (ジドデシルジスルフイ ド: 2. 8 a r e a %、 その他不純物 : 5. 7 a r e a°/。) ) に、 ヘプタン 1 38 gを入れ、 溶剤の留出 がなくなるまで減圧濃縮を行った。 ヘプタン 1 38 gを添加して、 溶剤の留出が なくなるまでの減圧濃縮をさらに 2回行い、 (S) _ 2—ドデシルチオフエニル 酢酸の濃縮物 (ヘプタン溶液) 1 54 gを得た。 この濃縮物を一旦 40°Cにあた ためた後、 ゆっくりと冷却し、 内温 3 3 °Cとなつた時点で、 種晶として別途取得 した( S )— 2 _ドデシルチオフェニル酢酸の結晶を約 10 m g添加したところ、 結晶が析出した。 同温度を 30分間維持した後、 再びゆっくりと温度を下げ、 内 温 5 °Cまで冷却した。 さらに 1時間攪拌した後、 桐山ロートで減圧ろ過し、 内温 一 1 5 °Cに冷却したヘプタン 46 m 1で洗浄し、 続いて上記冷ヘプタン 23m 1 で洗浄した後、 充分脱液し、 湿結晶 64 gを得た。 得られた湿結晶を 40 °C下、 減圧乾燥し、 (S) — 2—ドデシルチオフエニル酢酸の結晶 63 g (晶析収率 8 1 %) を取得した。 H P L Cにて光学純度を評価すると、 98. 9 °/0 e eであり 、 又、 化学純度は 99. 7 a r e a % (ジドデシルジスルフィド:不検出、 その 他不純物: 0. 3 a r e a °/。) であった。
^-NMR (40 OMH z , CDC 13) δ (p p m) 0. 88 (3 H, t , J = 6. 6H z) , 1. 10- 1. 6 3 (20H, m) , 2. 56 (2H, t q , J = 1 2. 0 H z , 6. 8 H z ) , 4. 56 ( 1 H, s ) , 7. 26— 7. 4
8 (5H, m) 。 (実施例 10 ) (S) 一 2—ドデシルチオフエニル酢酸
実施例 7の方法に準じて別途取得した ( S ) — 2—ドデシルチオフエニル酢 酸 95. 6 g (0. 284m o 1 , 9 2. 2 % e e、 化学純度は 80. 7 a r e a % (ジドデシルジスノレフィ ド: 1 5. 5 a r e a %、 その他不純物: 3. 8 a r e a %) ) の濃縮物(ジドデシルジスルフィ ド溶液) 39 1. 1 gを内温 30 °C に温調し、 徐々に冷却した。 内温 20°Cまで冷却した時点で、 種晶として別途取 得した ( S ) - 2-ドデシルチオフエニル酢酸の結晶約 10 m gを添加したとこ ろ、 結晶の析出を確認した。 同温度で約 30分攪拌後、 引き続き、 ゆっくりと温 度を下げ、 内温一 5°Cまで冷却し、 一晩攪拌した。 桐山ロートを用いて、 減圧ろ 過し、 約 _ 1 5 °Cに冷却したへプタン 23 m 1で 2回洗浄し、 充分脱液した。 得 られた湿結晶 73 gを 40 °C下、 減圧乾燥し、 ( S ) — 2—ドデシルチオフェ二 ル酢酸の結晶 72 g (晶析収率 75%) を取得した。 HP LCにて光学純度を評 価すると 98. 9 % e eであり、 又、 化学純度は 99. 7 a r e a % (ジドデシ ルジスルフィ ド:不検出、 その他不純物: 0. 3 a r e a °/。) であった。
( 実施例 1 1 ) (S) — 2—ドデシルチオフエニル酢酸ジシクロへキシルァ ミン塩
別途取得した (S) — 2—ドデシルチオフエニル酢酸 1 · 0 g (2. 9mm o 1、 86. 5 % e e、 化学純度は 70. 0 a r e a % (2—クロ口フエニル酢 酸: 1. 8 a r e a %、 ドデシノレチォーノレ : 6. 0 a r e a %、 ジドデシノレジス ノレフィ ド: 9. 1 a r e a %、 その他不純物 : 1 3. 1 a r e a %) ) のへプタ ン溶液 10 gに、 ジシクロへキシルァミン 0. 490 g (2. 7 mm o 1 ) を入 れて攪拌した。 内温 20°Cに調整後、 一晩攪拌したところ結晶が析出した。 これ を桐山ロートで減圧ろ過し、 一 1 5°Cに冷却したヘプタン lm 1で 2回洗浄し、 湿結晶 0. 7 1 2 gを得た。 得られた湿結晶を 40°C下、 減圧乾燥し、 (S) - 2—ドデシルチオフエニル酢酸ジシク口へキシルァミン塩の結晶 0.700 g (晶 析収率 70. 0 %) を取得した。 H P L Cにて光学純度を評価すると 9 9. 9% e e以上であり、又、化学純度は 98. 9 a r e a % (2—クロ口フエ-ル酢酸: 不検出、 ドデシルチオール:不検出、 ジドデシルジスルフィド:不検出、 その他 不純物: 1. 1 a r e a %) であった。
一 NMR (40 OMH z , CD C 13) δ ( p p m) 0. 88 (3H, t, J = 6. 6Hz) , 1. 00-1. 42, 1. 44— 1. 60, 1. 68, 1. 8 7, 2. 84 (44H, m) , 2. 34 (2H, t q, J = 1 2. 3 H z , 7 . 3 H z ) , 4. 46 (1 H, s ) , 7. 14- 7. 54 (5 H, m) 。
なお、 2—ドデシルチオフエ-ル酢酸ジシク口へキシルァミン塩の定量、 及 び化学純度測定、 また (S) — 2—ドデシルチオフエニル酢酸ジシクロへキシル ァミン塩の光学純度の評価は、 以下の分析系を用いて行った。
[カラム ダイセル化学製 {Ch i r a 1 a k AD 250 X 4. 6mm } X 2、 移動相:へキサンノィソプロパノール Zトリフルォロ酢酸 = 9 5/5/ 0. 1、 流速: 0. 5m 1 Zm i n、 検出: UV 210 n m、 カラム温度: 1 0°C、 保持時間: S体 30. 7分]
なお、 上述の化学純度とは、 上記分析系において、
化学純度 = (2—ドデシルチオフ ニル酢酸の面積値/検出された全化合物の面 積値の和) X 100 (a r e a %)
で表される。
産業上の利用可能性
本発明の方法により、 医薬品等の製造上重要な 2位にチォ基を有する光学活 性化合物を、 高い光学純度で、 経済的且つ効率的に製造することができる。

Claims

一般式 (1) ; 0H
(1)
RJ 請 R 2
(式中、 R1は、 置換基を有していても良い炭素数 1〜6のアルキル基、 置換基 を有していても良い炭素数 6〜14のァリー/レ基、 置換基を有していても良い炭 素数 7〜1 5のァラルキル基を表し、 R2は拿、 カルボキシル基、 アルキルォキシ カルポニル基、 ァラルキルォキシカルボニル基、囲ハロゲン化ァシル基、 二トリル 基を表す) で表される 2位にヒドロキシル基を有する光学活性化合物を、 2位の 立体配置の反転を伴って塩素化することにより、 一般式 (2) ;
Figure imgf000036_0001
(式中、 R R2は前記と同じ) で表される 2位に塩素原子を有する光学活性 化合物に変換し、 続いて、 2位に塩素原子を有する光学活性化合物 (2) を、 一 般式 (3) ;
MSR3 (3)
(式中、 R3は、 置換基を有していても良い炭素数 1〜1 5のアルキル基、 置換 基を有していても良い炭素数 6〜14のァリール基、 又は、 置換基を有していて も良い炭素数 7~1 5のァラルキル基を示し、 Mは、 アルカリ金属又はアルカリ 土類金属を示す) で表されるチォ金属塩と反応させることにより、 2位の立体配 置の反転を伴ってチォ基を導入することを特徴とする、 一般式 (4) ; (4)
j 人 ,
(式中、 R R2、 R3は前記と同じ) で表される 2位にチォ基を有する光学 活性化合物の製造法。
2. R1が置換基を有していても良いフエニル基である請求の範囲第 1項記載の 製造法。
3. R 2がカルボキシル基である請求の範囲第 1又は 2項記載の製造法。
4. R3が置換基を有していても良い炭素数 1〜1 5のアルキル基である請求の 範囲第 1〜 3項のいずれかに記載の製造法。
5. R1がフエニル基、 R2がカルボキシル基、 R3がドデシル基である請求の範 囲第 1〜 4項のいずれかに記載の製造法。
6. 一般式 (2) ;
Figure imgf000037_0001
(式中、 R1は、 置換基を有していても良い炭素数 1〜6のアルキル基、 置換基 を有していても良い炭素数 6〜14のァリール基、 置換基を有していても良い炭 素数 7〜 1 5のァラルキル基を表し、 R2は、 カルボキシル基、 アルキルォキシ 力ルポ-ル基、 ァラルキルォキシカルボニル基、 ハロゲン化ァシル基、 二トリノレ 基を表す) で表される 2位に塩素原子を有する光学活性化合物 (2) を、 水存在 下に、 一般式 (3) ;
MSR3 (3)
(式中、 R3は、 置換基を有していても良い炭素数 1〜1 5のアルキル基、 置換 基を有していても良い炭素数 6〜 14のァリール基、 又は、 置換基を有していて も良い炭素数 7〜1 5のァラルキル基を示し、 Mは、 アルカリ金属又はアルカリ 土類金属を示す) で表されるチォ金属塩と反応させて、 2位の立体配置の反転を 伴ってチォ基を導入することを特徴とする一般式 (4) ;
Figure imgf000038_0001
(式中、 R R2、 R3は前記と同じ) で表される 2位にチォ基を有する光 学活性化合物の製造法。
7. さらに極性有機溶剤を併用する請求の範囲第 6項記載の製造法。
8. 極性有機溶剤が、 エステル系溶剤、 エーテル系溶剤、 ケトン系溶剤、 含窒素 系溶剤、 含硫黄系溶剤、 及び、 アルコール系溶剤からなる群より選択される 少なくとも 1種である請求の範囲第 7項記載の製造法。
9. 水の使用量は、 水 Z (水 +極性有機溶剤) の容量比として
0. 0 1〜0. 90である請求の範囲第 7又は 8項記載の製造法。
10. —般式 (3) で表されるチォ金属塩の Mがカリウムである請求の範囲第 6 〜 9項のいずれかに記載の製造法。
1 1. —般式 (4) において R2がカルボキシル基である場合、 生成した 2位に チォ基を有する光学活性カルボン酸を金属塩として、 水と、 エステル系溶 剤及び Z又はエーテル系溶剤とからなる混合溶剤系にて処理することによ り、 前記 2位にチォ基を有する光学活性カルボン酸を金属塩として有機層 に抽出又は分配する、請求の範囲第 6〜 10項のいずれかに記載の製造法。
1 2. エステル系溶剤及び 又はエーテル系溶剤が、 酢酸ェチル及び 又はテト ラヒドロフランである請求の範囲第 1 1項記載の製造法。
1 3. 2位の立体配置の反転を伴ってチォ基を導入する際の立体反転率が 90% 以上である請求の範囲第 6〜 1 2項のいずれかに記載の製造法。
14. 一般式(2) で表される 2位に塩素原子を有する光学活性化合物(2) は、 一般式 (1) ; OH
(1)
、R2
(式中、 R1 R2は、 前記と同じ) で表される 2位にヒドロキシル基を有する 光学活性化合物を、 2位の立体配置の反転を伴つて塩素化することにより得られ たものである請求の範囲第 6〜 1 3項のいずれかに記載の製造法。
1 5. R1が置換基を有していても良いフエニル基である請求の範囲第 6〜14 項のいずれかに記載の製造法。
1 6. R2がカルボキシル基である請求の範囲第 6〜 1 5項のいずれかに記載の
1 7. R3が置換基を有していても良い炭素数 1〜1 5のアルキル基である請求 の範囲第 6〜 1 6のいずれかに記載の製造法。
1 8. R1がフエ-ル基、 R2がカルボキシル基、 R3がドデシル基である請求の 範囲第 6~1 7項のいずれかに記載の製造法。
1 9. 不純物として少なくともその光学異性体を含有する一般式 (5) ;
Figure imgf000039_0001
(式中、 R1は、 置換基を有していても良い炭素数 1~6のアルキル基、 置 換基を有していても良い炭素数 6〜14のァリール基、 又は、 置換基を有 していても良い炭素数 7〜15のァラルキル基を示し、 R3は、 置換基を 有していても良い炭素数 1〜1 5のアルキル基、 置換基を有していても良 い炭素数 6〜14のァリール基、 又は、 置換基を有していても良い炭素数 7〜1 5のァラルキル基を示す) で表される 2位にチォ基を有する光学活 性カルボン酸を、 脂肪族炭化水素系溶剤及び Z又は含硫黄系溶剤からなる 溶剤を用いて晶析することを特徴とする、 2位にチォ基を有する光学活性 カルボン酸の製造法。
2 0 . 2位にチォ基を有する光学活性カルボン酸を、 その遊離酸として晶析する ことを特徴とする請求の範囲第 1 9項記載の製造法。
2 1 . 脂肪族炭化水素系溶剤が、 へキサン、 ヘプタン及びメチルシクロへキサン からなる群より選択される少なくとも 1種である請求の範囲第 1 9又は 2 0項記載の製造法。
2 2 . 含硫黄系溶剤が、 アルキルチオール、 ジアルキルスルフイ ド、 ジアルキル ジスルフィ ド、 及び、 ポリアルキルポリスルフィ ドからなる群より選択さ れる少なくとも 1種である請求の範囲第 1 9〜2 1項のいずれかに記載の 製造法。
2 3 . 2位にチォ基を有する光学活性カルボン酸を、 塩基との塩として晶析する 請求の範囲第 1 9項記載の製造法。
2 4 . 2位にチォ基を有する光学活性カルボン酸を、 アミン塩として晶析する請 求の範囲第 2 3項記載の製造法。
2 5 . 2位にチォ基を有する光学活性カルボン酸のアミン塩が、 2位にチォ基を 有する光学活性カルボン酸のアルキルアミン塩である請求の範囲第 2 4項 記載の製造法。
2 6 . 2位にチォ基を有する光学活性カルボン酸を、 金属塩として晶析する請求 の範囲第 1 9項記載の製造法。
2 7 . 2位にチォ基を有する光学活性カルボン酸を、 アルカリ金属塩として晶析 する請求の範囲第 2 6項記載の製造法。
2 8 . —般式 (5 ) で表される 2位にチォ基を有する光学活性カルボン酸は、 一 般式 (7 ) ;
Figure imgf000040_0001
(式中、 R 1は、 置換基を有していても良い炭素数 1〜6のアルキル基、 置換基を有していても良い炭素数 6 ~ 1 4のァリール基、 置換基を有し ていても良い炭素数 7〜1 5のァラルキル基を示す) で表される光学活 性 2—ヒドロキシカルポン酸を、 2位の立体配置の反転を伴って塩素化 することにより得られた、 一般式 (6) ;
C1
(6)
R丄 z 、COOH
(式中、 R1は、 前記と同じ) で表される光学活性 2—クロロカルボン 酸を、 一般式 (3) ;
MSR3 (3)
(式中、 R3は、 前記と同じであり、 Mは、 アルカリ金属又はアル力 リ土類金属を示す) で表されるチォ金属塩と反応させて、 2位の立 体配置の反転を伴ってチォ基を導入したものである請求の範囲第 1 9〜27項のいずれかに記載の製造法。
29. 光学活性 2—クロロカルボン酸が、 光学活性 2 _クロロカルボン酸の塩基 との塩として一旦水層に移行させた後、 再度、 光学活性 2_クロロカルポ ン酸を有機溶剤層に移行させて水層を除く一連の操作により、 化学純度を 向上させたものである請求の範囲第 28項に記載の製造法。
30. R1がフエニル基、 R 3がドデシル基である請求の範囲第 1 9〜29項のい ずれかに記載の製造法。
3 1. 不純物として少なくともその光学異性体を含有する一般式 (6) ;
Figure imgf000041_0001
(式中、 R1は、置換基を有していても良い炭素数 1〜6のアルキル基、 置換基を有していても良い炭素数 6〜14のァリール基、 又は、 置換 基を有していても良い炭素数 7〜 1 5のァラルキル基を示す) で表さ れる光学活性 2—クロロカルボン酸を、 芳香族炭化水素系溶剤及ぴノ 又はエステル系溶剤を用いて晶析することにより、 光学純度が向上し た結晶として取得することを特徴とする光学活性 2—クロロカルボン 酸の製造法。
3 2 .芳香族炭化水素系溶剤がトルエンである請求の範囲第 3 1項記載の製造法。
3 3 . エステル系溶剤が酢酸ェチルである請求の範囲第 3 1項記載の製造法。
3 4 . 晶析に付する光学活性 2—クロロカルボン酸が、 光学活性 2—クロ口カル ボン酸の塩基との塩として一旦水層に移行させた後、 再度、 光学活性 2— クロロカルボン酸を有機溶剤層に移行させて水層を除く一連の操作により、 化学純度が向上したものである請求の範囲第 3 1〜3 3項のいずれかに記 載の製造法。
3 5 . 上記晶析により得られた光学活性 2—クロロカルボン酸の光学純度が 9
7 % e e以上である請求の範囲第 3 1〜 3 4項のいずれかに記載の製造法。
3 6 . 一般式 ( 6 ) で表される光学活性 2—クロ口カルボン酸は、一般式 ( 7 ) ;
Figure imgf000042_0001
(式中、 R 1は、 前記と同じ) で表される光学活性 2—ヒドロキシカルボン 酸を、 2位の立体配置の反転を伴って塩素化することにより得られたもの である請求の範囲第 3 1〜3 5項のいずれかに記載の製造法。
3 7 . R 1がフエニル基である請求の範囲第 3 1〜3 6項のいずれかに記載の製 造法。
PCT/JP2004/002231 2003-02-28 2004-02-25 2位に置換基を有する光学活性化合物の製造法 WO2004076404A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005502911A JPWO2004076404A1 (ja) 2003-02-28 2004-02-25 2位に置換基を有する光学活性化合物の製造法
US10/546,823 US20060247458A1 (en) 2003-02-28 2004-02-25 Process for the production of optically active compounds having substituents at the 2-position
EP04714501A EP1600438A4 (en) 2003-02-28 2004-02-25 METHODS FOR PRODUCING OPTICALLY ACTIVE COMPOUNDS COMPRISING SUBSTITUENTS IN POSITION 2

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-054265 2003-02-28
JP2003054265 2003-02-28

Publications (1)

Publication Number Publication Date
WO2004076404A1 true WO2004076404A1 (ja) 2004-09-10

Family

ID=32923456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002231 WO2004076404A1 (ja) 2003-02-28 2004-02-25 2位に置換基を有する光学活性化合物の製造法

Country Status (4)

Country Link
US (1) US20060247458A1 (ja)
EP (1) EP1600438A4 (ja)
JP (1) JPWO2004076404A1 (ja)
WO (1) WO2004076404A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620272B2 (ja) 2007-11-09 2014-11-05 プロノヴァ・バイオファーマ・ノルゲ・アーエスPronova BioPharma NorgeAS 化粧品において,食品サプリメントとして,または医薬品として用いるための脂質化合物
EP2147910A1 (en) * 2008-07-15 2010-01-27 Pronova BioPharma Norge AS Novel lipid compounds
ES2726765T3 (es) 2009-05-08 2019-10-09 Basf As Acidos grasos poliinsaturados para el tratamiento de enfermedades relacionadas con el campo de enfermedades cardiovasculares, metabólicas e inflamatorias
BR112013010890B1 (pt) 2010-11-05 2020-03-10 Basf As Uso de um composto para a fabricação de um medicamento para tratamento ou prevenção de uma condição de apo b elevado
EP2961384B1 (en) 2013-02-28 2019-08-28 Basf As A composition comprising a lipid compound, a triglyceride, and a surfactant, and methods of using the same
WO2016173923A1 (en) 2015-04-28 2016-11-03 Pronova Biopharma Norge As Use of structurally enhanced fatty acids containing sulphur for preventing and/or treating non-alcoholic steatohepatitis
IL275002B2 (en) 2017-12-06 2024-04-01 Basf As Fatty acid antecedents for the treatment of nonalcoholic fatty liver disease

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013843A1 (en) * 1991-01-31 1992-08-20 Pfizer Inc. Synthesis of intermediates in the preparation of acat inhibitors
WO1997019918A1 (fr) * 1995-11-28 1997-06-05 Pierre Fabre Medicament Nouveaux derives de 2,3,5 trimethyl-4-hydroxy anilides, leur preparation et leur application en therapeutique
JP2001278839A (ja) * 2000-01-25 2001-10-10 Kanegafuchi Chem Ind Co Ltd 2−位が置換された光学活性カルボン酸の製造法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2060460A5 (ja) * 1968-12-21 1971-06-18 Coll Antonio
US3768049A (en) * 1971-05-19 1973-10-23 Pirelli Helical waveguide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013843A1 (en) * 1991-01-31 1992-08-20 Pfizer Inc. Synthesis of intermediates in the preparation of acat inhibitors
WO1997019918A1 (fr) * 1995-11-28 1997-06-05 Pierre Fabre Medicament Nouveaux derives de 2,3,5 trimethyl-4-hydroxy anilides, leur preparation et leur application en therapeutique
JP2001278839A (ja) * 2000-01-25 2001-10-10 Kanegafuchi Chem Ind Co Ltd 2−位が置換された光学活性カルボン酸の製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1600438A4 *

Also Published As

Publication number Publication date
JPWO2004076404A1 (ja) 2006-06-01
EP1600438A4 (en) 2007-05-02
US20060247458A1 (en) 2006-11-02
EP1600438A1 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
US7763749B2 (en) Method for the preparation of Pregabalin and salts thereof
US8604241B2 (en) Method for synthesis of (1S, 2R)-milnacipran
JP3473976B2 (ja) アラニルグルタミンの製造法
EP1422215A1 (en) Process for producing optically active 2-substituted carboxylic acid
JP4149668B2 (ja) β−ハロゲノ−α−アミノカルボン酸並びにフェニルシステイン誘導体及びその中間体の製造方法
WO2004076404A1 (ja) 2位に置換基を有する光学活性化合物の製造法
US20060135784A1 (en) Process for producing 3-amino-2-hydroxypropionic acid derivatives
US20060247470A1 (en) Process for producing optically active carboxylic acid substituted in 2-position
WO1999036399A1 (fr) Procede de production de derives de cisteine optiquement actifs
JP2007063267A (ja) 光学活性なジフェニルアラニン化合物の製造方法
JP4799085B2 (ja) 光学活性n置換アミノアシル環状尿素誘導体の製造法
WO2017019791A1 (en) Synthesis of (s)-pregabalin
JP2701685B2 (ja) 光学活性4−メルカプト−2−ピロリドン誘導体及びその合成中間体の製法
JP2001031635A (ja) 光学活性n−保護−n−メチル−フェニルアラニン誘導体の製造方法
JPH10101629A (ja) 光学活性酪酸誘導体の製造方法
CN112521311A (zh) 改进的拉科酰胺中间体的制备方法
JPH09157247A (ja) α−ヒドロキシ−β−アミノカルボン酸の製造方法
JP2000026384A (ja) 光学活性4―アミノ―3―(ジハロゲノ置換フェニル)酪酸の製造方法
JP2000186069A (ja) N―保護―s―フェニルシステインの単離方法
JPH10101633A (ja) 高光学純度光学活性アミノ酸エステルの製造法
JP2004284992A (ja) 光学活性トランス−3−シクロヘキシル−オキシランカルボン酸の製造方法
JP2011126828A (ja) 1,3位−2置換ピロリジン化合物またはその塩の改良された製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502911

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004714501

Country of ref document: EP

Ref document number: 2006247458

Country of ref document: US

Ref document number: 10546823

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004714501

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10546823

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004714501

Country of ref document: EP