WO2004076367A1 - Glassubstrat für ein datenspeichermedium sowie einen datenspeicher, der ein solches glassubstrat umfasst - Google Patents

Glassubstrat für ein datenspeichermedium sowie einen datenspeicher, der ein solches glassubstrat umfasst Download PDF

Info

Publication number
WO2004076367A1
WO2004076367A1 PCT/DE2004/000324 DE2004000324W WO2004076367A1 WO 2004076367 A1 WO2004076367 A1 WO 2004076367A1 DE 2004000324 W DE2004000324 W DE 2004000324W WO 2004076367 A1 WO2004076367 A1 WO 2004076367A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
glass substrate
glass
data storage
data
Prior art date
Application number
PCT/DE2004/000324
Other languages
English (en)
French (fr)
Inventor
Dirk Sprenger
Rainer Liebald
Thilo Zachau
Original Assignee
Schott Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Ag filed Critical Schott Ag
Publication of WO2004076367A1 publication Critical patent/WO2004076367A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Definitions

  • Glass substrate for a data storage medium and a data storage device which comprises such a glass substrate
  • the invention relates to a glass which is particularly suitable as a substrate for a data storage medium, and to a data storage device which comprises such a glass substrate.
  • Data carriers in particular for storage and processing in electronic data processing devices, such as computers etc., are best known, for example, in the form of hard disk drives and removable media (floppy disks, CD, DVD) in special drives.
  • the data carriers in these drives comprise a substrate and a layer arranged thereon for magnetic, optical and / or thermal storage of data.
  • aluminum or other metal alloys or special organic polymers for removable media
  • Such glass substrates are usually exposed to high temperatures with short, intensive heating and cooling rates of> 400 K min -1 . This is followed by further heat treatments, which are usually between 300 and 400 ° C.
  • the coating itself is usually carried out by sputtering or by sputtering on the respective magnetic layer.
  • Such glasses must therefore have a transformation temperature of usually above 400 ° C.
  • hard disks of this type require a high degree of dimensional stability so that they do not vibrate and flutter even at high speeds in the drive. Such deflections from the horizontal rest position would be at the usually low reading distance of the read / write head from currently about 10-20 nm lead to the head losing the read contact with the hard disk, so-called "run-out", or that it collides with the hard disk, so-called "head crash”. Glasses that can be used for data carriers must therefore have a high specific modulus of elasticity E / p, ie a high modulus of elasticity E and / or a low density p. It is desirable that E / p is at least 25 * 10 6 m / s 2 .
  • the surface of the data storage device and thus also the surface of the carrier material must be particularly flat, since the read / write head, in particular in the case of hard disks, usually currently hovers at a distance of approx. 10-20 nm on an air cushion or a lubricant layer above the rotating plate glides there. This distance must be maintained for proper functioning. If the surface of the hard disk material or substrate is not resistant to atmospheric influences and efflorescence occurs due to chemical and / or thermal effects on the surface, so that it becomes rough even before coating, the functional distance between the plate and the reading head changes, which increases Functional loss or loss of function. Furthermore, due to a thermal and / or chemical change in the surface, the adhesive strength of the applied functional layers can be lost, so that they detach from the surface of the glass carrier.
  • the carrier substrates must therefore have a high chemical and thermal resistance.
  • magnetic layers are applied to substrates in which the magnetizable areas, ie the so-called Weiss areas, have a significantly smaller lateral extent, since their polar axes are no longer parallel to the surface of the carrier material, but perpendicular to it, ie parallel to the Axis of rotation of the storage disk are aligned.
  • Storage media for this technology are referred to as so-called "perpendicular recording media".
  • substrates are of particular thermal stability, in particular with regard to shape and surface stability To the knowledge of the applicant, no substrate materials are currently known which sufficiently meet this requirement.
  • glasses of this type In addition to these requirements for the properties of a material that is to be used as a substrate or support for hard disk applications, it must be possible to produce glasses of this type with low production costs, since this is a mass product. For this, the melting and shaping process of such glasses must be suitable for large-scale plants. In addition, the glass melts should attack the refractory material of the melting units as little as possible, ie they should be producible at relatively low temperatures and should not contain any aggressive, corrosion-promoting components. In addition, such glasses should also be used on an industrial scale with sufficient inner quality, ie without bubbles, knots and inclusions, can be easily produced in flat plates. Such techniques include, for example, manufacturing in a float line or in a drawing process. In particular, the production of thin, ie ⁇ 3 mm thick substrates with low surface ripple using a drawing process requires high devitrification stability.
  • such glasses should be possible to produce with a low surface roughness. As far as possible, they should be processed directly as they are obtained in the manufacturing process, i.e. are sputtered without the roughness having to be reduced in an additional machining step by grinding, lapping and / or polishing. Finally, it is also necessary that the surface of such a glass carrier does not warp or roughen under the high thermal load such as occurs, for example, when the functional layers are sputtered on.
  • This glass is described as a carrier substrate for a magnetic data carrier, in which a compensating layer for compensating for unevenness is arranged between the magnetic carrier and the substrate.
  • a high surface smoothness, ie a surface roughness of Ra ⁇ 9 ⁇ is only achieved with this glass by polishing. However, it has been shown that this surface roughness changes when treated at an elevated temperature.
  • a glass for a magnetic disk substrate with good corrosion properties and resistance to alkali which contains 52-65% by weight Si0 2 , 10-18% by weight Al 2 0 3 , 0-8% by weight % B 2 0 3 , 0-10% by weight MgO, 2-15% by weight CaO, 0-15% by weight SrO, 0-16% by weight BaO and 0-12% by weight % ZnO contains.
  • the object of the invention is now to provide carrier substrates of this type which are sufficiently stable thermally, mechanically and chemically and which can be produced economically in an economical manner.
  • the carrier substrates should be sputterable, in particular at high temperatures, without warping, compaction and swelling of the surface. This goal is achieved by the substrate glass defined in the claims.
  • % MgO, 0-15% by weight CaO, 0-8% by weight SrO, 0-25% by weight BaO, 0-10% by weight ZnO, 0-5% by weight Zr0 2 and 0-10% by weight of Ti0 2 and 0-5% by weight of Ce0 2 and 0.05-2% by weight of Sn0 2 are particularly suitable for the production of carriers for electronic data storage media if the 2 , Zr0 2 + Ti0 2 is at least 0.05 and at most 12% by weight and the Ce0 2 + Sn0 2 ⁇ 6% by weight, the ⁇ of Li0 2 , Na 2 0, K 2 0 5% by weight not exceeding ,
  • the glass substrate according to the invention has a Tg of> 500 ° C, in particular> 550 ° C, with> 600 ° C being preferred.
  • the glass substrate according to the invention has a Tg of 640 640 ° C.
  • the Si0 2 content of the glasses is at least 30% by weight, usually at least 45% by weight, with 55% by weight are preferred.
  • a very particularly preferred content of SiO 2 is at least 57 and in particular 58% by weight.
  • the maximum Si0 2 content in the glass according to the invention is 80% by weight, 65% by weight and in particular 62% by weight being particularly preferred. In special embodiments, a maximum SiO 2 content of 61% by weight and in particular 59% by weight has proven to be particularly suitable.
  • the Al 2 0 3 content is at least 10% by weight, preferably at least 12% by weight, with at least 15% by weight being particularly suitable in many cases.
  • the maximum Al 2 O 3 content for the glass substrate according to the invention is a maximum of 30% by weight, in particular 20% by weight, with a maximum of 19% by weight and in particular a maximum of 18% by weight being preferred. A maximum content of 16% by weight is very particularly preferred.
  • the glass according to the invention can be free of B 2 0 3 .
  • B 2 0 3 is preferably present in at least 3% by weight, in particular at least 5% by weight, with at least 6% by weight B 2 0 3 being preferred.
  • the maximum content of B 2 0 3 is 16% by weight, in particular a maximum of 15% by weight, with a maximum of 10% by weight being preferred. In individual cases, however, contents of 0-1% by weight can also be expedient.
  • the minimum content of MgO is 1% by weight, in particular at least 3% by weight, the maximum amount being 10% by weight, but usually 8% by weight and preferably a maximum of 7% by weight. In some cases, a content of at most 5% by weight has proven to be expedient.
  • the glass substrate according to the invention can easily be free of CaO. However, it is expedient for the glass substrate according to the invention to have a minimum content of 3% by weight, in particular 5% by weight, a minimum content of 8% by weight and in special cases even 11% by weight having proven to be expedient in some cases.
  • the maximum content is usually 15% by weight for CaO, with 12% by weight being preferred.
  • a maximum CaO content of 4% by weight has also been found to be suitable.
  • SrO is contained in an amount of 0-8% by weight, with a minimum content of 4% by weight and a maximum content of 7% by weight being preferred in many cases.
  • BaO is contained in an amount of 0-25% by weight, with at least 1% by weight and especially at least 5% by weight being preferred. In individual cases, minimum levels of 7% by weight have proven to be expedient.
  • the maximum BaO content is usually 25% by weight, preferably at least 20% by weight, with at least 11% by weight and in particular at least 10% by weight being particularly preferred. In individual cases, maximum levels of 5% by weight have proven to be expedient.
  • BaO is contained in an amount of 6-10% by weight.
  • the ZnO content can easily be 0% by weight. However, a minimum content of 1% by weight, in particular at least 2% by weight, is preferred, with 5% by weight being preferred.
  • the maximum levels of ZnO are usually 10% by weight and in particular 8% by weight.
  • the additives Zr0 2 , Ti0 2 , Ce0 and Sn0 2 which are particularly important for the glass substrate according to the invention are all 0-10% by weight, but a content of 0-5% by weight is preferred for Zr0 2 .
  • the minimum amounts of Zr0 2 are usually at least 0 at least 0.05% by weight, in particular at least 0.1% by weight.
  • the preferred maximum amount according to the invention is 3, in particular 2% by weight.
  • Ti0 2 is contained in an amount of 0-10% by weight, a minimum amount of 0.05% by weight and in particular 1% by weight being preferred.
  • a preferred upper limit for Ti0 2 in the glass substrate according to the invention is 3% by weight and in particular 2% by weight.
  • the total amount of Zr0 2 and Ti0 2 is in the range from 0.05 to 12% by weight, with 0.1 to 10% by weight being preferred.
  • a minimum content of these two substances of 0.2% by weight and in particular of 0.5% by weight or 1% by weight is particularly preferred, with at least 1.5% by weight being particularly preferred.
  • the upper limit here is preferably at most 10% by weight, in particular at most 5% by weight and especially at most 4% by weight.
  • the Ce0 2 content is 0-5% by weight, a minimum content of 0.05% by weight and in particular 0.1% by weight or 0.2% by weight being preferred.
  • the preferred maximum content here is preferably 5% by weight, in particular 2% by weight, contents of at most 1.5% by weight, in particular 1% by weight being very particularly preferred.
  • the amount of the component Sn0 2 necessarily contained in the glass according to the invention is at least 0.05% by weight, preferably 0.1% by weight, with at least 0.2% by weight being particularly preferred.
  • a minimum content of 0.5% by weight has proven to be particularly expedient.
  • the Sn0 2 content in the glass according to the invention should not exceed 5% by weight.
  • Preferred maximum Contents are 3% by weight, in particular 2% by weight, a maximum content of 1.5% by weight, in particular 1% by weight, being particularly preferred. It is now necessary for the glass according to the invention that the total amount of the components Ce0 2 + Sn0 2 is 6% by weight, with a maximum of 5% by weight and in particular a maximum of 4% by weight being particularly preferred. In many cases, amounts of at most 2% by weight have proven to be completely sufficient. The absolute lower limit is 0.05% by weight. Usual minimum amounts are 0.1% by weight, in particular 0.2% by weight, with at least 0.5% by weight Ce0 2 + Sn0 2 being preferred.
  • the glass according to the invention is essentially free of alkali oxides, ie that it may contain a maximum of 5% by weight.
  • the amount of Li0 2 , Na0 2 and K 2 0 is preferably a maximum of 3% by weight, in particular a maximum of 2% by weight, with a maximum of 1% by weight and in particular a maximum of 0.5% by weight being particularly preferred .
  • Glasses whose content of alkali oxides is at most 0.2% by weight and in particular at most 0.15% by weight or 0.1% by weight have proven to be very particularly suitable.
  • the glass substrate according to the invention usually has a transformation temperature Tg of at least 500 ° C., in particular> 600 ° C., a Tg of> 680 ° C. and in particular> 700 ° C. being achieved. With the glass substrate according to the invention, even Tg of> 710 ° C. and> 720 ° C. are available. In some cases, transformation temperatures of> 750 ° C can also be achieved. Ah
  • the glass substrate according to the invention has a specific modulus of elasticity of E> 25 * 10 6 m 2 s "2 , in particular of E> 35 * 10 6 m 2 s -2 .
  • a glass according to the invention with a transformation temperature Tg> 680 ° C contains
  • a glass according to the invention with a transformation temperature Tg> 710 ° C contains
  • a glass according to the invention with a transformation temperature Tg> 750 ° C. contains
  • the glass substrate according to the invention is preferably refined using Sn0 2 or sulfate.
  • the carrier materials or substrate glasses according to the invention have such a smooth already during production, ie immediately after being drawn AS
  • a preferred manufacturing process is the float process.
  • surface roughnesses of less than 1 nm, in particular less than 0.7 nm can easily be achieved, directly by conventional pulling or floating methods, i.e. without subjecting the glasses to a polishing or grinding procedure.
  • the surface roughness is usually a maximum of 0.6 or 0.5 nm.
  • surface roughnesses of 0.1 nm and below can often be achieved without polishing. According to the invention, it has now been found that this low surface roughness does not change, or changes only very slightly, even after prolonged heating to high temperatures, in particular to 10 ° C. below Tg, which is particularly important for the modern manufacturing techniques of data storage systems or other flat glass products with applied functional layers, which contain a high temperature process step at temperatures T> 250 ° C.
  • the data carrier produced with the glass substrate according to the invention preferably contains a magnetizable layer.
  • the manufacture of such magnetizable layers is known and is carried out, for example, using cobalt-containing magnetic layers.
  • Usual magnetizable functional layers include compositions that contain Co, Pt, Cr, Ni, Ta, and optionally Si and oxygen. Such compositions are known per se to the person skilled in the art and, for example, in US Pat From
  • An intermediate layer is preferably arranged between the magnetic layer and the glass substrate. Intermediate layers of this type are also known and may also have magnetic properties. In addition, such a data storage device can contain further customary known protective and lubricant or sliding film layers.
  • the invention also relates to the use of the glass for producing a medium for storing electronically processable data, or to such a medium itself.
  • a layer package is arranged on the glass substrate which has at least one magnetically, optically and / or thermally variable storage layer for storing data has, and optionally an intermediate layer arranged between the glass substrate and the storage layer, wherein the medium can also comprise further auxiliary layers.
  • Such a medium can be obtained by applying at least one layer to the glass substrate by means of high-temperature processes, the substrate being heated to a temperature of 250 ° C. to 750 ° C.
  • the storage medium according to the invention is so firmly connected to the glass substrate and layer package that during operation over several hours in a climate test chamber at 60 ° C and at a relative humidity of> 90%, the sputtered layers do not detach from the glass substrate.
  • the medium does not show any interdiffusion processes between the layer and the substrate after production and long storage, ie that due to the heat that occurs during the sputtering process, neither glass components diffuse into the overlying layer package nor parts of the layer package into the glass substrate.
  • Such a medium is particularly suitable for operation using so-called "heat assisted writing".
  • the magnetization or alignment of the elementary magnets is supported by a brief local heating of the substrate by means of induction etc. to temperatures near the Curie point of the magnetizable layer.
  • the glass showed a surface roughness of 0.32 nm. This roughness was determined, for example, as the arithmetic mean (Ra) of the white light interferometric (WLI) or atomic force microscope-determined topography data of a measurement area or along an arbitrarily selected measurement section.
  • the complementary geometric mean (square root of the sum of the squares of the measured values) of the data is referred to as "rms" or "rq”.
  • Example 1 The glass substrate of Example 1 according to the invention was used to change the surface roughness 43 compared with different heat treatments with commercially available glasses, which had a comparable surface roughness by means of polishing.
  • Comparison glass 1 (commercially available in polished form) had an SiO 2 content of approximately 63.5% by weight, Al 2 0 3 13.8% by weight, B 2 0 3 ⁇ 1% by weight, Na 2 0 10.2% by weight, K 2 0 ⁇ 0.1% by weight, Li 2 0 5.5% by weight, CaO ⁇ 0.3% by weight, Zr0 2 4.3% by weight %, Sb 2 0 3 0.4 wt%.
  • the comparison glass 2 (commercially available in polished form contained 63.4% by weight SiO 2 , 16.4% by weight Al 2 0 3 , 9.7% by weight Na 2 0, 0.3% by weight K 2 0, 16.1% by weight of MgO, 3.7% by weight of CaO and 0.4% by weight of Sb0 3 .
  • the comparison glasses were in the form of round panes with an inner hole (outside diameter 95 mm, inside diameter 25 mm, thickness approx. 1 mm), were polished and had a surface roughness of 0.7 nm (comparison glass 1) and 0.6 nm (comparison glass 2) , The glasses were then lying on one side on a ceramic fiber mat (FIBERRAX®) as underlay material, heated to 550 ° C for 30 minutes and examined visually, macroscopically and microscopically. The surface roughness was also determined. The glass according to the invention showed no changes.
  • the comparison glasses of the prior art showed, among other things, deformations at the inner hole and a deformation of the plate itself.
  • the glass according to the invention from Example 1 was subjected to a sputter test. Magnetic layers were deposited on the surface of the glasses in the usual way. The deposition was carried out in a Zirkulus 12 sputter plant under the conditions customary for this plant and shift packs. It was found that the glass according to the invention from Example 1 had high stability with regard to the layer structure and layer adhesion.
  • Hard disks coated in this way were subjected to a peel test after sputtering. It was during operation in a climate test, the sputtered substrate is exposed to a relative humidity of> 90% at 60 ° C for several hours. It was found that under such conditions the sputtered layers do not detach from the substrate or are demonstrably changing to reduce the product quality. It has also been shown that underlays which have already been applied also do not come off when subsequent layers are sputtered on. The layers sputtered onto the glass according to the invention are thus firmly connected to the substrate carrier.
  • Hc (T opt ) Hc (225 ° C) and Mr (T opt )> Mr (225 ° C).

Abstract

Es wird ein Glas beschrieben, das als Substrat bzw. Träger für einen Datenspeicher geeignet ist. Das Glas weist eine TG > 500 °C und einer Zusammensetzung von SiO2 30 - 80 Gew.-%, Al2O3 10 - 30 Gew.-%, B2O3 5 - 15 Gew.-%, MgO 1 - 10 Gew.-%, CaO 0 - 15 Gew.-%, SrO 0 - 8 Gew.-%, BaO 0 - 25 Gew.-%, ZnO 0 - 10 Gew.-%, ZrO2 0 - 5 Gew.-%, TiO2 0 - 10 Gew.-%, CeO2 0 - 5 Gew.-%, SnO2 0,05 - 2 Gew.-% auf, mit der Massgabe, dass die Σ ZrO2 + TiO2 0,05 - 12 Gew.-%, die Σ CeO2 + SnO2 ≤ 6 Gew.-% und die Σ LiO2 + Na2O + K2O 0 - 5 Gew.-% beträgt. Die Erfindung beschreibt auch ein Medium zum Speichern von elektronisch verarbeitbaren Daten, das ein solches Glassubstrat enthält.

Description

4
Glassubstrat für ein Datenspeichermedium sowie einen Datenspeicher, der ein solches Glassubstrat um- fasst
BESCHREIBUNG
Die Erfindung betrifft ein Glas, das besonders als Substrat für ein Datenspeichermedium geeignet ist, sowie einen Datenspeicher, der ein solches Glassubstrat umfasst.
Datenträger, insbesondere zur Speicherung und Bearbeitung in elektronischen Datenverarbeitungsgeräten, wie Computer etc., sind beispielsweise in Form von Festplattenlaufwerken (hard disk drives) sowie Wechselmedien (Disketten, CD, DVD) in speziellen Laufwerken, bestens bekannt. Die Datenträger in diesen Laufwerken umfassen ein Substrat sowie eine darauf angeordnete Schicht zur magnetischen, optischen und/oder thermischen Speicherung von Daten. Bislang werden als Trägermaterial für solche Datenspeicherschichten Aluminium oder andere Metalllegierungen (bzw. spezielle organische Polymere für Wechselmedien) verwendet. Aufgrund seiner geringen Kosten und seiner geringen Oberflächenrauhigkeit sowie Festigkeit und Formstabilität gewinnt jedoch die Verwendung von Glas als Substratmaterial für solche Datenträger immer mehr an Bedeutung. Derartige Gläser müssen jedoch hohen chemischen, thermi- sehen und mechanischen Belastungen sowohl bei der Herstellung, der Verarbeitung als auch beim Gebrauch standhalten.
Beim Auftragen der magnetischen Schichten werden derartige Glasträger üblicherweise hohen Temperaturen mit kurzen intensiven Heiz- und Abkühlraten von > 400 K min-1 ausgesetzt. Hieran schließen sich weitere Wärmebehandlungen an, welche üblicherweise zwischen 300 und 400°C betragen. Die Beschichtung selbst erfolgt normalerweise durch Kathodenzerstäubung oder durch Aufsputtern der jeweiligen Magnet- Schicht. Derartige Gläser müssen daher eine Transformationstemperatur von üblicherweise über 400°C aufweisen.
Insbesondere bei der Verwendung von Gläsern als Träger in Festplatten treten hohe mechanische Belastungen auf, wie z.B. bei der Montage von Speichermedium und Spindel durch Klemmspannungen im Bereich des Innenloches des Speichermediums, wobei Drücke von bis zu 100 N/mm2 entstehen. Des weiteren entwickeln sich im Betrieb bei Umdrehungszahlen von 10.000 - 15.000 U/Min. weitere durch die Zentrifugalkräfte hervorgerufene Spannungen, welchen der dünne Glasträger ebenfalls standhalten muss.
Darüber hinaus benötigen derartige Festplatten eine hohe Formstabilität um auch bei hohen Umdrehungszahlen im Laufwerk nicht in Schwingung zu geraten und zu flattern. Derartige Auslenkungen aus der horizontalen Ruhelage würden bei dem üblicherweise niedrigen Leseabstand des Schreib-/Lesekopfes von derzeit ca. 10 - 20 nm dazu führen, dass der Kopf den Lesekontakt mit der Festplatte verliert, sog. „run-out", oder dass er mit der Festplatte zusammenstößt, sog. „head Crash". Für Datenträger verwendbare Gläser müssen daher einen hohen spezifischen Elastizitätsmodul E/p aufweisen, d.h. einen hohen Elastizitätsmodul E und/oder eine geringe Dichte p. Dabei ist es wünschenswert, dass E/p mindestens 25 * 106 m/s2 beträgt.
Die Oberfläche des Datenspeichers und damit auch die Oberfläche des Trägermaterials muss besonders eben sein, da der Schreib-/Lesekopf insbesondere bei Festplatten üblicherweise derzeit mit einem Abstand von ca. 10 - 20 nm auf einem Luftpolster bzw. einer Gleitmittelschicht über der sich drehenden Platte schwebend dahin gleitet . Dieser Abstand muss für eine einwandfreie Funktion beibehalten werden. Ist nun die Oberfläche des Festplattenmaterials bzw. -Substrates gegenüber atmosphärischen Einflüssen nicht beständig und entstehen durch chemische und/oder thermische Einwirkungen auf die Oberfläche Ausblühungen, so dass diese schon vor der Beschichtung rauh wird, verändert sich der Funktionsabstand der Platte zum Lesekopf, was zu Funktionseinbußen bzw. zum Funktionsausfall führen kann. Des weiteren kann aufgrund einer thermischen und/oder chemischen Veränderung der Oberfläche die Haftfestigkeit der aufgebrachten Funktionsschichten verloren gehen, so dass sich diese von der Oberfläche des Glasträgers lösen. Die Trägersubstrate müssen daher eine hohe chemische und thermische Beständigkeit aufweisen. Zur Erhöhung der Speicherdichte werden Magnet- schichten auf Substrate aufgetragen, in denen die magnetisierbaren Bezirke, d.h. die sog. Weißschen Bezirke, eine deutlich geringere laterale Ausdehnung aufweisen, indem deren Polachsen nicht mehr parallel zur Oberfläche des Trägermaterials, sondern senkrecht hierzu, d.h. parallel zur Drehachse der Speicherplatte, ausgerichtet sind. Speichermedien für diese Technik werden als sog. „perpendicu- lar recording media" bezeichnet. Zur Herstellung derartiger Sputterschichten sind jedoch deutlich höhere Temperaturen von insbesondere mehr als 500°C erforderlich. Dazu sind Substrate von besonderer thermischer Stabilität, insbesondere hinsichtlich der Form- und Oberflächenstabilität, notwendig. Nach Kenntnis der Anmelderin sind derzeit keine Substratmaterialien bekannt, welche diese Anforderung in ausreichendem Maße erfüllen.
Neben diesen Anforderungen an die Eigenschaften eines Materials, welches als Substrat bzw. Träger für Harddisk-Anwendungen verwendet werden soll, müssen derartige Gläser mit geringen Produktionskosten herstellbar sein, da es sich hier um ein Massenprodukt handelt. Dazu muss das Schmelz- und Formgebungsverfahren solcher Gläser für großtechnische Anlagen geeignet sein. Darüber hinaus sollen die Glasschmelzen das Feuerfestmaterial der Schmelzaggregate möglichst wenig angreifen, d.h. sie sollen bei verhältnismäßig niedrigen Temperaturen herstellbar sein und keine aggressiven korrosionsför- dernden Bestandteile enthalten. Darüber hinaus sollten solche Gläser auch großtechnisch mit aus- reichender innerer Qualität, d.h. ohne Blasen, Knoten und Einschlüsse, auf einfache Weise in ebenen Platten herstellbar sein. Derartige Techniken umfassen beispielsweise die Herstellung in einer Floatanlage oder in einem Ziehverfahren. Besonders die Herstellung dünner, d.h. < 3 mm dicker Substrate von geringer Oberflächenwelligkeit über Ziehverfahren erfordert eine hohe Entglasungsstabilität .
Schließlich sollen solche Gläser mit einer geringen Oberflächenrauhigkeit herstellbar sein. Dabei sollen sie möglichst so, wie sie im Herstellungsverfahren erhalten werden, direkt weiterverarbeitet, d.h. besputtert, werden, ohne dass die Rauhigkeit in einem zusätzlichen Bearbeitungs- schritt durch Schleifen, Läppen und/oder Polieren verringert werden muss. Schließlich ist es auch notwendig, dass sich die Oberfläche eines derartigen Glasträgers bei der hohen thermischen Belastung, wie sie beispielsweise beim Aufsputtern der Funktionsschichten auftritt, nicht verzieht oder aufrauht .
Aus der EP-A-0 858 974 ist ein Glas mit einem hohen spezifischen Elastizitätsmodul und einer hohen Übergangstemperatur von 700°C bekannt. Es weist eine Zusammensetzung von 25 - 52 Mol-% Si02 (= 14,37
- 58,04 Gew.-%), 0 - 5 Mol-% B203 (= 0,00 - 6,57 Gew.-%), 0 - 5 Mol-% P205 (= 0,00- 12,55 Gew.-%), 5
- 35 Mol-% A1203 (= 5,07 - 53,27 Gew.-%), 15 - 45 Mol-% MgO (= 5,78- 34,69 Gew.-%), 0 - 25 Mol-% Ti02
(= 0,00 - 34,20 Gew.-%), 0 - 8 Mol-% Zr02 (= 0,00 - 17,10 Gew.-%), 1 - 30 Mol-% CaO (= 0,54 - 31,70 Gew.-%), 0 - 17 Mol-% Y203 (= 0,00 - 47,31 Gew.-%) auf . Dieses Glas wird als ein Trägersubstrat für einen magnetischen Datenträger beschrieben, in welchem eine Ausgleichsschicht zum Ausgleich von Unebenheiten zwischen Magnetträger und Substrat angeordnet ist. Eine hohe Oberflächenglätte, d.h. eine Oberflächenrauhigkeit, von Ra < 9 Ä wird bei diesem Glas allerdings erst durch Polieren erreicht. Es hat sich jedoch gezeigt, dass sich diese Oberflächenrauhigkeit bei einer Behandlung mit erhöhter Temperatur verändert .
Aus der JP-A 09-012333 ist ein Glas für ein Magnetdisksubstrat mit guten Korrosionseigenschaften und Beständigkeit gegen Alkali bekannt, welches 52 - 65 Gew.-% Si02, 10 - 18 Gew.-% Al203, 0 - 8 Gew.-% B203, 0 - 10 Gew.-% MgO, 2 - 15 Gew.-% CaO, 0 - 15 Gew.-% SrO, 0 - 16 Gew.-% BaO und 0 - 12 Gew.-% ZnO enthält .
Schließlich ist aus der DE-A 100 00 836 ein alkalifreies Aluminoborosilikatglas bekannt, welches eine hohe Glastransformationstemperatur aufweist und welches als Substrat für Flüssigkristall- Flachdisplaybildschirme geeignet ist.
Die Erfindung hat nunmehr zur Aufgabe derartige Trägersubstrate bereitzustellen, die thermisch, mechanisch und chemisch ausreichend stabil sind und die sich auf wirtschaftliche Weise günstig herstellen lassen. Die Trägersubstrate sollen insbesonders bei hohen Temperaturen ohne Verziehen, Kompaktion und Aufwellen der Oberfläche besputterbar sein. Dieses Ziel wird durch das in den Ansprüchen definierte Substratglas erreicht.
Erfindungsgemäß wurde nämlich gefunden, dass Gläser mit einer Zusammensetzung von 10 - 80 Gew.-% Si02, 10 - 30 Gew.-% A1203, 5 - 15 Gew. -% B203, 1 - 10 Gew.-% MgO, 0 - 15 Gew.-% CaO, 0 - 8 Gew.-% SrO, 0 - 25 Gew.-% BaO, 0 - 10 Gew.-% ZnO, 0 - 5 Gew.-% Zr02 und 0 - 10 Gew.-% Ti02 sowie 0 - 5 Gew.-% Ce02 und 0,05 - 2 Gew.-% Sn02 sich ganz besonders zur Herstellung von Trägern für elektronische Datenspeicher eignen, wenn die 2, Zr02 + Ti02 mindestens 0,05 und höchstens 12 Gew.-% beträgt und die Ce02 + Sn02 ≤ 6 Gew.-% ist, wobei die ∑ von Li02, Na20, K20 5 Gew.-% nicht übersteigt. Derartige Gläser zeigen bereits nach Heiß- formgebungsprozess durch Ziehen oder Floaten und anschließender Kühlung eine äußerst geringe Oberflächenrauhigkeit, die sich auch bei einer längeren Behandlung mit hohen Temperaturen bis zu 750°C nicht oder für das Produkt nur unwesentlich verändert.
Das erfindungsgemäße Glassubstrat weist einen Tg von > 500°C, insbesondere > 550°C auf, wobei > 600°C bevorzugt ist. Das erfindungsgemäße Glassubstrat weist in einer besonders bevorzugten Ausführungsform einen Tg von ≥ 640°C auf.
Der Si02-Gehalt der Gläser beträgt mindestens 30 Gew.-%, üblicherweise mindestens 45 Gew.-%, wobei 55 Gew.-% bevorzugt sind. Ein ganz besonders bevorzugter Gehalt an Si02 beträgt mindestens 57 und insbesondere 58 Gew.-%. Der maximale Si02-Gehalt im erfindungsgemäßen Glas liegt bei 80 Gew.-%, wobei 65 Gew.-% und insbesondere 62 Gew.-% besonders bevorzugt sind. In speziellen Ausführungsformen hat sich ein maximaler Si02-Gehalt von 61 Gew.-% und insbesondere 59 Gew.-% als besonders geeignet erwiesen. Der Gehalt an Al203 beträgt mindestens 10 Gew.-%, vorzugsweise mindestens 12 Gew.-%, wobei mindestens 15 Gew.-% in vielen Fällen besonders geeignet ist . Der maximale Gehalt an Al203 beträgt für das erfindungsgemäße Glassubstrat maximal 30 Gew.-%, insbesondere 20 Gew.-%, wobei maximal 19 Gew.-% und insbesondere maximal 18 Gew.-% bevorzugt sind. Ganz besonders bevorzugt ist ein Maximalgehalt von 16 Gew.-%. Das erfindungsgemäße Glas kann frei von B203 sein. Vorzugsweise ist B203 jedoch zu mindestens 3 Gew.-%, insbesondere mindestens 5 Gew.-% enthalten, wobei mindestens 6 Gew.-% B203 bevorzugt sind. Der Maximalgehalt an B203 beträgt 16 Gew.-%, insbesondere maximal 15 Gew.-%, wobei maximal 10 Gew.-% bevorzugt ist. In Einzelfällen können jedoch auch Gehalte von 0 - 1 Gew.-% zweckmäßig sein. Der Mindestgehalt an MgO beträgt 1 Gew.-%, insbesondere mindestens 3 Gew.-%, wobei die maximale Menge 10 Gew.-%, üblicherweise jedoch 8 Gew.-% und vorzugsweise maximal 7 Gew.-% beträgt. In einigen Fällen hat sich ein Gehalt von maximal 5 Gew.-% als zweckmäßig erwiesen. Das er- findungsgemäße Glassubstrat kann ohne Weiteres frei von CaO sein. Es ist jedoch zweckmäßig, dass das erfindungsgemäße Glassubstrat einen Mindestgehalt von 3 Gew.-%, insbesondere von 5 Gew.-% aufweist, wobei sich in einigen Fällen ein Mindestgehalt von 8 Gew.-% und in besonderen Fällen sogar von 11 Gew.-% als zweckmäßig erwiesen hat. Der Maximalgehalt beträgt üblicherweise für CaO 15 Gew.-%, wobei 12 Gew.-% bevorzugt ist. In einigen erfindungsgemäßen Zusammensetzungen hat sich auch ein CaO-Gehalt von maximal 4 Gew.-% als geeignet erwiesen. SrO ist in einer Menge von 0 - 8 Gew.-% enthalten, wobei in vielen Fällen ein Mindestgehalt von 4 Gew.-% und ein Maximalgehalt von 7 Gew.-% bevorzugt ist. BaO ist in einer Menge von 0 - 25 Gew.-% enthalten, wobei mindestens 1 Gew.-% und speziell mindestens 5 Gew.-% bevorzugt sind. In Einzelfällen haben sich Mindestgehalte von 7 Gew.-% als zweckmäßig erwiesen. Der Höchstgehalt an BaO beträgt üblicherweise 25 Gew.-%, vorzugsweise mindestens 20 Gew.-%, wobei mindestens 11 Gew.-% und insbesondere mindestens 10 Gew.-% besonders bevorzugt ist. In Einzelfällen haben sich Höchstgehalte von 5 Gew.-% als zweckmäßig erwiesen. In einem speziellen Fall ist BaO in einer Menge von 6 - 10 Gew.-% enthalten. Der Gehalt an ZnO kann ohne Weiteres 0 Gew.-% betragen. Bevorzugt ist jedoch ein Mindestgehalt von 1 Gew.-%, insbesondere mindestens 2 Gew.-%, wobei 5 Gew.-% bevorzugt ist. Die Höchstgehalte an ZnO betragen üblicherweise 10 Gew.-% und insbesondere 8 Gew.-%.
Die für das erfindungsgemäße Glassubstrat besonders wichtigen Additive Zr02, Ti02, Ce0 und Sn02 betragen allesamt 0 - 10 Gew.-%, wobei jedoch für Zr02 ein Gehalt von 0 - 5 Gew.-% bevorzugt ist. Die Mindestmengen an Zr02 betragen üblicherweise minde- 0 stens 0,05 Gew.-%, insbesondere mindestens 0,1 Gew.-%. Die bevorzugte Höchstmenge beträgt erfindungsgemäß 3, insbesondere 2 Gew.-%. Ti02 ist in einer Menge von 0 - 10 Gew.-% enthalten, wobei eine Mindestmenge von 0,05 Gew.-% und insbesondere von 1 Gew.-% bevorzugt ist. Eine bevorzugte Obergrenze für Ti02 beträgt im erfindungsgemäßen Glassubstrat 3 Gew.-% und insbesondere 2 Gew.-%. Zum Erhalten der erfindungsgemäßen Eigenschaft ist es nun notwendig, dass die Gesamtmenge von Zr02 und Ti02 im Bereich von 0,05 - 12 Gew.-% liegt, wobei 0,1 - 10 Gew.-% bevorzugt ist. Besonders bevorzugt ist ein Mindestgehalt dieser beiden Substanzen von 0,2 Gew.-% und insbesondere von 0,5 Gew.-% bzw. 1 Gew.- %, wobei mindestens 1,5 Gew.-% besonders bevorzugt ist. Die Obergrenze hierbei beträgt vorzugsweise maximal 10 Gew.-%, insbesondere maximal 5 Gew.-% und speziell maximal 4 Gew.-%.
Der Gehalt an Ce02 beträgt 0 - 5 Gew.-%, wobei ein Mindestgehalt von 0,05 Gew.-% und insbesondere 0,1 Gew.-% bzw. 0,2 Gew.-% bevorzugt ist. Der bevorzugte Maximalgehalt beträgt hier vorzugsweise 5 Gew.- %, insbesondere 2 Gew.-%, wobei Gehalte von maximal 1,5 Gew.-%, insbesondere 1 Gew.-% ganz besonders bevorzugt sind. Die Menge an dem im erfindungsgemäßen Glas notwendigerweise enthaltenen Bestandteil Sn02 beträgt mindestens 0,05 Gew.-%, vorzugsweise 0,1 Gew.-%, wobei mindestens 0,2 Gew.-% besonders bevorzugt ist. Als besonders zweckmäßig hat sich ein Mindestgehalt von 0,5 Gew.-% erwiesen. Der Gehalt an Sn02 sollte im erfindungsgemäßen Glas 5 Gew.-% nicht überschreiten. Bevorzugte Maximalge- AΛ halte sind 3 Gew.-%, insbesondere 2 Gew.-%, wobei ein Maximalgehalt von 1,5 Gew.-%, insbesondere von 1 Gew.-% besonders bevorzugt ist. Für das erfindungsgemäße Glas ist es nun notwendig, dass die Gesamtmenge der Bestandteile Ce02 + Sn02 6 Gew.-% beträgt, wobei maximal 5 Gew.-% und insbesondere maximal 4 Gew.-% besonders bevorzugt ist. In vielen Fällen haben sich Mengen von maximal 2 Gew.-% als völlig ausreichend erwiesen. Die absolute Untergrenze beträgt 0,05 Gew.-%. Übliche Mindestmengen betragen 0,1 Gew.-%, insbesondere 0,2 Gew.-%, wobei mindestens 0,5 Gew.-% Ce02 + Sn02 bevorzugt sind.
Für das erfindungsgemäße Glas ist es ebenfalls wichtig, dass es im Wesentlichen frei von Alkalioxiden ist, d.h. dass diese zu maximal 5 Gew.-% enthalten sein dürfen. Vorzugsweise beträgt die Menge an Li02, Na02 und K20 jedoch maximal 3 Gew.-%, insbesondere maximal 2 Gew.-%, wobei maximal 1 Gew.-% und insbesondere maximal 0,5 Gew.-% besonders bevorzugt ist. Als ganz besonders geeignet haben sich Gläser erwiesen, deren Gehalt an Alkalioxiden maximal 0,2 Gew.-% und insbesondere maximal 0,15 Gew.-% bzw. 0,1 Gew.-% beträgt.
Das erfindungsgemäße Glassubstrat weist üblicherweise eine Transformationstemperatur Tg von mindestens 500°C, insbesondere > 600°C, auf, wobei ein Tg von > 680°C und insbesondere > 700°C erreicht wird. Mit dem erfindungsgemäßen Glassubstrat sind sogar Tg von > 710°C sowie > 720°C erhältlich. In einigen Fällen sind auch Transformationstemperaturen von > 750°C erreichbar. Ah
Das erfindungsgemäße Glassubstrat weist einen spezifischen E-Modul von E > 25 * 106 m2s"2, insbeson- ders von E > 35 * 106 m2s-2 auf.
Ein erfindungsgemäßes Glassubstrat mit einer Trans- formationstemperatur > 500°C enthält
S Sii0022 30 - 80 Gew. -%
A A11220033 10 - 30 Gew.-%
B B220033 5 - 15 Gew.-%
M MggOO 1 - 10 Gew.-%
C CaaOO 0 - 15 Gew.-%
S SrrOO 0 - 8 Gew . -%
B BaaOO 0 - 25 Gew.-%
Z ZnnOO 0 - 10 Gew.-%
Z Zrr0022 0 - 5 Gew. -%
T Tii0022 0 - 10 Gew.-%
C Cee0022 0 - 5 Gew. -%
S Snn0022 0 - 2 Gew.-%, wobei auch hier die obigen Maßgaben der Summenfor mein zu beachten ε ^ind. Ein weiteres bevorzugtes
Glas enthält
S Sii0022 30 - 80 Gew. -%
A A11220033 10 - 30 Gew . -%
B B220033 5 - 15 Gew. -%
M MggOO 1 - 10 Gew.-%
C CaaOO 0 - 15Gew.-%
S SrrOO 0 - 8 Gew. -%
B BaaOO 1 - 11 Gew.-%
Z ZnnOO 0 - 10 Gew.-%
Z Zrr0022 0 - 5 Gew.-%
T Tii0022 0 - 10 Gew.-%
C CeeO02? 0 - 5 Gew. -% Sn02 0 - 2 Gew.-%. Ein erfindungsgemäßes Glas mit einer Transformationstemperatur Tg > 680°C enthält
Si02 45 - 65 Gew. -%
A1203 10 - 20 Gew. -%
B203 5 - 15 Ge . -%
MgO 1 - 8 Gew . -%
CaO 0 - 15 Gew. -%
SrO 0 - 8 Gew. -%
BaO 1 - 11 Gew. -%
ZnO 0 - 8 Gew. -%
Zr02 0 - 2 Gew . -%
Ti02 0 - 2 Gew . -%
Ce02 0 - 1 , 5 Gew. -%
Sn02 0 ,05 - 1 . Gew. -% .
Ein erfindungsgemäßes Glas mit einer Transformati- onstemperatur Tg > 710 °C enthält
Si02 55 - 59 Gew -%
A1203 15 - 19 Gew -%
B203 6 - 10 Gew -%
MgO 3 - 7 Gew -%
CaO 0 - 4 Gew -%
SrO 4 - 8 Gew -%
BaO 1 - 5 Gew -%
Zr02 0 - 2 Gew 'S
Ti02 0 - 2 Gew — 9'S-
Ce02 0 - 1 Gew -%
Sn02 0 ,05 - 1 Gew 9-
Ein erfindungsgemäßes Glas mit einer Transformati- onstemperatur Tg > 720 °C enthält
Si02 57 - 61 Gew . -%
Al203 12 - 16 Gew. -%
B203 3 - 7 Gew -% 4<f
MgO 1 - 5 Gew. -
BaO 7 - 11 Gew. -
CaO 8 - 12 Gew. -
Sn02 0, .05 - 1 Gew. -
Ein erfindungsgemäßes Glas mit einer Transformationstemperatur Tg > 750°C enthält
Si02 58 - 62 Gew. -%
A1203 15 - 18 Gew. -%
B203 0 - 1 Gew. -%
MgO 1 - 5 Gew. -%
BaO 6 - 10 Gew.
CaO 11 - 15 Gew. -%
Zr02 0 - 2 Gew. -% so4 2~ 0 - 1 Gew. -%
Sn02 0,05 - 1 Gew. -%
Zur Herstellung eines flachen dünnen Glassubstrates für die Anwendung als Datenspeicher, insbesondere als Harddisk, ist es möglich, das Glas nach Schmelze und Läuterung direkt als homogenes, blasen-, schlieren- und einschlussfreies Flachglas zu ziehen bzw. zu floaten. Übliche Techniken hierzu sind insbesondere das Fourcault-Verfahren, das Libbey- Owens-Verfahren, das Pittsburg-Verfahren, Down- Draw- oder Up-Draw-Verfahren, das Overflow-Fusion- Verfahren sowie das Float-Verfahren.
Das erfindungsgemäße Glassubstrat wird vorzugsweise mittels Sn02 oder Sulfat geläutert.
Die erfindungsgemäßen Trägermaterialien bzw. Substratgläser weisen bereits bei der Herstellung, d.h. direkt nach dem Ziehen, eine derart glatte AS
Oberfläche auf, dass kein weiterer Polier- bzw.
Glättungsschritt notwendig ist. Ein bevorzugtes Herstellungsverfahren ist dabei das Floatverfahren. Mit dem erfindungsgemäßen Verfahren lassen sich ohne weiteres Oberflächenrauhigkeiten von weniger als 1 nm, insbesonders weniger als 0,7 nm erreichen, und zwar direkt durch übliche Zieh- bzw. Floatverfahren, d.h. ohne die Gläser einer Polier- bzw. Schleifprozedur zu unterziehen. Üblicherweise beträgt die Oberflächenrauhigkeit maximal 0,6 bzw. 0,5 nm. Häufig lassen sich erfindungsgemäß auch Oberflächenrauhigkeiten von 0 , nm und darunter problemlos ohne Polieren erreichen. Erfindungsgemäß wurde nun gefunden, dass sich diese geringe Oberflächenrauhigkeit auch bei längerem Erwärmen auf hohe Temperaturen, insbesonders bis auf 10°C unterhalb Tg nicht oder nur ganz geringfügig ändert, was speziell für die modernen Fertigungstechniken von Datenspeichersystemen oder anderen Flachglasprodukten mit aufgebrachten Funktionsschichten wichtig ist, die einen Hochtemperaturprozessschritt bei Temperaturen T > 250 °C enthalten.
Vorzugsweise enthält der mit dem erfindungsgemäßen Glassubstrat hergestellte Datenträger eine magnetisierbare Schicht. Die Herstellung derartiger magne- tisierbarer Schichten ist bekannt und wird beispielsweise unter Verwendung von kobalthaltigen Magnetschichten durchgeführt. Übliche magnetisierbare Funktionsschichten umfassen Zusammensetzungen, die Co, Pt, Cr, Ni, Ta, sowie ggf. Si und Sauerstoff enthalten. Derartige Zusammensetzungen sind dem Fachmann an sich bekannt und beispielsweise in der Ab
US-B 6,426,151 beschrieben. Zwischen der Magnetschicht und dem Glassubstrat ist vorzugsweise eine Zwischenschicht angeordnet. Derartige Zwischenschichten sind ebenfalls bekannt und können ggf. auch magnetische Eigenschaften aufweisen. Darüber hinaus kann ein derartiger Datenspeicher weitere übliche bekannte Schutz- und Lubricant- bzw. Gleitfilmschichten enthalten.
Es hat sich gezeigt, dass mit dem erfindungsgemäßen Substratglas auch bei hohen Temperaturen keine Diffusionsprozesse stattfinden, in denen Glaskomponenten in die darauf angeordneten Schichten hineindiffundieren. Trotzdem sind die aufgebrachten bzw. aufgesputterten Schichten fest mit dem Trägersubstrat verbunden und zeigen auch bei erhöhten Temperaturen keine Ablösungen.
Die Erfindung betrifft auch die Verwendung des Glases zur Herstellung eines Mediums zum Speichern von elektronisch verarbeitbaren Daten bzw. ein solches Medium selbst. Dabei ist auf dem Glassubstrat ein Schichtpaket angeordnet, das mindestens eine magnetisch, optisch und/oder thermisch zur Speicherung von Daten veränderbare Speicherschicht aufweist, sowie gegebenenfalls eine zwischen Glassubstrat und Speicherschicht angeordnete Zwischenschicht, wobei das Medium auch weitere Hilfsschichten umfassen kann. Ein solches Medium ist dadurch erhältlich, dass auf dem Glassubstrat mindestens eine Schicht mittels Hochtemperaturprozessen aufgebracht wird, wobei das Substrat auf eine Temperatur von 250°C bis 750°C erwärmt wird. Bei einem solchen erfin- - dungsgemäßen Speichermedium sind Glassubstrat und Schichtpaket so fest miteinander verbunden, dass während des Betriebes über mehrere Stunden in einer Klimatestkammer bei 60°C und bei einer relativen Luftfeuchtigkeit von > 90 % sich die aufgesputterten Schichten nicht vom Glassubstrat lösen. Darüber hinaus zeigt das Medium nach Herstellung und längerer Lagerung keine Interdiffusionsprozesse zwischen Schicht und Substrat, d.h. dass durch die beim Sputterprozess auftretende Wärmeeinwirkung weder Glasbestandteile in das darüberliegende Schichtpaket eindiffundieren noch Teile des Schichtpaketes in das Glassubstrat.
Ein solches Medium ist insbesonders zum Betrieb mittels dem sogenannten "heat assisted writing" geeignet. Dabei wird die Magnetisierung bzw. Ausrichtung der Elementarmagnete (Weißsche Bezirke) durch eine kurzzeitige lokale Erhitzung des Substrats mittels Induktion etc. auf Temperaturen nahe dem Curiepunkt der magnetisierbaren Schicht unterstützt .
Die Erfindung soll anhand der folgenden Beispiele näher erläutert werden:
Beispiel 1
Es wurde ein Glas mit der folgenden Zusammensetzung geschmolzen: Λg
Glas 1: Si02 57 Gew. -%
A1203 17 Gew. -%
B203 8 Gew. -%
MgO 5 Gew. -%
CaO 2 Gew. -%
SrO 6 Gew. -%
BaO 3,3 Gew. -%
Zr02 0,5 Gew. -%
Ti02 0,5 Gew. -%
Ce02 0,2 Gew.
Sn02 0,5 Gew. -%
Tg=711 - 722 °C
und auf einer Floatglasanlage zu einem Flachglas mit der Dicke 1,1 mm gezogen. Das Glas zeigte als Flachglas eine Oberflächenrauhigkeit von 0,32 nm auf. Diese Rauhigkeit wurde beispielsweise als arithmetischer Mittelwert (Ra) der weißlichtinter- ferometrisch (WLI) bzw. rasterkraftmikroskopisch ermittelten Topographiedaten einer Messfläche bzw. entlang einer willkürlich gewählten Messstrecke bestimmt. Das komplementäre geometrische Mittel (Quadratwurzel aus der Summe der Quadrate der Messwerte) der Daten wird mit "rms" bzw. "rq" bezeichnet.
Beispiel 2
Das erfindungsgemäße Glassubstrat von Beispiel 1 wurde bezüglich der Änderung der Oberflachenrauhig- 43 keit bei unterschiedlichen Wärmebehandlungen mit handelsüblichen Gläsern verglichen, die mittels Polieren eine vergleichbare Oberflächenrauhigkeit aufwiesen.
Vergleichsglas 1 (handelsüblich in polierter Form) hatte einen Si02-Gehalt von ca. 63,5 Gew.-%, Al203 13,8 Gew.-%, B203 < 1 Gew.-%, Na20 10,2 Gew.-%, K20 < 0,1 Gew.-%, Li20 5,5 Gew.-%, CaO < 0,3 Gew.-%, Zr02 4,3 Gew.-%, Sb203 0,4 Gew.-%.
Das Vergleichsglas 2 (handelsüblich erhältlich in polierter Form enthielt 63,4 Gew.-% Si02, 16,4 Gew.-% Al203, 9,7 Gew.-% Na20, 0,3 Gew.-% K20, 16,1 Gew.-% MgO, 3,7 Gew.-% CaO sowie 0,4 Gew.-% Sb03.
Die Vergleichsgläser lagen als runde Scheiben mit Innenloch vor (Aussendurchmesser 95 mm, Innendurchmesser 25 mm, Dicke ca. 1 mm) , waren poliert und wiesen eine Oberflächenrauhigkeit von 0,7 nm (Vergleichsglas 1) sowie 0,6 nm (Vergleichsglas 2) auf. Die Gläser wurden anschließend, auf einer keramischen Fasermatte (FIBERRAX®) als Unterlagsmaterial einseitig aufliegend, auf 550°C für 30 Minuten erwärmt und visuell-makroskopisch und mikroskopisch untersucht. Die Oberflächenrauhigkeit wurde ebenfalls bestimmt. Dabei zeigte das erfindungsgemäße Glas keinerlei Veränderungen. Die Vergleichsgläser des Standes der Technik zeigten unter anderem Verformungen am Innenloch sowie eine Verformung der Platte an sich. Darüber hinaus entstand eine Com- paction (Schrumpfen infolge thermischer Behandlung) , und es hatten sich an der Oberfläche Spikes (Einschlüsse von Unterlagsmaterial) , Pits (Eindrük- ke von Unterlagsmaterial) und Bläschen ausgebildet. Dazu stieg die Oberflächenrauhigkeit bei den Vergleichsgläsern auf 0,7 - 0,8 nm. Eine weitere Erhöhung auf eine Temperatur von 700°C zeigte bei den Vergleichsgläsern eine starke Verformung und eine Zunahme auf eine Oberflächenrauhigkeit von > 3 nm (Vergleichsglas 2) und > 4 nm (Vergleichsglas 1) . Bei dem erfindungsgemäßen Glas war lediglich eine Erhöhung der Oberflächenrauhigkeit auf 0,5 nm festzustellen.
Das erfindungsgemäße Glas von Beispiel 1 wurde einem Sputtertest unterzogen. Dabei wurden auf übliche Weise magnetische Schichtpakete auf der Oberfläche der Gläser abgeschieden. Die Abscheidung erfolgte in einer Zirkulus 12 Sputteranlage unter den für diese Anlage und Schichtpaketen üblichen Bedingungen. Dabei zeigte sich, dass das erfindungsgemäße Glas von Beispiel 1 eine hohe Stabilität bezüglich der SchichtStruktur und Schichthaftung aufwiesen.
An derart beschichteten Gläsern wurde der Aufbau und die Interdiffusion der Schichten mittels einer Sekundarionenmassenspektroskopie ermittelt. Dabei zeigte sich, dass das beschichtete, erfindungsgemäße Glassubstrat keinerlei Interdiffusionsprozesse zwischen Substrat und den aufgesputterten Schichten zeigte, wohl aber die Glassubstrate des Standes der Technik.
Derart beschichtete Harddisks wurden nach dem Auf- sputtern einem Ablösetest unterzogen. Dabei wurde während des Betriebes in einem Klimatest das be- sputterte Substrat bei 60 °C über mehrere Stunden einer relativen Luftfeuchtigkeit von > 90 % ausgesetzt. Dabei zeigte sich, dass unter derartigen Bedingungen die aufgesputterten Schichten sich nicht vom Substrat lösen oder sich nachweisbar pro- duktqualitätsmindernd verändern. Es hat sich auch gezeigt, dass sich bereits aufgetragene Unterlage- schichten beim Aufsputtern nachfolgender Schichten ebenfalls nicht lösen. Die auf das erfindungsgemäße Glas aufgesputterten Schichten sind somit fest mit dem Substratträger verbunden.
Weiterhin wurden die magnetischen Eigenschaften eines Schichtpaktes, das standardmäßig bei 225 °C aufgebracht wird, nach höheren Sputtertemperaturen auf den verschiedenen Substraten untersucht . Dabei hat es sich gezeigt, dass solange die Sputtertemperaturen 235 °C nicht überschreiten, Koerzitivfeld Hc und Remanenzmagnetisierung Mr des Schichtpaktes auf dem untersuchten erfindungsgemäßen Glas von Beispiel 1 und dem Vergleichsglas 1 nicht signifikant verschieden sind. Eine Erhöhung' der Sputter- temperatur auf 250 °C, 370 °C bzw. 480 °C führt zu einer deutlichen Erhöhung der Remanenzmagnetisierung Mr. Mit einer Erhöhung der Mr ist auch eine Erhöhung der Signalintensität der geschriebenen magnetischen Information verbunden (erhöhte magnetische Performance) .
Der Verlauf des entsprechenden Koerzitivfeldes Hc (Hc ist ein Maß für den Energieaufwand von Schreib- /Löschprozessen) im Sputtertemperaturbereich T = 250 bis 480 °C zeigt, dass mindestens eine Sputter- temperatur Topt existiert, bei der gilt:
Hc (Topt) = Hc (225 °C) und Mr (Topt) > Mr(225 °C) .
Dies bedeutet, dass bei dieser Temperatur Topt die magnetische Performance des Schichtpaketes bei gleichem Energieaufwand für Schreib-/Löschprozesse gegenüber dem Standardprodukt erhöht ist, was einen Produktvorteil darstellt. Derartige Sputtertempera- turen verträgt das Vergleichsglas 1 nicht ohne Oberflächenqualitätsverlust, wohl aber das erfindungsgemäße Glas von Beispiel 1.

Claims

PATENTANS PRUCHE
Träger für einen Datenspeicher umfassend ein Glassubstrat mit einem TG > 500 °C und einer Zusammensetzung von
Si02 30 - 80 Gew.
A1203 10 - 30 Gew.
B203 5 - 15 Gew.
MgO 1 - 10 Gew.
CaO 0 - 15 Gew.
SrO 0 - 8 Gew.
BaO 0 - 25 Gew.
ZnO 0 - 10 Gew.
Zr02 0 - 5 Gew.
Ti02 0 - 10 Gew.
Ce02 0 - 5 Gew.
Sn02 0,05 - 2 Gew. •% mit der Maßgabe,
CicL S S die ∑ Zr02 + Ti02 0,05 - 12 Gew.-%, die ∑ Ce02 + Sn02 ≤ 6 Gew.-% und die _ Li02 + Na20 + K20 0 - 5 Gew.-% beträgt.
Glassubstrat nach Anspruch 1, dadurch gekennzeichnet, dass die ∑ Zr02 + Ti02 0,5 - 5 Gew.- beträgt .
Glassubstrat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ∑Ce0 + Sn02 0,2 - 2 Gew.-% beträgt.
4. Glassubstrat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die TLi02 + Na20, K20 maximal 0,2 Gew.-% beträgt.
5. Glassubstrat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es mindestens 1 Gew.-% BaO enthält.
6. Glassubstrat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es
Si02 55 — 59
A1203 15 - 19
B203 6 - 10
MgO 3 - 7
CaO 0 - 4
SrO 4 - 8
BaO 1 - 5
Zr0 0 - 2
Ti02 0 - 2
Ce02 0 - 1
Sn02 0, 05 - 1 Gew. -% enthält.
7. Glassubstrat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es einen Tg > 600 °C aufweist.
8. Medium zum Speichern von elektronisch verarbeitbaren Daten umfassend ein Glassubstrat und ein darauf angeordnetes Schichtpaket umfassend mindestens eine magnetisch, optisch und/oder thermisch zur Speicherung von Daten veränderbare Speicherschicht, sowie ggfs. weitere Zwischen- und/oder Hilfsschichten, erhältlich durch Aufbringen mindestens einer Schicht mittels Hochtemperaturprozessen, bei denen das Substrat auf eine Temperatur von > 250°C bis 750°C erwärmt wird, dadurch gekennzeichnet, dass es ein Glassubstrat nach einem der Ansprüche 1 - 7 enthält .
* * *
2
Glassubstrat für ein Datenspeichermedium sowie einen Datenspeicher, der ein solches Glassubstrat um- fasst
Zusammenfassung
Es wird ein Glas beschrieben, das als Substrat bzw. Träger für einen Datenspeicher geeignet ist. Das Glas weist eine TG > 500°C und einer Zusammensetzung von
Sι02 30 - 80 Gew.
A1203 10 - 30 Gew.
B203 5 - 15 Gew.
MgO 1 - 10 Gew.
CaO 0 - 15 Gew.
SrO 0 - 8 Gew.
BaO 0 - 25 Gew.
ZnO 0 - 10 Gew.
Zr02 0 - 5 Gew.
Ti02 0 - 10 Gew.
Ce02 0 - 5 Gew.
Sn02 0,05 - 2 Gew.-% auf, mit der Maßgabe, dass die ∑ Zr02 + Ti02 0,05 - 12 Gew.-%, die ∑ Ce02 + Sn02 ≤ 6 Gew.-% und die Lά.02 + Na20 + K20 0 - 5 Gew.-% beträgt. Die Erfindung beschreibt auch ein Medium zum Speichern von elektronisch verarbeitbaren Daten, das ein solches Glassubstrat enthält.
***
PCT/DE2004/000324 2003-02-21 2004-02-20 Glassubstrat für ein datenspeichermedium sowie einen datenspeicher, der ein solches glassubstrat umfasst WO2004076367A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10307422.8 2003-02-21
DE2003107422 DE10307422B4 (de) 2003-02-21 2003-02-21 Verwendung eines Glassubstrats zur Herstellung eines Datenspeichers

Publications (1)

Publication Number Publication Date
WO2004076367A1 true WO2004076367A1 (de) 2004-09-10

Family

ID=32841770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000324 WO2004076367A1 (de) 2003-02-21 2004-02-20 Glassubstrat für ein datenspeichermedium sowie einen datenspeicher, der ein solches glassubstrat umfasst

Country Status (2)

Country Link
DE (1) DE10307422B4 (de)
WO (1) WO2004076367A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461068B2 (en) 2010-02-26 2013-06-11 Corning Incorporated Glass ceramics with bulk scattering properties and methods of making them

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603234A (zh) * 2017-04-27 2019-12-20 日本电气硝子株式会社 载体玻璃及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1095253A (en) * 1964-01-13 1967-12-13 Anchor Hocking Glass Corp Improvements in and relating to the production of semi-crystalline glass articles
SU1717568A1 (ru) * 1990-01-30 1992-03-07 Днепропетровский химико-технологический институт им.Ф.Э.Дзержинского Стекло дл стеклокристаллического материала
DE19601922A1 (de) * 1996-01-13 1997-07-17 Eckhart Dipl Ing Watzke Zinn- und zirkonoxidhaltige, alkalifreie Erdalkali-Alumo-Borosilicatgläser und deren Verwendung
EP0787693A1 (de) * 1996-02-02 1997-08-06 Schott Glaswerke Alkalifreies Aluminoborosilicatglas und dessen Verwendung
EP0805125A1 (de) * 1996-04-30 1997-11-05 Schott Glaswerke Alkalifreies Aluminoborosilicatglas und seine Verwendung
EP0901990A1 (de) * 1997-09-11 1999-03-17 Schott Glas Alkalifreies Aluminosilicatglas
EP1070681A1 (de) * 1999-07-23 2001-01-24 Schott Glas Alkalifreies Aluminoborosilicatglas, seine Verwendungen und Verfahren zu seiner Herstellung
EP1078893A2 (de) * 1999-08-21 2001-02-28 Schott Glas Alkalifreie Aluminoborosilicatgläser und deren Verwendungen
DE10028741A1 (de) * 2000-06-06 2001-12-13 Ept Eglass Platinum Technology Alkalifreie und arsenarme Glaszusammensetzung und Verfahren zur Herstellung von Flachglas für LCD
WO2002060831A2 (en) * 2001-02-01 2002-08-08 Nippon Electric Glass Co., Ltd. Alkali-free glass and glass plate for a display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3804101B2 (ja) * 1995-04-27 2006-08-02 旭硝子株式会社 磁気ディスク用ガラス基板
MY118912A (en) * 1996-09-04 2005-02-28 Hoya Corp Glass for information recording medium substrate and glass substrate
DE19734072C2 (de) * 1997-08-06 2001-12-13 Iq Mobil Electronics Gmbh Lambda-Regelung für Einspritzanlagen mit adaptivem Filter
DE10000836B4 (de) * 2000-01-12 2005-03-17 Schott Ag Alkalifreies Aluminoborosilicatglas und dessen Verwendungen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1095253A (en) * 1964-01-13 1967-12-13 Anchor Hocking Glass Corp Improvements in and relating to the production of semi-crystalline glass articles
SU1717568A1 (ru) * 1990-01-30 1992-03-07 Днепропетровский химико-технологический институт им.Ф.Э.Дзержинского Стекло дл стеклокристаллического материала
DE19601922A1 (de) * 1996-01-13 1997-07-17 Eckhart Dipl Ing Watzke Zinn- und zirkonoxidhaltige, alkalifreie Erdalkali-Alumo-Borosilicatgläser und deren Verwendung
EP0787693A1 (de) * 1996-02-02 1997-08-06 Schott Glaswerke Alkalifreies Aluminoborosilicatglas und dessen Verwendung
EP0805125A1 (de) * 1996-04-30 1997-11-05 Schott Glaswerke Alkalifreies Aluminoborosilicatglas und seine Verwendung
EP0901990A1 (de) * 1997-09-11 1999-03-17 Schott Glas Alkalifreies Aluminosilicatglas
EP1070681A1 (de) * 1999-07-23 2001-01-24 Schott Glas Alkalifreies Aluminoborosilicatglas, seine Verwendungen und Verfahren zu seiner Herstellung
EP1078893A2 (de) * 1999-08-21 2001-02-28 Schott Glas Alkalifreie Aluminoborosilicatgläser und deren Verwendungen
DE10028741A1 (de) * 2000-06-06 2001-12-13 Ept Eglass Platinum Technology Alkalifreie und arsenarme Glaszusammensetzung und Verfahren zur Herstellung von Flachglas für LCD
WO2002060831A2 (en) * 2001-02-01 2002-08-08 Nippon Electric Glass Co., Ltd. Alkali-free glass and glass plate for a display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461068B2 (en) 2010-02-26 2013-06-11 Corning Incorporated Glass ceramics with bulk scattering properties and methods of making them

Also Published As

Publication number Publication date
DE10307422B4 (de) 2008-08-07
DE10307422A1 (de) 2004-09-09

Similar Documents

Publication Publication Date Title
DE19917921C1 (de) Gläser und Glaskeramiken mit hohem spezifischen E-Modul und deren Verwendung
DE19616679C1 (de) Verfahren zur Herstellung chemisch vorgespannten Glases und Verwendung desselben
DE69815491T2 (de) Glaskeramisches Trägermaterial hoher Steifigkeit für magnetisches Informationsaufzeichnungsmedium I
DE69928589T2 (de) Kristallisiertes Glas-Substrat, und Informationsaufzeichnungsmedium unter Verwendung des kristallisierten Glas-Substrats
US5726108A (en) Glass-ceramic magnetic disk substrate
DE19615688A1 (de) Glassubstrat für Magnetscheiben
US6413892B1 (en) Glass substrate for magnetic recording media
DE69932553T2 (de) Glaskeramisches Substrat für magnetischen Aufzeichnungsträger
DE3607404C2 (de)
DE4206268C2 (de) Chemisch verstärkbare Glaszusammensetzung und deren Verwendungen
US5872069A (en) Glass-ceramics for magnetic disc substrate, magnetic disc substrate and magnetic disc
DE69915428T2 (de) Glaskeramiken mit niedriger Ausdehnung
WO2011037001A1 (ja) 情報記録媒体用ガラス基板及び情報記録媒体
WO2012019833A1 (de) Lithiumhaltige, transparente glaskeramik mit geringer wärmedehnung, einer weitestgehend amorphen, an lithium verarmten, überwiegend glasigen oberflächenzone und hoher transmission, ihre herstellung in wasserhaltiger atmosphäre und verwendung
DE102008053173A1 (de) Glas für ein Informations-Aufzeichnungsmedien, Substrat, Glassubstrat für Magnet-Disk und Magnet-Disk
EP3040318A1 (de) Glaskeramisches substrat aus einer transparenten, eingefärbten las-glaskeramik und verfahren zu dessen herstellung
CN1224699A (zh) 无碱金属的铝硼硅酸盐玻璃及其用途
EP1236695A2 (de) Glaskeramik
DE19838198C2 (de) Gläser und Glaskeramiken mit hohem E-Modul sowie deren Verwendungen
DE2723600A1 (de) Emaille fuer opalglas
DE69726108T2 (de) Glas für informations auf zeichnungsträgersubstrat und glassubstrat
JP2004010430A (ja) ガラス基板
DE3639682C2 (de) Magnetische Aufzeichnungsplatte und Verfahren zu ihrer Herstellung
DE10307422B4 (de) Verwendung eines Glassubstrats zur Herstellung eines Datenspeichers
DE10141666A1 (de) Zinkhaltiges Alkalialuminosilicatglas und seine Verwendungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase