WO2004075438A1 - 無線チャネル制御方法及び受信装置 - Google Patents

無線チャネル制御方法及び受信装置 Download PDF

Info

Publication number
WO2004075438A1
WO2004075438A1 PCT/JP2003/001881 JP0301881W WO2004075438A1 WO 2004075438 A1 WO2004075438 A1 WO 2004075438A1 JP 0301881 W JP0301881 W JP 0301881W WO 2004075438 A1 WO2004075438 A1 WO 2004075438A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless channel
receiving device
transmission parameter
transmission
information
Prior art date
Application number
PCT/JP2003/001881
Other languages
English (en)
French (fr)
Inventor
Hideto Furukawa
Takashi Dateki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN200810098854.2A priority Critical patent/CN101282149B/zh
Priority to PCT/JP2003/001881 priority patent/WO2004075438A1/ja
Priority to JP2004568488A priority patent/JPWO2004075438A1/ja
Priority to EP11157230.1A priority patent/EP2333987B1/en
Priority to EP11157228.5A priority patent/EP2333986B1/en
Priority to EP03705365.9A priority patent/EP1542378B1/en
Priority to EP11157231.9A priority patent/EP2333988B1/en
Priority to CNB03819354XA priority patent/CN100435495C/zh
Priority to AU2003211222A priority patent/AU2003211222A1/en
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Publication of WO2004075438A1 publication Critical patent/WO2004075438A1/ja
Priority to US11/043,307 priority patent/US7945280B2/en
Priority to US11/730,670 priority patent/US8073480B2/en
Priority to US11/730,669 priority patent/US7933624B2/en
Priority to US11/730,671 priority patent/US7881740B2/en
Priority to US11/730,672 priority patent/US7885677B2/en
Priority to US12/976,400 priority patent/US8483736B2/en
Priority to US12/976,325 priority patent/US8135341B2/en
Priority to US13/009,591 priority patent/US8331976B2/en
Priority to US13/009,488 priority patent/US8311569B2/en
Priority to US13/011,298 priority patent/US8073396B2/en
Priority to US13/011,527 priority patent/US8095171B2/en
Priority to US13/687,733 priority patent/US8660599B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0019Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
    • H04L1/0021Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach in which the algorithm uses adaptive thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/221TPC being performed according to specific parameters taking into account previous information or commands using past power control commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo

Definitions

  • the present invention relates to a radio channel control method for controlling a radio channel from a transmission device to a reception device in a mobile communication system having a transmission device and a reception device, and a reception device to which the radio channel control method is applied.
  • the propagation environment of a wireless channel set between communication devices that transmit and receive information tends to fluctuate.
  • transmission parameters of the wireless channel are appropriately changed according to changes in a propagation environment.
  • the transmission parameter is, for example, a ratio of a true information bit number to a total transmission bit number including a redundant bit such as a modulation scheme, a coding rate, and an error correction code (hereinafter, referred to as a “Rate-Matching rate”).
  • C This is the number of spreading codes used in DMA (Code Division Multiple Access) communication.
  • FIG. 1 is a diagram illustrating an example of a conventional configuration of a mobile communication system that changes transmission parameters of a wireless channel.
  • the mobile communication system shown in the figure includes a base station 500 as a transmitting device and a mobile station 600 as a receiving device.
  • Base station 500 has encoder 502, modulation section 504, transmission section 506, and circulator. It is provided with a radiator 508, an antenna 510, a receiving section 511, a demodulating section 514, a decoder 516 and a transmission parameter setting section 518.
  • the mobile station 600 has an antenna 602, a circulator 604, a receiving section 606, a demodulating section 608, a decoder 610, a block error rate deriving section 612, and a transmission parameter determining section 6. 14, transmission base band section 6 16 and communication section 6 18 are provided.
  • the change of the transmission parameters of the radio channel from the base station 500 to the mobile station 600 (hereinafter referred to as “downlink radio channel”) is performed in the following procedure. That is, the encoder 502 in the base station 500 encodes the input target data based on the coding rate as the transmission parameter notified from the transmission parameter setting unit 518, and modulates the data. Output to section 504.
  • Modulating section 504 modulates the baseband signal with coded data (hereinafter referred to as “coded data”) based on the modulation scheme notified from transmission parameter setting section 518, and transmits the signal. Output to 506.
  • the transmitting section 506 transmits the signal modulated by the coded data to the mobile station 600 via the circulator 508 and the antenna 510 as a signal to be transmitted.
  • the receiving section 606 in the mobile station 600 receives a signal from the base station 500 via the antenna 602 and the circulator 604, and outputs the signal to the demodulating section 608.
  • the demodulation unit 608 demodulates an input signal using a demodulation method corresponding to the modulation method used by the modulation unit 504 in the base station 50,000, and outputs encoded data to the decoder 610
  • the decoder 6100 decodes the input coded data by using a decoding method corresponding to the coding method used by the encoder 502 in the base station 500, and is obtained by the decoding. Output the data.
  • the block error rate deriving unit 612 monitors the decoding by the decoder 610 and calculates a data error rate per block (hereinafter, referred to as a “block error rate”) as a predetermined transmission unit. Derived and output to the transmission parameter determination unit 6 14.
  • the transmission parameter determination unit 614 determines a coding rate and a modulation scheme, which are transmission parameters, based on the block error rate. Specifically, when the block error rate is high, that is, when there are many data errors, the transmission parameter determining unit 6 14 determines that the propagation environment of the downlink radio channel is bad, and reduces the coding rate to a small value. Change or change the transmission energy per bit and modulation method. On the other hand, when the block error rate is low, that is, when the number of data errors is small, the transmission parameter determination unit 614 determines that the propagation environment of the downlink radio channel is good, and changes the coding rate to a large coding rate. Change to a modulation method with a small transmission energy per bit. Further, the transmission parameter determination section 6 14 is associated with a new transmission parameter. Output to the transmission baseband section 616.
  • the transmission baseband section 616 encodes information related to the new transmission parameter, and further uses the information related to the encoded transmission parameter to transmit an uplink baseband signal (hereinafter, “uplink”) to the base station 500. ) And outputs the modulated signal to the transmitting section 618.
  • Transmitting section 618 outputs the input signal to base station 500 via circulator 604 and antenna 602.
  • Receiving section 508 in base station 500 receives a signal from base station 500 via antenna 510 and circulator 508, and outputs the signal to demodulating section 514.
  • Demodulation section 514 demodulates the input signal and outputs encoded data to decoder 516.
  • the decoder 516 decodes the input coded data and outputs information related to the transmission parameters obtained by the decoding to the transmission parameter setting unit 518.
  • the transmission parameter setting unit 518 outputs the information related to the input transmission parameters.
  • the new coding rate and modulation scheme are recognized based on the information to be changed.
  • transmission parameter setting section 518 notifies encoder 502 of the coding rate and notifies modulation section 5 ⁇ 4 of the modulation scheme.
  • encoder 502 uses a new coding rate
  • modulation section 504 uses a new modulation scheme.
  • Patent Documents 1 to 4 As a conventional technique for changing the transmission parameters described above, there are Patent Documents 1 to 4 below, for example.
  • Patent Document 3 Patent Document 3
  • Patent Document 4 Patent Document 4
  • the mobile station 600 It took time to derive the block error rate by the block error rate deriving unit 6 1 2 in FIG. For this reason, the base station 500 cannot quickly change the transmission parameters according to the change in the propagation environment of the downlink radio channel. Disclosure of the invention
  • a wireless channel control method for controlling a wireless channel from the transmitting device to the receiving device Generating transmission power control information for controlling transmission power of the radio channel according to a propagation environment of the radio channel; generating information related to transmission parameters based on the transmission power control information;
  • the transmitting device notifies the transmitting device of information related to the transmission parameter, and the transmitting device controls the wireless channel based on the information related to the transmitting parameter from the receiving device.
  • the receiving apparatus generates information related to the transmission parameters based on the transmission power control information for controlling the transmission power of the radio channel. There is no need to use block error rates to generate relevant information. For this reason, the transmission device can quickly change the transmission parameters according to the change in the propagation environment of the wireless channel.
  • FIG. 1 is a diagram showing a configuration example of a conventional mobile communication system.
  • FIG. 2 is a diagram illustrating a configuration example of the mobile communication system according to the first embodiment.
  • FIG. 3 is a diagram showing the correspondence between the speech parameter and the transmission parameter related information.
  • FIG. 4 is a diagram showing a configuration example of a mobile communication system according to the second embodiment.
  • FIG. 5 is a diagram showing a configuration example of a mobile communication system according to the third embodiment.
  • FIG. 6 is a diagram illustrating a configuration example of a mobile communication system according to the fourth embodiment.
  • FIG. 7 is a diagram showing a configuration example of a mobile communication system according to the fifth embodiment.
  • FIG. 8 is a diagram illustrating a configuration example of a mobile communication system according to the sixth embodiment.
  • FIG. 9 is a diagram illustrating a configuration example of a mobile communication system according to the seventh embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of a mobile communication system according to the eighth embodiment.
  • FIG. 11 is a diagram illustrating a configuration example of the mobile communication system according
  • FIG. 2 is a diagram illustrating a configuration example of the mobile communication system according to the first embodiment.
  • the mobile communication system shown in FIG. 1 includes a base station 100 as a transmitting device and a mobile station 200 as a receiving device.
  • the transmission parameters of the radio channel change appropriately according to changes in the propagation environment of the radio channel (downlink radio channel) from the base station 100 to the mobile station 200.
  • a coding rate and a modulation scheme are used as transmission parameters.
  • the base station 100 has an encoder 102, a modulator 104, a transmitter 106, a circulator 108, an antenna 110, a receiver 112, a demodulator 114, and a decoder 111.
  • the mobile station 200 has an antenna 202, a circulator 204, a receiver 206, a demodulator 208, a decoder 210, a TPC bit generator 211, and a transmission parameter determiner 211. 4. Equipped with a transmission baseband section 2 16 and a transmission section 2 18.
  • the change of the transmission parameters of the downlink radio channel from the base station 100 to the mobile station 200 is performed in the following procedure. That is, the encoder 102 in the base station 100 encodes the input transmission target data based on the coding rate as the transmission parameter notified from the transmission parameter setting unit 118. Further, encoder 102 outputs the encoded data obtained by the encoding to modulation section 104. Modulating section 104 modulates the baseband signal with the coded data based on the modulation scheme notified from transmission parameter setting section 118 and outputs it to transmitting section 106. The transmission unit 106 outputs the signal modulated by the encoded data to the circulator 108 as a signal to be transmitted.
  • the circulator 108 transmits a signal from the transmitting unit 106 via the antenna 110 at a predetermined cycle, and outputs a signal received by the antenna 110 to the receiving unit 112. It is.
  • circulator 108 transmits a signal to be transmitted to mobile station 200 via antenna 110 at a predetermined timing.
  • the circulator 204 in the mobile station 200 transmits a signal from the transmission section 210 via the antenna 202 at a predetermined period, similarly to the circulator 108 in the base station 100.
  • the signal received by the antenna 202 is output to the receiving section 206.
  • circulator 204 outputs the signal from base station 100 received by antenna 202 to receiving section 206.
  • receiving section 206 outputs this signal to demodulating section 208.
  • Demodulation section 208 demodulates the input signal using a demodulation scheme corresponding to the modulation scheme used by modulation section 104 in base station 100. Further, the demodulation unit 208 outputs the obtained encoded data to the decoder 210. The decoder 210 decodes the input coded data using a decoding method corresponding to the coding method used by the encoder 102 in the base station 100, and is obtained by the decoding. Output data. Also, the demodulation unit 208 measures the signal-to-noise power ratio (hereinafter referred to as “SIR”) of the downlink radio channel based on the input signal, and sends the SIR to the TPC bit generation unit 212. Output.
  • SIR signal-to-noise power ratio
  • the TPC bit generation unit 212 compares the input SIR with a predetermined reference value, and based on the comparison result, raises or lowers the transmission power of the downlink radio channel to the base station 100.
  • a bit for indicating (hereinafter, referred to as “TPC bit”) is generated.
  • the TPC bit generation unit 212 has a transmission power of the downlink radio channel to the base station 100 because the SIR is less than the reference value: ⁇ indicates that the propagation environment of the downlink radio channel is poor.
  • a TPC bit “0” for instructing the base station 100 to increase the downlink radio channel is transmitted to the base station 100 when the SIR is equal to or more than the reference value because the propagation environment of the downlink radio channel is good.
  • the TPC bit generator 2 1 2 outputs the generated TPC bit to the transmission parameter determination unit 2 14.
  • the downlink radio channel to be measured for the signal-to-noise power ratio and subject to transmission power control may be a different radio channel from the downlink radio channel subject to transmission parameter control.
  • a DPCH Dedicated Physical Channel
  • HS-DPCH High-Speed Dedicated Physical Channel
  • the transmission parameter determination unit 2 14 determines a coding rate and a modulation scheme, which are transmission parameters, based on the input TPC bits.
  • FIG. 3 is a diagram showing the relationship between transmission parameter values and transmission parameters (modulation scheme and coding rate). In the figure, the larger the transmission parameter value, the more the transmission parameter corresponding to the transmission parameter can secure the communication quality even when the propagation environment is bad.
  • the transmission parameter determination unit 2 14 When the input TPC bit is “0”, the transmission parameter determination unit 2 14 immediately sets a small code when the propagation environment of the downlink radio channel is poor and the transmission power of the downlink radio channel is increased. Transmission parameter values corresponding to the transmission parameters used by the base station 100 at that time, in order to change to the modulation rate or to the modulation method with large transmission energy per bit, and The transmission parameter corresponding to the transmission parameter value is determined as a new transmission parameter.
  • the transmission parameter determination unit 2 14 is large when the input TPC bit is “1”, that is, when the propagation environment of the downlink radio channel is good and the transmission power of the downlink radio channel is reduced.
  • the transmission parameter corresponding to the reduced transmission parameter value is determined as a new transmission parameter.
  • the modulation scheme used by base station 100 at that time is QPSK and the coding rate is 3Z4.
  • these modulation methods and coding rates are The corresponding transmission parameter value is “2” according to FIG.
  • the transmission parameter determination unit 2 14 increases the transmission parameter value by 1 to “3” and sets the transmission parameter value to “3”.
  • the corresponding transmission parameters (modulation scheme 16 QAM, code rate 1 Z 2) are determined as new transmission parameters.
  • the transmission parameter determination unit 2 14 reduces the transmission parameter value by 1 to “1”, and transmits the transmission parameter value corresponding to the transmission parameter value “1”.
  • the parameters (modulation method is QPSK and coding rate is 1/2) are determined as new transmission parameters.
  • transmission parameter determining section 216 outputs a transmission parameter value corresponding to the new transmission parameter to transmission baseband determining section 216.
  • the transmission baseband section 216 encodes the transmission parameter value, and further modulates the uplink baseband signal going to the base station 200 with this encoded transmission parameter value, and outputs it to the transmission section 218 . Further, transmitting section 218 outputs the input signal to circulator 204.
  • the circulator 204 transmits the signal to be transmitted to the base station 100 via the antenna 202 at a predetermined timing.
  • the circulator 108 in the base station 100 outputs the signal from the mobile station 200 received by the antenna 110 to the receiving unit 112. Further, receiving section 112 outputs this signal to demodulating section 114.
  • Demodulation section 114 demodulates the input signal and outputs the encoded data to decoder 116.
  • the decoder 116 decodes the input coded data, and outputs the transmission parameter value obtained by the decoding to the transmission parameter setting unit 118.
  • the transmission parameter setting unit 118 recognizes a new coding rate and a new modulation scheme based on the input transmission parameter values and the correspondence between the transmission parameter values and the transmission parameters shown in FIG. Further, the transmission parameter setting unit 118 notifies the encoder 102 of the coding rate and notifies the modulation unit 104 of the modulation scheme. In the subsequent data transmission from the base station 100 to the mobile station 200, the encoder 102 uses a new coding rate, and the modulator 104 uses a new modulation scheme.
  • the mobile station 200 generates a new transmission parameter value based on the TPC bit that controls the transmission power of the downlink radio channel. There is no need to use a block error rate as before. For this reason, the base station 100 can quickly change the transmission parameters according to the change in the propagation environment of the downlink radio channel.
  • FIG. 4 is a diagram showing a configuration example of a mobile communication system according to the second embodiment.
  • the mobile communication system shown in the figure is different from the mobile communication system shown in FIG. 2 in that the mobile station 200 has a new majority decision between the TPC bit generation unit 212 and the transmission parameter determination unit 214.
  • a circuit 220 is provided.
  • the majority decision circuit 220 determines which of “0” and “1” is larger among a plurality of TPC bits input from the TPC bit generator 212 during the first predetermined period. Further, the majority circuit 220 outputs the larger TPC bit to the transmission parameter determination unit 214.
  • the transmission parameter determining unit 214 determines a coding rate and a modulation method, which are transmission parameters, based on the input TPC bits in the same procedure as in the first embodiment.
  • the majority decision circuit 220 may output the larger TPC bits and the difference between the larger number of TPC bits and the smaller number of TPC bits to the transmission parameter determining unit 214.
  • the transmission parameter determining unit 214 increases or decreases the transmission parameter value corresponding to the transmission parameter used by the base station 100 at that time as the difference is larger, and The transmission parameter corresponding to the transmission parameter value is determined as a new transmission parameter.
  • FIG. 5 is a diagram showing a configuration example of a mobile communication system according to the third embodiment.
  • the mobile communication system shown in the figure is different from the mobile communication system shown in FIG. 4 in that a mobile speed detection unit is newly added between the demodulation unit 208 and the majority decision circuit 220 in the mobile station 200. 2 2 2 are provided.
  • Moving speed detecting section 222 detects the moving speed of mobile station 200 based on the fluctuation of the received power of the signal input to demodulating section 208.
  • Specific method of detecting moving speed and For example, Japanese Patent Laid-Open Publication No. Hei 6-5141586 is a Japanese patent publication.
  • the moving speed detector 222 does not necessarily need to detect the moving speed of the mobile station 200 based on the signal input to the demodulator 208.
  • the function of a GPS Global Positio nig System
  • Any method may be used as long as the moving speed of the mobile station 200 can be detected by any method, such as by using the method.
  • the moving speed detector 222 outputs the detected moving speed of the mobile station 200 to the majority decision circuit 220.
  • the majority decision circuit 220 determines which of the plurality of TPC bits input from the TPC bit generation unit 2 12 during the first predetermined period is more “0” or “1”. judge. However, when the moving speed of the mobile station 200 is equal to or higher than a predetermined value, the majority decision circuit 220 has a high possibility that the propagation environment of the downlink radio channel fluctuates greatly in a short time. Shorten the period. Further, when the moving speed of the mobile station 200 is lower than a predetermined value, the majority decision circuit 220 has a low possibility that the propagation environment of the downlink radio channel fluctuates greatly in a short time. Lengthen.
  • the mobile station 200 transmits the transmission parameter value when the moving speed of the mobile station 200 is high and the propagation environment of the downlink radio channel is highly likely to fluctuate greatly in a short time. If the mobile station 200 moves at a high speed and the propagation environment of the downlink radio channel is unlikely to fluctuate significantly in a short time, the transmission frequency of the transmission parameter value may be increased. Can be reduced. Therefore, the mobile station 200 can transmit the transmission parameter value at an appropriate frequency according to the fluctuation of the propagation environment of the downlink radio channel.
  • FIG. 6 is a diagram illustrating a configuration example of a mobile communication system according to the fourth embodiment.
  • the mobile communication system shown in FIG. 7 is different from the mobile communication system shown in FIG. 2 in that the mobile station 200 has a TPC bit generation unit 2 between the demodulation unit 208 and the transmission parameter determination unit 2 13. While not provided with 12, the SIR measuring section 2 24, the reference setting section 2 26, the comparing section 2 28 and the majority circuit 2 30 are provided.
  • the demodulation unit 208 in the mobile station 200 outputs the input signal to the SIR measurement unit 224.
  • the SIR measuring section 224 measures the signal-to-noise ratio (SIR) of the downlink radio channel based on the input signal, and outputs the SIR to the comparing section 228.
  • the reference value setting unit 222 sets the SIR reference value.
  • the comparison unit 228 compares the SIR measured by the SIR measurement unit 224 (hereinafter referred to as “SIR measurement value”) with the SIR reference value set by the reference value setting unit 226, The result is output to the majority circuit 230.
  • the majority decision circuit 230 determines that the comparison result input from the comparison unit 228 during the second predetermined period indicates that the SIR measurement value is larger than the SIR reference value, and that the SIR measurement value is Judge which of the comparison results, which is smaller than the SIR reference value, is larger. Further, the majority circuit 220 outputs the comparison result of the majority to the transmission parameter determination unit 214.
  • the transmission parameter determination unit 214 determines a coding rate and a modulation scheme, which are transmission parameters, based on the input comparison result. Specifically, if the input comparison result indicates that the SIR measurement value is smaller than the SIR reference value, the transmission parameter determination unit 2 14 changes the transmission rate to a larger value, a coding rate, or the like. Change to a modulation method with the smallest transmission energy per bit. In addition, if the input comparison result indicates that the SIR measurement value is smaller than the SIR reference value, the transmission parameter determination unit 2 14 changes the coding rate to a smaller one or changes the transmission rate per bit. Change to a modulation method with large energy.
  • the majority decision circuit 230 may output the difference between the larger comparison result and the smaller comparison result to the transmission parameter determination unit 214 together with the larger comparison result.
  • the transmission parameter determination unit 214 uses the larger the difference, the more the base station 100 uses the difference at that time.
  • the amount of increase or decrease of the transmission parameter value corresponding to the transmission parameter is increased, and the transmission parameter corresponding to the increased or decreased transmission parameter value is determined as a new transmission parameter.
  • FIG. 7 is a diagram showing a configuration example of a mobile communication system according to the fifth embodiment. Same figure The mobile communication system shown in FIG. 6 is different from the mobile communication system shown in FIG. 6 in that the mobile station 200 is newly provided with a moving speed detection unit 23 between the demodulation unit 208 and the majority decision circuit 230. Two are provided.
  • the moving speed detector 2 32 moves based on the fluctuation of the received power of the signal input to the demodulator 208.
  • the moving speed of the station 200 is detected.
  • the moving speed detecting unit 232 only needs to be able to detect the moving speed of the mobile station 200 by using any method such as using the function of the GPS. Further, the moving speed detecting section 232 outputs the detected moving speed of the mobile station 200 to the majority decision circuit 230.
  • the majority decision circuit 230 determines that the comparison result input from the comparison unit 228 during the second predetermined period indicates that the SIR measurement value is larger than the SIR reference value. And the comparison result that the SIR measurement value is smaller than the SIR reference value is determined.
  • the majority decision circuit 220 has a high possibility that the propagation environment of the downlink radio channel fluctuates greatly in a short time. Shorten the period.
  • the majority decision circuit 220 sets the second radio channel propagation environment to be large in a short time. Extend the predetermined period.
  • the mobile station 200 has a high moving speed of the mobile station 200 and is highly likely to greatly change the propagation environment of the downlink radio channel in a short time.
  • the transmission frequency of the transmission parameter value can be increased, and when the moving speed of the mobile station 200 is high and the possibility that the propagation environment of the downlink radio channel fluctuates greatly in a short time is low, the transmission is performed.
  • the frequency of sending parameter values can be reduced. Therefore, the mobile station 200 can transmit the transmission parameter values at an appropriate frequency according to the fluctuation of the propagation environment of the downlink radio channel.
  • FIG. 8 is a diagram illustrating a configuration example of a mobile communication system according to the sixth embodiment.
  • the mobile communication system shown in the figure is different from the mobile communication system shown in FIG. 7 in that the decoder 210 and the reference value setting unit 226 are connected in the mobile station 200.
  • the decoder 210 uses a decoding scheme corresponding to the encoding scheme used by the encoder 102 in the base station 100 to input a coding scheme. Decrypt the data and determine the success or failure of data reception. Furthermore, when the data reception is successful, the decoder 210 outputs an ACK signal to the reference value setting unit 226. In addition, when data reception has failed, the decoder 210 outputs a NACK signal to the reference value setting unit 226.
  • the reference value setting unit 222 lowers the SIR reference value when the ACK signal is continuously input within the third predetermined period.
  • the SIR reference value is reduced, the possibility of deriving a comparison result that the SIR measurement value is larger than the SIR reference value increases when the comparison unit 228 and the majority circuit 230 are output. Therefore, the possibility that the transmission parameter determination unit 2 14 changes to a large coding rate, the transmission energy per bit is small, and the modulation method is increased, and the downlink is determined according to the good propagation environment. It is possible to improve the transmission efficiency of the wireless channel.
  • the reference value setting unit 222 increases the SIR reference value.
  • the possibility of deriving a comparison result with the comparison section 228 and the majority decision circuit 230 from the SIR measurement value smaller than the SIR reference value increases. Therefore, there is a high possibility that the transmission parameter determination unit 2 14 changes to a small coding ratio or a modulation method with a large transmission energy per bit. The transmission quality of the channel can be improved.
  • FIG. 9 is a diagram illustrating a configuration example of a mobile communication system according to the seventh embodiment. Compared with the mobile communication system shown in FIG. 8, the mobile communication system shown in FIG. 8 has a new ratio deriving unit between mobile station 200 and decoder 210 and reference value setting unit 226. 2 3 4 are provided.
  • the ratio deriving unit 234 derives the ratio of the ACK signal and the NACK signal output from the decoder 210 during the third predetermined period, and outputs the ratio to the reference setting unit 226. I do.
  • the reference value setting unit 226 lowers the SIR reference value when the ratio of the ACK signal is equal to or higher than a predetermined value or when the ratio of the NACK signal is lower than the predetermined value.
  • the transmission parameter determination unit 214 changes the coding rate to a large one, or the transmission energy per bit is small, and the modulation scheme is changed. The transmission efficiency of the downlink radio channel can be improved.
  • the reference value setting unit 222 raises the SIR reference value when the ratio of the ACK signal is less than the predetermined value or when the ratio of the NACK signal is equal to or more than the predetermined value.
  • the transmission parameter determination unit 2 14 changes the transmission rate to a small value, changes the coding rate, or changes the transmission energy per bit to a large value and modulates. The possibility increases, and the transmission quality of the downlink radio channel can be improved.
  • FIG. 10 is a diagram illustrating a configuration example of a mobile communication system according to the eighth embodiment.
  • the mobile communication system shown in the figure is different from the mobile communication system shown in FIG. 9 in that the mobile station 200 is connected with a moving speed detection unit 2 32 and a ratio derivation unit 2 34.
  • the ratio deriving unit 234 calculates the ratio of the ACK signal and the NACK signal output from the decoder and 210 in the third predetermined period. Derived and output to the reference value setting unit 222.
  • the ratio deriving unit 234 has a high possibility that the propagation environment of the downlink radio channel fluctuates greatly in a short time. Shorten the predetermined period.
  • the ratio deriving unit 234 may reduce the propagation environment of the downlink radio channel in a short time. Increase the prescribed period.
  • the mobile station 200 transmits the transmission parameter value when the moving speed of the mobile station 200 is high and the propagation environment of the downlink radio channel is highly likely to fluctuate greatly in a short time. If the mobile station 200 moves at a high speed and the propagation environment of the downlink radio channel is unlikely to fluctuate significantly in a short time, the transmission frequency of the transmission parameter value may be increased. Can be reduced. Therefore, the mobile station 200 can transmit the transmission parameter value at an appropriate frequency in accordance with the change in the propagation environment of the downlink radio channel.
  • FIG. 11 is a diagram illustrating a configuration example of the mobile communication system according to the ninth embodiment.
  • the mobile communication system shown in FIG. In the station 200, a TPC bit generation unit 212 is not provided between the demodulation unit 208 and the transmission parameter determination unit 213, but a moving speed detection unit 236 and a counter 2 3 8 are provided. Further, the counter 238 is connected to the decoder 210.
  • the decoder 210 in the mobile station 200 determines the success or failure of data reception as in the sixth embodiment. Further, when the data reception is successful, the decoder 210 outputs an ACK signal to the reference value setting unit 226. In addition, when data reception fails, the decoder 210 outputs a NACK signal to the reference value setting unit 220.
  • the counter 238 counts the number of ACK signals and NACK signals output from the decoder 210 during the fourth predetermined period, and outputs the counted number to the transmission parameter determining unit 214.
  • the counter 238 has a high possibility that the propagation environment of the downlink radio channel fluctuates greatly in a short time. shorten.
  • the ratio deriving unit 234 determines that the propagation environment of the downlink radio channel is unlikely to change greatly in a short time. Increase the period.
  • the transmission parameter determination unit 2 14 determines a coding rate and a modulation method, which are transmission parameters, based on the input count value. Specifically, the transmission parameter determination unit 2 14 changes the coding rate to a larger one when the ratio of the ACK signal is equal to or greater than a predetermined value, or when the ratio of the NACK signal is less than the predetermined value. Or change to a modulation method that transmits less energy per bit. Also, if the ratio of the ACK signal is less than a predetermined value, or if the ratio of the NACK signal is equal to or more than a predetermined value, the transmission parameter determining unit 214 changes the coding rate to a smaller one, Change to a modulation method with large transmission energy.
  • the mobile station 200 generates a new transmission parameter value based on the success or failure of reception of information transmitted on the downlink radio channel, and sets the block error rate as in the related art. No need to use. For this reason, the base station 100 can quickly change the transmission parameter ⁇ according to the change in the propagation environment of the downlink radio channel. Also, in the ninth embodiment, the mobile station 200 sets the transmission parameter value when the moving speed of the mobile station 200 is high and the propagation environment of the downlink radio channel is highly likely to fluctuate greatly in a short time. If the mobile station 200 moves at high speed and the propagation environment of the downlink radio channel is unlikely to fluctuate greatly in a short time, the transmission frequency of the transmission parameter value may be increased. Can be reduced. Therefore, the mobile station 200 can transmit the transmission parameter value at an appropriate frequency according to the fluctuation of the propagation environment of the downlink radio channel.
  • the mobile station 200 reduces the rate of Rate-MatcHing when the propagation environment of the downlink radio channel is bad, and increases the rate of Rate-MatcHing when it is good.
  • the mobile station decreases the number of spread codes when the propagation environment of the downlink radio channel is poor, and increases the number of spread codes when the propagation environment is good.
  • the mobile station may have the configuration of the base station of the above-described embodiment, and the base station may have the configuration of the mobile station of the above-described embodiment.

Abstract

本発明は、受信装置が無線チャネルの伝搬環境に応じて、該無線チャネルの送信電力を制御する送信電力制御情報に基づいて、送信パラメータに関連する情報を生成し、前記送信パラメータに関連する情報を送信装置へ通知し、送信装置が受信装置からの送信パラメータに関連する情報に基づいて、無線チャネルを制御する用に構成することにより、送信装置は、無線チャネルの伝搬環境の変動に応じて、迅速に送信パラメータを変更することが可能となる。

Description

明細書 無線チャネル制御方法及び受信装置 技術分野
本発明は、 送信装置及び受信装置を有する移動通信システムにて、 送信装置か ら受信装置へ向かう無線チャネルを制御する無線チャネル制御方法及び当該無線 チヤネノ 御方法が適用される受信装置に関する。 背景技術
無線通信、 特に移動通信においては、 情報の送受信を行う通信装置間に設定さ れる無線チャネルは、 その伝搬環境が変動しやすい。 このような無線チャネルを 用いた情報伝送を適切に行うべく、 伝搬環境の変動に応じて、 当該無線チャネル の送信パラメータを適宜変更することが行われている。 送信パラメータは、 例え ば、 変調方式や符号化率、 誤り訂正符号等の冗長ビットを含む全伝送ビット数に 対する真の情報ビット数の割合(以下、 「R a t e— M a t c h i n g率」 と称す る)、 C DMA (Code Division Multiple Access) 通信において用いられる拡散 コード数である。
図 1は、 無線チャネルの送信パラメータを変更する移動通信システムの従来の 構成例を示す図である。 同図に示す移動通信システムは、 送信装置としての基地 局 5 0 0と受信装置としての移動局 6 0 0により構成される。 なお、 以下におい ては、 送信パラメータとして、 符号化率と変調方式が用いられているものとする 基地局 5 0 0は、 エンコーダ 5 0 2、 変調部 5 0 4、 送信部 5 0 6、 サーキュ レータ 5 0 8、 アンテナ 5 1 0、 受信部 5 1 2、 復調部 5 1 4、 デコーダ 5 1 6 及ぴ送信パラメータ設定部 5 1 8を備える。 一方、 移動局 6 0 0は、 アンテナ 6 0 2、 サーキユレータ 6 0 4、 受信部 6 0 6、 復調部 6 0 8、 デコーダ 6 1 0、 ブロックエラーレート導出部 6 1 2、 送信パラメータ決定部 6 1 4、 送信ベース パンド部 6 1 6及ぴ 言部 6 1 8を備える。 基地局 5 0 0から移動局 6 0 0へ向かう無線チャネル (以下、 「下り無線チヤネ ル」 と称する) の送信パラメータの変更は、 以下のような手順で行われる。 即ち 、 基地局 5 0 0内のエンコーダ 5 0 2は、 送信パラメータ設定部 5 1 8から通知 される送信パラメータとしての符号化率に基づいて、 入力される 言対象のデー タを符号化し、 変調部 5 0 4へ出力する。 変調部 5 0 4は、 送信パラメータ設定 部 5 1 8から通知される変調方式に基づいて、 ベースパンド信号を符号化された データ (以下、 「符号化データ」 と称する) により変調し、送信部 5 0 6へ出力す る。 送信部 5 0 6は、 符号化データにより変調された信号を、 送信対象の信号と して、 サーキユレータ 5 0 8及ぴアンテナ 5 1 0を介して移動局 6 0 0へ送信す る。
移動局 6 0 0内の受信部 6 0 6は、 アンテナ 6 0 2及ぴサーキュレータ 6 0 4 を介して、 基地局 5 0 0からの信号を受信し、 復調部 6 0 8へ出力する。 復調部 6 0 8は、 基地局 5 0 0内の変調部 5 0 4が用いる変調方式に対応する復調方式 を用いて、 入力される信号を復調し、 符号化データをデコーダ 6 1 0へ出力する 。 デコーダ 6 1 0は、 基地局 5 0 0内のエンコーダ 5 0 2が用いる符号化方式に 対応する復号化方式を用いて、 入力される符号化データを複号化し、 当該複号化 により得られたデータを出力する。 ブロックエラーレート導出部 6 1 2は、 デコ ーダ 6 1 0による復号化を監視し、 所定の伝送単位である 1ブロック当たりのデ ータ誤り率(以下、 「ブロックエラーレート」 と称する) を導出して、送信パラメ —タ決定部 6 1 4へ出力する。
送信パラメータ決定部 6 1 4は、 このブロックエラーレートに基づいて、 送信 パラメータである符号化率及び変調方式を決定する。 具体的には、 送信パラメ一 タ決定部 6 1 4は、 ブロックエラーレートが高い場合、 即ち、 データ誤りが多い 場合には、 下り無線チャネルの伝搬環境が悪いと判断し、 小さい符号化率に変更 したり、 1ビット当たりの伝送エネルギーの大き 、変調方式に変更する。 一方、 送信パラメータ決定部 6 1 4は、 ブロックエラーレートが低い場合、 即ち、 デー タ誤りが少ない場合には、 下り無線チャネルの伝搬環境が良いと判断し、 大きい 符号化率に変更したり、 1ビット当たりの伝送エネルギーの小さい変調方式に変 更する。 更に、 送信パラメータ決定部 6 1 4は、 新たな送信パラメータに関連す る情報を送信ベースパンド部 616へ出力する。
送信ベースバンド部 616は、 新たな送信パラメータに関連する情報を符号化 し、 更に、 この符号化した送信パラメータに関連する情報により、 基地局 500 へ向かう上り方向のベースパンド信号(以下、 「上りベースバンド信号」 と称する ) を変調して送信部 618へ出力する。 送信部 618は、 入力された信号を、 サ ーキユレータ 604及びアンテナ 602を介して、 基地局 500へ出力する。 基地局 500内の受信部 508は、 アンテナ 510及ぴサーキュレータ 508 を介して、 基地局 500からの信号を受信し、 復調部 514へ出力する。 復調部 514は、 入力される信号を復調し、 符号化データをデコーダ 516へ出力する 。 デコーダ 516は、 入力される符号化データを複号化し、 当該復号ィ匕により得 られる送信パラメータに関連する情報を送信パラメータ設定部 518へ出力する 送信パラメータ設定部 518は、 入力した送信パラメータに関連する情報に基 づいて、 新たな符号化率及び変調方式を認識する。 更に、 送信パラメータ設定部 518は、 符号化率についてはエンコーダ 502へ通知し、 変調方式については 変調部 5◦ 4へ通知する。 その後の基地局 500から移動局 600へのデータ伝 送においては、 エンコーダ 502は新たな符号化率を用い、 変調部 504は新た な変調方式を用いる。
上述した送信パラメータ変更の従来技術としては、 例えば以下の特許文献 1乃 至 4がある。
(特許文献 1)
日本国特許公開公報 「特開 2001— 238256」
(特許文献 2)
日本国特許公開公報 「特開 2001— 339458」
(特許文献 3)
日本国特許公開公報 「特開 2002— 84578」
(特許文献 4)
日本国特許公開公報 「特開平 11— 88940」
しかしながら、 上述した従来の送信パラメータの変更方法では、 移動局 600 内のブロックエラーレート導出部 6 1 2によるプロックエラーレートの導出に時 間を要していた。 このため、 基地局 5 0 0は、 下り無線チャネルの伝搬環境の変 動に応じて、 迅速に送信パラメータを変更することができなかつた。 発明の開示
本発明は、 上述した従来技術の問題点を解決する、 無線チャネルの伝搬環境の 変動に迅速に対応することが可能な無線チャネル制御方法及び受信装置を # ^す ることを目的としている。
この目的を達成するため、 本発明に係る送信装置及び受信装置を有する移動通 信システムにて、 前記送信装置から前記受信装置へ向かう無線チャネルを制御す る無線チャネル制御方法において、 前記受信装置は、 前記無線チャネルの伝搬環 境に応じて、 該無線チャネルの送信電力を制御する送信電力制御情報を生成し、 前記送信電力制御情報に基づいて、 送信パラメータに関連する情報を生成し、 前 記送信パラメータに関連する情報を前記送信装置へ通知し、 前記送信装置は、 前 記受信装置からの送信パラメータに関連する情報に基づレヽて、 前記無線チャネル を制御する。
このような無線チャネル制御方法によれば、 受信装置は、 無線チャネルの送信 電力を制御する送信電力制御情報に基づいて、 送信パラメータに関連する情報を 生成しており、 従来のように送信パラメータに関連する情報の生成にブロックェ ラーレートを用いる必要がない。 このため、 送信装置は、 無線チャネルの伝搬環 境の変動に応じて、 迅速に送信パラメータを変更することが可能となる。 図面の簡単な説明
本発明の他の目的、 特徴及ひ利点は添付の図面を参照しながら以下の詳細な説 明を読むことにより一層明瞭となるであろう。
図 1は、 従来の移動通信システムの構成例を示す図である。
図 2は、 第 1実施形態に係る移動通信システムの構成例を示す図である。 図 3は、 言パラメータと送信パラメータ関連情報との対応を示す図である。 図 4は、 第 2実施形態に係る移動通信システムの構成例を示す図である。 図 5は、 第 3実施形態に係る移動通信システムの構成例を示す図である。 図 6は、 第 4実施形態に係る移動通信システムの構成例を示す図である。 図 7は、 第 5実施形態に係る移動通信システムの構成例を示す図である。 図 8は、 第 6実施形態に係る移動通信システムの構成例を示す図である。 図 9は、 第 7実施形態に係る移動通信システムの構成例を示す図である。 図 1 0は、 第 8実施形態に係る移動通信システムの構成例を示す図である。 図 1 1は、 第 9実施形態に係る移動通信システムの構成例を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施例を図面に基づいて説明する。
図 2は、 第 1実施形態に係る移動通信システムの構成例を示す図である。 同図 に示す移動通信シスチムは、 送信装置としての基地局 1 0 0と受信装置としての 移動局 2 0 0により構成される。 この移動通信システムは、 基地局 1 0 0から移 動局 2 0 0に向かう無線チャネル (下り無線チャネル) の伝搬環境の変勲に応じ て、 当該無線チャネルの送信パラメータが適宜変更する。 なお、 以下においては 、 送信パラメータとして、 符号化率と変調方式が用いられているものとする。 基地局 1 0 0は、 エンコーダ 1 0 2、 変調部 1 0 4、 送信部 1 0 6、 サーキュ レータ 1 0 8、 アンテナ 1 1 0、 受信部 1 1 2、 復調部 1 1 4、 デコーダ 1 1 6 及び送信パラメータ設定部 1 1 8を備える。 一方、 移動局 2 0 0は、 アンテナ 2 0 2、 サーキュレータ 2 0 4、 受信部 2 0 6、 復調部 2 0 8、 デコーダ 2 1 0、 T P Cビット生成部 2 1 2、 送信パラメータ決定部 2 1 4、 送信ベースバンド部 2 1 6及ぴ送信部 2 1 8を備える。
基地局 1 0 0から移動局 2 0 0へ向かう下り無線チャネルの送信パラメータの 変更は、 以下のような手順で行われる。 即ち、 基地局 1 0 0内のエンコーダ 1 0 2は、 送信パラメータ設定部 1 1 8から通知される送信パラメータとしての符号 化率に基づいて、 入力される送信対象のデータを符号化する。 更に、 エンコーダ 1 0 2は、 符号化により得られた符号化データを変調部 1 0 4へ出力する。 変調 部 1 0 4は、 送信パラメータ設定部 1 1 8から通知される変調方式に基づいて、 符号化データによりベースバンド信号を変調し、 送信部 1 0 6へ出力する。 送信部 1 0 6は、 符号ィ匕データにより変調された信号を、 送信対象の信号とし て、 サーキユレータ 1 0 8へ出力する。 サーキユレータ 1 0 8は、 所定の周期で 送信部 1 0 6力 らの信号をァンテナ 1 1 0を介して送信するとともに、 ァンテナ 1 1 0によって受信された信号を受信部 1 1 2へ出力するものである。 ここでは サーキュレータ 1 0 8は、 所定のタイミングで、 送信対象の信号を、 アンテナ 1 1 0を介して移動局 2 0 0へ送信する。
移動局 2 0 0内のサーキュレータ 2 0 4は、 基地局 1 0 0内のサーキュレータ 1 0 8と同様、 所定の周期で送信部 2 1 8からの信号をアンテナ 2 0 2を介して 送信するとともに、 ァンテナ 2 0 2によつて受信された信号を受信部 2 0 6へ出 力するものである。 ここではサーキユレータ 2 0 4は、 アンテナ 2 0 2が受信し た基地局 1 0 0からの信号を受信部 2 0 6へ出力する。 更に、 受信部 2 0 6は、 この信号を復調部 2 0 8へ出力する。
復調部 2 0 8は、 基地局 1 0 0内の変調部 1 0 4が用いる変調方式に対応する 復調方式を用いて、 入力される信号を復調する。 更に、 復調部 2 0 8は、 得られ た符号化データをデコーダ 2 1 0へ出力する。 デコーダ 2 1 0は、 基地局 1 0 0 内のエンコーダ 1 0 2が用いる符号化方式に対応する復号化方式を用いて、 入力 される符号化データを複号化し、 当該復号化により得られたデータを出力する。 また、 復調部 2 0 8は、 入力される信号に基づいて、 下り無線チャネルの信号 対雑音電力比(以下、 「S I R」 と称する)測定し、 当該 S I Rを T P Cビット生 成部 2 1 2へ出力する。
T P Cビット生成部 2 1 2は、 入力される S I Rと予め定められている基準値 とを比較し、 その比較結果に基づいて、 基地局 1 0 0に対して下り無線チャネル の送信電力の上げ下げを指示するためのビット(以下、 「T P Cビット」と称する ) を生成する。 具体的には、 T P Cビット生成部 2 1 2は、 S I Rが基準値未満 である:^には、 下り無線チャネルの伝搬環境が悪いため、 基地局 1 0 0に対し て下り無線チャネルの送信電力を上げるように指示するための T P Cビット 「0 」 を生成し、 S I Rが基準値以上である場合には、 下り無線チャネルの伝搬環境 が良いため、 基地局 1 0 0に対して下り無線チャネルの送信電力を下げるように 指示するための T P Cビット 「1」 を生成する。 更に、 T P Cビット生成部 2 1 2は、 生成した T P Cビットを送信パラメータ決定部 2 1 4へ出力する。
なお、 信号対雑音電力比の測定 であって送信電力制御の対象となる下り無 線チャネルは、 送信パラメータの制御対象となる下り無線チャネルとは別の無線 チャネルでも良い。 例えば、 W— C D MA (Wideband Code Division Multiple Accsess) が採用される移動通信システムにおいては、 D P C H (Dedicated Physical Channel) を信号対雑音電力比の測定対象であって送信電力制御の対象 となる下り無線チャネルとし、 H S—D P C H (High— Speed Dedicated Physical Channel) を送信パラメータの制御対象となる下り無線チャネルとする ことができる。
送信パラメータ決定部 2 1 4は、 入力される T P Cビットに基づいて、 送信パ ラメータである符号化率及ぴ変調方式を決定する。 図 3は、 送信パラメータ値と 送信パラメータ (変調方式及び符号化率) との関係を示す図である。 同図におい ては、 送信パラメータ値が大きいほど、 当該送信パラメータに対応する送信パラ メータは、 伝搬環境が悪 ヽ場合にも通信品質を確保することが可能なものとなつ ている。
送信パラメータ決定部 2 1 4は、 入力された T P Cビットが 「0」 の場合、 即 ち、 下り無線チャネルの伝搬環境が悪く、 当該下り無線チャネルの送信電力を上 げる場合には、 小さい符号化率に変更したり、 1ビット当たりの伝送エネルギー の大きい変調方式に変更すべく、 その時点で基地局 1 0 0が用いている送信パラ メータに対応する送信パラメータ値を増加させ、 当該増加した送信パラメータ値 に対応する送信パラメータを新たな送信パラメータとして決定する。 一方、 送信 パラメータ決定部 2 1 4は、 入力された T P Cビットが 「1」 の^、即ち、 下 り無線チャネルの伝搬環境が良く、 当該下り無線チャネルの送信電力を下げる場 合には、 大きい符号化率に変更したり、 1ビット当たりの伝送エネルギーの小さ い変調方式に変更すべく、 その時点で基地局 1 0 0が用いている送信パラメータ に対応する送信パラメ一タ値を減少させ、 当該減少した送信パラメータ値に対応 する送信パラメータを新たな送信パラメータとして決定する。
例えば、 その時点で基地局 1 0 0が用いている変調方式が Q P S Kであり、 符 号化率が 3 Z4であるものとする。 この場合、 これら変調方式及び符号化率に対 応する送信パラメータ値は、 図 3によれば 卜 2」 である。 ここで、 送信パラメ一 タ決定部 2 1 4は、 入力された T P Cビットが 「0」 の場合には、 送信パラメ一 タ値を 1増加させて 「3」 とし、 送信パラメータ値 「3」 に対応する送信パラメ ータ (変調方式が 1 6 QAM、 符号化率が 1 Z 2 ) を新たな送信パラメータとし て決定する。 一方、 送信パラメータ決定部 2 1 4は、 入力された T P Cビットが 「1」 の場合には、 送信パラメータ値を 1減少させて 「1」 とし、 送信パラメ一 タ値 「1」 に対応する送信パラメータ (変調方式が Q P S K、 符号化率が 1 / 2 ) を新たな送信パラメータとして決定する。 更に、 送信パラメータ決定部 2 1 4 は、 新たな送信パラメータに対応する送信パラメータ値を送信ベースバンド決定 部 2 1 6へ出力する。
送信ベースバンド部 2 1 6は、 送信パラメータ値を符号化し、 更に、 この符号 化した送信パラメータ値により、 基地局 2 0 0へ向かう上りベースパンド信号を 変調して送信部 2 1 8へ出力する。 更に、 送信部 2 1 8は、 入力された信号をサ ーキュレータ 2 0 4へ出力する。 サーキュレータ 2 0 4は、 所定のタイミングで 、 送信対象の信号を、 ァンテナ 2 0 2を介して基地局 1 0 0へ送信する。
基地局 1 0 0内のサーキュレータ 1 0 8は、 アンテナ 1 1 0が受信した移動局 2 0 0からの信号を受信部 1 1 2へ出力する。 更に、 受信部 1 1 2は、 この信号 を復調部 1 1 4へ出力する。 復調部 1 1 4は、 入力される信号を復調し、 符号化 データをデコーダ 1 1 6へ出力する。 デコーダ 1 1 6は、 入力される符号化デー タを復号化し、 当該復号ィ匕により得られる送信パラメータ値を送信パラメータ設 定部 1 1 8へ出力する。
送信パラメータ設定部 1 1 8は、 入力した送信パラメータ値と、 図 3に示す送 信パラメータ値と送信パラメータとの対応関係に基づいて、 新たな符号化率及び 変調方式を認識する。 更に、 送信パラメータ設定部 1 1 8は、 符号化率について はエンコーダ 1 0 2へ通知し、 変調方式については変調部 1 0 4へ通知する。 そ の後の基地局 1 0 0から移動局 2 0 0へのデータ伝送においては、 エンコーダ 1 0 2は新たな符号化率を用い、 変調部 1 0 4は新たな変調方式を用いる。
上述した第 1実施形態では、 移動局 2 0 0は、 下り無線チャネルの送信電力を 制御する T P Cビットに基づいて、 新たな送信パラメータ値を生成しており、 従 来のようにブロックエラーレートを用いる必要がない。 このため、 基地局 1 0 0 は、 下り無線チャネルの伝搬環境の変動に応じて、 迅速に送信パラメータを変更 することが可能となる。
図 4は、 第 2実施形態に係る移動通信システムの構成例を示す図である。 同図 に示す移動通信システムは、 図 2に示す移動通信システムと比較すると、 移動局 2 0 0において、 T P Cビット生成部 2 1 2と送信パラメータ決定部 2 1 4との 間に、 新たに多数決回路 2 2 0が備えられている。
多数決回路 2 2 0は、 第 1の所定期間に T P Cビット生成部 2 1 2力 ら入力さ れる複数の T P Cビットについて 「0」 と 「1」 のどちらが多いかを判定する。 更に、 多数決回路 2 2 0は、 多い方の T P Cビットを送信パラメータ決定部 2 1 4へ出力する。 送信パラメータ決定部 2 1 4は、 入力される T P Cビットに基づ いて、 第 1実施形態と同様の手順により、 送信パラメータである符号化率及び変 調方式を決定する。
なお、 多数決回路 2 2 0は、 多い方の T P Cビットとともに、 当該多い方の T P Cビットの数と少なレ、方の T P Cビットの差分を送信パラメータ決定部 2 1 4 へ出力するようにしても良い。 この場合には、 送信パラメータ決定部 2 1 4は、 差分が大きいほど、 その時点で基地局 1 0 0が用いている送信パラメータに対応 する送信パラメータ値の増減量を大きくして、 当該増減した送信パラメータ値に 対応する送信パラメータを新たな送信パラメータとして決定する。
上述した第 2実施形態では、 移動局 2 0 0は、 第 1実施形態の場合よりも、 基 地局 1 0 0に対する送信パラメータ値の送信頻度を減らすことができる。'従って 、 移動局 2 0 0から基地局 1 0 0に向かう上り無線チャネルのうち、 送信パラメ ータ値以外の情報の伝送に用いられる帯域を増加させることが可能となる。 図 5は、 第 3実施形態に係る移動通信システムの構成例を示す図である。 同図 に示す移動通信システムは、 図 4に示す移動通信システムと比較すると、 移動局 2 0 0において、 復調部 2 0 8と多数決回路 2 2 0との間に、 新たに移動速度検 出部 2 2 2が備えられている。
移動速度検出部 2 2 2は、 復調部 2 0 8に入力される信号の受信電力の変動に 基づいて、 移動局 2 0 0の移動速度を検出する。 具体的な移動速度の検出方法と しては、 例えば、 日本国特許公開公報 「特願平 6— 5 1 4 5 8 6」 がある。 なお 、 移動速度検出部 2 2 2は、 必ずしも復調部 2 0 8に入力される信号に基づいて 移動局 2 0 0の移動速度を検出する必要はなく、 例えば G P S (Global Positio nig System) の機能を利用する等、何らかの方法を用いて移動局 2 0 0の移動速 度を検出することができれば良い。 更に、 移動速度検出部 2 2 2は、 検出した移 動局 2 0 0の移動速度を多数決回路 2 2 0へ出力する。
多数決回路 2 2 0は、 第 2実施形態と同様、 第 1の所定期間に T P Cビット生 成部 2 1 2から入力される複数の T P Cビットについて 「0」 と 「1」 のどちら が多いかを判定する。 但し、 多数決回路 2 2 0は、 移動局 2 0 0の移動速度が所 定値以上の場合には、 下り無線チャネルの伝搬環境が短時間に大きく変動する可 能性が高いため、 第 1の所定期間を短くする。 また、 多数決回路 2 2 0は、 移動 局 2 0 0の移動速度が所定値未満の場合には、 下り無線チャネルの伝搬環境が短 時間に大きく変動する可能性が低いため、 第 1の所定期間を長くする。
上述した第 3実施形態では、 移動局 2 0 0は、 移動局 2 0 0の移動速度が速く 、 下り無線チャネルの伝搬環境が短時間に大きく変動する可能性が高い場合には 、 送信パラメータ値の送信頻度を増加させることができ、 移動局 2 0 0の移動速 度が速く、 下り無線チャネルの伝搬環境が短時間に大きく変動する可能性が低い 場合には、 送信パラメータ値の送信頻度を減少させることができる。 従って、 移 動局 2 0 0は、 下り無線チャネルの伝搬環境の変動に応じて、 適切な頻度で送信 パラメータ値を送信することが可能となる。
図 6は、 第 4実施形態に係る移動通信システムの構成例を示す図である。 同図 に示す移動通信システムは、 図 2に示す移動通信システムと比較すると、 移動局 2 0 0において、 復調部 2 0 8と送信パラメータ決定部 2 1 3との間に、 T P C ビット生成部 2 1 2が備えられていない一方、 S I R測定部 2 2 4、 基準鐵定 部 2 2 6、 比較部 2 2 8及ぴ多数決回路 2 3 0が備えられている。
この第 4実施形態においては、 移動局 2 0 0内の復調部 2 0 8は、 入力される 信号を S I R測定部 2 2 4へ出力する。 S I R測定部 2 2 4は、 入力される信号 に基づいて、 下り無線チャネルの信号対雑音電力比 (S I R) 測定し、 当該 S I Rを比較部 2 2 8へ出力する。 基準値設定部 2 2 6は、 S I Rの基準値を設定する。 比較部 2 2 8は、 S I R 測定部 2 2 4によって測定された S I R (以下、 「S I R測定値」 と称する) と基 準値設定部 2 2 6によって設定された S I R基準値とを比較し、 その結果を多数 決回路 2 3 0へ出力する。
多数決回路 2 3 0は、 第 2の所定期間に比較部 2 2 8から入力される比較結果 について、 S I R測定値の方が S I R基準値よりも大きいとの比較結果と、 S I R測定値の方が S I R基準値よりも小さいとの比較結果のどちらが多いかを判定 する。 更に、 多数決回路 2 2 0は、 多い方の比較結果を送信パラメータ決定部 2 1 4へ出力する。
送信パラメータ決定部 2 1 4は、 入力される比較結果に基づレ、て、 送信パラメ ータである符号化率及び変調方式を決定する。 具体的には、 送信パラメータ決定 部 2 1 4は、 入力される比較結果が S I R測定値の方が S I R基準値よりも小さ いことを示していれば、 大き 、符号化率に変更したり、 1ビット当たりの伝送ェ ネルギ一の小さい変調方式に変更する。 また、 送信パラメータ決定部 2 1 4は、 入力された比較結果が S I R測定値の方が S I R基準値よりも小さいことを示し ていれば、 小さい符号化率に変更したり、 1ビット当たりの伝送エネルギーの大 きい変調方式に変更する。
なお、 多数決回路 2 3 0は、 多い方の比較結果とともに、 当該多い方の比較結 果と少ない方の比較結果の差分を送信パラメータ決定部 2 1 4へ出力するように しても良い。 この場合には、 送信パラメータ値と送信パラメータとの関係が図 3 に示すものであれば、 送信パラメータ決定部 2 1 4は、 差分が大きいほど、 その 時点で基地局 1 0 0が用いている送信パラメータに対応する送信パラメータ値の 増減量を大きくして、 当該増減した送信パラメータ値に対応する送信パラメータ を新たな送信パラメータとして決定する。 ,
上述した第 4実施形態では、 移動局 2 0 0は、 下り無線チャネルの S I Rに基 づいて、 新たな送信パラメータ値を生成しており、 従来のようにプロックエラー レートを用いる必要がない。 このため、 基地局 1 0 0は、 下り無線チャネルの伝 搬環境の変動に応じて、 迅速に送信パラメータを変更することが可能となる。 図 7は、 第 5実施形態に係る移動通信システムの構成例を示す図である。 同図 に示す移動通信システムは、 図 6に示す移動通信システムと比較すると、 移動局 2 0 0において、 復調部 2 0 8と多数決回路 2 3 0との間に、 新たに移動速度検 出部 2 3 2が備えられている。
移動速度検出部 2 3 2は、 図 5に示す移動局 2 0 0内の移動速度検出部 2 2 2 と同様、 復調部 2 0 8に入力される信号の受信電力の変動に基づいて、 移動局 2 0 0の移動速度を検出する。 なお、 移動速度検出部 2 3 2は、 例えば G P Sの機 能を利用する等、 何らかの方法を用いて移動局 2 0 0の移動速度を検出すること ができれば良い。 更に、 移動速度検出部 2 3 2は、 検出した移動局 2 0 0の移動 速度を多数決回路 2 3 0へ出力する。
多数決回路 2 3 0は、 第 4実施形態と同様、 第 2の所定期間に比較部 2 2 8か ら入力される比較結果について、 S I R測定値の方が S I R基準値よりも大きい との比較結果と、 S I R測定値の方が S I R基準値よりも小さいとの比較結果の どちらが多いかを判定する。 但し、 多数決回路 2 2 0は、 移動局 2 0 0の移動速 度が所定値以上の場合には、 下り無線チャネルの伝搬環境が短時間に大きく変動 する可能性が高いため、 第 2の所定期間を短くする。 また、 多数決回路 2 2 0は 、 移動局 2 0 0の移動速度が所定値未満の場合には、 下り無線チャネルの伝搬環 境が短時間に大きく.変動する可能性が低いため、 第 2の所定期間を長くする。 上述した第 5実施形態では、 第 3実施形態と同様、 移動局 2 0 0は、 移動局 2 0 0の移動速度が速く、 下り無線チャネルの伝搬環境が短時間に大きく変動する 可能性が高い場合には、 送信パラメータ値の送信頻度を増加させることができ、 移動局 2 0 0の移動速度が速く、 下り無線チャネルの伝搬環境が短時間に大きく 変動する可能性が低い場合には、 送信パラメータ値の送信頻度を減少させること ができる。 従つて、 移動局 2 0 0は、 下り無線チャネルの伝搬環境の変動に応じ て、 適切な頻度で送信パラメ一タ値を送信することが可能となる。
図 8は、 第 6実施形態に係る移動通信システムの構成例を示す図である。 同図 に示す移動通信システムは、 図 7に示す移動通信システムと比較すると、 移動局 2 0 0において、 デコーダ 2 1 0と基準値設定部 2 2 6とが接続されている。 この第 6実施形態においては、 デコーダ 2 1 0は、 基地局 1 0 0内のェンコ一 ダ 1 0 2が用いる符号化方式に対応する復号化方式を用いて、 入力される符号化 データを復号化するとともに、 データ受信の成否を判定する。 更に、 デコーダ 2 1 0は、 データ受信が成功した場合には、 基準値設定部 2 2 6へ AC K信号を出 力する。 また、 デコーダ 2 1 0は、 データ受信が失敗した場合には、 基準値設定 部 2 2 6へ N A C K信号を出力する。
基準値設定部 2 2 6は、 第 3の所定期間内に A C K信号が連続して入力された 場合、 S I R基準値を下げる。 S I R基準値が下げられると、 比較部 2 2 8及び 多数決回路 2 3 0力 S I R測定値の方が S I R基準値よりも大きいとの比較結 果を導出する可能性が高まる。 従って、 送信パラメータ決定部 2 1 4が大きい符 号化率に変更したり、 1ビット当たりの伝送エネルギーの小さレ、変調方式に変更 する可能性が高まり、 伝搬環境が良いことに応じて、 下り無線チャネルの伝送効 率を向上させることが可能となる。
一方、 基準値設定部 2 2 6は、 第 3の所定期間内に NAC K信号が連続して入 力された場合、 S I R基準値を上げる。 S I R基準値が上げられると、 比較部 2 2 8及び多数決回路 2 3 0力 S I R測定値の方が S I R基準値よりも小さレヽと の比較結果を導出する可能性が高まる。 従って、 送信パラメータ決定部 2 1 4が 小さい符号ィ匕率に変更したり、 1ビット当たりの伝送エネルギーの大きい変調方 式に変更する可能性が高まり、 伝搬環境が悪いことに応じて、 下り無線チャネル の伝送品質を向上させることが可能となる。
図 9は、 第 7実施形態に係る移動通信システムの構成例を示す図である。 同図 に示す移動通信システムは、 図 8に示す移動通信システムと比較すると、 移動局 2 0 0において、 デコーダ 2 1 0と基準値設定部 2 2 6との間に、 新たに比率導 出部 2 3 4が備えられている。
この第 7実施形態においては、 比率導出部 2 3 4は、 第 3の所定期間にデコー ダ 2 1 0から出力される A C K信号及び N A C K信号の比率を導出し、 基準 定部 2 2 6へ出力する。
基準値設定部 2 2 6は、 A C K信号の比率が所定値以上である場合、 又は、 N A C K信号の比率が所定値未満である場合、 S I R基準値を下げる。 S I R基準 値が下げられると、 第 6実施形態と同様、 送信パラメータ決定部 2 1 4が大きい 符号化率に変更したり、 1ビット当たりの伝送エネルギーの小さ 、変調方式に変 更する可能性が高まり、 下り無線チャネルの伝送効率を向上させることが可能と なる。
一方、 基準値設定部 2 2 6は、 A CK信号の比率が所定値未満である場合、 又 は、 N AC K信号の比率が所定値以上である場合、 S I R基準値を上げる。 S I R基準値が上げられると、 第 6実施形態と同様、 送信パラメータ決定部 2 1 4が 小さレ、符号化率に変更したり、 1ビット当たりの伝送エネルギーの大きレ、変調方 式に変更する可能性が高まり、 下り無線チャネルの伝送品質を向上させることが 可能となる。
図 1 0は、 第 8実施形態に係る移動通信システムの構成例を示す図である。 同 図に示す移動通信システムは、 図 9に示す移動通信システムと比較すると、 移動 局 2 0 0において、 移動速度検出部 2 3 2と比率導出部 2 3 4とが接続されてい る。
この第 8実施形態においては、 比率導出部 2 3 4は、 第 7実施形態と同様、 第 3の所定期間にデコーダ、 2 1 0から出力される AC K信号及ぴ NAC K信号の比 率を導出し、 基準値設定部 2 2 6へ出力する。 伹し、 比率導出部 2 3 4は、 移動 局 2 0 0の移動速度が所定値以上の場合には、 下り無線チャネルの伝搬環境が短 時間に大きく変動する可能性が高いため、 第 3の所定期間を短くする。 また、 比 率導出部 2 3 4は、 移動局 2 0 0の移動速度が所定値未満の場合には、 下り無線 チャネルの伝搬環境が短時間に大きく変動する可能性が低いため、 第 3の所定期 間を長くする。
上述した第 8実施形態では、 移動局 2 0 0は、 移動局 2 0 0の移動速度が速く 、 下り無線チャネルの伝搬環境が短時間に大きく変動する可能性が高い場合には 、 送信パラメータ値の送信頻度を増加させることができ、 移動局 2 0 0の移動速 度が速く、 下り無線チャネルの伝搬環境が短時間に大きく変動する可能性が低い 場合には、 送信パラメータ値の送信頻度を減少させることができる。 従って、 移 動局 2 0 0は、 下り無線チャネルの伝搬環境の変動に応じて、 適切な頻度で送信 パラメ一タ値を送信することが可能となる。
図 1 1は、 第 9実施形態に係る移動通信システムの構成例を示す図である。 同 図に示す移動通信システムは、 図 2に示す移動通信システムと比較すると、 移動 局 2 0 0において、 復調部 2 0 8と送信パラメータ決定部 2 1 3との間に、 T P Cビット生成部 2 1 2が備えられていない一方、 移動速度検出部 2 3 6及ぴカゥ ンタ 2 3 8が備えられている。 更に、 カウンタ 2 3 8は、 デコーダ 2 1 0に接続 されている。
この第 9実施形態においては、 移動局 2 0 0内のデコーダ 2 1 0は、 第 6実施 形態と同様、 データ受信の成否を判定する。 更に、 デコーダ 2 1 0は、 データ受 信が成功した場合には、 基準値設定部 2 2 6へ AC K信号を出力する。 また、 デ コーダ 2 1 0は、 データ受信が失敗した場合には、 基準値設定部 2 2 6へ NAC K信号を出力する。
カウンタ 2 3 8は、 第 4の所定期間にデコーダ 2 1 0から出力される AC K信 号及び NAC K信号の数をカウントし、 送信パラメータ決定部 2 1 4へ出力する 。 但し、 カウンタ 2 3 8は、 移動局 2 0 0の移動速度が所定値以上の場合には、 下り無線チャネルの伝搬環境が短時間に大きく変動する可能性が高いため、 第 4 の所定期間を短くする。 また、 比率導出部 2 3 4は、 移動局 2 0 0の移動速度が 所定値未満の場合には、 下り無線チャネルの伝搬環境が短時間に大きく変動する 可能性が低いため、 第 4の所定期間を長くする。
送信パラメータ決定部 2 1 4は、 入力されるカウント値に基づいて、 送信パラ メータである符号化率及び変調方式を決定する。 具体的には、 送信パラメータ決 定部 2 1 4は、 AC K信号の比率が所定値以上である場合、 又は、 NAC K信号 の比率が所定値未満である場合、 大きい符号化率に変更したり、 1ビット当たり の伝送エネルギーの小さい変調方式に変更する。 また、 送信パラメータ決定部 2 1 4は、 A CK信号の比率が所定値未満である場合、 又は、 NACK信号の比率 が所定値以上である場合、 小さい符号化率に変更したり、 1ビット当たりの伝送 エネルギーの大きい変調方式に変更する。
上述した第 9実施形態では、 移動局 2 0 0は、 下り無線チャネルを伝送される 情報の受信の成否に基づいて、 新たな送信パラメータ値を生成しており、 従来の ようにプロックエラーレートを用いる必要がない。 このため、 基地局 1 0 0は、 下り無線チャネルの伝搬環境の変動に応じて、 迅速に送信パラメ→を変更する ことが可能となる。 また、 第 9実施形態では、 移動局 2 0 0は、 移動局 2 0 0の移動速度が速く、 下り無線チャネルの伝搬環境が短時間に大きく変動する可能性が高い場合には、 送信パラメータ値の送信頻度を増加させることができ、 移動局 2 0 0の移動速度 が速く、 下り無線チャネルの伝搬環境が短時間に大きく変動する可能性が低い場 合には、 送信パラメータ値の送信頻度を減少させることができる。 従って、 移動 局 2 0 0は、 下り無線チャネルの伝搬環境の変動に応じて、 適切な頻度で送信パ ラメ一タ値を送信することが可能となる。
ところで、 上述した実施形態では、 変調方式と符号化率とを送信パラメータと する場合について説明したが、 R a t e— M a t c h i n g率や C DMA通信に おいて用いられる拡散コード数を送信パラメータとする場合についても、 本発明 を適用することができる。 例えば、 移動局 2 0 0は、 下り無線チャネルの伝搬環 境が悪い場合には R a t e -M a t c h i n g率を下げ、 良い場合には R a t e -M a t c h i n g率を上げる。 また、 移動局は、 下り無線チャネルの伝搬環境 が悪い場合には拡散コード数を減らし、 良い場合には拡散コード数を増やす。 また、 上述した実施形態では、 下り無線チャネルの送信パラメータを変更する 場合について説明したが、 上り無線チャネルの送信パラメータを変更する場合に ついても本発明を適用することができる。 上り無線チャネルの送信パラメータを 変更する場合には、 移動局は上述した実施形態の基地局の構成を有し、 基地局は 上述した実施形態の移動局の構成を有するようにすれば良い。

Claims

請求の範囲
1 . 送信装置及び受信装置を有する移動通信システムにて、 前記送信装置か ら前記受信装置へ向かう無線チャネルを制御する無線チヤネ 御方法において 、
前記受信装置は、
前記無線チャネルの伝搬環境に応じて、 該無線チャネルの送信電力を制御する 送信電力制御情報を生成し、
前記送信電力制御情報に基づいて、 送信パラメータに関連する情報を生成し、 前記送信パラメータに関連する情報を前記送信装置へ通知し、
前記送信装置は、
前記受信装置からの送信パラメータに関連する情報に基づいて、 前記無線チヤ ネルを制御する無線チャネル制御方法。
2. 請求項 1に記載の無線チャネル制御方法にぉ 、て、
前記受信装置は、 第 1の所定期間に生成される送信電力制御情報に基づいて、 前記送信パラメータに関連する情報を生成する無線チャネル制御方法。
3 . 請求項 2に記載の無線チャネル制御方法において、
ΙίίΙΒ受信装置は、 前記第 1の所定期間に生成される送信電力制御情報のうち、 最多の送信電力制御情報に基づいて、 前記送信パラメータに関連する情報を生成 する無線チャネル制御方法。
4. 請求項 2乃至 3の何れかに記載の無線チャネル制御方法において、 前記受信装置は、 自装置の移動速度に基づいて、 嫌己第 1の所定期間を変更す る無線チャネル制御方法。
5. 送信装置及び受信装置を有する移動通信システムにて、 前記送信装置か ら前記受信装置へ向かう無線チャネルを制御する無線チャネル制御方法において 前記受信装置は、
前記無線チャネルの信号対雑音電力比を測定し、
前記信号対雑音電力比と所定の基準値とを比較した比較結果に基づ 、て、 送信 パラメータに関連する情報を生成し、
前記送信パラメータに関連する情報を前記送信装置へ通知し、
前記送信装置は、
前記受信装置からの送信パラメータに関連する情報に基づ 、て、 前記無線チヤ ネルを制御する無線チヤネ Λ ^御方法。
6 . 請求項 5に記載の無線チャネル制御方法にぉレ、て、
前記受信装置は、 第 2の所定期間に測定される信号対雑音電力比と前記所定の 基準値とを比較した比較結果に基づいて、 前記送信パラメータに関連する情報を 生成する無線チャネル制御方法。
7. 請求項 6に記載の無線チヤネノ lj御方法にぉレ、て、
前記受信装置は、 第 2の所定期間に測定される信号対雑音電力比と前記所定の 基準値とを比較した比較結果のうち、 最多の比較結果に基づいて、 前記送信パラ メータに関連する情報を生成する無線チャネル制御方法。
8 . 請求項 6又は 7に記載の無線チャネル制御方法にぉレヽて、
前記受信装置は、 自装置の移動速度に基づいて、 前記第 2の所定期間を変更す る無線チャネル制御方法。
9. 請求項 5乃至 8の何れかに記載の無線チャネル制御方法にぉ 、て、 前記受信装置は、 前記無線チャネルにより伝送される情報の受信の成否に基づ いて、 前記所定の基準値を変更する無線チヤネノ lj御方法。
1 0 . 請求項 9に記載の無線チャネル制御方法において、 前記受信装置は、 前記無線チャネルにより第 3の所定期間に伝送される情報の 受信の成否に基づいて、 前記所定の基準値を変更する無線チヤネノ 御方法。
1 1 . 請求項 1 0に記載の無線チャネル制御方法にぉレ、て、
前記受信装置は、 前記無線チャネルにより第 3の所定期間に伝送される情報の 受信の成否の比率に基づいて、 前記所定の基準値を変更する無線チャネル制御方 法。
1 2. 請求項 1 0又は 1 1に記載の無線チヤネノ ^IJ御方法にぉレヽて、 前記受信装置は、 自装置の移動速度に基づいて、 前記第 3の所定期間を変更す る無線チャネル制御方法。
1 3 . 送信装置及び受信装置を有する移動通信システムにて、 前記送信装置 から前記受信装置へ向かう無線チャネルを制御する無線チャネル制御方法におい て、
前記受信装置は、
前記無線チャネルにより伝送される情報の受信の成否を判定し、
前記無線チャネルにより伝送される情報の受信の成否に基づいて、 送信パラメ ータに関連する情報を生成し、
前記送信パラメータに関連する情報を前記送信装置へ通知し、
前記送信装置は、
前記受信装置からの送信パラメータに関連する情報に基づレヽて、 前記無線チヤ ネルを制御する無線チャネル制御方法。
1 4. 請求項 1 3に記載の無線チャネル制御方法において、
前記受信装置は、 前記無線チャネルにより第 4の所定期間に伝送される情報の 受信の成否に基づいて、 frfB維パラメータに関連する情報を生成する無線チヤ ネノ J御方法。
1 5. 送信装置からの情報を受信する受信装置において、 前記送信装置から前記受信装置へ向かう無線チャネルの伝搬環境に応じて、 該 無線チャネルの送信電力を制御する送信電力制御情報を生成する送信電力制御情 報生成手段と、
前記送信電力制御情報に基づいて、 送信パラメータに関連する情報を生成する 送信パラメータ関連情報生成手段と、
前記送信パラメータに関連する情報を前記送信装置へ通知する送信パラメータ 関連情報通知手段と、
を備える受信装置。
1 6 . 請求項 1 5に記載の受信装置において、
前記送信パラメータ関連情報生成手段は、 第 1の所定期間に生成される送信電 力制御情報に基づいて、 前記送信パラメータに関連する情報を生成する受信装置
1 7. 請求項 1 6に記載の受信装置にお 、て、
前記送信パラメータ関連情報生成手段は、 前記第 1の所定期間に生成される送 信電力制御情報のうち、 最多の送信電力制御情報に基づいて、 前記送信パラメ一 タに関連する情報を生成する受信装置。
1 8. 請求項 1 6又は 1 7に記載の受信装置において、
自装置の移動速度に基づいて、 前記第 1の所定期間を変更する第 1の所定期間 変更手段を備える受信装置。
1 9. 送信装置からの情報を受信する受信装置において、
前記送信装置から前記受信装置へ向かう無線チャネルの信号対雑音電力比を測 定する信号対雑音比測定手段と、
前記信号対雑音電力比と所定の基準値とを比較した比較結果に基づいて、 ¾if パラメータに関連する情報を生成する送信パラメータ関連情報生成手段と、 前記送信パラメータに関連する情報を前記送信装置へ通知する送信パラメ→ 関連情報通知手段と、
を備える受信装置。
2 0. 請求項 1 9に記載の受信装置において、
前記送信パラメータ関連情報生成手段は、 第 2の所定期間に測定される信号対 雑音電力比と前記所定の基準値とを比較した比較結果に基づいて、 前記送信パラ メータに関連する情報を生成する受信装置。
2 1 . 請求項 2 0に記載の受信装置におレ、て、
前記送信パラメータ関連情報生成手段は、 第 2の所定期間に測定される信号対 雑音電力比と前記所定の基準値とを比較した比較結果のうち、 最多の比較結果に 基づいて、 前記送信パラメータに関連する情報を生成する受信装置。
2 2. 請求項 2 0又は 2 1の何れかに記載の受信装置におレ、て、
自装置の移動速度に基づいて、 前記第 2の所定期間を変更する第 2の所定期間 変更手段を備える受信装置。
2 3. 請求項 1 9乃至 2 2の何れかに記載の受信装置におレ、て、
前記無線チャネルにより伝送される情報の受信の成否に基づいて、 前記所定の 基準値を変更する基準値変更手段を備える受信装置。
■ 2 4. 請求項 2 3に記載の受信装置におレ、て、
前記基準値変更手段は、 前記無線チャネルにより第 3の所定期間に伝送される 情報の受信の成否に基づいて、 前記所定の基準値を変更する受信装置。
2 5 . 請求項 2 4に記載の受信装置において、
前記基準値変更手段は、 前記無線チャネルにより第 3の所定期間に伝送される 情報の受信の成否の比率に基づいて、 前記所定の基準値を変更する受信装置。
2 6 . 請求項 2 4又は 2 5に記載の受信装置において、 自装置の移動速度に基づいて、 前記第 3の所定期間を変更する第 3の所定数変 更手段を備える受信装置。
2 7. 送信装置からの情報を受信する受信装置において、
lift己無線チャネルにより伝送される情報の受信の成否を判定する受信成否判定 手段と、
前記無線チャネルにより伝送される情報の受信の成否に基づいて、 送信パラメ ータに関連する情報を生成する送信パラメ→関連情報生成手段と、
前記送信パラメータに関連する情報を前記送信装置へ通知する送信パラメ→ 関連情報通知手段と、
を備える受信装置。
2 8. 請求項 2 7に記載の受信装置において、
前記送信パラメータ関連情報生成手段は、 前記無線チャネルにより第 4の所定 期間に伝送される情報の受信の成否に基づいて、 前記送信パラメータに関連する 情報を生成する受信装置。
PCT/JP2003/001881 2003-02-20 2003-02-20 無線チャネル制御方法及び受信装置 WO2004075438A1 (ja)

Priority Applications (21)

Application Number Priority Date Filing Date Title
CN200810098854.2A CN101282149B (zh) 2003-02-20 2003-02-20 无线信道控制方法、发送装置及接收装置
PCT/JP2003/001881 WO2004075438A1 (ja) 2003-02-20 2003-02-20 無線チャネル制御方法及び受信装置
JP2004568488A JPWO2004075438A1 (ja) 2003-02-20 2003-02-20 無線チャネル制御方法及び受信装置
EP11157230.1A EP2333987B1 (en) 2003-02-20 2003-02-20 Radio channel control method and receiving apparatus
EP11157228.5A EP2333986B1 (en) 2003-02-20 2003-02-20 Radio channel control method and receiving apparatus
EP03705365.9A EP1542378B1 (en) 2003-02-20 2003-02-20 Radio channel control method and receiver apparatus
EP11157231.9A EP2333988B1 (en) 2003-02-20 2003-02-20 Radio channel control method and receiving apparatus
CNB03819354XA CN100435495C (zh) 2003-02-20 2003-02-20 无线信道控制方法及接收装置
AU2003211222A AU2003211222A1 (en) 2003-02-20 2003-02-20 Radio channel control method and receiver apparatus
US11/043,307 US7945280B2 (en) 2003-02-20 2005-01-26 Radio channel control method and receiving apparatus
US11/730,672 US7885677B2 (en) 2003-02-20 2007-04-03 Radio channel control method and receiving apparatus
US11/730,670 US8073480B2 (en) 2003-02-20 2007-04-03 Radio channel control method and receiving apparatus
US11/730,669 US7933624B2 (en) 2003-02-20 2007-04-03 Radio channel control method and receiving apparatus
US11/730,671 US7881740B2 (en) 2003-02-20 2007-04-03 Radio channel control method and receiving apparatus
US12/976,400 US8483736B2 (en) 2003-02-20 2010-12-22 Radio channel control method and receiving apparatus
US12/976,325 US8135341B2 (en) 2003-02-20 2010-12-22 Radio channel control method and receiving apparatus
US13/009,591 US8331976B2 (en) 2003-02-20 2011-01-19 Radio channel control method and receiving apparatus
US13/009,488 US8311569B2 (en) 2003-02-20 2011-01-19 Radio channel control method and receiving apparatus
US13/011,298 US8073396B2 (en) 2003-02-20 2011-01-21 Radio channel control method and receiving apparatus
US13/011,527 US8095171B2 (en) 2003-02-20 2011-01-21 Radio channel control method and receiving apparatus
US13/687,733 US8660599B2 (en) 2003-02-20 2012-11-28 Radio channel control method and receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/001881 WO2004075438A1 (ja) 2003-02-20 2003-02-20 無線チャネル制御方法及び受信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/043,307 Continuation US7945280B2 (en) 2003-02-20 2005-01-26 Radio channel control method and receiving apparatus

Publications (1)

Publication Number Publication Date
WO2004075438A1 true WO2004075438A1 (ja) 2004-09-02

Family

ID=32894246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001881 WO2004075438A1 (ja) 2003-02-20 2003-02-20 無線チャネル制御方法及び受信装置

Country Status (5)

Country Link
EP (4) EP2333987B1 (ja)
JP (1) JPWO2004075438A1 (ja)
CN (2) CN101282149B (ja)
AU (1) AU2003211222A1 (ja)
WO (1) WO2004075438A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217328A (ja) * 2005-02-04 2006-08-17 Sony Ericsson Mobilecommunications Japan Inc 無線通信システム、送信装置、受信装置、送信方法および受信方法
JP2009089378A (ja) 2004-12-22 2009-04-23 Qualcomm Inc パケットの再送信に関して異なる変調方式を用いる方法及び装置
WO2009084464A1 (ja) 2007-12-28 2009-07-09 Nec Corporation 無線通信方法、無線通信装置、無線通信用プログラムおよび無線通信システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102217A1 (en) * 2007-02-22 2008-08-28 Freescale Semiconductor, Inc. Method of optimising the rank of a mmse channel equaliser
US8983397B2 (en) 2008-10-10 2015-03-17 Qualcomm Incorporated Method and apparatus for channel feedback by multiple description coding in a wireless communication system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001333051A (ja) * 2000-05-22 2001-11-30 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
JP2001339458A (ja) * 2000-05-26 2001-12-07 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置及び無線通信方法
JP2002009741A (ja) * 2000-06-26 2002-01-11 Ntt Docomo Inc 自動再送要求を行う通信方法及び基地局装置
JP2002101043A (ja) * 2000-06-26 2002-04-05 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置及び通信方法
JP2002199459A (ja) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd 通信端末装置、基地局装置及び通信方法
JP2002290246A (ja) * 2001-03-28 2002-10-04 Hitachi Kokusai Electric Inc 送受信機
EP1249951A1 (en) 2000-11-16 2002-10-16 Sony Corporation Information processing apparatus and communication apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137840A (en) * 1995-03-31 2000-10-24 Qualcomm Incorporated Method and apparatus for performing fast power control in a mobile communication system
JP3658859B2 (ja) * 1996-05-27 2005-06-08 ソニー株式会社 通信方法及び通信装置
JPH1079701A (ja) * 1996-09-03 1998-03-24 Fujitsu Ltd 移動通信端末及びその送信電力制御方式
JP3028940B2 (ja) 1997-09-02 2000-04-04 日本電気株式会社 通信チャネル割り当て方式
JP2001238256A (ja) 2000-02-21 2001-08-31 Hitachi Kokusai Electric Inc 可変速度符号化システム
EP1162774A1 (en) * 2000-06-07 2001-12-12 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Transport block size adapted link quality control
JP4409793B2 (ja) 2000-07-03 2010-02-03 パナソニック株式会社 基地局装置および無線通信方法
US20030003905A1 (en) * 2001-06-20 2003-01-02 Shvodian William M. System and method for providing signal quality feedback in a wireless network
EP1422898B1 (en) * 2001-08-28 2008-07-23 Sony Corporation Transmitter and transmission control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001333051A (ja) * 2000-05-22 2001-11-30 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
JP2001339458A (ja) * 2000-05-26 2001-12-07 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置及び無線通信方法
JP2002009741A (ja) * 2000-06-26 2002-01-11 Ntt Docomo Inc 自動再送要求を行う通信方法及び基地局装置
JP2002101043A (ja) * 2000-06-26 2002-04-05 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置及び通信方法
EP1249951A1 (en) 2000-11-16 2002-10-16 Sony Corporation Information processing apparatus and communication apparatus
JP2002199459A (ja) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd 通信端末装置、基地局装置及び通信方法
JP2002290246A (ja) * 2001-03-28 2002-10-04 Hitachi Kokusai Electric Inc 送受信機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1542378A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089378A (ja) 2004-12-22 2009-04-23 Qualcomm Inc パケットの再送信に関して異なる変調方式を用いる方法及び装置
US9385843B2 (en) 2004-12-22 2016-07-05 Qualcomm Incorporated Method and apparatus for using multiple modulation schemes for a single packet
US10291349B2 (en) 2004-12-22 2019-05-14 Qualcomm Incorporated Method and apparatus for using multiple modulation schemes for a single packet
JP2006217328A (ja) * 2005-02-04 2006-08-17 Sony Ericsson Mobilecommunications Japan Inc 無線通信システム、送信装置、受信装置、送信方法および受信方法
JP4605643B2 (ja) * 2005-02-04 2011-01-05 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 無線通信システム、送信装置、受信装置、送信方法および受信方法
WO2009084464A1 (ja) 2007-12-28 2009-07-09 Nec Corporation 無線通信方法、無線通信装置、無線通信用プログラムおよび無線通信システム
JP5182713B2 (ja) * 2007-12-28 2013-04-17 日本電気株式会社 無線通信方法、無線通信装置、無線通信用プログラムおよび無線通信システム
US8699362B2 (en) 2007-12-28 2014-04-15 Nec Corporation Radio communication method, radio communication device, radio communication program, and radio communication system

Also Published As

Publication number Publication date
EP1542378A1 (en) 2005-06-15
EP2333986B1 (en) 2013-11-20
CN100435495C (zh) 2008-11-19
EP2333987A3 (en) 2011-08-10
AU2003211222A1 (en) 2004-09-09
JPWO2004075438A1 (ja) 2006-06-01
EP2333988B1 (en) 2013-11-20
EP1542378A4 (en) 2010-02-24
EP2333988A2 (en) 2011-06-15
EP2333986A3 (en) 2011-08-10
CN101282149A (zh) 2008-10-08
CN1675858A (zh) 2005-09-28
CN101282149B (zh) 2013-03-27
EP2333986A2 (en) 2011-06-15
EP2333987B1 (en) 2013-11-20
EP2333987A2 (en) 2011-06-15
EP1542378B1 (en) 2013-10-23
EP2333988A3 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
US7933624B2 (en) Radio channel control method and receiving apparatus
US7385934B2 (en) Radio communication apparatus and transfer rate decision method
JP4472765B2 (ja) 電力制御サブシステム
JP4649330B2 (ja) 移動端末装置及び同装置におけるチャネル補償方法
WO2002003573A1 (fr) Unite de station de base et procede de radiocommunication
KR100663418B1 (ko) 복합 자동 재전송 방식을 지원하는 이동통신 시스템에서역방향 전송 장치 및 방법
JP4549907B2 (ja) 無線通信装置
US7233582B2 (en) Wireless communication system and transmission power control method therefor
JP2005260992A (ja) 無線通信装置および伝送レート決定方法
WO2004075438A1 (ja) 無線チャネル制御方法及び受信装置
JP2011109700A (ja) 制御方法、無線通信システム、受信装置及び送信装置
JP2008109713A (ja) 無線チャネル制御方法、送信装置及び受信装置
JP2004179931A (ja) 携帯情報端末

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004568488

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003705365

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11043307

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003819354X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003705365

Country of ref document: EP