WO2004075040A1 - Dispositif et procede de traitement de signal optique de souris - Google Patents

Dispositif et procede de traitement de signal optique de souris Download PDF

Info

Publication number
WO2004075040A1
WO2004075040A1 PCT/CN2004/000053 CN2004000053W WO2004075040A1 WO 2004075040 A1 WO2004075040 A1 WO 2004075040A1 CN 2004000053 W CN2004000053 W CN 2004000053W WO 2004075040 A1 WO2004075040 A1 WO 2004075040A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
mouse
photoelectric
photoelectric sensor
speckle
Prior art date
Application number
PCT/CN2004/000053
Other languages
English (en)
French (fr)
Inventor
Hong-Zhi Zhang
Original Assignee
Hong-Zhi Zhang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong-Zhi Zhang filed Critical Hong-Zhi Zhang
Priority to MXPA05007762A priority Critical patent/MXPA05007762A/es
Priority to JP2006501449A priority patent/JP4515445B2/ja
Priority to BR0406582-4A priority patent/BRPI0406582A/pt
Priority to EP04702623A priority patent/EP1586982A4/en
Priority to US10/531,943 priority patent/US7595478B2/en
Publication of WO2004075040A1 publication Critical patent/WO2004075040A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0317Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface

Definitions

  • the present invention relates to electrical digital data processing, and in particular, to a mouse optical signal processing method and device. Background technique
  • the working principle of the mechanical mouse is to use the ball at the bottom of the mouse to make physical contact with the desktop.
  • the ball rolls in different directions it will push the pressure scroll axis in different directions to scroll.
  • These rolling shafts are connected to the encoder, and the contacts are arranged in a circle on the circular encoder.
  • the contact of the contacts touches the contact bar in turn through the transmission of the pressure shaft, so that the contacts are turned on and off.
  • signals of 0 and 1 are formed.
  • a dedicated chip is used to convert these data into two-dimensional X and Y axis displacement data to guide the cursor to move accordingly. Due to the mechanical structure of this mouse, the disadvantages of low accuracy and easy damage are unavoidable, so it has basically withdrawn from the market.
  • the mechanical mouse is replaced by an optical mechanical mouse.
  • the structure of this mouse is basically the same as that of a mechanical mouse. The only difference between the two is the use of different encoders to detect mouse movements.
  • the encoder used in an optical mechanical mouse consists of a circle with many slits.
  • the plate is composed of photocells and light emitting diodes on both sides. When the ball is driven when the ball is in motion, the photocell will receive the connection and disconnection signals caused by cutting off the optical path.
  • the micro processor inside the mouse can calculate the distance the mouse moves and the phase difference. direction. Since the core positioning mechanism of this mouse has been processed by photoelectric components, it has the characteristics of long service life (higher than that of pure mechanical type) and high positioning accuracy.
  • the optical mouse does not have a positioning system with a mechanical structure, it has unique advantages in terms of positioning accuracy, service life, and operation feel.
  • the first generation of optical mice used a special mouse pad with a reflective surface and very neat grid lines.
  • the grid line consists of black and blue lines.
  • the optical mouse judges the direction and distance of the mouse based on the signals reflected from the X and Y axes of the mouse pad when the two sets of light are illuminated. Since this optical mouse needs to be operated on a special mouse pad and requires the mouse pad to be kept clean, which causes inconvenience to use, it has not been widely promoted.
  • the second generation of optical mouse was developed by the American company Agilent.
  • the technology uses light-emitting two The pole tube irradiates the surface of the object, and then takes a snapshot every certain time, and then analyzes and processes the characteristics of the picture twice to determine the direction and value of the coordinate movement. '
  • the frequency of scanning becomes an important parameter for measuring an optical mouse.
  • the scanning frequency 4500 times per second is the most basic. Like some products launched by Microsoft, the scanning frequency reaches 6000 times per second.
  • Another parameter that needs attention is the resolution of the mouse. This parameter is expressed in counts per square inch (count per inch, cpi). Most ordinary optical mice are 400dpi, which means that every one inch of movement will return 400 coordinate values (at present, better optical mice can reach 800dpi).
  • the purpose of the present invention is to provide a method and a device for processing optical signals of a mouse, so as to solve the problems of inconvenience in use, complicated technology and high cost in the prior art.
  • the mouse optical signal processing method used in the present invention is: a mouse optical signal processing method, which is characterized by: collecting the movement information of the laser speckle signal to reflect the relative displacement between the mouse device and the surface of the illuminated object that generates the laser speckle Vector Collect the movement information of the laser speckle interference signal to reflect the relative displacement vector of the mouse device and the surface of the illuminated object that generates the laser speckle interference fringe;
  • the laser speckle signal or laser speckle interference fringe signal is received by the photoelectric sensor, and then the signal processing is performed to calculate the number of speckle pulses or speckle interference fringe pulses received by the photoelectric sensor.
  • the average size of the speckle interference fringe determines the relative displacement between the photoelectric sensor and the surface of the illuminated object that generates the laser speckle; the photoelectric sensor has two or more than two photoelectric sensing units arranged in a line.
  • the photoelectric sensing unit group After receiving the laser speckle signal or laser speckle interference fringe signal on the surface of the object illuminated by the laser beam, the photoelectric sensing unit group amplifies and shapes the relevant photoelectric signal, calculates the photoelectric sensor and the The magnitude of the component of the relative displacement vector of the illuminated object surface in the arrangement direction of these photoelectric sensing units; at the same time, the speckle or speckle interference fringe movement is determined using the phase difference of the electrical signals generated by these two or more photoelectric sensing units Direction of the component of the vector in the direction of the two or more photoelectric sensing units
  • the photoelectric sensor there are at least two groups of such photoelectric sensor unit groups composed of two or more than two photoelectric sensor units arranged in a straight line, and the arrangement direction of at least one group is different from other groups.
  • the two groups can be crossed and some units can be shared.
  • these photoelectric sensing unit groups After receiving these laser speckle signals or laser speckle interference fringe signals from the surface of the object illuminated by the laser beam, these photoelectric sensing unit groups amplify and shape the relevant photoelectric signals.
  • the relative displacement vector of the illuminated object surface is The magnitude and direction of the components in this group and the angle between them calculate the relative displacement vector of the photoelectric sensor and the surface of the illuminated object in a two-dimensional plane.
  • the mouse optical signal processing device for realizing the above-mentioned optical signal processing method includes a mouse body, an amplification and shaping module for processing photoelectric signals, an orientation and counting module, and a computer interface circuit built in the mouse body, and are sequentially connected, and are characterized by: It also includes at least one laser and a photoelectric sensor that receives a laser speckle signal on the surface of an object illuminated by the laser beam; the photoelectric sensor inputs the received photoelectric signal into an amplification and shaping module;
  • It also includes at least two lasers and a photoelectric sensor that receives laser speckle interference signals on the surface of the object illuminated by the laser beam; the laser emitted by the two or more lasers is irradiated to generate laser speckle interference fringes One or more areas of the surface, each of which is illuminated by at least two beams;
  • It also includes at least one laser, a spectroscopic device, and a photoelectric sensor that receives laser speckle interference signals on the surface of the object illuminated by the laser beam; the laser emitted by the laser is divided into two or more beams by the spectroscopic device and irradiated to generate light. One or more regions of the surface of the laser speckle interference fringe, each of which is illuminated by at least two beams.
  • speckle when a laser beam is irradiated on the surface of a rough object, observing the irradiated area is not a continuous piece of light, but there are many bright and dark spots, which are disorderly and disorderly. This phenomenon It is called speckle. As shown in FIG. 1, speckle does not exist only on the surface of a rough object, and the entire space near the surface of the rough object irradiated by the laser is covered with speckle. Laser speckle is actually an interference phenomenon caused by constructive and destructive light waves scattered on various area elements on the surface of a rough object. The theory of laser interference can be used to explain it, and its general characteristics can be derived.
  • Theoretical research shows that with a certain incident angle of the laser, the contrast of speckle is related to the roughness of the surface of the illuminated object, and most items in daily life can easily meet the roughness requirements for forming speckle.
  • the laser is irradiated on most common objects such as tabletops, paper, textiles, general metals, plastics, ceramic surfaces, and ordinary glass, obvious speckle phenomena can be observed.
  • Laser speckle can be considered as attached to the surface of the illuminated object, so the object moves, and the speckle also moves. According to this characteristic of speckle, the relative displacement between the object and the observer (device) can be measured.
  • the present invention according to the characteristics of speckle, by collecting movement information of the laser speckle signal, the relative displacement vector of the laser signal source in the mouse device and the surface of the irradiated object that generates the laser speckle is reflected.
  • This pure photoelectric technology ⁇ It has overcome various defects of mechanical devices, has a simple structure, strong technical feasibility, and high accuracy. It can use economical methods to greatly improve measurement accuracy and speed.
  • Figure 1 is a schematic diagram of laser speckle
  • Figure 2 is a schematic diagram of the principle of the present invention.
  • FIG. 3 is a schematic diagram of the principle of the present invention.
  • Figure 4 is a schematic diagram of the principle of the present invention
  • 6 is a schematic diagram of a circuit principle of the present invention
  • Embodiment 7 is a schematic structural diagram of Embodiment 2.
  • Embodiment 8 is a schematic structural diagram of Embodiment 3.
  • FIG. 9 is a schematic structural diagram of Embodiment 4. detailed description
  • the method adopted by the present invention is: by collecting the movement information of the laser speckle signal, reflecting the relative displacement vector of the laser signal source in the mouse device and the surface of the irradiated object generating the laser speckle, and receiving the laser speckle interference signal through the photoelectric sensor Then, after signal processing, the number of speckle pulses received by the photoelectric sensor is calculated, and the magnitude of the relative displacement between the laser signal source and the surface of the irradiated object that generates the laser speckle with respect to the laser speckle is determined according to the average size of the speckle.
  • the statistical average of the distance between the maximum and minimum brightness of the adjacent light is related to the wavelength of the laser and the aperture angle of the plane that determines the speckle field, as shown in Figure 2,
  • the speckle formed by the laser scattering from a circular area with a diameter D on the screen AB at a distance L is also called "objective speckle", and its size ⁇ is approximately equal to the following formula 1:
  • the size of the laser speckles follows the statistical rules of Formula 1 or Formula 2 above.
  • the size of each specific spot is random. Therefore, simply counting the pulses output by the photoelectric sensor and shaping it cannot obtain accurate measurement data, but
  • the speckle size conforms to the statistical law, and the sum (or average value) of multiple speckle sizes (just by adding or averaging multiple pulses) can relatively accurately conform to its statistical average size; moreover, Because the speckle is very small under typical application conditions, usually between hundreds of nanometers and several micrometers, the integration accuracy (or average value) of such multiple speckle sizes is much higher than the current mouse The required accuracy (between 30 and 100 microns), so the sum (or average) of multiple speckle pulses can be used to determine the amount of mouse displacement. ⁇
  • the laser speckle measurement that can be used to measure in-plane displacement can use a variety of structural forms, such as single beam, double (multi) beam, and are discussed separately below.
  • the implementation device of the present invention includes a mouse body.
  • the mouse body has a built-in amplification and shaping module 1 for processing photoelectric signals, a direction and counting module 2, and a computer interface circuit 3. , And connected in sequence, also includes a laser 4 And a photoelectric sensor 5 that receives a laser speckle signal on the surface of the object illuminated by the laser beam, and the photoelectric sensor 5 inputs the received photoelectric signal to the amplification and shaping module 1.
  • the photoelectric sensor 5 has a photoelectric sensing unit group composed of two or more than two photoelectric sensing units arranged in a straight line.
  • the photoelectric sensing unit group receives a laser speckle on the surface of an object illuminated by a laser beam. After the signal or the laser speckle interference fringe signal, the relevant photoelectric signals are amplified and shaped to calculate the relative displacement vector components of the photoelectric sensor 5 and the surface of the illuminated object in the direction in which these photoelectric sensing units are arranged.
  • the phase difference of the electrical signals generated by these two or more photoelectric sensing units determines the direction of the component of the speckle or speckle interference fringe motion vector in the direction of the two or more photoelectric sensing units;
  • there are at least two groups of photoelectric sensing unit groups consisting of two or more than two photoelectric sensing units arranged in a straight line, and the arrangement direction of at least one group is different from the other groups, and the two groups can cross ,-Can share some units; the photoelectric sensor 5 and the object being irradiated are calculated based on these photoelectric sensor unit groups Angle between the surface component of relative displacement vector in this group as well as their magnitude and direction of the calculated relative displacement vector photosensor in a two-dimensional plane of the irradiated surface of the object.
  • the relevant photoelectric signal is input to the amplification and shaping module 1 for processing, and the speckle is determined by the orientation and counting module 2 processing.
  • the signals processed by the orientation and counting module 2 are input to the computer interface circuit 3.
  • the computer interface circuit 3 can use the interface and processing circuit module in a normal mouse to send control signals to the computer.
  • the difference between this embodiment and the embodiment 1 is that the optical path of the photoelectric sensor 5 receiving the laser speckle signal is further provided with a focusing lens 6.
  • the description in Embodiment 1 is the same and will not be repeated here.
  • the difference between this embodiment and the embodiment 1 is that a light splitting device 8 is provided in the optical path, and the laser light emitted by the laser is divided into two or more beams by the light splitting device 8 and irradiated with the light. One or more regions of the surface where the laser speckle interference fringes are generated, each of which is illuminated by at least two beams.
  • the spectroscopic device is composed of a focusing lens 6 and a pupil 7.
  • the front or rear of the focusing lens 6 is also provided with a pupil 7 having at least three light passing holes 71.
  • the centers of the light passing holes 71 are not on the same straight line.
  • the centers of the light-passing holes 71 are not on the same straight line, so two-dimensional displacement photoelectric signal sampling can be formed.
  • FIG. 8 only two light-passing holes in one dimension are drawn.
  • the structure is similar.
  • This embodiment adopts a dual (multi) beam structure, and in Embodiments 1 and 2, both adopt a single beam structure.
  • This dual (multi) beam structure helps to improve the coherence of the light source. Performance, increase the reliability and accuracy of the test, the structure of other parts, and the principle and working method of this embodiment are the same as those described in Embodiment 2 and Embodiment 1, and are not repeated here.
  • this embodiment also uses a spectroscopic device composed of a spectroscope 81 and a reflecting mirror 9) 8.
  • the laser 4 passes through a spectroscope 81 to form two laser beams, and the split laser beams Converged on the surface of the object after being reflected by the mirror 9, FIG. 9 It reflects that for the beam splitter 81 and the reflector 9 in the optical path in one dimension, one or two of the two laser beams can pass through the beam splitter 81 again to form three or four laser beams to illuminate the surface of the object.
  • the light beam passes through the beam splitter 81 to form multiple laser beams to illuminate the surface of the object, thereby realizing two-dimensional displacement photoelectric signal sampling.
  • This embodiment also uses a dual (multi) beam structure, the structure of other parts, and the principle and working method of this embodiment are basically the same as those described in the previous embodiment, and are not repeated here.
  • a collimating lens 10 may be further provided in the emission optical path of the laser 4.
  • the main purpose of setting the collimating lens 10 is to reduce the illuminated area of the object for measurement; the emission optical path of the laser 4
  • a diaphragm with a light-passing hole can also be provided in the lens.
  • the main function and use method of the diaphragm is similar to that of the collimating lens 10, and is not repeated here.
  • a spectroscopic device 8 is used, and the laser light emitted by the laser is divided into two or more beams by the spectroscopic device 8 and irradiated to one or more areas of the surface for generating laser speckle interference fringes.
  • the relative displacement vector of the mouse device and the surface of the illuminated object that generates the laser speckle interference fringe is reflected.
  • two or more lasers 4 may also be used, and the laser emitted by the two or more lasers 4 is irradiated to the laser speckle interference fringes.
  • the movement of the laser speckle interference signal is collected to reflect the relative position of the mouse device and the surface of the illuminated object that generates the laser speckle interference fringe.
  • the principle and working method of the displacement vector are the same as those described above, and are not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

一种鼠标光学信号处理方法和装置 技术领域
本发明涉及电数字数据处理,尤其涉及一种鼠标光学信号处理方 法和装置。 背景技术
鼠标自 1968年底诞生以来, 从其技术原理角度来划分, 到目前 共发展了以下四代:
(1) . 机械式鼠标:
机械式鼠>示的工作原理是利用鼠标底部的滚球,与桌面做物理接 触, 当滚球向不同的方向滚动时, 会推动处于不同方向的压力滚动轴 滚动。这些滚动轴连接着编码器, 在圆形的编码器上呈圆形排列着触 点, 当滚球滚动时, 经过压力轴的传动, 使触点依次碰到接触条, 从 而产生接通、 断开的信号。 经过转化, 形成 0、 1的信号。 .另外通过 一个专用的芯片, 使这些数据转换成二维的 X、 Y轴的位移数据, 从 而指导光标作相应的移动。这种鼠标由于全部采用机械结构, 不可避 免地出现精度偏低、 易损坏的缺点, 所以目前已基本上退出市场了。
(2) . 光学机械式鼠标:
取代机械鼠标的是光学机械式鼠标,这种鼠标与机械鼠标的结构 基本上相同,两者间惟一的区别就是采用不同的编码器进行侦测鼠标 的动作。光学机械式鼠标所采用的编码器,是由一片有很多狭缝的圆 盘以及其两侧的光电管、发光二极管所组成。当滚球运动时带动圆盘, 光电管就会收到由于切断光路所带来的连通、断开的信号, 鼠标内部 的微型处理器即可根据此信号及其相位差算出鼠标移动的距离及方 向。这种鼠标由于核心定位机构已采用光电式部件进行处理,所以其 具有(相对于纯机械式)使用寿命长、 定位精度高等特点;.但是, 由 于它的基本定位机制仍是采用机械式的滚球方式,因此与传统的机械 式鼠标一样, 长时间使用后, 会出现光标移动缓慢或跳动、定位不准 等现象。这主要是由于内部的转轴上附有灰尘的缘故,需要彻底清理 才能恢复正常使用。
(3) . 第一代光电式鼠标:
光电式鼠标由于没有机械结构的定位系统,所以无论是在定位精 度、 使用寿命 还是在操作手感等方面, 都具有得天独厚的优势。
第一代光电式鼠标使用一种特殊的鼠标垫,这种鼠标垫具有反射 面及十分整齐的栅格线。栅格线由黑线与蓝线组成,在鼠标的底部有 两个发光二极管, 一个发出能被蓝线吸引的红光, 另一个则发出能被 黑线吸收的红外光,在鼠标的底部另有一组光电管负责接收反射回来 的光线, 光电鼠标就是根据这两组光线照射鼠标垫的 X、 Y轴线所反 射回来的信号来判断鼠标的方向与距离。由于这种光电鼠标需要在特 制的鼠标垫上操作并要求保持鼠标垫的清洁, 给使用带来不便, 因此 一直未能大规模推广。
(4) . 第二代光电式鼠标:
第二代光电式鼠标由美国安捷伦公司所研发。该技术利用发光二 极管照射物体表面,然后每隔一定的时间就做一次快照,接着分析处 理两次图片的特性, 来测定坐标的移动方向及数值。 '
由于需要对图片进行扫描才能确定鼠标的位移,因此扫描的频率 就成为衡量光电鼠标的一项重要参数。 一般情况下, 每秒 4500次的 扫描频率是最基本的,像微软所推出的部分产品中,其扫描频率达到 了每秒 6000次。 同时需要注意的另一项参数是鼠标的分辨率。 这项 参数采用的是每平方英寸的测量次数来表示(count per inch , cpi )。 一般的光学鼠标大多都是 400dpi, 即每移动一英寸, 就传回 400次 坐标值(目前较好的光电鼠标可以达到 800dpi )。
综上所述, 纯粹的机械式鼠标目前已经淘汰; 光学机械式鼠标存 在定位精度不高、手感不够顺畅、长期使用后性能下降等难以克服的 缺陷; 第一代光电鼠标由于使用条件要求较高, 一直未能推广; 第二 代光电鼠标克服了第一代光电鼠标使用不便的缺点, 精度高, 使用寿 命长, 因此在高端市场占有一席之地, 但由于原理和结构复杂, 成本 居高不下,'并且受技术及成本因素的限制,存在响应速度不够的缺陷。 发明内容
本发明的目的在于提供一种鼠标光学信号处理方法和 *置,以解 决现有技术中使用不方便、 技术复杂和成本高的问题。
本发明所采用的鼠标光学信号处理方法为:种鼠标光学信号处理 方法, 其特征在于: 通过采集激光散斑信号的移动信息, 反映鼠标装 置与产生激光散斑的被照射的物体表面的相对位移矢量; 通过采集激光散斑干涉信号的移动信息,反映鼠标装置与产生激 光散斑干涉条纹的被照射的物体表面的相对位移矢量;
所述的激光散斑信号或激光散斑干涉条纹信号通过光电传感器 的接收, 再经信号处理,计算光电传感器所接收到的散斑脉冲或散斑 干涉条紋脉冲的数量,根据散斑或散斑干涉条纹的平均尺寸从而确定 光电传感器与产生激光散斑的被照射的物体表面的相对位移大小; 所述的光电传感器具有由两个或排成一条直线的两个以上的光 电传感单元构成的光电传感单元组,光电传感单元组接收到被激光光 束照射的物体表面的激光散斑信号或激光散斑干涉条纹信号后,对有 关光电信号进行放大及整形,计算出光电传感器与被照射物体表面的 相对位移矢量在这些光电传感单元排列方向上的分量大小; 同时, 利 用这些两个或两个以上光电传感单元所产生的电信号相位差确定散 斑或散斑干涉条纹移动矢量在该两个或两个以上光电传感单元方向 上的分量的方向;
所述的光电传感器中,这种由两个或排列成一条直线的两个以上 的光电传感单元构成的光电传感单元组至少有两组,并且至少有一组 的排列方向与其它组不同, 两个组可以交叉, 可以共用一些单元; 这 些光电传感单元组接收到被激光光束照射的物体表面的激光散斑信 号或激光散斑干涉条紋信号后, 对有关光电信号进行放大及整形, 计 算出光电传感器与被照射物体表面的相对位移矢量在本组中的分量 的大小和方向,并且由不在同一方向上的两个或两个以上光电传感单 元组各自计算出的光电传感器与被照射物体表面的相对位移矢量在 本组中的分量的大小和方向以及它们之间的夹角计算出光电传感器 与被照射物体表面在二维平面内的相对位移矢量。
这种实现上述光学信号处理方法的鼠标光学信号处理装置,包括 鼠标本体, 鼠标本体中内置处理光电信号的放大及整形模块、辨向及 计数模块和计算机接口电路, 并依次相连, 其特征在于: 还包括至少 一个激光器和接收被激光光束照射的物体表面的激光散斑信号的光 电传感器;所述的光电传感器将接收到的光电信号输入放大及整形模 块;
. 它还包括至少两个激光器和接收被激光光束照射的物体表面的 激光散斑干涉信号的光电传感器;所述的两个或两个以上激光器发射 的激光照射到用于产生激光散斑干涉条纹的表面的一个或多个区域, 其中的每一个区域至少有两路光束照射;
它还包括至少一个激光器、分光装置和接收被激光光束照射的物 体表面的激光散斑干涉信号的光电传感器;所述的激光器发射的激光 通过分光装置分成两束或两束以上照射到用于产生激光散斑干涉条 纹的表面的一个或多个区域, 其中的每一个区域至少有两路光束照 射。
本发明的原理和有益效果为:当一束激光照射到某粗糙物体表面 时, 观察被照射区域, 并非连续的一片明亮, 而是有许多明暗相间、 杂乱无章的亮斑和暗斑, 这种现象称为散斑, 如图 1所示, 散斑并非 只存在于粗糙物体表面上,在被激光照射的粗糙物体表面附近的整个 空间都布满散斑。 激光散斑实际上是在粗糙物体表面的各个面积元上散射的光波 之间相长和相消所引起的一种干涉现象,可以采用激光干涉的理论加 以解释, 并推导出其一般特性。
理论研究表明, 在激光入射角一定的情况下, 散斑的对比度与被 照射物体表面的粗糙度相关, 日常生活中接触到的多数物品,都能轻 易满足形成散斑的粗糙度要求。实验证明,激光照射到大多数常见物 品如桌面、 纸张、 纺织品、 一般金属、 塑料、 陶瓷表面、 普通玻璃上 时, 都能观察到明显的散斑现象。激光散斑可以认为是附属于被照射 物体表面的, 因此物体移动, 散斑也移动, 依据散斑的这个特性可以 测量物体与观测者 (装置) 的相对位移。
在本发明中,依据散斑的特性, 通过采集激光散斑信号的移动信 息,反映鼠标装置中激光信号源与产生激光散斑的被照射的物体表面 的相对位移矢量, 这种纯光电技术^服了机械装置的各种缺陷, 结构 简单, 技术可行性强, 精度高, 可采用经济的方法大幅度提高测量精 度和速度。 附图说明
图 1为激光散斑示意图;
图 2为本发明原理示意图;
图 3为本发明原理示意图;
图 4为本发明原理示意图; 图 6为本发明电路原理示意图;
图 7为实施例 2结构示意图;
图 8为实施例 3结构示意图;
图 9为实施例 4结构示意图。 具体实施方式
下面根据附图和实施例对本发明作进一步详细说明:
本发明所采用的方法为:通过采集激光散斑信号的移动信息, 反 映鼠标装置中激光信号源与产生激光散斑的被照射的物体表面的相 对位移矢量,通过光电传感器接收激光散斑干涉信号,再经信号处理, 计算光电传感器所接收到的散斑脉冲的数量,根据散斑的平均尺寸从 而确定激光信号源与产生激光散斑的被照射的物体表面的相对位移 对于激光散斑的大小,即相邻的亮度极大处与极小处的距离的统 计平均值,与激光的波长、产生散斑的辐射对确定散斑场的平面所张 的孔径角有关, 如图 2所示,来自直径为 D的圆形区域的激光散射在 距离为 L的屏 AB上形成的散斑, 亦称为 "客观散斑" , 其大小 σ近 似等于如下式 1 :
σ =¾ 1. 2入 L / D
如图 3所示, 如果用一个透镜把散射的辐射场聚焦在屏上, 则 形成 "主观散斑" ,这时单个散斑的大小 σ与透镜有效数值孔径 Ν. Α. 的关系为如下式 2: σ 6 λ / N. A.
激光散斑的大小遵循上述式 1或式 2的统计规律, 俾每一个具 体的斑点大小则是随机的,因此对光电敏感元件输出并经过整形的脉 冲简单计数并不能获得准确的测量数据, 但是, 散斑大小符合统计规 律, 多个散斑尺寸之和 (或平均值) (只需将多个脉冲相加或取平均 值即可得到)能够相对准确地符合其统计平均大小; 况且,.由于在典 型的应用条件下散斑非常小, 一般在数百纳米到数微米之间, 因此, 这种多个散斑尺寸之和(或平均值)所反映的整合精度远远高于目前 鼠标所需要的精度(大约在 30至 100微米之间), 所以可以使用多个 散斑脉冲之和 (或平均值) 来确定鼠标器的位移量。 \
同时, 若采用两束激光等角度地照射物体, 则可以在一维上得 到更精确的测量结果, 如图 4所示, 若在被照射物体表面方向上的位 移为 d, 则有式 3: .
d - n λ / 2sin θ, 该式中 η为激光散斑脉冲计数。
若要根据式 3的原理测量二维平面内的位移,则需要至少三路激 光光束, 并且这些激光光束不能全部在同一平面内。
综上所述, 可用于测量面内位移的激光散斑测量可以采用单光 束、 双 (多) 光束等多种结构形式, 下面分别讨论。
实施例 1 :
根据图 5和图 6, 本发明的实现装置包括鼠标本体, 如图 5和图 6所示, 鼠标本体中内置处理光电信号的放大及整形模块 1、 辨向及 计数模块 2和计算机接口电路 3, 并依次相连, 还包括一个激光器 4 和接收被激光光束照射的物体表面的激光散斑信号的光电传感器 5, 所述的光电传感器 5将接收到的光电信号输入放大及整形模块 1。
所述的光电传感器 5 具有由两个或排成一条直线的两个以上的 光电传感单元构成的光电传感单元组,光电传感单元组接收到被激光 光束照射的物体表面的激光散斑信号或激光散斑干涉条紋信号后,对 有关光电信号进行放大及整形,计算出光电传感器 5与被照射物体表 面的相对位移矢量在这些光电传感单元排列方向上的分量大小; 同 时,利用这些两个或两个以上光电传感单元所产生的电信号相位差确 定散斑或散斑干涉条纹移动矢量在该两个或两个以上光电传感单元 方向上的分量的方向;在光电传感器中, 这种由两个或排列成一条直 线的两个以上的光电传感单元构成的光电传感单元组至少有两组,并 且至少有一组的排列方向与其它组不同,两个组可以交叉,-可以共用 一些单元;根据这些光电传感单元组各自计算出的光电传感器 5与被 照射物体表面的相对位移矢量在本组中的分量的大小和方向以及它 们之间的夹角计算出光电传感器与被照射物体表面在二维平面内的 相对位移矢量。
如图 6所示,光电传感器 5接收到被激光光束照射的物体表面的 激光散斑信号后, 将有关光电信号输入放大及整形模块 1处理, 经辨 向及计数模块 2的处理,确定散斑在整个二维平面内的移动方向, 从 而得到鼠标器移动的方向。经辨向及计数模块 2处理的信号输至计算 机接口电路 3, 计算机接口电路 3可采用普通鼠标中的接口及处理电 路模块, 向计算机发出控制信号。 实施例 2:
如图 7所示, 根据图 6, 本实施例与实施例 1所述的区别在于, 光电传感器 5接收激光散斑信号的光路中还设置有聚焦透镜 6, 至于 其结构、 原理及工作方法与实施例 1所述相同, 此处不再赘述。
实施例 3 : .
如图 8所示, 根据图 6, 本实施例与实施例 1所述的区别在于, 在光路中设置有分光装置 8, 激光器发射的激光通过分光装置 8分成 两束或两束以上照射到用于产生激光散斑干涉条纹的表面的一个或 多个区域, 其中的每一个区域至少有两路光束照射。
这里, 分光装置 由聚焦透镜 6和光瞳 7构成, 聚焦透镜 6前部 或后部还放置有开设至少 3个通光孔 71的光瞳 7, 各个通光孔 71的 中心不在同一直线上, 由于通光孔 71的中心不在同一直线上, 因此 可以形成二维方向的位移光电信号取样,图 8中只画出在一维上的两 个通光孔, 在未画出的另一维上的结构与此相似, 本实施例采用双 (多)光束结构形式, 而在实施例 1和实施例 2中, 均采用单光束结 构形式, 这种双(多)光束结构形式有助于提高光源相干性, 增加测 试的可靠性和精度,其它部分的结构,及本实施例的原理及工作方法 与实施例 2和实施例 1中所述相同, 此处不再赘述。
实施例 4:
如图 9所示, 根据图 6, 同样, 本实施例采用由分光镜 81和反 射镜 9构成的分光装置) 8,激光器 4经过一分光镜 81, 形成两路激光 光束, 经分光的激光光束经反射镜 9的反射后汇聚于物体表面, 图 9 反映了对于一维方向上的光路中的分光镜 81和反射镜 9, 上述两路 激光光束的一路或两路可再经过分光镜 81, 形成三路或四路激光光 束照射物体表面, 这样激光光束经过分光镜 81, 形成多路激光光束 照射物体表面, 实现二维方向的位移光电信号取样。本实施例也釆用 双(多)光束结构形式, 其它部分的结构, 及本实施例的原理及工作 方法与前述实施例中所述基本相同, 此处不再赘述。
在各实施例中, 激光器 4的发射光路中还可设置准直透镜 10, 如图 9所示, 设置准直透镜 10的主要目的是减小物体被照射区域以 便于测量; 激光器 4的发射光路中还可以设置带有通光孔的光阑, 光 阑的主要作用、 使用方法与准直透镜 10相似, 此处不再赘述。
在实施例 3和实施例 4中, 采用了分光装置 8, 激光器发射的激 光通过分光装置 8分成两束或两束以上照射到用于产生激光散斑干 涉条紋的表面的一个或多个区域,通过采集激光散斑干涉信号的移动 信息,反映鼠标装置与产生激光散斑干涉条紋的被照射的物体表面的 相对位移矢量。 - 对于本发明而言,在保证相干性的前提下, 也可以使用两个或两 个以上的激光器 4, 两个或两个以上激光器 4发射的激光照射到用于 产生激光散斑干涉条纹的表面的一个或多个区域,其中的每一个区域 至少应有两路光束照射,通过采集激光散斑干涉信号的移动信息, 反 映鼠标装置与产生激光散斑干涉条纹的被照射的物体表面的相对位 移矢量, 其原理和工作方法与前述相同, 此处不再赘述。

Claims

权利要求书
1.一种鼠标光学信号处理方法, 其特征在于: 通过采集激光散斑信 号的移动信息,反映鼠标装置与产生激光散斑的被照射的物体表 面的相对位移矢量。
2.一种鼠标光学信号处理方法, 其特征在于: 通过采集激光散斑干 涉信号的移动信息, 反映鼠标装置与产生激光散斑干涉条紋的被 照射的物体表面的相对位移矢量。
3.根据权利要求 1或 2所述的鼠标光学信号处理方法,其特征在于: 所述的激光散斑信号或激光散斑干涉条纹信号通过光电传感器 的接收, 再经信号处理, 计算光电传感器所接收到的散斑脉冲或 散斑干涉条纹脉冲的数量,根据散斑或散斑干涉条紋的平均尺寸 从而确定光电传感器与产生激光散斑的被照射的物体表面的相
\
对位移大小。
4.根据权利要求 3所述的鼠标光学信号处理方法, 其特征在于: 所 述的光电传感器具有由两个或排成一条直线的两个以上的光电 传感单元构成的光电传感单元组,光电传感单元组接收到被激光 光束照射的物体表面的激光散斑信号或激光散斑干涉条紋信号 后, 对有关光电信号进行放大及整形, 计算出光电传感器与被照 射物体表面的相对位移矢量在这些光电传感单元排列方向上的 分量大小; 同时, 利用这些两个或两个以上光电传感单元所产生 的电信号相位差确定散斑或散斑干涉条紋移动矢量在该两个或 两个以上光电传感单元方向上的分量的方向。
5.根据权利要求 4所述的鼠标光学信号处理方法, 其特征在于: 所 述的光电传感器中,这种由两个或排列成一条直线的两个以上的 光电传感单元构成的光电传感单元组至少有两组, 并且至少有一 组的排列方向与其它组不同, 两个组可以交叉, 可以共用一些单 元;这些光电传感单元组接收到被激光光束照射的物体表面的激 光散斑信号或激光散斑干涉条紋信号后,对有关光电信号进行放 大及整形,计算出光电传感器与被照射物体表面的相对位移矢量 在本组中的分量的大小和方向,并且由不在同一方向上的两个或 两个以上光电传感单元组各自计算出的光电传感器与被照射物 体表面的相对位移矢量在本组中的分量的大小和方向以及它们 之间的夹角计算出光电传感器与被照射物体表面在二维平面内 的相对位移矢量。
6.一种实现权利要求 1所述的光学信号处理方法的鼠标光学信号处 理装置, 包括鼠标本体, 鼠标本体中内置处理光电信号的放大及 整形模块(1 )、 辨向及计数模块 (2 )和计算机接口电路 (3), 并依次相连, 其特征在于: 还包括至少一个激光器 (4 ) 和接收 被激光光束照射的物体表面的激光散斑信号的光电传感器 ( 5 ); 所述的光电传感器 (5 )将接收到的光电信号输入放大及整形模 块 (1 )。
7.根据权利要求 6所述的鼠标光学信号处理装置, 其特征在于: 它 还包括至少两个激光器 (4) 和接收被激光光束照射的物体表面 的激光散斑干涉信号的光电传感器(5 ) ; 所述的两个或两个以上 激光器 (4) 发射的激光照射到用于产生激光散斑干涉条紋的表 面的一个或多个区域, 其中的每一个区域至少有两路光束照射。
8.根据权利要求 6所述的鼠标光学信号处理装置, 其特征在于: 它 还包括至少一个激光器 (4)、 分光装置 (8) 和接收被激光光束 照射的物体表面的激光散斑干涉信号的光电传感器(5); 所述的 激光器发射的激光通过分光装置 (8) 分成两束或两束以上照射 到用于产生激光散斑干涉条紋的表面的一个或多个区域,其中的 每一个区域至少有两路光束照射。
PCT/CN2004/000053 2003-01-20 2004-01-16 Dispositif et procede de traitement de signal optique de souris WO2004075040A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MXPA05007762A MXPA05007762A (es) 2003-01-20 2004-01-16 Metodo y dispositivo para procesamiento de senales opticas en un raton de computadora.
JP2006501449A JP4515445B2 (ja) 2003-01-20 2004-01-16 コンピュータ・マウス内の光信号処理のための方法及びデバイス
BR0406582-4A BRPI0406582A (pt) 2003-01-20 2004-01-16 Método e dispositivo para o processamento de sinais ópticos em um mouse de computador
EP04702623A EP1586982A4 (en) 2003-01-20 2004-01-16 MOUSE LIGHT SIGNAL PROCESS AND DEVICE
US10/531,943 US7595478B2 (en) 2003-01-20 2004-01-16 Method and device for processing optical signals in computer mouse

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN03223054.0 2003-01-20
CN03223054 2003-01-20
CNB03114246XA CN1244044C (zh) 2003-01-20 2003-04-18 一种鼠标光学信号处理方法
CN03114246.X 2003-04-18

Publications (1)

Publication Number Publication Date
WO2004075040A1 true WO2004075040A1 (fr) 2004-09-02

Family

ID=31496566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000053 WO2004075040A1 (fr) 2003-01-20 2004-01-16 Dispositif et procede de traitement de signal optique de souris

Country Status (9)

Country Link
US (1) US7595478B2 (zh)
EP (1) EP1586982A4 (zh)
JP (1) JP4515445B2 (zh)
KR (1) KR100905382B1 (zh)
CN (1) CN1244044C (zh)
BR (1) BRPI0406582A (zh)
MX (1) MXPA05007762A (zh)
TW (1) TWI272523B (zh)
WO (1) WO2004075040A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051541A1 (en) * 2004-11-11 2006-05-18 Elbit Systems Ltd. Determination of range to a coherent light source using laser speckle pattern
US7586584B2 (en) 2005-11-10 2009-09-08 Elbit Systems Ltd. Determination of range to a coherent light source using laser speckle pattern
US7715016B2 (en) 2005-12-15 2010-05-11 Chung Shan Institute Of Science And Technology Image invariant optical speckle capturing device and method
EP2202613A1 (en) 2008-12-18 2010-06-30 Chung Shan Institute of Science and Technology Image invariant optical speckle capturing device and method
US20120057023A1 (en) * 2010-09-03 2012-03-08 Pixart Imaging Inc. Distance measurement system and method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6934037B2 (en) * 2003-10-06 2005-08-23 Agilent Technologies, Inc. System and method for optical navigation using a projected fringe technique
US7221356B2 (en) * 2004-02-26 2007-05-22 Microsoft Corporation Data input device and method for detecting an off-surface condition by a laser speckle size characteristic
CN100373312C (zh) * 2005-05-16 2008-03-05 原相科技股份有限公司 用于激光光学鼠标的感应芯片及相关激光光学鼠标
US20060279545A1 (en) * 2005-06-13 2006-12-14 Jeng-Feng Lan Sensor chip for laser optical mouse and related laser optical mouse
US7737959B2 (en) * 2005-09-08 2010-06-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Position detection system using laser speckle
US20070078712A1 (en) * 2005-09-30 2007-04-05 Yahoo! Inc. Systems for inserting advertisements into a podcast
JP4793786B2 (ja) * 2006-06-20 2011-10-12 アバゴ・テクノロジーズ・イーシービーユー・アイピー(シンガポール)プライベート・リミテッド ポインティングデバイス
CN101101521B (zh) * 2006-07-03 2010-05-26 达方电子股份有限公司 激光鼠标及其控制方法
EP1918674B1 (en) * 2006-11-03 2013-09-11 Chung Shan Institute of Science and Technology Device and method for capturing speckles
JP4964654B2 (ja) 2007-04-13 2012-07-04 株式会社リコー レンズ鏡胴、カメラおよび情報機器
US7880723B2 (en) * 2007-11-07 2011-02-01 Pacing Technology Co., Ltd. Optical image detecting structure with multiple function
CN102710885A (zh) * 2012-05-30 2012-10-03 东莞光阵显示器制品有限公司 一种基于反射的鼠标扫描方法及装置
CN102724377A (zh) * 2012-05-30 2012-10-10 东莞光阵显示器制品有限公司 一种基于激光定位的鼠标扫描方法及鼠标扫描仪
CN102710886A (zh) * 2012-05-31 2012-10-03 东莞光阵显示器制品有限公司 一种集成棱镜的鼠标扫描方法及鼠标扫描仪
CN108120376A (zh) * 2016-11-28 2018-06-05 英业达科技有限公司 基于光学的位移检测系统及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794384A (en) 1984-09-27 1988-12-27 Xerox Corporation Optical translator device
US4967093A (en) * 1988-06-22 1990-10-30 Hamamatsu Photonics Kabushiki Kaisha Deformation measuring method and device using cross-correlation function between speckle patterns with reference data renewal
GB2272763A (en) * 1992-11-14 1994-05-25 Univ Sheffield Device and method for determining movement
US6034670A (en) * 1996-09-30 2000-03-07 Chen; Mei Yun Cursor positioning apparatus

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638224B2 (ja) * 1984-09-27 1994-05-18 ゼロツクス コーポレーシヨン 光学式トランスレータ装置
JPH01161521A (ja) * 1987-12-18 1989-06-26 Hitachi Ltd 位置指定装置
JP2668937B2 (ja) * 1988-05-16 1997-10-27 富士ゼロックス株式会社 位置指定装置
JPH03111925A (ja) * 1989-09-26 1991-05-13 Fuji Xerox Co Ltd スペックルパターンの移動検出方法及びこれを用いた位置指定装置
JP2958779B2 (ja) * 1989-09-26 1999-10-06 富士ゼロックス株式会社 スペックルパターンの移動検出方法及びこれを用いた位置指定装置
JP2855696B2 (ja) * 1989-09-26 1999-02-10 富士ゼロックス株式会社 スペックルパターンの移動検出方法及びこれを用いた位置指定装置
JP2803307B2 (ja) * 1990-04-03 1998-09-24 富士ゼロックス株式会社 スペックルパターンの移動検出方法及びこれを用いた位置指定装置
JPH05313816A (ja) * 1992-05-01 1993-11-26 Nhk Spring Co Ltd ポインティングデバイス
US5703356A (en) * 1992-10-05 1997-12-30 Logitech, Inc. Pointing device utilizing a photodetector array
JPH06230897A (ja) * 1993-02-01 1994-08-19 Fuji Xerox Co Ltd 位置指示装置
US6256016B1 (en) * 1997-06-05 2001-07-03 Logitech, Inc. Optical detection system, device, and method utilizing optical matching
CN1144063C (zh) * 1998-03-09 2004-03-31 葛莱特有限公司 光学平移测量
AU6633798A (en) * 1998-03-09 1999-09-27 Gou Lite Ltd. Optical translation measurement
US5994710A (en) * 1998-04-30 1999-11-30 Hewlett-Packard Company Scanning mouse for a computer system
DE19940217C5 (de) * 1999-08-25 2006-08-10 Zwick Gmbh & Co Verfahren zur berührungslosen Messung der Veränderung der räumlichen Gestalt einer Meßprobe, insbesondere zur Messung der Längenänderung der einer äußeren Kraft unterliegenden Meßprobe und Vorrichtung zur Durchführung des Verfahrens
JP3890848B2 (ja) * 2000-03-31 2007-03-07 富士ゼロックス株式会社 トナー量測定装置および画像形成装置
US6642506B1 (en) * 2000-06-01 2003-11-04 Mitutoyo Corporation Speckle-image-based optical position transducer having improved mounting and directional sensitivities

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794384A (en) 1984-09-27 1988-12-27 Xerox Corporation Optical translator device
US4967093A (en) * 1988-06-22 1990-10-30 Hamamatsu Photonics Kabushiki Kaisha Deformation measuring method and device using cross-correlation function between speckle patterns with reference data renewal
GB2272763A (en) * 1992-11-14 1994-05-25 Univ Sheffield Device and method for determining movement
US6034670A (en) * 1996-09-30 2000-03-07 Chen; Mei Yun Cursor positioning apparatus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GAO JIANXIN, ZHOU XINGENG: "Principle and applications of digital speckle correlation method", ACTA MECHANICA SINICA, vol. 27, no. 6, November 1995 (1995-11-01), pages 724 - 731, XP008073076 *
See also references of EP1586982A4
ZHENG WEN: "Digital phase-shifting speckle pattern interferometry system", ACTA METROLOGICA SINICA, vol. 21, no. 3, July 2000 (2000-07-01), pages 167 - 172, XP008073110 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051541A1 (en) * 2004-11-11 2006-05-18 Elbit Systems Ltd. Determination of range to a coherent light source using laser speckle pattern
US7586584B2 (en) 2005-11-10 2009-09-08 Elbit Systems Ltd. Determination of range to a coherent light source using laser speckle pattern
US7715016B2 (en) 2005-12-15 2010-05-11 Chung Shan Institute Of Science And Technology Image invariant optical speckle capturing device and method
EP2202613A1 (en) 2008-12-18 2010-06-30 Chung Shan Institute of Science and Technology Image invariant optical speckle capturing device and method
US20120057023A1 (en) * 2010-09-03 2012-03-08 Pixart Imaging Inc. Distance measurement system and method
US9127930B2 (en) * 2010-09-03 2015-09-08 Pixart Imaging Inc. Distance measurement system and method

Also Published As

Publication number Publication date
US20060265530A1 (en) 2006-11-23
MXPA05007762A (es) 2006-05-17
KR20050099965A (ko) 2005-10-17
TW200525435A (en) 2005-08-01
JP4515445B2 (ja) 2010-07-28
CN1475898A (zh) 2004-02-18
TWI272523B (en) 2007-02-01
BRPI0406582A (pt) 2005-12-20
KR100905382B1 (ko) 2009-06-30
EP1586982A4 (en) 2006-11-02
CN1244044C (zh) 2006-03-01
US7595478B2 (en) 2009-09-29
EP1586982A1 (en) 2005-10-19
JP2006515945A (ja) 2006-06-08

Similar Documents

Publication Publication Date Title
WO2004075040A1 (fr) Dispositif et procede de traitement de signal optique de souris
US20050259098A1 (en) Optical positioning device using telecentric imaging
TWI393030B (zh) 位置檢測系統及方法
US7042575B2 (en) Speckle sizing and sensor dimensions in optical positioning device
US6927758B1 (en) Optical detection system, device, and method utilizing optical matching
US8730167B2 (en) Pointing device with optical positioning on low-diffusive surfaces
US20090108175A1 (en) System and method for performing optical navigation using scattered light
WO1994011845A1 (en) Device and method for determining movement of a surface
CN1551043A (zh) 基于干涉仪的导引设备
JP2009520988A (ja) スペックルナビゲーションシステム
JP2008500663A (ja) スペックルフェージングへの耐性を有する光学式位置決め装置
US20050258347A1 (en) Optical positioning device having shaped illumination
TW201531693A (zh) 用於光學檢測之非成像相干線掃描系統和方法
JP4565243B2 (ja) テレセントリック撮像を用いた光学位置決めデバイス
JP2668937B2 (ja) 位置指定装置
US7746477B1 (en) System and method for illuminating and imaging a surface for an optical navigation system
CN210570493U (zh) 一种测量仪器的激光测头装置
CN110553588A (zh) 一种测量仪器的精密激光测头装置及其使用方法
CN2620321Y (zh) 一种鼠标器
JP2855696B2 (ja) スペックルパターンの移動検出方法及びこれを用いた位置指定装置
US8259069B1 (en) Speckle-based optical navigation on curved tracking surface
JP2007198841A (ja) 光学式測定方法及び光学式測定装置
CN1632519A (zh) 基于角度测量的原子力显微镜测量装置
TW202127038A (zh) 聚焦式原子力顯微鏡
WO2005114097A2 (en) Speckle sizing and sensor dimensions in optical positioning device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006265530

Country of ref document: US

Ref document number: 10531943

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006501449

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057012193

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2004702623

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004702623

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/007762

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1478/KOLNP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1020057012193

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004702623

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0406582

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10531943

Country of ref document: US