WO2004072367A1 - 抄紙機の制御方法、制御装置、プログラム及び記憶媒体 - Google Patents

抄紙機の制御方法、制御装置、プログラム及び記憶媒体 Download PDF

Info

Publication number
WO2004072367A1
WO2004072367A1 PCT/JP2004/000753 JP2004000753W WO2004072367A1 WO 2004072367 A1 WO2004072367 A1 WO 2004072367A1 JP 2004000753 W JP2004000753 W JP 2004000753W WO 2004072367 A1 WO2004072367 A1 WO 2004072367A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
paper
interference
retention
ash content
Prior art date
Application number
PCT/JP2004/000753
Other languages
English (en)
French (fr)
Inventor
Yoshitatsu Mori
Naoki Imai
Yoshinobu Hara
Michiaki Nishimura
Yoshihiko Hirata
Hiroshi Tsuchida
Yoshihiro Takiyama
Haruko Soma
Original Assignee
Oji Paper Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co., Ltd. filed Critical Oji Paper Co., Ltd.
Priority to CA2515981A priority Critical patent/CA2515981C/en
Publication of WO2004072367A1 publication Critical patent/WO2004072367A1/ja
Priority to FI20050807A priority patent/FI20050807A/fi

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G9/00Other accessories for paper-making machines
    • D21G9/0009Paper-making control systems
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/04Addition to the pulp; After-treatment of added substances in the pulp
    • D21H23/06Controlling the addition
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/66Pulp catching, de-watering, or recovering; Re-use of pulp-water

Definitions

  • the present invention relates to a method for controlling a paper machine, a control device for a paper machine, and the like, and more particularly to an improvement in retention and ash content control in a papermaking machine.
  • Retention in the paper part process of the paper machine is the ratio of the raw material that pulp material (mainly pulp containing ash) that erupted from the head box of the paper machine onto the filtration wire of the wire part yields on the wire.
  • Approximate calculation is made using the following formula using the concentration of raw material supplied to the headbox (C IntelB) and the concentration of white water (c ww ) that is filtered from the wire 1 and falls into the white water silo below the wire 1. be able to.
  • Retention ⁇ (C H B _ C W w) / C "B ⁇ X 1 0 0% Formula 1
  • the retention value is an important indicator of the convex shed determines good or bad of the paper machine wire per Bok operations
  • retention can be controlled by a very small increase or decrease in the addition flow rate of a high-molecular-weight retention aid added in a small amount to the raw material supplied to the head box as one method. In the retention control, this retention is controlled.
  • the fluctuation of the white water concentration (C ww ) is used as the monitoring end of the retention.
  • the retention value itself in Equation 1 is used, and A control mode is adopted in which the addition flow rate of the retention aid is increased or decreased while monitoring the state of all concentrations (see Non-Patent Documents 2, 3, and 4).
  • the reason why the total concentration of white water is used instead of the retention value itself is that if the total concentration of white water is kept constant, the retention can also be kept constant. Even if it is kept constant, if the concentration of the raw material supplied to the head box (C H B) and the concentration of white water (C w w) change greatly at the same rate at the same time, use Equation 1 as an index. The reason is that the retention value is apparently calculated as a stable constant value, making it impossible to stabilize the wet part.
  • the retention control is a control that adjusts the yield of pulp raw material supplied from the head box onto one wire part, and measures the total concentration of white water flowing down from the wire part online using a special low concentration meter. This is performed by constructing a feedback control loop that increases or decreases the amount of the yield improver added to the pulp raw material so that the value matches a preset target value.
  • a PID controller controller
  • the control loop is used to implement PI control (proportional operation control + integral operation control). , 3).
  • This PID controller is often used in the control loop of the process control of chemical plants and pulp and paper plants.On-line measurement of the state quantities such as temperature and flow rate to be controlled by sensors mounted on the control end. If there is a deviation between the measured value and the target value, operate the magnitude calculated by the PID controller.
  • Control A basic method is used in which a signal is output to the operating end of a steam valve or flow valve, for example, and one-on-one control is performed in a feedback loop using feedback control. In recent large-scale plants, a large number (hundreds to thousands of loops) of this type of control loop has been incorporated into the DCS (Distributed Control System) of the central control room, and the actual plant has been centrally controlled online. I have.
  • DCS Distributed Control System
  • ash components such as calcium carbonate and talc of about 0 to 20% are prescribed according to the prescription in order to improve surface properties and printability in accordance with the type of paper.
  • the amount of ash is controlled as the ash content in paper at the time of manufacture.
  • ash content control is conventionally performed using a BM meter (Basis Weight and Moisture Measurement Sensors) in order to maintain the ash content of the product paper at a specified value.
  • BM meter Basis Weight and Moisture Measurement Sensors
  • Non-Patent Document 1 research has been reported on the problem of mutual interference between multiple control loops by actively canceling the mutual interference using multivariable control called model predictive control (for example, Non-Patent Document 1).
  • the method using this model predictive control is a control method that accurately and comprehensively cancels not only the ash content and retention in paper, but also the adverse effects due to mutual interference between many other variables in the process.
  • the control method is complicated, and large cost is required for system introduction.
  • the present applicant has conducted a short-period control of the addition rate of the yield improver in the past using a PID controller, so that the formation of paper products (basis weight fluctuation) has been achieved. Due to concerns about deterioration, we propose a control method that changes the yield improver addition rate over a long period of time (a control method that changes the yield improver addition amount into a ramp over about 30 minutes). However, because of the gradual control method, in this case, the above-described mutual interference did not occur between the retention control and the ash content control in paper (for example, see Patent Document 1). , Non-Patent Document 4).
  • the present invention has been made in view of the above-mentioned problems of the prior art.Even when the retention control and the ash content control in paper are performed in a short cycle using a PID controller, a BM meter, etc., both controls are performed. It is an object of the present invention to provide a control device for a paper machine which can easily prevent problems such as hunting due to mutual interference between the two with a simple and inexpensive configuration and can accurately control retention and ash content. You.
  • a first aspect of the present invention is a method for controlling a paper machine, in which at least a retention in a wet paper and an ash content in a paper are automatically controlled in the paper machine, wherein a feedback for automatically controlling the retention is provided.
  • Papermaking characterized by incorporating a non-interference control function between the loop and the feedback loop, which automatically controls the ash content in paper, to counteract the effects of mutual interference between the two loops.
  • the automatic control of the retention comprises measuring a white water concentration (a concentration of white water generated by dehydration at the wire part) of the wire part in the outlet part.
  • the automatic control of the ash content in the paper is a control to increase or decrease the amount of the yield improver added to the raw material according to the white water concentration.
  • the ash content in the paper is measured after the paper is dried. It is characterized by control to increase or decrease the amount of ash added to the raw material according to the ash content.
  • the non-interference control function is configured to simultaneously determine an amount of interference between the two feedback loops.
  • the present invention is characterized in that the gain of a non-interference element for performing static characteristic compensation for instantaneous compensation is used.
  • the non-interference control function compensates for an interference amount in which the two feedback loops interfere with each other in consideration of a time delay. It is characterized by using a non-interference element for performing dynamic characteristic compensation.
  • the white water concentration of the wire part measured in the automatic control of the retention is filtered from the wire of the wire part.
  • the concentration of white water flowing down to the white water silo below the wire.
  • concentration of the white water the total concentration of the white water is normally used, but the pulp concentration and the ash concentration in the white water can also be used.
  • the total concentration of white water is the sum of pulp concentration in white water and ash concentration in white water.
  • a control device for a paper machine wherein the automatic control system controls the retention and the ash content rate in the paper at least in an outlet part of the paper machine, wherein the automatic control system includes: A feedback loop for performing control, a feedback loop for automatically controlling the ash content in paper, and a non-interference control unit incorporated between the two feedback loops so as to cancel the influence of mutual interference between the two feedback loops.
  • the feedback loop that performs the automatic control of the retention includes: a densitometer that measures the white water concentration of the wire part in the wet part; and a detection by the densitometer.
  • a control unit for sending a control signal to a retention operation terminal in a paper machine process so as to increase or decrease the amount of a retention aid added to the raw material based on a deviation between the obtained white water concentration and a predetermined target value.
  • Feedback for automatic control of ash content in paper An ash detecting means for measuring ash in the paper by an ash sensor after the paper is dried; and ash addition to the raw material based on a deviation between the ash detected by the ash detecting means and a predetermined target value.
  • An ash control unit that outputs a control signal to an ash operating end in the paper machine process so as to increase or decrease the amount, wherein the non-interference control unit has a non-interference element that compensates for an interference amount that causes mutual interference. It is assumed that.
  • the non-interfering element is a feed-forward compensating element that is input to a stage before each operating end of each of the feedback loops so as to compensate for an amount of mutual interference. It is characterized by being. According to a ninth aspect of the present invention, in the eighth aspect, the non-interfering element is based on a response block of a process by each feedback buckle and an interference block that causes mutual interference by both feedback loops. It is characterized by what is required.
  • a tenth aspect of the present invention is a program for causing a computer to execute the control method according to any one of the first to fifth aspects.
  • a eleventh aspect of the present invention is a storage medium readable by a computer in which the program described in the tenth aspect is stored.
  • FIG. 1 is a diagram conceptually showing the overall configuration of a paper machine used in an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a ash content control loop in paper and a retention control loop in the control system of the paper machine shown in FIG.
  • FIG. 3 shows the changes in the total concentration of white water, ash content in paper, and speed change in a conventional paper machine.
  • FIG. 4 is a diagram showing the appearance of the flow rate of the additive and the yield improver, and shows the case where the ash content in the paper is controlled without performing the retention control.
  • Fig. 4 is a diagram showing the changes in the total concentration of white water, the ash content in paper, the flow rate of addition of the retention aid, and the change in papermaking speed in a conventional paper machine. This shows a case where tension control and ash content rate control in paper are performed simultaneously.
  • Fig. 5 shows the variation in the total concentration of white water, the ash content in paper, the flow rate of addition of the retention aid, and the papermaking speed when retention control and ash content control in paper were simultaneously performed by the control device in this embodiment. It is a diagram showing a situation of a change.
  • FIG. 6 is a diagram schematically illustrating a response gain K :, a dead time Tl, and a time constant ⁇ 2 when a step input is applied in the process.
  • FIG. 7 is a block diagram showing a state in which the ash content control loop in paper and the retention control loop are independent.
  • FIG. 8 is a block diagram showing a state in which mutual interference has occurred between the ash content rate control loop in paper and the retention control loop.
  • FIG. 1 is a diagram conceptually showing the overall configuration of a paper machine used in an embodiment of the present invention.
  • the paper machine 1 shown here comprises a paper machine process 2 for executing a paper making process described later, and a control system 3 for controlling the paper machine process 2.
  • a paper machine process 2 for executing a paper making process described later
  • a control system 3 for controlling the paper machine process 2.
  • low-concentration seed material ejected from the head box 4 is dewatered by a wire part 6 equipped with a wire 5 that rotates endlessly. Remove the remaining pulp mat Send to Press Part 7, where dewatering is further performed. The pulp mat dewatered in the press part 7 is heated and dried in the subsequent dryer part 8 and then wound up in the reel part 9 to form a paper roll.
  • the white water flowing down from the wire 5 due to the dewatering action of the wire part 6 is temporarily stored in the white water silo 10 and then supplied to the head box 4 by the pump 11 from here. It constitutes the white water circulation system 12.
  • the seed material supplied by the pump 13 is supplied via the seed box 14 and the valve (seed valve) 15. It is sent to the headbox 4 together with the white water sent from the white water silo 10. '
  • a path from the pump 11 to the headbox 4 in the white water circulation system 12 includes an ash supply path 16 for supplying ash from an ash supply source (not shown) by the pump 16a, and a pump 17
  • a yield improver supply path 17 for supplying a yield improver from a yield improver supply source (not shown) is connected.
  • An ash control valve 18 and a flow meter 19 are connected to the ash supply path 16, and the opening degree of the valve 18 is controlled by the flow rate detected by the flow meter 19, which will be described later. It is controlled by the ash addition flow rate control unit 20 so that it becomes a value corresponding to the control signal corresponding to the manipulated variable output from the system 3.
  • the yield improver supply path 17 is connected to a yield improver control valve 21 (which may be controlled by a constant volume pump) and a flow meter 22.
  • the valve 21 has an opening degree of
  • the yield improver addition flow rate control unit 23 controls the flow rate detected by the flow meter 22 to a value corresponding to the control signal corresponding to the manipulated variable output from the control system 3.
  • the concentration of the white water flowing down into the white water is detected by a low concentration meter (white water concentration detection means) 24, and the detected value is input to the control system 3.
  • the optical axis is rotated by about 90 ° and polarized light is used. Difference in scattering form of laser light due to fine particles of component, amount of backscattered light, amount of xenon light absorbed by lignin component in pulp while passing through sample to distinguish fine pulp from ash component, and backward
  • a total of 14 types of detection signals such as the amount of scattered light from reflections, are taken into the CPU connected to the sensor, and are compared with the measured values obtained by manual analysis. It uses a sensor (made by Metso Automation Kajaani, Finland) that selects the process and statistically determines the coefficient value of the regression model equation and converts it to each concentration.
  • the measurement range measured by the low concentration meter 24 is: total concentration ⁇ 1.5%, ash concentration ⁇ 0.8%.
  • the concentration of feedstock to the head box 4 and the concentration of white water that is filtered from the wire 15 and flows down to the white water sieve opening 10 that could only be known by offline measurement until now Can separate the pulp component and the ash component online and measure the concentration.
  • the yields remaining on the wire due to the dehydration of each raw material in the wire part 6 (Part 6) (1) Retention, (2) Pulp pretension, and (3) Ash retention can also be known continuously by online calculation.
  • a measurement frame of a BM meter equipped with a plurality of sensors and a sensor head 25b are installed.
  • 5b and the control unit 25a are measured.
  • the ash sensor provided on the sensor head 25b that measures the ash content in the paper uses the property that the ash (ash component) in the paper absorbs X-rays more strongly than the pulp. Ash content is measured by detecting the intensity of the attenuated X-rays using an ionization chamber.
  • the retention control in the wire part 6 is performed by online measuring the total concentration of white water flowing down from the wire 15 to the white water silo 10 using the low concentration meter 24.
  • the PI controller 26 provided in the control system 3 described later controls the opening of the control valve 21 by feedback control of short-period output so that the value matches the preset target value (or the fixed value). This is done by controlling the flow rate of the volume pump) and increasing or decreasing the flow rate of the yield improver added to the seed material.
  • the yield improver is usually a high-viscosity liquid polymer (polymer) solution, but is added at a concentration of about 200 to 500 ppm to the seed material. Since the addition requires a very small flow rate control (depending on the production volume, approximately 1
  • the pump 17a is a centrifugal pump if a control valve 21 is provided, and a variable flow rate metering if the control valve 21 is not provided.
  • a pump or the like is used. By increasing or decreasing the rate of addition of such a small yield improver, it is possible to control the retention of raw material components (total concentration of white water) in the wire part 6.
  • the ash content is controlled by adjusting the ash addition flow rate added to the pulp raw material so that the ash content in the paper conforms to the product specifications.
  • the ash addition flow control unit 20 lowers the opening of the valve 18 based on the control signal from the BM meter control unit 25a.
  • the ash flow rate sent by the pump 16a is reduced, and if the ash content rate decreases, the opening of the valve 18 is increased to increase the ash flow rate, thereby obtaining the target ash content.
  • control system 3 for controlling the paper machine process 2 will be described.
  • the control system 3 in this embodiment includes an input setting unit 28 for inputting various data and commands such as a target value of the required ash content and a target value of the total concentration of white 7K.
  • a controller 29 that controls the ash addition flow rate control section 20 and the yield improver addition flow rate control section 23 according to the target values of the ash content rate and the total concentration of the white water set by the setting section 28, BM meter controller 25a.
  • the controller 29 includes a computer having a CPU, a memory, and the like, and has a function as a PI controller 26 and a non-interference controller 30.
  • the functions of the PI controller 26 and the non-interference controller 30 are realized by the CPU according to a program stored in the computer. This program can be stored in various storage media currently in use.
  • the BM meter control unit 25a determines the target value of the ash content in the paper input by the input setting unit 28 and the ash content detected by the sensor head 25b of the BM meter.
  • a control signal is sent to the ash addition flow rate control unit 20 based on the deviation from the content detection value, and the control signal is sent to the paper machine process 2 as shown in FIG.
  • a feedback control loop hereinafter referred to as an ash control loop L1 for controlling the ash content is configured.
  • the PI controller 26 is used to set the total concentration of the white water set in the input setting section 28.
  • a control signal is sent to the yield improver-added flow control unit 23 based on the deviation between the target value and the concentration value obtained from the low concentration meter 24.
  • a feedback control loop hereinafter referred to as a retention control loop L2 for retention control is configured.
  • the ash control loop L 1 has been actually used in a conventional paper machine until now, but in recent years, the retention in a wire paper has also been increased. In order to stabilize, it is required to perform retention control with a short control cycle of about one second, and in order to respond to this, it is necessary to coexist with the ash content control loop L1 and the retention control loop L2. Have been.
  • Gll, G12, G21, and G22 are expressed as Gab, and the size of operating the operation terminal a in the corresponding process is expressed as Xa.
  • the response block when the magnitude of the appearing output terminal b changes is represented by Yba, where the magnitude of the gain (g ab) of the response block is expressed as follows if the output range of the controller is not taken into account:
  • step A1 When the total concentration of white water in one part of the wire increases as a disturbance, the above-described retention control is performed, and the flow rate of the addition of the retention aid (polymer) is increased (step A1). Retention in the wire part increases (total concentration of white water in the part decreases), and the ash content in paper also increases (step A2). As a result, the ash content in the paper is controlled by the BM meter, and the ash addition flow rate is reduced to reduce the ash content in the paper (step A3). As a result, the ash concentration of the seed material ejected from the head box 4 decreases, so that the ash concentration of the white water decreases and the total concentration of the white water also decreases (step A4).
  • Step A5 the retention control is activated, and the flow rate of the yield improver is reduced. Due to the mutual interference between the retention control and the ash content control in paper as described above, the yield Hunting occurs between the flow rate of the upper agent and the ash content in the paper (step A6).
  • the ash content control in the paper of the BM meter controller 25a is activated, the ash flow rate is increased (step Bl), and the ash is ejected from the head box 4.
  • the total concentration of white water increases (step B 2), and at the same time, the white ash concentration increases (step B 3).
  • the retention control is activated to increase the flow rate of the retention aid, increasing the retention in the wire part 6 and increasing the ash content in the paper, as well as reducing the total concentration of white water and the white ash concentration. (Step B 4).
  • step B5 the flow rate of the retention aid is reduced by the action of the retention control, and the ash content in the paper is reduced (step B5).
  • hunting occurs in the addition flow rate of the yield improver and hunting also occurs in the ash content in the paper (step B6).
  • a non-interference control unit 30 as shown in FIGS. Provided.
  • the non-interference control unit 30 controls the signal obtained by multiplying the control output m 2 from the PI controller 26 by the non-interference block C 1 from the BM control unit 25 a
  • the control output ml from the BM meter control unit 25a is multiplied by the non-interference block C2
  • the result is added to the control output m2 output from the PI controller 26.
  • the non-interfering blocks CI and C2 examine the response characteristics by setting the PI controller 26 to the manual operation mode when the paper machine process 2 is in a stable state and performing an operation of changing the output in a step-like manner.
  • the non-interference block is calculated by the following calculation. Cl and C2 can be calculated as theoretical values.
  • Equation 8 Equation 8
  • Equation 7 ' the ash content yl in the paper is found to be affected only by the ash flow rate operation ml, and as is clear from Equation 8', the total concentration y2 of the white water is the yield It can be seen that the flow rate of the improver is affected only by m2. That is, both control loops can perform control independently of each other even under mutual interference by adding non-interfering elements.
  • the values of the non-interference blocks C1 and C2 are determined while examining the operation response characteristics by changing the output of the operation end in a step-like manner.
  • the gains of the blocks G11, G22, G12, and G21 may be used in the above formula.
  • the non-interference control unit 30 that performs non-interference calculation control and the like based on the non-interference blocks C1, C2 and the like includes the ash control loop L1 and the retention control loop L1.
  • the control loop By incorporating the control loop between the control loops L1 and L2, it is intended to positively cancel the adverse effects caused by mutual interference between the control loops L1 and L2.
  • mutual interference generated between the two control loops Is considered as a kind of disturbance, and the signal obtained by multiplying the control signal of one control loop L2 by the interference coefficient is added or subtracted at the same time, so that one control loop gives the other control loop.
  • the feed-forward control cancels out and removes the amount of brazing interference.
  • each control can be kept independent, and the wet part can be set. It is possible to approach the target value retention (total concentration of white water) and the ash content in paper.
  • FIGS. 3 to 5 show the total concentration of white water, the ash content in paper, and the yield when retention control and ash content control in paper were performed by the conventional control device and the control device according to the present embodiment, respectively.
  • the state of fluctuation of the flow rate of the improver is shown.
  • Figure 3 shows a state in which only ash content control is performed without performing retention control. As shown, the total concentration of white water fluctuates considerably.
  • Fig. 4 shows a case in which the retention control loop L2 and the ash content control loop L1 in the paper are controlled as two independent control loops at the same time.
  • the total concentration of white water and the ash content in the paper, which are the control end became very unstable due to mutual interference, and began to diverge.
  • the ash variation in paper by controlling the ash content in paper by the BM meter was ⁇ 0.4 to 0.5% in the past (see Fig. 3).
  • the improvement can be made to about ⁇ 0.2% (see FIG. 5).
  • the retention control by the non-interference control unit it is possible to control so that the total concentration of white water, which is the final target, is always kept almost constant.
  • further improvement in control performance can be expected by using dynamic characteristic compensation taking into account not only the response gain K but also a time delay such as dead time T1 and time constant T2 as a non-interference element.
  • the response in this process can be approximated as a system with dead time and first-order lag as shown in Fig. 6.
  • the non-interference blocks C 1 and C 2 for dynamic characteristic compensation can be determined. Can be.
  • transfer functions often used in the field of automatic control for example, assuming that a symmetric process is approximated by a dead time + first-order lag system,
  • S in the equation is the Laplace operator on the S plane (complex plane) when Laplace transform is performed on the relational expression between the input and output of the process response.
  • the pulp concentration, the ash concentration, and the ash content in the paper should interfere with each other, so the control end is the pulp concentration and the ash concentration, and the control end is the pulp that increases or decreases the pulp flow rate. If the seed opening of the raw material, the opening of the ash addition valve, and the opening of the yield improver addition valve are controlled in a similar manner, and the non-interference factors for all combinations of these are controlled, pulp can be obtained. Both the concentration and the ash concentration can be maintained at the desired constant values, respectively.
  • the present invention provides a paper machine that performs at least two types of automatic control, namely, retention control and ash content control, between a control loop for performing the retention control and a control loop for performing ash content control.
  • retention control and ash content control are performed in a short control cycle, both controls can be performed stably, and the desired retention (total concentration of white water) is maintained.
  • both controls can be performed stably, and the desired retention (total concentration of white water) is maintained.
  • the present invention can be easily implemented as an inexpensive and simple structure in which a non-interference control unit is provided between the retention control and the ash content control in paper, so that the utility in the papermaking industry is extremely large. .

Landscapes

  • Paper (AREA)
  • Feedback Control In General (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

抄紙機において短制御周期でリテンション制御及び紙中灰分含有率制御を行った場合にも、両制御間の相互干渉によるハンチングなどの問題が発生するのを簡単かつ安価な構成によって回避することができ、リテンション及び灰分含有率を精度良く制御することができる抄紙機の制御装置を提供する。 そのため、本発明は、抄紙機(1)において、少なくともウェットパート(2a)におけるリテンションと紙中灰分含有率とを自動制御系(3)によって制御する。この自動制御系(3)は、前記リテンションの自動制御系を行うフィードバックループと、紙中灰分含有率の自動制御を行うフィードバックループと、前記両フィードバックループの相互干渉による影響を打ち消すよう前記両フィードバックループ間に組み込んだ非干渉制御部(30)とを備える。

Description

明 細 書 抄紙機の制御方法、 制御装置、 プログラム及び記憶媒体 技術分野
本発明は、 抄紙機の制御方法及び抄紙機の制御装置等に関し、 詳しくは、 抄 紙機のゥエツ卜パートにおけるリテンション及び紙中灰分の制御の改善に関す るものである。 背景技術
近年、 紙パルプ産業の抄紙機の操業において、 製品品質に大きな影響を与え るゥエツトパートプロセスにリテンション制御を組み込み、 抄紙機ゥエツト パー卜の安定化による操業性の改善や製品品質の向上を実現しょうとする技術 的な動きがある。
抄紙機のゥエツ卜パー卜プロセスにおけるリテンションとは、 抄紙機のへッ ドボックスからワイヤーパートのろ過ワイヤ一上に噴出したパルプ原料 (主に パルプで灰分を含む) がワイヤー上に歩留まる原料比率を言い、 ヘッドボック スに供給される原料の濃度 ( C„ B ) と、 ワイヤ一からろ過されてワイヤ一下 の白水サイロに落下する白水の濃度 ( cw w ) を用いて次式で近似計算するこ とができる。
リテンション = { (CH B _ CW w ) / C„ B } X 1 0 0 % 式 1 このリテンション値は、 抄紙機ワイヤーパー卜操業の良し悪しを判定するひ とつの重要な指標とされているが、 リテンションは、 一つの方法としてヘッド ボックスに供給される原料中に微量に添加している高分子の歩留り向上剤の添 加流量のごく小さな増減によってコントロールできることが判つている。 リテンション制御ではこのリテンションをコントロールしていくが、 通常、 リテンションの監視端として白水濃度 (Cw w ) の変動を使用している。 すな わち、 リテンション制御では、 抄紙機のウエットパートに設置した特殊な濃度 センサーによってオンライン測定される白水濃度 (Cw w ) を利用して、 式 1 のリテンション値そのものではなく、 ワイヤ一白水の全濃度の状態を監視しな がら歩留向上剤の添加流量を増減添するコントロール形態が採られている (非 特許文献 2、 3、 4参照)。 なお、 ここで、 このようにリテンション値そのもの ではなく白水の全濃度を用いるのは、白水の全濃度を一定に保てば、 リテンショ ンも一定に保つことができること、 そして、 例ぇリテンション値を一定に保つ たとしても、 へッドボックスに供給される原料の濃度(CH B ) と白水濃度(C w w ) が同じ比率で同時に大きく変化したような場合には、 式 1を指標に使う と、 リテンション値は見かけ上、 安定した一定値と計算されてウエットパート の安定化が図れなくなるなどの理由による。
以上のように、 リテンション制御は、 ヘッドボックスからワイヤ一パート上 に供給されたパルプ原料の歩留まりを調整する制御であり、 ワイヤーパートか ら流下した白水の全濃度を特殊な低濃度計でオンライン測定し、 その値が予め 設定した目標値と一致するように、 パルプ原料中に添加している歩留まり向上 剤の添加量を増減するフィ一ドバック制御ル一プを構成することによって行わ れる。 そして、 この制御ループには P I D調節計 (コントローラ) を設けて、 これを利用して P I制御 (比例動作制御 +積分動作制御) などで実現するのが通 例である (例えば、 非特許文献 2、 3参照)。
この P I D調節計は、 化学プラント、 そして紙パルププラントのプロセス制 御の制御ループにも多く用いられており、 制御端に取付けたセンサーによりコ ントロールしたい温度や流量などの状態量をオンラインで測定し、 その測定値 と目標値との間に偏差が生じた場合、 P I D調節計で計算された大きさの操作 (制御) 信号を例えば蒸気バルブや流量バルブなどの操作端に出力し、 フィ一 ドバックコントロールによってワンル一プの形で一対一に制御していく方式が 基本形として使われている。最近の大型プラン卜では、 この種の制御ループを、 中央制御室の DCS (Distributed Control System) に多数 (数百〜数千ル一 プ)組み込み、実際のプラントをオンラインで集中してコントロールしている。 一方、 抄紙機で製造する製品の紙の中には、 表面性や印刷適性を改善するた めに、 紙の品種毎に 0〜20%程度の炭酸カルシウムやタルクなどの灰分成分 が処方に従って規定量だけ配合して行くが、 これは製造時に紙中灰分含有率と して管理されている。 抄紙機では製品となる紙の灰分含有率を規定値に保つた め、 BM計 (Basis Weight and Moisture Measurement Sensors; 用いて灰分 含有率制御が従来より行われている。 この灰分含有率制御は、 BM計で紙中の 灰分含有率をオンライン測定し、 その測定値が目標値と一致するようパルプ原 料中へ添加する灰分 (アッシュ) の添加量を調節するフィ一ドバック制御ルー プを構成することにより実現される。
今まで.. この BM計を用いた灰分含有率制御のためのフィ一ドバック制御 ル一プと、 低濃度計を用いたリテンション制御のためのフィードバック制御 ループとを用い、 これら制御ループによって、 灰分含有率とリテンション (ヮ ィャ一パートの白水濃度) をそれぞれ独立に制御していく方式が採られてきた。
【特許文献 1】
特開平 10-325092号公報
【非特許文献 1】
Mika Kosonen、 Calvin Fu> Seyhan Nuyan Risto Kuusisto、 Taisto Huhtel in (Metso Automation) : Narrowing gap between theory and practice: Mill experiences with mul U - variable predictive controK Control Systems 2002 Proceedings (2002), pp.54- pp.59 【非特許文献 2】
Kortelainen, Nokelainen ら: 上質工場における最新のリテンショ ン 'モニタリングシステムの適用、 紙パ技協誌、 43-7 (1989), pp.39-pp.45 【非特許文献 3】
Jukka Nokelainen. Timo Rantala, Pasi Tarhonen: Practical experiences of the wet end consistency controK Pira、 1 (1992)
【非特許文献 4】
森、 加来、 末田、 水野、 飯尾、 山田: 多品種生産に対応した抄紙機 ワイヤーパートのリテンション制御、 紙パ技協誌、 2月(2002), pp.86-pp.95 しかしながら、 上記のように、 リテンション制御と灰分含有率制御とを同時 に行った場合、 両制御が相互干渉を起こし、 灰分含有率制御において制御端に ハンチングが発生して紙中灰分含有率が大きく変動し.. 却って安定性が悪化す るといった問題が発生したり、 また、 一定値に保持しょうとしたリテンション 制御においても、 白水の全濃度が不安定になるという問題が生じることがあつ た。 このため、 上記のような 2種類の制御を同時に実行した場合、 希望した制 御効果が得られず、 場合によっては逆効果となつて製品品質を低下させること があった。
これまで、 リテンション制御では、主に海外で開発された高価な特殊センサー を用いる必要があるため、 国内でこのリテンション制御が本格的に取組まれる ようになつたのはごく最近であり、 前述のように、 リテンション制御と灰分含 有率との間で相互干渉が発生することは、 殆ど知られていなかった。
リテンション制御が先進的に取り組まれてきた海外の抄紙機プロセスにあつ ても、 以前からこの相互干渉現象は発生していたと思われるが、 余り問題視さ れていなかったようである。 実際にこのような相互干渉の問題が認識されて対 策がとられ始めたのは、 海外においても 200 1年頃以降であると思われる ( 例えば、 非特許文献 1参照)。
また、 相互干渉の問題が取り上げられるようになつてきた現在でも、 その対 策として、相互干渉の度合(大きさ)が小さい場合にはその干渉量を無視して、 各々、 独立した制御ループとしてそのまま制御を行っていく場合や、 また、 や や大きな相互干渉が生じる場合であっても、 プロセスが不安定となって不都合 を起こさないよう P I D調節計のチューニングパラメ一夕を全体的に弱くした り、 一方のループだけ弱目にチューニングすることにより、 相互干渉の影響を 消極的な対策によつて避けて対応していると推測される。
また一方で、 複数の制御ループ間の相互干渉の問題に対し、 モデル予測制御 と呼ばれる多変数制御を用いて積極的に相互干渉を打ち消して対応しようとす る研究も報告されている (例えば、 非特許文献 1参照)。
このモデル予測制御を利用した方法は、 紙中灰分含有率およびリテンション だけでなく、 プロセス内における他の多くの変数間の相互干渉による悪影響を、 精度良くかつ総括的にキャンセルする制御方式であり、 その制御方式は複雑で、 システム導入に大きなコストが必要となる。
これに関連して、 本出願人は、 過去に歩留り向上剤の添加率の増減制御を P I D調節計を用いて短周期で実施していくことにより、 紙製品の地合 (坪量変 動) 悪化が懸念されるため、 歩留り向上剤添加率の変更を長時間をかけて実行 するような制御方式 (歩留向上剤添加量を 3 0分程かけてランプ状に変更する 制御方式) を提案しているが、 ゆるやかな制御方式であるため、 この場合、 リ テンション制御と紙中灰分含有率制御間には、 上述のような相互干渉が発生す ることはなかった (例えば、 特許文献 1、 非特許文献 4参照)。
しかしながら、 今日、 短周期で頻繁に出力制御を行ってリテンション及び紙 中灰分含有率制御の応答速度を上げて、 より精度良く制御を実現することが要 請されており、 この場合には、 前述のような相互干渉による問題が発生し、 こ れを解消することが重要な課題として認識されてきている。 発明の開示
本発明は、 上記従来技術の課題に着目してなされたもので、 P I D調節計、 B M計などを用いて、 短周期でリテンション制御及び紙中灰分含有率制御を 行った場合にも、 両制御間の相互干渉によるハンチングなどの問題が発生する のを簡便かつ安価な構成によって回避することができ、 リテンションおよび灰 分含有率を精度良く制御することができる抄紙機の制御装置の提供を目的とす る。
上記課題を解消するため、 本発明は以下の構成を有するものとなっている。 すなわち、 本発明の第 1の態様は、 抄紙機において少なくともウエットパ一 トにおけるリテンションと紙中灰分含有率とを自動制御によって制御する抄紙 機の制御方法であって、 前記リテンションの自動制御を行うフィードバック ループと紙中灰分含有率の自動制御を行うフィ一ドバックループとの間に非干 渉制御機能を組み込むことにより、 両ル一プの相互干渉による影響を打ち消す ようにしたことを特徴とする抄紙機の制御方法である
本発明の第 2の態様は、 前記第 1の態様において、 前記リテンションの自動 制御は、前記ゥエツトパートにおけるワイヤ一パートの白水濃度 (ワイヤ一パー トで脱水されて発生した白水の濃度) を測定し、 その白水濃度に応じて原料中 に添加する歩留まり向上剤の添加量を増減する制御であり、 前記紙中灰分含有 率の自動制御は、 紙乾燥後に紙中の灰分含有率を測定し、 その灰分含有率に応 じて原料中に添加する灰分添加量を増減する制御であることを特徴とするもの である。
本発明の第 3の態様は、 前記第 1の態様または第 2の態様において、 前記非 干渉制御機能が、 前記両フィードバックループが相互干渉し合う干渉量を同時 刻に補償する静特性補償を行う非干渉要素のゲインを用いることを特徴とする ものである。
本発明の第 4の態様は、 前記第 1の態様または第 2の態様において、 前記非 干渉制御機能が、 前記両フィードバックル一プが相互干渉し合う干渉量を時間 遅れを考慮して補償する動特性補償を行う非干渉要素を用いることを特徴とす るものである。
本発明の第 5の態様は、 前記第 2の態様ないし第 4の態様のいずれか 1つの 態様において、 前記リテンションの自動制御において測定するワイヤ一パート の白水濃度が、 ワイヤーパートのワイヤーから濾過されて前記ワイヤ一下の白 水サイロに流下する白水の濃度であることを特徴とするものである。 この白水 の濃度としては、 通常、 白水の全濃度を用いるが、 白水中のパルプ濃度や、 灰 分濃度を用いることもできる。 なお、 白水の全濃度とは、 白水中のパルプ濃度 と白水中の灰分濃度を足し合わせたものである。
本発明の第 6の態様は、 抄紙機において少なくともゥエツトパートにおける リテンションと紙中灰分含有率とを自動制御系によって制御する抄紙機の制御 装置であって、 前記自動制御系が、 前記リテンションの自励制御を行うフィー ドバックループと、 紙中灰分含有率の自動制御を行うフィードバックループと、 前記両フィードバックループの相互千渉による影響を打ち消すよう前記両 フィードバックル一プ間に組み込んだ非干渉制御部と、 を備えたものである。 本発明の第 7の態様は、 前記第 6の態様において、 前記リテンションの自動 制御を行うフィードバックループが、 前記ウエットパートにおけるワイヤー パートの白水濃度を測定する濃度計と、 前記濃度計によつて検出された白水濃 度と所定の目標値との偏差に基づき原料中に添加する歩留まり向上剤の添加量 を増減するよう抄紙機プロセスにおけるリテンション操作端に制御信号を送出 する制御部とからなり、 前記紙中灰分含有率の自動制御を行うフィードバック ループが、 紙乾燥後に灰分センサーにより紙中の灰分を測定する灰分検出手段 と、 この灰分検出手段によって検出された灰分と所定の目標値との偏差に基づ き前記原料中に添加する灰分添加量を増減するよう抄紙機プロセスにおける灰 分操作端に制御信号を出力する灰分制御部とからなり、 前記非干渉制御部が、 相互干渉し合う干渉量を補償する非干渉要素を有することを特徴とするもので ある。
本発明の第 8の態様は、 前記第 7の態様において、 前記非干渉要素が、 相互 干渉し合う干渉量を補償すべく前記各フィードバックループの各操作端の前段 に入力されるフィードフォワード補償要素であることを特徴とするものである。 本発明の第 9の態様は、 前記第 8の態様において、 前記非干渉要素は、 各 フィ一ドバックル一プによるプロセスの応答プロックと、 両フィ一ドバック ループにより相互干渉を生じる干渉プロックとに基づき求められることを特徴 とするものである。
本発明の第 1 0の態様は、 前記第 1ないし第 5の態様のいずれか 1つの態様 に記載した制御方法をコンピュータによって実行させるためのプログラムであ る。
本発明の第 1 1の態様は、 前記第 1 0の態様に記載したプログラムが格納さ れたコンピュータによつて読み取り可能な記憶媒体である 図面の簡単な説明
図 1は、 本発明の一実施形態に使用する抄紙機の全体構成を概念的に示す図 である。
図 2は、 図 1に示す抄紙機の制御系における紙中灰分含有率制御ループとリ テンション制御ループとを示すブロック図である。
図 3は、 従来の抄紙機における白水の全濃度、 紙中灰分、 及び抄速変更の様 子、 そして歩留向上剤添加流量の様子を示す線図であり、 リテンション制御を 行わないで紙中灰分含有率制御を行った場合を示している。
図 4は、 従来の抄紙機における白水の全濃度、 紙中灰分、 歩留向上剤添加流 量の変動、 及び抄速変更の様子を示す線図であり、 非干渉制御を行わずに、 リ テンション制御及び紙中灰分含有率制御を同時に行った場合を示している。 図 5は、 本実施形態おける制御装置によつてリテンション制御及び紙中灰分 含有率制御を同時に行った場合の白水の全濃度、 紙中灰分、 歩留向上剤添加流 量の変動、 及び抄速変更の様子を示す線図である。
図 6は、 プロセスにおいてステップ入力を加えた場合の応答ゲイン K:、 むだ 時間 T l、 時定数 Τ 2を近似的に示す線図である。
図 7は、 紙中灰分含有率制御ループとリテンション制御ループとが独立した 状態を示すプロック図である。
図 8は、 紙中灰分含有率制御ループとリテンション制御ループとの間に相互 干渉が生じた状態を示すブロック図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照しつつ説明する。
図 1は、 本発明の一実施形態に使用する抄紙機の全体構成を概念的に示す図 である。
図示のように、 ここに示す抄紙機 1は、 後述の抄造プロセスを実行する抄紙 機プロセス 2と、 この抄紙機プロセス 2の制御を行う制御系 3とからなる。 ここで、 まず、 抄紙機プロセス 2の構成を説明する。
抄紙機プロセス 2のゥエツトパート 2 aでは、 へッドボックス 4から噴出さ れた低濃度の種原料を、 エンドレスに回転するワイヤー 5などを備えたワイ ャ一パート 6で脱水した後、 このワイヤ 5上に残留したパルプマットを後段の プレスパート 7へ送り、 ここでさらに脱水を行う。 また、 プレスパート 7で脱 水されたパルプマツトは、 後段のドライヤーパート 8にて加熱乾燥された後、 リールパート 9において巻き取られ、 紙巻取が形成される。
一方、 ウエットパート 2 aでは、 ワイヤーパート 6の脱水作用によってワイ ヤー 5から流下した白水を、 白水サイロ 1 0にて一旦貯留した後、 ここからポ ンプ 1 1によってへッドボックス 4へと供給するという白水循環系 1 2を構成 している。
そして、 この白水循環系 1 2において白水サイロ 1 0からポンプ 1 1に至る 経路には、 ポンプ 1 3によって供給される種原料が、 種箱 1 4及びバルブ (種 口弁) 1 5を経て供給されており、 白水サイロ 1 0から送給された白水と共に へッドボックス 4へと送給される。 '
さらに、 白水循環系 1 2において前記ポンプ 1 1からヘッドボックス 4に至 る経路には、 ポンプ 1 6 aによって不図示の灰分供給源から灰分を供給する灰 分供給経路 1 6と、 ポンプ 1 7 aによって不図示の歩留向上剤供給源から歩留 向上剤を供給する歩留向上剤供給経路 1 7とが接続されている。 灰分供給経路 1 6には、 灰分コントロールバルブ 1 8及び流量計 1 9が接続されており、 こ のバルブ 1 8の開度は、 流量計 1 9によって検出された検出流量が、 後述の制 御系 3から出力された操作量に対応する制御信号に対応した値となるよう灰分 添加流量制御部 2 0によつて制御される。
また、歩留向上剤供給経路 1 7には、歩留向上剤コントロールバルブ 2 1 (定 量ポンプによるコントロールでも良い) 及び流量計 2 2が接続されており、 こ のバルブ 2 1の開度は、 流量計 2 2によって検出された検出流量が、 制御系 3 から出力された操作量に対応する制御信号に対応した値となるよう歩留向上剤 添加流量制御部 2 3によって制御される。
上記抄紙機プロセス 2において、 前記白水サイ口 1 0内に流下した白水の濃 度は低濃度計 (白水濃度検出手段) 2 4によって検出されており、 その検出値 が制御系 3に入力されている。
この実施形態において、 低濃度計 2 4の一例を示すと、 レーザー光がパルプ 繊維を透過する際に光軸が約 9 0 ° 回転して偏光する性質を利用した偏光光量 比、 炭酸カルシウムなど灰分成分の微細粒子によるレーザー光の散乱形態差異、 後方反射の散乱光量、 微細パルプと灰分成分とを識別するためキセノン光が試 料を透過中にパルプ中のリグニン成分により吸収される光量、 及び後方反射の 散乱光量などの 5種類、 全部で 1 4種の検出信号をセンサ一に接続された C P Uに取込み、 手分析による実測値と突き合わせて重回帰分析により全信号の中 から相関の高い 5信号程を選択し、 統計的に回帰モデル式の係数値を決めて各 濃度に換算する方法のセンサー (フィンランド ·メッツォオートメーション · カヤーニ社製) を利用している。 なお、 この低濃度計 2 4によって測定される 測定範囲は、 全濃度≤ 1 . 5 % , 灰分濃度≤0 . 8 %である。
この特殊センサ一を用いることにより、 今まで、 オフラインの実測によって しか知ることができなかったへッドボックス 4への供給原料濃度やワイヤ一 5 から濾過されて白水サイ口 1 0に流下する白水の濃度などがオンラインでパル プ成分と灰分成分とを分離して濃度測定できるようになり、 この二か所の測定 値を用いて、 ワイヤ一パート 6で各原料が脱水されてワイヤー上に残る歩留り (①全リテンション、 ②パルプリテンション、 ③灰分リテンション) もオンラ ィン計算で連続的に知ることができるようになった。
また、 抄紙機プロセス 2の後部パート、 例えばリ一ルパ一ト 9には複数のセ ンサーを搭載した B M計の測定フレームとセンサ一へッド 2 5 bが設置されて おり、 そのセンサーヘッド 2 5 bを紙幅方向にスキャンさせて、 紙中灰分含有 率、 及びその他の紙の物理的な性状 (坪量、 水分、 厚さ、 色合いなど) をオン ラインで B M計のセンサ一へッド 2 5 bと制御部 2 5 aで測定している。 なお、 紙中灰分含有率を測定するセンサーへッド 2 5 bに設けられた灰分センサーは、 紙中の灰分(アッシュ成分)がパルプより X線を強く吸収する性質を利用して、 紙を透過して減衰した X線の強度を電離箱により検出することで灰分を測定し ている。
上記のように構成された抄紙機プロセス 2において、 ワイヤーパ一ト 6にお けるリテンション制御は、 ワイヤ一 5から白水サイロ 1 0に流下する白水の全 濃度を低濃度計 2 4でオンライン測定し、 その値が予め設定した目標値と一致 するように、 後述の制御系 3に設けられた P I調節計 2 6によって短周期出力 のフィードバック制御でコントロールバルブ 2 1の開度を制御し (または、 定 量ポンプの流量を制御し)、 種原料中に添加している歩留り向上剤の添加流量を 増減させることにより行う。
すなわち、 操業中において、 低濃度計 2 4で測定している白水の全濃度が高 くなればワイヤーパートでのリテンションが低下してきたこととなるため、 原 料中に添加する歩留り向上剤の添加流量を増加し、 白水の全濃度が低くなれば、 逆に歩留り向上剤の添加流量を減少させるよう、 後述のフィードバック制御 ループによって制御され、 この制御動作を一秒周期程度の短周期でオンライン で行なうようにしている。
なお、 歩留り向上剤は、 通常、 高粘度の液体状のポリマ一 (高分子) 薬液が 使われるが、 種原料に対して 2 0 0〜5 0 0 p p m濃度程度の添加率で添加さ れる。 その添加には微少流量管理が要求されるため (生産量にもよるが、 略 1
0〜 2 0リツトル/分程度の添加流量)、前記ポンプ 1 7 aとしては、コントロー ルバルブ 2 1を設けた場合は渦巻ポンプなどが、 コントロールバルブ 2 1を設 けない場合は可変流量型の定量ポンプなどが用いられる。 こうした微小な歩留 り向上剤の添加率の増減によって、 ワイヤーパート 6での原料成分のリテン シヨン (白水の全濃度) を制御することが可能となる。 一方、灰分含有率の制御は、紙中の灰分含有率を製品スペックになるように、 パルプ原料中へ添加する灰分添加流量の調節によって行なう。 すなわち、 操業 中において、 紙中の灰分含有率が目標値より高くなれば、 B M計制御部 2 5 a からの制御信号に基づき灰分添加流量制御部 2 0がバルブ 1 8の開度を下げて ポンプ 1 6 aによって送る灰分流量を減少させ、 灰分含有率が低くなればバル ブ 1 8の開度を上げて灰分流量を増加させ、 これによつて目標とする灰分含有 量を得る。
次に、 上記抄紙機プロセス 2を制御する制御系 3について説明する。
この実施形態における制御系 3は、 必要とする灰分含有率の目標値及び白 7K の全濃度の目標値などをはじめとする種々のデータ及び指令を入力する入力設 定部 2 8と、 この入力設定部 2 8によって設定された灰分含有率及び白水の全 濃度の目標値に従って前述の灰分添加流量制御部 2 0と歩留向上剤添加流量制 御部 2 3とを制御するコントローラ 2 9と、 B M計制御部 2 5 aとを備える。 コントローラ 2 9は、 C P U, メモリ一等を有するコンピュータ等を備え、 P I調節計 2 6と、 非干渉制御部 3 0としての機能を有する。 この P I調節計 2 6及び非干渉制御部 3 0としての機能は、 前記コンピュータに格納されたプ ログラムに従って C P Uにより実現される。 また、 このプログラムは、 現在用 いられている種々の記憶媒体に格納可能である
そして、 前記 B M計制御部 2 5 aは、 入力設定部 2 8にて入力された紙中灰 分含有率の目標値と B M計のセンサ一へッド 2 5 bによつて検出された灰分含 有率検出値との偏差に基づき、 前記灰分添加流量制御部 2 0に対して制御信号 を送出するものとなっており、 これによつて図 2に示すように、 抄紙機プロセ ス 2に対して灰分含有率制御のためのフィードバック制御ループ (以下、 灰分 制御ループと称す) L 1が構成されている。
また、 前記 P I調節計 2 6は、 入力設定部 2 8にて設定された白水の全濃度 の目標値と低濃度計 2 4から得られた濃度値との偏差に基づき、 歩留向上剤添 加流量制御部 2 3に対して制御信号を送出するものとなっており、 これによつ て、 リテンション制御のためのフィードバック制御ル一プ (以下リテンション 制御ループと称す) L 2が構成されている。
上記 2つのフィードバック制御ループ L 1 , L 2のうち、 灰分制御ループ L 1は、 これまで従来の抄紙機においても実際に用いられていたが、 近年、 ワイ ャ一パ一卜におけるリテンションについてもその安定化を図るべく、 一秒程度 の短制御周期でリテンション制御を行うことが要請され、 これに対応すべく前 記灰分制御ループ L 1と共に、 リテンション制御ル一プ L 2を併存させる必要 が出てきた。
このリテンション制御ループ L 2と灰分制御ループ L 1とを併存させた状態 において、. 両制御ループ L 1, L 2が、 図 7に示すように互いに独立した状態 で存在すれば、 灰分含有率及びリテンションを所望の目標値に保ち得る理想的 なフィードバック制御が可能となる。 なお、 図 7中、 G 1 1は、 B M計制御部 2 5 aと B M計センサ一へッド 2 5 bにより灰分添加流量制御部 2 0を制御す ることによって抄紙機プロセス 2にて得られる灰分の応答プロックを、 G 2 2 は、 P I制御部により歩留向上剤添加流量を制御することによって抄紙機プロ セスにて得られる白水の全濃度 (リテンション) の応答ブロックをそれぞれ示 している。 ここで、 プロセスのブロックとはプロセスの制御系の伝達関数のこ とである。
ところが、 灰分制御ループ L 1が組み込まれている抄紙機 1に対し、 上記の ようにさらにリテンション制御ループ L 2を組み込んだ場合、 実際には、 両制 御ループ L 1 , L 2の間には、 図 8の制御ブロック図に示すように、 抄紙機プ ロセス 2において干渉ブロック G 2 1, G 1 2による相互干渉が発生し、 白水 の全濃度及び紙中灰分含有率にハンチングが発生し、 制御状態が不安定になる ことが明らかになった。 すなわち、 抄紙機プロセス 2において制御しようとす る紙中灰分含有率と白水の全濃度の 2変数のうち、 例えば、 一方の変数である 白水の全濃度を変化させると、 他方の変数である紙中灰分含有率がその影響を 受けて変化してしまい、 各々を独立に制御することができないという状態に陥 る結果となった。
なお、 図 7及び図 8において、 Gl l、 G12、 G21、 G22は、 これを Gab とした記述した場合、 該当プロセスでの操作端 aを操作した大きさを X aとし、 その時、 その影響が現れる出力端 bが変化した大きさを Yb aとした 場合の応答プロックを各々表わし、 ここで、 調節計の出力レンジを考慮に入れ ない場合、 応答ブロックのゲインの大きさ (g ab) は、
g a b = Y b a/X a 式 2 となる。
この両制御ループの間の相互干渉は、 例えば、 以下のようなプロセス (A)、 (B) によつて発生するものと考えられる。
プロセス (A)
外乱としてワイヤ一パートの白水の全濃度上昇が生じた場合には、 それに伴 なって上述のリテンション制御が行われ、 歩留向上剤 (ポリマー) の添加流量 が増やされて (ステップ A 1)、 ワイヤーパートでのリテンションが上昇し (ヮ ィャ一パートの白水の全濃度が下降し)、 紙中灰分含有率も上昇する (ステップ A 2)。 その結果、 B M計による紙中灰分含有率制御が行われ、 紙中灰分含有率 を低下させるため灰分添加流量の減少が行われる(ステップ A 3)。これにより、 へッドボックス 4から噴出される種原料の灰分濃度が低下するため、 白水灰分 濃度が低下し、 白水の全濃度も低下する (ステップ A4)。 ここでリテンション 制御が動き、 歩留向上剤の添加流量が減少される (ステップ A 5)。 以上のよう な、 リテンション制御と紙中灰分含有率制御との間の相互干渉により、 歩留向 上剤の添加流量と紙中灰分含有率とにハンチングが発生する (ステップ A 6 )。 プロセス (B)
一方、 外乱として紙中灰分含有率不足が生じた場合には、 B M計制御部 2 5 aの紙中灰分含有率制御が働き、 灰分流量が増やされ (ステップ B l )、 ヘッド ボックス 4から噴出される原料灰分濃度が上昇して、白水の全濃度が増加し(ス テツプ B 2 )、 同時に白水灰分濃度が増加する (ステップ B 3 )。 その結果、 リ テンション制御が働いて歩留向上剤の添加流量が増やされ、 ワイヤーパート 6 でのリテンションが上昇して紙中灰分含有率が上昇すると共に、 白水の全濃度 と白水灰分濃度が低下する (ステップ B 4 )。 そこで、 リテンション制御の働き によって歩留向上剤の添加流量が減らされ、紙中灰分含有率が低下する (ステツ プ B 5 )。 以上の動作により、 歩留向上剤の添加流量にハンチングが発生すると 共に、 紙中灰分含有率にもハンチングが発生する (ステップ B 6 )。
以上のプロセスからも明らかなように、 リテンション制御と紙中灰分含有率 制御の二つの制御ループ L 1 , L 2間の相互干渉は、 その発現程度に差がある としても、 必ず発生することが理解できる。
上記のような、 両フィードバック制御ループ L 1, L 2の間に生じる相互干 渉の影響を回避するために、 この実施形態では、 図 1及び図 2に示すような非 干渉制御部 3 0を設けた。 この非干渉制御部 3 0は、 図 2に示すように P I調 節計 2 6からの制御出力 m 2に非干渉ブロック C 1を掛けた信号を、 B M計制 御部 2 5 aからの制御出力 m 1に加算すると共に、 B M計制御部 2 5 aからの 制御出力 m lに非干渉ブロック C 2を掛けて P I調節計 2 6から出力された制 御出力 m 2に加算する。
ここで、 前記非干渉ブロック C I , C 2は、 抄紙機プロセス 2が安定状態の 時に P I調節計 2 6をマニュアル操作モードとし、 その出力をステップ状に変 化させる操作を行って応答特性を調べ、 以下の演算によって前記非干渉ブロッ ク C l, C 2を理論値として算出できる。
図 2に示す 2入力 2出力の非干渉制御において、 灰分制御ループにおける非 干渉要素の出力値を u 1、 リテンション制御ループにおける非干渉要素の出力 端を u 2、 紙中灰分を yl, 白水の全濃度を y 2としたとき、 各々の値は、 u 1 =ml + (C 1 Xm2) 式 3
u 2 = (C 2 Xml) +m2 式 4
y 1 = (Gl lXu l) + (G 12 Xu 2) 式 5
y 2= (G21 X u 1) + (G22 Xu 2) 式 6
となる。
上記式 4及び式 5から、 ti l, u 2を消去すると、
y 1 =G 1 I X {m 1 + (C 1 Xm2)}
+ G 12 X {(C 2 Xml) +m2}
= {G 11 + (G 12 XC 2)} Xml
+ {(G 11 XC 1) +G12} Xm2 式 7 y 2 =G 22 X {m2 + (C 2 Xm 1)}
+ G21 X {(C 1 Xm2) +.m 1 ) }
= {G 21 + (G 22 X C 2)} Xml
+ KG21 XC 1) +G22} Xm2 式 8 上記式 7, 8の入出力を非干渉化するためには、 下記の式 9 , 10によって 表わされる条件が必要となる。
{(Gl 1 XC 1) +G12} =0 式 9
{G21+ (G22 XC 2)} =0 式 10 上記式 9, 10から非干渉ゲイン C 1 , C 2は、
C 1=一 (G 12/G 11) 式 11 C 2=— (G21/G22) 式 12 として求めることができる。
ここで、 求めた非干渉要素 C I, C2を式 7, 8に代入して、 入出力の関係 を求めると次のようになる。
y 1 = {Gi l - (G12 XG21) /G22} Xml 式 7, y 2= {G22- (G12 XG21) /G i l} Xm2 式 8, 従って、 上記演算においては、 Gl 1 XG22—G12 XG21≠0である ことが必要である。
式 7' から明らかなように、 紙中灰分 y lは、 アッシュ流量操作 mlだけの 影響下にあることが解り、 また、 式 8' から明らかなように、 白水の全濃度 y 2は、 歩留向上剤流量操作 m2だけの影響下にあることが解る。 すなわち、 両 制御ループは、 非干渉要素を加えることによつて相互干渉下にあってもそれぞ れ独立した状態で制御を行うことが可能になる。
なお、 抄紙機プロセスが安定状態にある時に操作端の出力をステップ状に変 化させるなどして操作応答特性を調べつつ非干渉ブロック C 1, C 2の値を決 定する。なお、 プロセスの静特性のみを考慮する場合は、上記計算式において、 ブロック G 1 1, G 22, G 12, G 2 1のゲインのみを用いれば良い。なお、 上記演算によって求めた前記非干渉プロック C 1, C 2の値を、 実際の抄紙機 プロセス 2に適用する場合には、 チューニング作業による合わせ込みが不可欠 である。
以上のように、 本発明の実施形態においては、 前記非干渉ブロック C l, C 2などに基づき非干渉演算制御などを行う非干渉制御部 30を灰分制御ル一プ L 1とリテンション制御ループ L 2との間に組み込むことにより、 両制御ルー プ L 1, L 2間に生じる相互干渉による悪影響を積極的に打ち消そうとするも のである。 換言すれば、 一方の制御ループ、 例えばリテンション制御ループ L 2によってリテンション操作を行った際に、 両制御ループ間に生じる相互干渉 による影響を一種の外乱とみなし、 一方の制御ループ L 2の制御信号に干渉係 数を乗じた信号を同時に加算、 又は、 減算することにより、 一方の制御ループ が他方の制御ループに与えるであろう干渉量をフィードフォワード制御によつ て先回りして打ち消して除去する形となっている。 これにより、 一秒程度の短 周期で紙中灰分含有率とリテンションとを制御する場合にも、 図 7に示すよう に、 各々の制御を独立した状態に保つことができ、 ウエットパートにおいて設 定した目標値のリテンション (白水の全濃度) 及び紙中灰分含有率に近づける ことができる。
図 3ないし図 5に、 従来の制御装置と本実施形態に係わる制御装置のそれぞ れによって、 リテンション制御及び紙中灰分含有率制御を行った場合の白水の 全濃度、 紙中灰分、 歩留向上剤流量の変動の様子を示す。
図 3はリテンション制御を行わないで灰分含有率制御だけを行つている状態 を示している。 図示のように、 白水の全濃度がかなり変動している。
図 4は、 リテンション制御ループ L 2と紙中灰分含有率制御ループ L 1とを 二つの独立した制御ループとして、 同時に制御しょうとした場合を示している。 図示のように、 制御端である白水の全濃度、 紙中灰分含有率は相互干渉を引き 起こして非常に不安定となり発散振動を起こし始めた。
これに対し、 二つの制御ループ間に非干渉制御を適用したこの実施形態にお いては、 図 5に示すように、 目的とするリテンション制御と紙中灰分含有率制 御とを安定して同時に実行できるようになり、 問題となる相互の干渉による影 響が十分に回避されていることが明らかとなった。 なお、 銘柄変更時刻の前後 においては、 白水の全濃度、 紙中灰分含有率が不安定であるが、 これは銘柄(紙 の品種) 変更中のためである。
本出願人のトライアルでは、 B M計による紙中灰分含有率制御での紙中灰分 変動は、 従来、 ± 0 . 4〜0 . 5 %であったのに対し (図 3参照)、 この非千渉 制御を併用したこの実施形態では ± 0 . 2 %程度まで改善できた (図 5参照)。 また、 非干渉制御部によるリテンション制御において、 最終目的である白水 の全濃度を常にほぼ一定値に保つようにコントロールすることができるように なった。
なお、 上記実施形態では、 非干渉要素として相互干渉し合うプロセスを、 ゲ インだけを用いて補償する静特性補償を主に説明した。 しかし、 本発明は、 非 干渉要素として応答ゲイン Kだけでなくむだ時間 T 1、 時定数 T 2などの時間 遅れも考慮した動特性補償を用いることにより、 さらに、 その制御性能の向上 を期待できる。 一般に、 このプロセスでの応答は、 図 6のようなむだ時間と一 次遅れの系として近似できる。 この場合、 伝達関数 G (ブロックとも称する) は、応答ゲイン K:、むだ時間 T l、時定数 Τ 2の関数として表すことができる。 すなわち、 G = G (Κ, T 1 , T 2 ) であり、 これを、 このまま式 1 1, 式 1 2に代入すれば、 動特性補償のための非干渉プロック C 1 , C 2を決めること ができる。 尚、 自動制御分野などで良く用いられる伝達関数の表記法では、 例 えば、 対称のプロセスを、 むだ時間 + 1次遅れ系で近似すると仮定すれば、
G = G (Κ, T 1 , T 2 ) = {K X e χ ρ (— Τ 1 X S ) + (Τ 2 X S ) } のような形で表現される。 ここで、 式中の Sは、 プロセス応答の入力と出力の 関係式にラプラス変換を行った際の S平面 (複素平面) でのラプラス演算子で ある。
また、 この両制御ループ間に相互干渉が発生する現象は、 ワイヤーパー卜の リテンション値が低いプロセスの場合に顕著に現われる傾向にあることが判つ てきており、 本発明は、 こうしたプロセスには特に有効である。
(他の実施形態)
上記実施形態では、 リテンション制御として白水の全濃度を一定になるよう に制御する場合を説明したが、 将来的には、 白水の全濃度だけでなく、 白水中 のパルプ濃度、 灰分濃度の両者をそれぞれ制御することも考えられ、 この実現 にも、 この実施形態に示した非干渉制御を利用することが可能である。
この場合、 パルプ濃度、 灰分濃度、 そして、 紙中灰分含有率は相互に干渉し 合うはずであるため、 制御端をパルプ濃度と灰分濃度とし、 制御の操作端をパ ルプの流量を増減するパルプ原料の種口弁開度、 灰分添加バルブ開度、 及び歩 留り向上剤の添加バルブ開度とし、 これらの全組み合わせについての非干渉要 素を同様に組込んで制御して行けば、 パルプ濃度と灰分濃度の両濃度を、 それ ぞれ希望する一定値に保つことが可能となる。
以上説明した通り、 本発明は、 少なくともリテンション制御と灰分含有率制 御の 2種類の自動制御を行う抄紙機において、 前記リテンション制御を行う制 御ループと灰分含有率制御を行う制御ループの間に非干渉制御部を設けること により、 短制御周期にてリテンション制御及び灰分含有率制御を行った場合に も両制御を安定して行うことができ、 所望のリテンション (白水の全濃度) を 維持しつつ、 紙製品に対し、 所望の坪量、 灰分含有率等を有する紙製品を安定 して製造することが可能となり、 製品品質を大幅に向上することが可能となる。 産業上の利用可能性
以上説明したように、 本発明はリテンション制御と紙中灰分含有率制御間に 非干渉制御部を設けるという安価かつ簡便な構造として容易に実施することが できるため、 製紙産業における有用性が極めて大きい。

Claims

請 求 の 範 囲
1 . 抄紙機において少なくともゥエツトパートにおけるリテンションと紙中 灰分含有率とを自動制御によって制御する抄紙機の制御方法であって、
前記リテンションの自動制御を行うフィードバックル一プと紙中灰分含有率 の自動制御を行うフィ一ドパックループとの間に非干渉制御機能を組み込むこ とにより、 両ループの相互干渉による影響を打ち消すようにしたことを特徴と する抄紙機の制御方法。
2 . 前記リテンションの自動制御は、 前記ウエットパートにおけるワイヤ一 パートの白水濃度を測定し、 その白水濃度に応じて原料中に添加する歩留まり 向上剤の添加量を増減する制御であり、
前記紙中灰分含有率の自動制御は、 紙乾燥後の紙中の灰分含有率を測定し、 その灰分含有率に応じて原料中に添加する灰分添加量を増減する制御であるこ とを特徴とする請求項 1に記載した抄紙機の制御方法。
3 . 前記リテンションの自動制御において測定するワイヤ一パートの白水濃 度は、 ワイヤーパートのワイヤーから濾過されて前記ワイヤー下の白水サイ口 に流下する白水の濃度であることを特徴とする請求項 2に記載した抄紙機の制 御方法。
4 . 前記非干渉制御機能は、 前記両フィードバックループが相互干渉し合う 干渉量を同時刻に補償する静特性補償を行う非干渉要素のゲインを用いること を特徴とする請求項 1に記載した抄紙機の制御方法。
5 . 前記非干渉制御機能は、 前記両フィードバックル一プが相互干渉し合う 干渉量を同時刻に補償する静特性補償を行う非干渉要素のゲインを用いること を特徴とする請求項 3に記載した抄紙機の制御方法。
6 . 前記非干渉制御機能は、 前記両フィードバックループが相互干渉し合う 干渉量を時間遅れを考慮して補償する動特性補償を行う非干渉要素を用いるこ とを特徴とする請求項 1に記載した抄紙機の制御方法。
7 . 前記非干渉制御機能は、 前記両フィードバックル一プが相互干渉し合う 干渉量を時間遅れを考慮して補償する動特性補償を行う非干渉要素を用いるこ とを特徴とする請求項 3に記載した抄紙機の制御方法。
8 . 抄紙機において少なくともゥエツトパートにおけるリテンションと紙中 灰分含有率とを自動制御系によつて制御する抄紙機の制御装置であって、 前記自動制御系は、
前記リテンションの自動制御を行うフィードバックループと、
紙中灰分含有率の自動制御を行うフィードバックループと、
前記両フィードバックループの相互干渉による影響を打ち消すよう前記両 フィードノ ックループ間に組み込んだ非千渉制御部と、
を備えたことを特徴とする抄紙機の制御装置。
9 . 前記リテンションの自動制御を行うフィードバックループは、前記ゥエツ トパートにおけるワイヤーパートの白水濃度を測定する濃度計と、 前記濃度計 によって検出された白水濃度と所定の目標値との偏差に基づき原料中に添加す る歩留まり向上剤の添加量を増減するよう抄紙機プロセスにおけるリテンショ ン操作端に制御信号を送出する制御部とからなり、
前記紙中灰分含有率の自動制御を行うフィードバックループは、 紙の乾燥後 に紙中の灰分を測定する灰分検出手段と、 この灰分検出手段によって検出され た灰分と所定の目標値との偏差に基づき前記原料中に添加する灰分添加量を増 減するよう抄紙機プロセスにおける灰分操作端に制御信号を出力する灰分制御 部とからなり、
前記非干渉制御部は、 相互干渉し合う干渉量を補償する非干渉要素を有する ことを特徴とする請求項 8に記載の抄紙機の制御装置。
1 0 . 前記非干渉要素は、 相互干渉し合う干渉量を補償すべく前記各フィー ドバックループの各操作端の前段に入力されるフィードフォワード補償要素で あることを特徴とする請求項 9に記載した抄紙機の制御装置。
1 1 . 前記非干渉要素は、 各フィードバックループの応答ブロックと、 両 フィ一ドバックル一プの相互干渉を生じる干渉プロックとに基づき求められる ことを特徴とする請求項 1 0に記載した抄紙機の制御装置。
1 2 . 請求項 1ないし 5のいずれか一項に記載した制御方法をコンピュータ によって実行させるためのプログラム。
1 3 . 請求項 6または 7に記載した制御方法をコンピュータによって実行さ せるためのプログラム。
1 4. 請求項 1 2に記載したプログラムが格納されコンピュータによって読 み取り可能な記憶媒体。
1 5 . 請求項 1 3に記載したプログラムが格納されコンピュータによって読 み取り可能な記憶媒体。
PCT/JP2004/000753 2003-02-13 2004-01-28 抄紙機の制御方法、制御装置、プログラム及び記憶媒体 WO2004072367A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2515981A CA2515981C (en) 2003-02-13 2004-01-28 Method and device for controlling paper machine, and program and storage medium
FI20050807A FI20050807A (fi) 2003-02-13 2005-08-09 Paperikoneen ohjausmenetelmä, ohjauslaite ohjelma ja tallennusväline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-035686 2003-02-13
JP2003035686A JP4063100B2 (ja) 2003-02-13 2003-02-13 抄紙機の制御方法、制御装置、プログラム及び記憶媒体

Publications (1)

Publication Number Publication Date
WO2004072367A1 true WO2004072367A1 (ja) 2004-08-26

Family

ID=32866303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000753 WO2004072367A1 (ja) 2003-02-13 2004-01-28 抄紙機の制御方法、制御装置、プログラム及び記憶媒体

Country Status (5)

Country Link
JP (1) JP4063100B2 (ja)
CN (1) CN100558981C (ja)
CA (1) CA2515981C (ja)
FI (1) FI20050807A (ja)
WO (1) WO2004072367A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530103A1 (de) * 2003-11-06 2005-05-11 Voith Paper Patent GmbH Verfahren zur Herstellung einer Faserstoffbahn

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002638A1 (de) * 2005-01-20 2006-07-27 Voith Paper Patent Gmbh Aschebestimmung
US20060162887A1 (en) * 2005-01-26 2006-07-27 Weinstein David I System and method to control press section dewatering on paper and pulp drying machines using chemical dewatering agents
JP2007011866A (ja) * 2005-07-01 2007-01-18 Yokogawa Electric Corp プロセス制御装置における非干渉制御方法、およびプロセス制御装置
JP4779762B2 (ja) * 2006-03-30 2011-09-28 栗田工業株式会社 製紙用薬剤の効果監視方法及び注入量制御方法
JP2008025087A (ja) * 2006-06-21 2008-02-07 Nippon Paper Industries Co Ltd 製紙原料の試料濃度測定方法及び測定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160992A (ja) * 1988-12-12 1990-06-20 Toshiba Corp 抄紙プラントの坪量制御装置
JPH03161589A (ja) * 1989-11-18 1991-07-11 Yokogawa Electric Corp プロフィールの非干渉制御装置
EP0651092A1 (en) * 1993-10-29 1995-05-03 Valmet Paper Machinery Inc. Stock feed system for a multi-layer headbox and method in the operation of a multi-layer headbox
JPH10325092A (ja) * 1997-05-23 1998-12-08 Oji Paper Co Ltd 抄紙機のワイヤパートの濾過白水濃度の自動制御方法とその装置ならびに濾過白水の目標濃度の設定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160992A (ja) * 1988-12-12 1990-06-20 Toshiba Corp 抄紙プラントの坪量制御装置
JPH03161589A (ja) * 1989-11-18 1991-07-11 Yokogawa Electric Corp プロフィールの非干渉制御装置
EP0651092A1 (en) * 1993-10-29 1995-05-03 Valmet Paper Machinery Inc. Stock feed system for a multi-layer headbox and method in the operation of a multi-layer headbox
JPH10325092A (ja) * 1997-05-23 1998-12-08 Oji Paper Co Ltd 抄紙機のワイヤパートの濾過白水濃度の自動制御方法とその装置ならびに濾過白水の目標濃度の設定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530103A1 (de) * 2003-11-06 2005-05-11 Voith Paper Patent GmbH Verfahren zur Herstellung einer Faserstoffbahn
US7435314B2 (en) 2003-11-06 2008-10-14 Voith Paper Patent Gmbh Method for the production of a fibrous web

Also Published As

Publication number Publication date
CN1751155A (zh) 2006-03-22
FI20050807A (fi) 2005-09-14
JP2004263309A (ja) 2004-09-24
CA2515981A1 (en) 2004-08-26
CN100558981C (zh) 2009-11-11
CA2515981C (en) 2010-06-22
JP4063100B2 (ja) 2008-03-19

Similar Documents

Publication Publication Date Title
CA2595813C (en) System and method to control press section dewatering on paper and pulp drying machines using chemical dewatering agents
US7496413B2 (en) Apparatus and method for coordinating controllers to control a paper machine or other machine
CA2167292C (en) System for overall control of the different transverse profiles in a paper web manufactured by means of a machine for the manufacture of a web material, such as a board or paper machine and/or a finishing machine
US4374703A (en) Control system for papermaking machine headbox
US20030089479A1 (en) Device for controlling or regulating the basis weight of a paper or cardboard web
US8728276B2 (en) Apparatus and method for controlling curling potential of paper, paperboard, or other product during manufacture
US9309625B2 (en) Concept to separate wet end and dry end paper machine control through estimation of physical properties at the wire
WO2004072367A1 (ja) 抄紙機の制御方法、制御装置、プログラム及び記憶媒体
US20070158044A1 (en) Method and plant for producing a fibrous web
US9096973B2 (en) Method for regulating the formation of a fibrous web
US6904331B2 (en) Method of paper machine control and apparatus for the method
JP2007011866A (ja) プロセス制御装置における非干渉制御方法、およびプロセス制御装置
Tessier et al. Motor load and freeness control of CMP pulp refining
JPH0813376A (ja) 抄紙機の紙厚制御装置
Mori et al. Retention control system for the wet-end section in a paper machine
Sunda et al. Continuous online fibre analysis enables improved pulp quality estimation and control
WO1994017238A1 (en) Ozone reactor process control
JPH0411089A (ja) 抄紙機の抄速変更・抄替制御装置及びその方法
Myllyneva et al. Fuzzy Quality Control of a TMP Plant
JPH0813375A (ja) 抄紙機の水分率制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 20050807

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 2515981

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20048042827

Country of ref document: CN

122 Ep: pct application non-entry in european phase