WO2004071655A1 - Passivation de catalyseur d'hydroconversion sulfure - Google Patents

Passivation de catalyseur d'hydroconversion sulfure Download PDF

Info

Publication number
WO2004071655A1
WO2004071655A1 PCT/FR2004/000272 FR2004000272W WO2004071655A1 WO 2004071655 A1 WO2004071655 A1 WO 2004071655A1 FR 2004000272 W FR2004000272 W FR 2004000272W WO 2004071655 A1 WO2004071655 A1 WO 2004071655A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
passivation
oxygen
oil
oven
Prior art date
Application number
PCT/FR2004/000272
Other languages
English (en)
Inventor
Pierre Dufresne
Franck Labruyere
Original Assignee
Eurecat S.A. - Europeenne De Retraitement De Catalyseurs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurecat S.A. - Europeenne De Retraitement De Catalyseurs filed Critical Eurecat S.A. - Europeenne De Retraitement De Catalyseurs
Priority to US10/526,499 priority Critical patent/US7582587B2/en
Priority to JP2006502133A priority patent/JP5016918B2/ja
Priority to CA2485665A priority patent/CA2485665C/fr
Priority to DE112004000001.7T priority patent/DE112004000001B4/de
Publication of WO2004071655A1 publication Critical patent/WO2004071655A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1051Kerosene having a boiling range of about 180 - 230 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/705Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention relates to a process for off-site passivation of a hydrocarbon hydroconversion catalyst.
  • Hydrotreatment catalysts generally comprise an amorphous or crystallized oxide support such as, for example, an alumina, a silica, an alumina silica, a zeolite on which is deposited at least one element of groups VIII and VI of the periodic table or a combination of several elements from these same groups such as, for example, the solids designated CoMo / Al 2 O 3 , NiMo / Al 2 O 3 or NiW / Al 2 O 3. They must be sulphurized beforehand to give them catalytic performances for all of the hydroconversion reactions of hydrocarbons, and in particular hydrotreatment (such as, for example, hydrodesulfurization, hydrodenitrogenation, demetallation) and of certain hydrogenations. This sulfurization step prior to the catalytic act can be carried out in two different ways.
  • the second so-called off-site presulfurization (“ex-si tu”), as described in various patents of the applicant (USP4719195, USP 5397756, EP-A-785022) differs from the previous one by the fact that the sulfurization or presulfurization of the catalyst is carried out in a particular unit separate from the hydrocarbon conversion reactor and in particular located far from the place of use of said catalyst.
  • the sulphide phases thus formed exhibit very high reactivity with respect to ambient air preventing their subsequent handling without additional treatment aimed at limiting this reactivity.
  • This reactivity towards oxidizing atmospheres is described by a United Nations standard which defines two classes of behavior, namely a so-called pyrophoric behavior and a so-called self-heating behavior.
  • the pyrophoric nature of a compound is characterized by spontaneous combustion when placed under an oxidizing atmosphere.
  • the self-heating character is characterized by an elevation significant temperature resulting from rapid oxidation when the product is heated under certain conditions to a temperature of 140 ° C.
  • the sulfide phase obtained at the end of these presulfurization processes appears to be self-heating; to remedy this defect and to make this phase passivated, the prior art describes methods consisting in making this sulphide phase adsorb a certain amount of oxygen. These methods have a certain effect, but sometimes insufficient. They make it possible to be in the presence of a phase which is less and less self-heating. Indeed, with the methods of the prior art, it was certainly possible in certain cases to manipulate the sulphide phase in air. On the other hand, the loading of the catalyst into the reactor in the presence of air, which can cause the catalyst to heat up because of the large mass present and result in a dangerous environment.
  • the present invention relates to an improved method of passivation by heat treatment, method combining a treatment under a gas flow containing a partial pressure of oxygen (oxidizing passivation), and a treatment by incorporation of an organic liquid (generally hydrocarbon), said method conferring thus said catalyst a non-self-heating behavior according to the UN standard.
  • the present invention therefore relates to the implementation of a passivation process using two treatments, after the off-site sulfurization of the catalyst.
  • the invention relates to an off-site oxidative passivation process for a hydrocarbon hydroconversion catalyst in which said sulfurized catalyst is subjected to at least two treatments: bringing into contact with at least one oxidizing gas flow, and contacting with at least one organic liquid with an initial boiling point above 120 ° C. which at least partially fills the porosity of the catalyst.
  • This passivation process can equally well be implemented on a catalytic charge placed in a fixed bed in a tubular reactor or on a moving catalytic charge in a movable bed unit such as a rotary oven, a fluid bed oven, a belt oven, a tumble bed oven or a rising bed device.
  • a movable bed unit such as a rotary oven, a fluid bed oven, a belt oven, a tumble bed oven or a rising bed device.
  • the catalyst is temperature treated under a dry or wet gas flow containing a partial oxygen pressure of at most 21.3 kPa (ie air).
  • the sulfur catalyst is in a first step brought into contact with at least one oxidizing gas flow and in a second step brought into contact with said organic liquid.
  • the first step is a treatment in the presence of a gas (or gas flow) containing oxygen (for example coming from dry or humid air) which can advantageously be carried out at room temperature.
  • a gas or gas flow
  • oxygen for example coming from dry or humid air
  • the oxygen adsorption reaction on the catalyst causes an exothermic effect which it is preferable to control so that the temperature of the product remains below 50 ° C.
  • One possibility is to control the partial pressures of oxygen admitted to the catalyst.
  • a preferred means of the invention is to first treat the catalyst with a gas under a partial pressure of less than 8 kPa of oxygen, and secondly with a gas under a partial pressure of more than 8 kPa of oxygen.
  • This second stage preferably begins with the virtual disappearance of the exothermic effect (that is to say when the temperature of the solid no longer increases or increases only slightly) or, if the operator has means to limit the temperature increase, the second stage can then start earlier.
  • the oxidative passivation process can even be carried out directly with one or more gas flows, all having a partial oxygen pressure of more than 8 kPa. It can be air provided there is an adequate means to evacuate calories. This is particularly the case when the catalytic charge is placed in a moving bed, in particular in a moving bed such as in for example a rotary oven, a fluid bed oven, a belt oven, or a tumbling bed oven or a ascending bed device.
  • This first passivation step in the gas phase can just as easily be carried out on a catalytic charge disposed in a fixed bed (such as in a tubular reactor).
  • the second step is a treatment for impregnating at least one organic liquid (hydrocarbon or organic compound) in the porosity of the catalyst.
  • the organic liquid (or the cut) will have an initial boiling point greater than 120 ° C, preferably greater than 180 ° C and better still greater than 240 ° C.
  • This liquid can be a hydrocarbon liquid chosen from the group of white spirits, kerosene, gas oil, vacuum distillates, oily base (generally "lube oil” in English), wax and paraffin.
  • the compound is preferably organic, containing carbon and hydrogen, and optionally heteroatoms, such as oxygen, sulfur and nitrogen, for example an alcohol, aldehyde, ketone, ester, amino, amide, mercaptan, sulfide and sulfone.
  • the esters particularly interesting compounds are vegetable or animal oils, triglycerides of partially unsaturated fatty acids.
  • this product can be done at room temperature, or for example to facilitate the application of products which are solid at room temperature or have high viscosities, it may be desirable to heat this product to a temperature above 50 ° C, even 80 ° C. This would be the case, for example, for materials of the paraffin, petroleum wax or polyethylene wax type.
  • the order of the steps is reversed, compared to the previous embodiment, that is to say said sulfur catalyst is in a first step brought into contact with said organic liquid and in a second step put in contact with at least one oxidizing gas flow.
  • the contacting with said gas flow is carried out in one or more stages with one or more gas flows all having a partial oxygen pressure greater than 8 kPa.
  • this or these flows are air.
  • the contacting of the oxidizing gas stream (such as air) is preferably carried out in a single step by bringing said stream at high partial pressure of oxygen directly into contact with the sulfur-containing catalyst or with the impregnated sulfur-containing catalyst. All the other provisions of the previous embodiments are applicable.
  • the first step of the process can advantageously be carried out in two stages, the first with a partial oxygen pressure preferably less than or equal to 8 kPa, the second, which begins when the exothermic effect disappears , with a partial oxygen pressure higher than that of the first stage and at most equal to 21.3 kPa.
  • a hydrotreatment catalyst containing 18.9% by weight of molybdenum oxide and 4.2% by weight of cobalt oxide deposited on an alumina support with a large specific surface (220 m 2 / g) is sulfurized at atmospheric pressure with a mixture of composition 60 % volume of hydrogen sulfide (HS) and 40% volume of hydrogen (H).
  • the sulfurization of the catalyst is obtained in two stages, the first being a phase of controlled temperature rise (5 ° C / min), the second a stage of 1.5 hours at the final sulfurization temperature of 300 ° C.
  • the catalyst is cooled under a stream of nitrogen to ambient temperature. Part of the product is transferred under a nitrogen atmosphere for analysis of the sulfurization rate. The rest is isolated under nitrogen and is used to characterize the self-heating behavior and to measure the activity in diesel hydrodesulfurization.
  • the self-heating test is that defined by the UN standard, which classifies dangerous products of class 4.2.
  • a modified test is also used to provide more information on the sensitivity of the characterized product.
  • the UN standard test a catalyst is placed in a mesh cube; in the center of this cube is introduced a thermocouple which makes it possible to record the rise in temperature of the catalyst in the center of the cube.
  • the cube and thermocouple assembly is placed in a ventilated oven under air previously heated to 140 ° C. For 24 hours, the temperatures of the oven and the catalyst cube are recorded.
  • the catalyst is declared to be self-heating if its temperature, during the 24 hours of testing, exceeds 200 ° C. It then belongs to the class of dangerous products, class 4.2, to the subgroup of solids 3190.
  • the modified test repeats the same operating mode except that the temperature of the oven varies around 140 ° C in steps of 10 ° C, until the internal temperature of the catalyst cube no longer exceeds 200 ° C. At each temperature, a new catalyst is tested.
  • the concept of critical self-heating temperature (or TCAE) is defined by the minimum temperature of the oven before the initiation of the self-heating behavior of the characterized catalyst.
  • the catalyst is loaded under a nitrogen atmosphere into the reactor of a diesel hydrodesulfurization test unit.
  • the catalyst is brought into operation by progressive increase of the ambient temperature to 350 ° C., in the presence of a diesel flow rate of 2 liters per liter of catalyst and per hour, at a hydrogen pressure of 3 MPa and a hydrogen flow rate expressed as a hydrogen to oil ratio of 400 L / L.
  • the temperature is brought back to 330 ° C.
  • the liquid effluents are collected for 15 hours, the residual sulfur level being measured by Fluorescence X and compared to the initial rate of diesel.
  • the activity model uses a mathematical expression adopting a reaction order of 1.5.
  • the relative mass activity (RWA) is expressed by the ratio between the activity of the catalyst tested and that of the same oxide sulfur catalyst in in situ mode by adding DMDS (dimethyl disulfide) to the liquid charge.
  • Example 2 Comparative Example - Passivation of a Sulfurized Catalyst by Heat Treatment Under Dry Oxidizing Flux
  • Example 2 The same catalyst as that used in Example 1 is sulfurized (same conditions as in Example 1) and purged under nitrogen at room temperature, then passive according to the procedure known as oxidative passivation at room temperature (below 30 ° C) .
  • This treatment is carried out in two stages. The first consists of a treatment under dry gas flow containing a partial oxygen pressure of 7.6 kPa. The catalyst is maintained under this partial oxygen pressure until the exothermic effect linked to the chemisorption of oxygen on the sulfide phase disappears. The second step is obtained by stopping the supply of diluent gas (nitrogen) so that the partial oxygen pressure is that of dry air (21.3 kPa).
  • the catalyst is left under this air flow until the exothermic effect linked to the interaction of the oxygen and the sulphide phase disappears.
  • the catalyst is stored under a nitrogen atmosphere. Part of the sample is then taken under nitrogen to analyze the sulfurization rate and the oxygen content fixed during the passivation treatment. The remainder is isolated under this same atmosphere for the characterization of its self-heating behavior and for the measurement of its activity in diesel hydrodesulfurization.
  • the sulfurization rate as well as the amount of oxygen chemisorbed during the passivation treatment are presented in the table below.
  • the amount of chemisorbed oxygen is determined by the difference between the experimental loss on ignition measured on the passive catalyst (treatment in a muffle furnace in air at 500 ° C. for 4 hours) and the theoretical loss on ignition defined for a sulfurization rate. identical.
  • catalyst SP2 uses the same test protocol as that described in Example 1.
  • Example 3 Comparative Example Passivation of a Sulfurized Catalyst by Direct Incorporation of Oil
  • Example 2 The same catalyst as that used in Example 1 is sulfurized according to the same procedure as that used in Example 1. At the end of the sulfurization treatment, the catalyst is purged under nitrogen at room temperature and transferred under this same atmosphere in a rotary flask kept under nitrogen. The oil impregnation is obtained on the catalyst set in motion by progressive introduction, so that the incorporation of oil in the porosity of the catalyst is as homogeneous as possible.
  • the amount of oil used is 10 g of oil per 100 g of sulphide catalyst.
  • the oil used (150 Neutral Solvent) is chosen from the family of mineral base oils whose main characteristics are a viscosity at 40 ° C of 16 centi-poises and a density of 0.86 g / cm3.
  • the quantity of oil actually incorporated into the catalyst is defined by the variation in loss on ignition (treatment in a muffle furnace in air at 500 ° C. for 4 hours) between that measured on this impregnated catalyst and the theoretical loss on ignition defined for a same sulfurization rate.
  • the SP3 catalyst thus obtained is characterized according to a methodology analogous to that of the previous examples.
  • This example is analogous to the previous example 3 except that the amount of oil used is increased from 10 to 20 g per 100 g of sulfur catalyst.
  • the catalyst SP4 thus obtained is characterized according to a methodology analogous to that of the preceding examples.
  • Example 2 The same catalyst as that used in Example 1 is prepared according to the procedure used in Example 2 (sulfurization followed by an oxidative passivation in two stages). The catalyst thus obtained is characterized in order to define its sulfurization rate and the amount of oxygen chemisorbed by the sulfide phase using the same methodology as that described in Example 2.
  • the quantity of oil actually incorporated into the catalyst is defined by the variation in loss on ignition (treatment in a muffle furnace in air at 500 ° C. for 4 hours) between that measured on this impregnated catalyst and that measured on the catalyst before impregnation.
  • This example is analogous to the previous example 5 (gas phase sulfurization, oxidative passivation under dry flow and incorporation of oil) with the difference that the oil used is an oil of vegetable origin (refined rapeseed oil).
  • the main characteristics of this refined rapeseed oil are a density of 0.92 g / cm3 and an iodine index of 114.
  • the quantity of vegetable oil used during the impregnation is maintained at 10 g per 100 g of sulfurized and passive catalyst as described in Example 3.
  • This catalyst called “SP6 catalyst”, is characterized using the same techniques as those already used for the previous examples.
  • the sulfur catalyst is passive using the same oxidative passivation protocol as that used in Example 2 (treatment in two stages under oxidizing flow, partial oxygen pressure of 7.6 kPa then 21.3 kPa at room temperature), with the difference that the oxidizing flux used is previously saturated with water at a temperature of 25 ° C, before contacting with the sulfide phase.
  • This water saturation is obtained by bubbling the dry oxidizing flux in a saturator containing liquid water at room temperature. Under these conditions, the partial water pressure is 3 kPa.
  • SP7 catalyst The characteristics of this catalyst known as “SP7 catalyst” are collated in the table below.
  • Example 8 Passivation of a sulfur catalyst by treatment under an oxidizing flow followed by incorporation of oil in a higher amount.
  • This example is analogous to the previous example 5, both with regard to the sulfurization, passivation and oil incorporation procedures, except that the quantity of oil used in the last step is increased by 10 to 20 g of 150 Neutral Solvent oil per 100 g of sulfur and passive catalyst.
  • SP8 catalyst The characterizations of this catalyst called “SP8 catalyst” use the same techniques as those already used in the previous examples.
  • Example 2 The same catalyst as that used in Example 1 is sulfurized according to the same procedure as that described in Example 1. After this sulfurization step, the catalyst is purged under nitrogen at room temperature. At the end of this sulfurization treatment, the catalyst is passive according to an oxidative passivation procedure which differs from that already used in Example 2 in that it is carried out in a single step and under a single partial pressure in oxygen. This partial pressure is fixed at 7.6 kPa. After the exothermic effect linked to the oxygen chemisorption on the sulphide phases has disappeared, the catalyst is transferred under nitrogen into the rotary impregnator maintained under nitrogen in order to incorporate an identical amount of mineral oil (150 Neutral Solvent) to that of Examples 5 and 7, namely
  • a catalyst sample is taken in order to determine the amount of oxygen chemisorbed by the catalyst.
  • SP9 catalyst All the characteristics of this catalyst, known as “SP9 catalyst”, are presented in the table below.
  • Example 10 Direct incorporation of oil from a sulfur catalyst followed by a passivation treatment under an oxidizing flow
  • Example 3 This example is analogous to that of Example 3, where, after sulfurization, the catalyst is impregnated directly with 10 g of 150 Neutral Solvent oil per 100 g of sulfur catalyst. Following these sulfurization and oil incorporation treatments, the catalyst undergoes an oxidative passivation by treatment at ambient temperature (below 30 ° C.) according to a procedure derived from that described in Example 2, and modified in that the catalyst can be directly treated under undiluted dry air, therefore at a partial oxygen pressure of 21.3 kPa. Indeed, probably the covering effect of the oil makes it possible to reduce the exothermic effect of oxygen adsorption. At the end of this treatment, the catalyst grains have a particularly interesting dry appearance.
  • Diesel hydrodesulfurization activity (expressed in relative mass activity or relative weight activity) and critical self-heating temperature (TCAE).
  • pre-passivation in air has two notable advantages compared to an oil passivation: it makes it possible to considerably simplify the wet passivation process, insofar as this operation can be carried out in equipment under an atmosphere of 'Free air, because the catalyst can be handled in air, which is not the case with a directly sulfurized catalyst which spontaneously heats up in air.
  • the performances of reduction of the self-heating effect, manifested by the TCAE (Critical temperature of self-heating) are excellent while using a reasonable quantity of oil, the oxidizing pre-treatment allowing a saving. the amount of oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

La présente invention concerne un procédé de passivation oxydante hors site des catalyseurs d'hydroconversion d'hydrocarbures et notamment d'hydrotraitement dans leurs états sulfures, dans lequel le catalyseur sulfuré est soumis à 2 traitements : mise en contact avec un flux gazeux oxydant, et mise en contact avec un liquide organique (hydrocarbure par exemple) qui remplit partiellement sa porosité.

Description

PASSIVATION DE CATALYSEUR D 'H YDROCON VERSION SULFURE
L'invention concerne un procédé de passivation hors-site d'un catalyseur d'hydroconversion d'hydrocarbures.
Les catalyseurs d'hydrotraitement comprennent en général un support oxyde amorphe ou cristallisé comme par exemple une alumine, une silice, une silice alumine, une zéolithe sur lequel est déposé au moins un élément des groupes VIII et VI de la classification périodique ou une combinaison de plusieurs éléments issus de ces mêmes groupes comme par exemple les solides désignés CoMo/Al2O3, NiMo/Al2O3 ou NiW/Al2O3. Us doivent être préalablement sulfurés pour leur conférer des performances catalytiques pour l'ensemble des réactions d'hydroconversion des hydrocarbures, et notamment d'hydrotraitement (comme par exemple l'hydrodésulfuration, l'hydrodéazotation, la démétallation) et de certaines hydrogénations. Cette étape de sulfuration préalable à l'acte catalytique peut être réalisée de deux manières différentes.
La première, dite sulfuration « in situ », qui se caractérise par le fait que le catalyseur sous sa forme oxyde est, tout d'abord chargé dans le réacteur de conversion d'hydrocarbure pour y être sulfuré. La seconde dite presulfuration hors site (« ex-si tu »), comme décrite dans divers brevets de la demanderesse (USP4719195, USP 5397756, EP-A-785022) se démarque de la précédente par le fait que la sulfuration ou presulfuration du catalyseur est réalisée dans une unité particulière distincte du réacteur de conversion d'hydrocarbures et notamment localisée loin du lieu d'utilisation du dit catalyseur.
Dans le cadre de cette dernière méthode de sulfuration hors site, les phases sulfures ainsi formées présentent une très grande réactivité vis à vis de l'air ambiant interdisant leur manipulation ultérieure sans un traitement complémentaire visant à limiter cette réactivité. Cette réactivité vis-à-vis des atmosphères oxydantes est décrite par une norme des Nations Unies qui définit deux classes de comportement, à savoir un comportement dit pyrophorique et un comportement dit auto-échauffant.
Le caractère pyrophorique d'un composé se caractérise par une combustion spontanée à la mise sous atmosphère oxydante. Le caractère auto-échauffant se caractérise, par une élévation de température importante résultant d'une oxydation rapide lorsque le produit est chauffé dans certaines conditions à une température de 140 °C.
La phase sulfure obtenue à l'issue de ces procédés de presulfuration se révèle auto- échauffante ; pour remédier à ce défaut et pour rendre cette phase passivée, l'art antérieur décrit des méthodes consistant à faire adsorber à cette phase sulfure une certaine quantité d'oxygène. Ces méthodes ont un certain effet, mais parfois insuffisant. Elles permettent d'être en présence d'une phase de moins en moins auto-échauffante. En effet, avec les procédés de l'art antérieur, certes il était possible dans certains cas de manipuler la phase sulfure à l'air. En revanche, le chargement du catalyseur dans le réacteur en présence d'air, pouvant provoquer un échauffement du catalyseur à cause de la masse importante en présence et se traduire par un environnement dangereux. Il n'était donc pas recommandé (bien que certains utilisateurs persistaient à le faire) de procéder à un chargement de catalyseur dans un réacteur, sous air, mais une atmosphère d'azote était plus sûre. Avec le procédé décrit ici, le chargement sous air d'un réacteur par du catalyseur sous forme phase sulfure devient possible et sans danger.
La présente invention concerne un procédé perfectionné de passivation par traitement thermique, procédé associant un traitement sous un flux gazeux contenant une pression partielle en oxygène (passivation oxydante), et un traitement par incorporation d'un liquide organique (généralement hydrocarboné), ledit procédé conférant ainsi au dit catalyseur un comportement non auto-échauffant selon la norme UN.
La présente invention concerne donc la mise en œuvre d'un procédé de passivation utilisant deux traitements, postérieur à la sulfuration hors site du catalyseur.
Plus précisément, l'invention concerne un procédé de passivation oxydante hors-site d'un catalyseur d'hydroconversion d'hydrocarbures dans lequel ledit catalyseur sulfuré est soumis à au moins deux traitements : mise en contact avec au moins un flux gazeux oxydant, et mise en contact avec au moins un liquide organique de point d'ébullition initial supérieur à 120°C qui remplit au moins partiellement la porosité du catalyseur.
Ce procédé de passivation, peut tout aussi bien être mis en œuvre sur une charge catalytique disposée en lit fixe dans un réacteur tubulaire ou sur une charge catalytique en mouvement dans une unité à lit mobile comme un four rotatif, un four à lit fluide, un four à bande, un four à lit croulant ou un dispositif à lit ascendant. En vue de réduire le comportement auto- échauffant (défini selon la norme UN) du catalyseur préalablement sulfuré afin de permettre sa manipulation aisée sous air, en particulier lors de leur chargement dans les unités d'hydrotraitement, le catalyseur est traité en température sous un flux gazeux sec ou humide contenant une pression partielle en oxygène d'au plus 21.3 kPa (i.e. air).
L'invention sera décrite plus en détail à partir d'un mode de réalisation.
Dans un mode de réalisation, le catalyseur sulfuré est dans une première étape mis en contact avec au moins un flux gazeux oxydant et dans une deuxième étape mis en contact avec ledit liquide organique.
La première étape est un traitement en présence d'un gaz (ou flux gazeux) contenant de l'oxygène (par exemple provenant d'un air sec ou humide) qui peut avantageusement être réalisée à température ambiante. La réaction d'adsorption d'oxygène sur le catalyseur provoque un effet exothermique qu'il est préférable de contrôler pour que la température du produit reste inférieure à 50°C. Une possibilité est de contrôler les pressions partielles d'oxygène admises sur le catalyseur. Ainsi, un moyen préféré de l'invention est de traiter dans un premier temps le catalyseur avec un gaz sous une pression partielle de moins de 8 kPa d'oxygène, et dans un deuxième temps avec un gaz sous une pression partielle de plus de 8 kPa d'oxygène. Ce deuxième temps débute de préférence à la quasi disparition de l'effet exothermique (c'est à dire quand la température du solide n'augmente plus ou n'augmente que faiblement) ou, si l'exploitant dispose de moyens pour limiter l'augmentation de température, le deuxième temps peut alors débuter plus tôt. On peut même opérer le procédé de passivation oxydante directement avec un ou plusieurs flux gazeux ayant tous une pression partielle en oxygène de plus de 8 kPa. Ce peut être de l'air à condition de disposer d'un moyen adéquat pour évacuer les calories. C'est le cas en particulier lorsque la charge catalytique est disposée dans un lit en mouvement, notamment en lit mobile comme dans par exemple un four rotatif, un four à lit fluide, un four à bande, ou un four à lit croulant ou un dispositif à lit ascendant. Cette première étape de passivation en phase gazeuse peut tout aussi bien être mise en œuvre sur une charge catalytique disposée en lit fixe (tel que dans un réacteur tubulaire). La seconde étape est un traitement d'imprégnation d'au moins un liquide organique (hydrocarbure ou composé organique) dans la porosité du catalyseur. Le liquide organique (ou la coupe) aura un point d'ébullition initial supérieur à 120°C, de manière préférée supérieure à 180°C et mieux supérieure à 240°C. Ce liquide peut être un liquide hydrocarboné choisi dans le groupe des white spirit, kérosène, gasoil, distillats sous vide, base huileuse (d'une façon générale « lube oil » en anglais), cire et paraffine. Différents agents hydrocarbonés peuvent être utilisés, une condition étant que cet agent soit éliminé au cours des phases initiales d'utilisation du catalyseur dans le réacteur, afin que l'accès des molécules de la charge à traiter vers les sites actifs du catalyseur ne soit aucunement gêné. Le composé est de préférence organique, contenant du carbone et de l'hydrogène, et de manière optionnelle des hétéroatomes, comme l'oxygène, le soufre et l'azote, par exemple un alcool, aldéhyde, cétone, ester, aminé, amide, mercaptan, sulfure et sulfone. Parmi les esters, des composés particulièrement intéressants sont les huiles végétales ou animales, triglycérides d'acides gras partiellement insaturés.
L'application de ce produit peut se faire à température ambiante, ou par exemple pour faciliter l'application de produits qui sont solides à température ambiante ou présentent de fortes viscosités, il peut être souhaitable de chauffer ce produit à une température supérieure à 50°C, voire 80°C. Ce serait le cas par exemple pour des matériaux de type paraffine, cire pétrolière ou cire de polyéthylène.
Dans un autre mode de réalisation, l'ordre des étapes est inversé, par rapport au mode de réalisation précédent, c'est-à-dire ledit catalyseur sulfuré est dans une première étape mis au contact dudit liquide organique et dans une deuxième étape mis en contact avec au moins un flux gazeux oxydant.
Toutes les dispositions du précédent mode de réalisation sont applicables.
Dans un mode de réalisation avantageux à l'échelle industrielle, la mise en contact avec ledit flux gazeux est effectuée en un ou plusieurs temps avec un ou des flux gazeux ayant tous une pression partielle en oxygène supérieure à 8 kPa.
De façon très avantageuse ce ou ces flux sont de l'air. Ainsi, la mise en contact du flux gazeux oxydant (tel que l'air) est réalisée de préférence en un seul temps par mise en contact dudit flux à forte pression partielle en oxygène directement sur le catalyseur sulfuré ou sur le catalyseur sulfuré imprégné. Toutes les autres dispositions des précédents modes de réalisation sont applicables.
Comme les exemples le montrent, la première étape du procédé peut être réalisée avantageusement en deux temps, le premier avec une pression partielle d'oxygène de préférence inférieure ou égale à 8 kPa, le second, qui débute à la disparition de l'effet exothermique, avec une pression partielle en oxygène supérieure à celle du premier temps et au plus égale à 21,3 kPa.
Exemple 1 : Préparation du catalyseur de référence : sulfuration hors site sans passivation
Un catalyseur d'hydrotraitement contenant 18.9 % poids d'oxyde de molybdène et 4.2 % poids d'oxyde de cobalt déposés sur un support alumine de grande surface spécifique (220 m2/g) est sulfuré à pression atmosphérique par un mélange de composition 60 % volume de sulfure d'hydrogène (H S) et 40% volume d'hydrogène (H ). La sulfuration du catalyseur est obtenue en deux étapes, la première étant une phase de montée en température contrôlée (5°C/min), la seconde un palier de 1,5 heures à la température finale de sulfuration de 300°C. Après sulfuration, le catalyseur est refroidi sous flux d'azote jusqu'à la température ambiante. Une partie du produit est transférée sous atmosphère d'azote pour analyse de taux de sulfuration. Le reste est isolé sous azote et sert à la caractérisation du comportement auto- échauffant et à la mesure d'activité en hydrodésulfuration de gasoil .
Le taux de sulfuration est indiqué dans le tableau ci dessous. Il est défini comme le rapport entre les ratios molaires S/(Co+Mo) expérimental et S/(Co+Mo) théorique, multiplié par 100. Celui-ci, correspondant à la transformation totale des oxydes de molybdène MoO3 et de cobalt CoO en sulfures respectivement MoS2 et Co9S8 , est de : [S/(Co+Mo)]theo = 1.67. Taux de sulfuration O2 Quantité d'hydrocarbure
Référence S/(Co+Mo)
(%) (%pds) (g/lOOg catalyseur)
Catalyseur S 1.59 95 0 0
Le test d'auto-échauffement est celui défini par la norme UN, qui permet de classifier des produits dangereux de la classe 4.2. Un test modifié est aussi utilisé afin d'apporter plus d'information sur la sensibilité du produit caractérisé.
Le test de la norme UN : un catalyseur est placé dans un cube grillagé; au centre de ce cube est introduit un thermocouple qui permet d'enregistrer l'élévation de température du catalyseur au centre du cube. L'ensemble cube et thermocouple est placé dans une étuve ventilée sous air préalablement chauffée à 140°C. Pendant 24 heures, les températures de l'étuve et du cube de catalyseur sont enregistrées. Le catalyseur est déclaré auto-échauffant, si sa température, au cours des 24 heures de test, dépasse les 200°C. Il appartient alors à la classe de produits dangereux, classe 4.2, au sous groupe des solides 3190.
Le test modifié reprend le même mode opératoire si ce n'est que la température de l'étuve varie autour de 140°C par pas de 10°C, jusqu'à ce que la température interne du cube de catalyseur ne dépasse plus les 200°C. A chaque température, c'est un nouveau catalyseur qui est testé. La notion de température critique d'auto-échauffement (ou TCAE) est définie par la température minimale de l'étuve avant le déclenchement du comportement auto-échauffant du catalyseur caractérisé.
Parallèlement au test d'auto-échauffement, le catalyseur est chargé sous atmosphère d'azote dans le réacteur d'une unité de test d'hydrodésulfuration de gasoil. La mise en régime du catalyseur est obtenue par augmentation progressive de la température de l'ambiante à 350°C, en présence d'un débit de gasoil de 2 litres par litre de catalyseur et par heure, à une pression d'hydrogène de 3 MPa et un débit d'hydrogène exprimé en ratio hydrogène sur huile de 400 L/L. Après 8 heures de stabilisation dans ces conditions, la température est ramenée à 330°C. Après 24 heures de stabilisation, les effluents liquides sont récoltés pendant 15 heures, le taux de soufre résiduel étant mesuré par Fluorescence X et comparé au taux initial du gasoil. Le modèle d'activité utilise une expression mathématique adoptant un ordre de réaction de 1.5. L'activité massique relative (RWA) est exprimée par le ratio entre l'activité du catalyseur testé et celle du même catalyseur oxyde sulfuré en mode in situ par ajout de DMDS (diméthyl disulfure) dans la charge liquide.
Exemple 2 : Exemple comparatif - Passivation d'un catalyseur sulfuré par traitement thermique sous flux oxydant sec
Le même catalyseur que celui utilisé dans l'exemple 1 est sulfuré (mêmes conditions que dans l'exemple 1) et purgé sous azote à température ambiante, puis passive selon la procédure dite de passivation oxydante à température ambiante (inférieure à 30°C). Ce traitement est réalisé en deux temps. Le premier consiste en un traitement sous flux gazeux sec contenant une pression partielle en oxygène de 7.6 kPa. Le catalyseur est maintenu sous cette pression partielle en oxygène jusqu'à disparition de l'effet exothermique lié à la chimisorption de l'oxygène sur la phase sulfure. Le second temps est obtenu en stoppant l'alimentation en gaz diluant (azote) de façon à ce que la pression partielle en oxygène soit celle d'un air sec (21.3 kPa). Le catalyseur est laissé sous ce flux d'air jusqu'à disparition de l'effet exothermique lié à l'interaction de l'oxygène et de la phase sulfure. Après ce traitement de passivation le catalyseur est stocké sous atmosphère d'azote. Une partie de l'échantillon est ensuite prélevée sous azote pour en analyser le taux de sulfuration et la teneur en oxygène fixée pendant le traitement de passivation. Le reliquat est isolé sous cette même atmosphère pour la caractérisation de son comportement auto-échauffant et pour la mesure de son activité en hydrodésulfuration de gasoil.
Le taux de sulfuration ainsi que la quantité d'oxygène chimisorbee pendant le traitement de passivation sont présentés dans le tableau ci dessous. La quantité d'oxygène chimisorbee est déterminée par la différence entre la perte au feu expérimentale mesurée sur le catalyseur passive (traitement au four à moufle sous air à 500°C pendant 4 heures) et la perte au feu théorique définie pour un taux de sulfuration identique. Taux de sulfuration O Quantité d'hydrocarbure
Référence S/(Co+Mo)
(%) (%pds) (g/100g catalyseur)
Catalyseur SP2 1.59 95 1.6 0
Le test d'auto-échauffement ainsi que le test d'activité sur ce catalyseur dénommé « catalyseur SP2 » utilise le même protocole de test que celui décrit dans l'exemple 1.
Exemple 3: Exemple comparatif - Passivation d'un catalyseur sulfuré par incorporation directe d'huile
Le même catalyseur que celui utilisé dans l'exemple 1 est sulfuré selon la même procédure que celle utilisée dans l'exemple 1. A l'issue du traitement de sulfuration, le catalyseur est purgé sous azote à température ambiante et transféré sous cette même atmosphère dans un ballon rotatif maintenu sous azote. L'imprégnation d'huile est obtenue sur le catalyseur mis en mouvement par introduction progressive, de sorte que l'incorporation d'huile dans la porosité du catalyseur soit la plus homogène possible. La quantité d'huile mise en œuvre est de 10 g d'huile pour 100 g de catalyseur sulfure. L'huile utilisée (150 Neutral Solvent) est choisie dans la famille des huiles de base minérales dont les principales caractéristiques sont une viscosité à 40°C de 16 centi-poises et une masse volumique de 0.86 g/cm3.
La quantité d'huile réellement incorporée au catalyseur est définie par la variation de perte au feu (traitement au four à moufle sous air à 500°C pendant 4 heures) entre celle mesurée sur ce catalyseur imprégné et la perte au feu théorique définie pour un même taux de sulfuration.
Le catalyseur SP3 ainsi obtenu est caractérisé selon une méthodologie analogue à celle des exemples précédents.
Taux de sulfuration O Quantité d'hydrocarbure
Référence S/(Co+Mo)
(%) (%pds) (g 100g catalyseur)
Catalyseur SP3 1.59 95 0 9.9 Exemple 4: Exemple comparatif - Passivation d'un catalyseur sulfuré par incorporation directe d'huile en quantité supérieure
Cet exemple est analogue à l'exemple 3 précédent si ce n'est que la quantité d'huile mise en œuvre est augmentée de 10 à 20 g pour 100 g de catalyseur sulfuré.
Le catalyseur SP4 ainsi obtenu est caractérisé selon une méthodologie analogue à celle des exemples précédents.
Taux de sulfuration O2 Quantité d'hydrocarbure
Référence S/(Co+Mo)
(%) (%pd8) (g/100g catalyseur)
Catalyseur SP4 1.61 96 19.8
Exemple 5 : Passivation d'un catalyseur sulfuré par traitement sous flux oxydant suivi d'incorporation d'huile
Le même catalyseur que celui utilisé dans l'exemple 1 est préparé selon le mode opératoire utilisé dans l'exemple 2 (sulfuration suivie d'une passivation oxydante en deux temps). Le catalyseur ainsi obtenu est caractérisé afin de définir sont taux de sulfuration et la quantité d'oxygène chimisorbee par la phase sulfure en utilisant la même méthodologie que celle décrit dans l'exemple 2.
Après ces traitements successifs de sulfuration et de passivation, 100 grammes de ce catalyseur sont introduits dans un imprégnateur rotatif, maintenu à température ambiante et sous air, afin de procéder à l'incorporation d'huile suivant le protocole utilisé dans l'exemple 3. Nature de l'huile et quantité sont identiques à celles mises en œuvre pour la préparation du « catalyseur SP3 », à savoir 10 g de 150 Neutral Solvent pour 100 g de catalyseur sulfuré et passive.
La quantité d'huile réellement incorporée au catalyseur est définie par la variation de perte au feu (traitement au four à moufle sous air à 500°C pendant 4 heures) entre celle mesurée sur ce catalyseur imprégné et celle mesurée sur le catalyseur avant imprégnation.
Les caractéristiques du catalyseur ainsi préparé et dénommé « catalyseur SP5 » sont présentées dans le tableau ci-dessous. Taux de sulfuration O2 Quantité d'hydrocarbure
Référence S/(Co+Mo)
(%) (%pds) (g/lOOg catalyseur)
Catalyseur SP5 1.59 95 1.6 9.7
Exemple 6 : Passivation d'un catalyseur sulfuré par traitement sous flux oxydant suivi d'incorporation d'huile d'origine végétale
Cet exemple est analogue à l'exemple 5 précédent (sulfuration phase gaz, passivation oxydante sous flux sec et incorporation d'huile) à la différence que l'huile utilisée est une huile d'origine végétale (huile de colza raffinée). Les caractéristiques principales de cette huile de colza raffinée sont une masse volumique de 0.92 g/cm3 et un indice d'iode de 114. La quantité d'huile végétale mise en œuvre au cours de l'imprégnation est maintenue à 10 g pour 100 g de catalyseur sulfuré et passive comme décrit dans l'exemple 3.
Ce catalyseur dénommé « catalyseur SP6 » est caractérisé à l'aide des mêmes techniques que celles déjà utilisées pour les exemples précédents.
Taux de sulfuration O2 Quantité d'huile végétale Référence S/(Co+Mo)
(%) (%Pds) (g/100g catalyseur)
Catalyseur SP6 L60 96 L7 9
Exemple 7 : Passivation d'un catalyseur sulfuré par traitement sous flux oxydant humide suivi d'incorporation d'huile
Dans cet exemple, le catalyseur sulfuré est passive en utilisant le même protocole de passivation oxydante que celui utilisé dans l'exemple 2 (traitement en deux étapes sous flux oxydant, pression partielle en oxygène de 7.6 kPa puis 21.3 kPa à la température ambiante), à la différence près, que le flux oxydant utilisé est préalablement saturé en eau à la température de 25 °C, avant la mise en contact avec la phase sulfure. Cette saturation en eau est obtenue par un bullage du flux oxydant sec dans un saturateur contenant de l'eau liquide à la température ambiante. Dans ces conditions, la pression partielle en eau est de 3 kPa. A l'issue de ces traitements de sulfuration et de passivation humide et préalablement à l'incorporation d'huile, une mesure de perte de poids permet comparativement à celle réalisée sur le catalyseur SP2 de déterminer la quantité d'eau adsorbée par le catalyseur au cours du traitement de passivation oxydante humide. Faisant suite aux traitements de sulfuration et de passivation oxydante humide, le catalyseur est transféré dans l'imprégnateur rotatif afin d'y subir une étape d'incorporation d'huile utilisant la même procédure opératoire que celle utilisé dans l'exemple 5. La nature et quantité d'huile sont identique à celle de l'exemple 5, à savoir 10 g de 150 Neutral Solvent pour 100 g de catalyseur sulfuré et passive.
Les caractéristiques de ce catalyseur dénommé « catalyseur SP7 » sont rassemblées dans le tableau ci-dessous.
Taux de sulfuration O H O Quantité d'hydrocarbure
Référence S/(Co+Mo) (%) (%pds) (%pds) (g/100g catalyseur)
Catalyseur SP7 1.61 96 1.5 2.1 10.0
Exemple 8 : Passivation d'un catalyseur sulfuré par traitement sous flux oxydant suivi d'une incorporation d'huile en quantité supérieure.
Cet exemple est analogue à l'exemple 5 précédent, tant en ce qui concerne les procédures de sulfuration, de passivation et d'incorporation d'huile, si ce n'est que la quantité d'huile mise en œuvre dans la dernière étape est augmentée de 10 à 20 g d'huile 150 Neutral Solvent pour 100 g de catalyseur sulfuré et passive.
Les caractérisations de ce catalyseur dénommé « catalyseur SP8 » utilisent les mêmes techniques que celles déjà mises en œuvre dans les exemples précédents.
Taux de sulfuration O2 Quantité d'hydrocarbure
Référence S/(Co+Mo)
(%) (%pds) (g/lOOg catalyseur)
Catalyseur SP8 1.61 96 1.5 19.5 Exemple 9 : Passivation partielle d'un catalyseur sulfuré par traitement sous flux oxydant suivi d'incorporation d'huile
Le même catalyseur que celui utilisé dans l'exemple 1 est sulfuré selon la même procédure que celle décrite dans l'exemple 1. Après cette étape de sulfuration, le catalyseur est purgé sous azote à température ambiante. A l'issue de ce traitement de sulfuration, le catalyseur est passive selon une procédure de passivation oxydante qui se différentie de celle déjà utilisée dans l'exemple 2 en ce qu'elle est réalisée en une seule étape et sous une seule pression partielle en oxygène. Cette pression partielle est fixée à 7.6 kPa. Après disparition de l'effet exothermique lié à la chimisorption d'oxygène sur les phases sulfures, le catalyseur est transféré sous azote dans l'imprégnateur rotatif maintenu sous azote afin d'y incorporer une quantité d'huile minérale (150 Neutral Solvent) identique à celle des exemples 5 et 7, à savoir
10 g de 150N pour 100 g de catalyseur sulfuré et passive.
Préalablement à l'étape d'incorporation d'huile, un prélèvement de catalyseur est effectué afin de déterminer la quantité d'oxygène chimisorbee par le catalyseur.
L'ensemble des caractéristiques de ce catalyseur dénommé « catalyseur SP9 » est présenté dans le tableau ci-dessous.
Taux de sulfuration O2 Quantité d'hydrocarbure
Référence S/(Co+Mo) (%) (%pds) (g/ 100g catalyseur)
Catalyseur SP9 1.62 97 0.5 9.8
Exemple 10 : Incorporation directe d'huile d'un catalyseur sulfuré suivi d'un traitement de passivation sous flux oxydant
Cet exemple est analogue à celui de l'exemple 3, où après sulfuration, le catalyseur est, imprégné par voie directe avec 10 g d'huile 150 Neutral Solvent pour 100 g de catalyseur sulfuré. Successivement à ces traitements de sulfuration et d'incorporation d'huile, le catalyseur subit une passivation oxydante par traitement à température ambiante (inférieure à 30°C) selon une procédure dérivée de celle décrite dans l'exemple 2, et modifiée en ce que le catalyseur peut être directement traité sous air sec non dilué, donc à pression partielle d'oxygène de 21.3 kPa. En effet, probablement l'effet couvrant de l'huile permet d'amoindrir l'effet exothermique d'adsorption d'oxygène. A l'issue de ce traitement, les grains de catalyseur présentent un aspect sec particulièrement intéressant.
Préalablement au traitement de passivation oxydante, un prélèvement du catalyseur sulfuré et imprégné est réalisé pour déterminer exactement la quantité d'huile réellement imprégnée. Le complément de caractérisation s'effectuera ensuite sur le catalyseur sulfuré, imprégné et passive, dénommé « catalyseur SP10 ». Les résultats de ces caractérisations sont présentés ci- dessous.
Taux de sulfuration Quantité d'hydrocarbure O2 Référence S/(Co+Mo)
(%) (g/lOOg catalyseur) (%pds)
Catalyseur SP10 1.59 95 10.1 1.3
Exemple 11: Résultats des caractérisations et conclusion
Activité en hydrodésulfuration de gasoil (exprimée en activité massique relative ou relative weight activity) et température critique d'auto-échauffement (TCAE).
Figure imgf000014_0001
Figure imgf000015_0001
En conclusion, il apparaît qu'un catalyseur sulfuré non passive ne peut pas être manipulé sous air. La seule passivation oxydante à température ambiante, améliore leur comportement auto- échauffant pour autoriser certaines manipulations du produit sous air. Néanmoins le produit reste sensible et il ne serait pas prudent d'en autoriser le chargement sous air dans de grosses unités d'hydrotraitement. La nécessité d'un traitement subséquent apparaît utile pour amoindrir suffisamment ce caractère auto-échauffant. Une valeur considérée comme acceptable se situe à partir d'une TCAE de 100°C. L'incorporation d'une quantité d'hydrocarbure au sein de la porosité du catalyseur permet d'améliorer cette caractéristique, de façon simple et peu coûteuse, au-delà de ce qu'il est possible de réaliser par simple passivation oxydante. En revanche la pré-passivation à l'air présente deux avantages notables par rapport à une passivation à l'huile : elle permet de simplifier considérablement le procédé de passivation humide, dans la mesure où cette opération peut se réaliser dans un équipement sous atmosphère d'air libre, car le catalyseur peut être manipulé sous air, ce qui n'est pas le cas d'un catalyseur directement sulfuré qui s'échauffe spontanément à l'air. D'autre part, les performances de réduction de l'effet d'auto échauffement, manifestées par la TCAE (Température critique d'auto échauffement) sont excellentes tout en utilisant une quantité raisonnable d'huile, le pré-traitement oxydant permettant une économie de la quantité d'huile. D'autre part, il est remarquable de constater que ce nouveau procédé de passivation oxydante suivi d'un remplissage partiel de la porosité du catalyseur par une huile de base minérale n'altère en rien les performances catalytiques des phases sulfures pour les réactions d' hydrotraitement.

Claims

REVENDICATIONS
1. Procédé de passivation oxydante hors-site d'un catalyseur d'hydroconversion d'hydrocarbures caractérisé en ce que ledit catalyseur sulfuré est soumis à au moins deux traitements : mise en contact avec au moins un flux gazeux oxydant, et mise en contact avec au moins un liquide organique de point d'ébullition initial supérieur à
120°C qui remplit au moins partiellement la porosité du catalyseur.
2. Procédé selon la revendication 1 dans lequel ledit catalyseur sulfuré est dans une première étape mis en contact avec au moins un flux gazeux oxydant et dans une deuxième étape mis au contact dudit liquide organique.
3. Procédé selon la revendication 1 dans lequel ledit catalyseur sulfuré est dans une première étape mis au contact dudit liquide organique et dans une deuxième étape mis en contact avec au moins un flux gazeux oxydant.
4. Procédé selon l'une des revendications 1 à 3 dans lequel la mise en contact avec ledit flux gazeux est effectuée en deux temps, le premier sous une pression partielle d'oxygène inférieure à 8 kPa, le second, sous une pression partielle en oxygène supérieure à celle du premier temps et au plus à 21.3kPa.
5. Procédé selon la revendication 4 dans lequel le deuxième temps de la première étape est effectué sous air.
6. Procédé selon la revendication 1 dans lequel la mise en contact avec ledit flux gazeux est effectuée en un ou plusieurs temps avec un ou des flux gazeux ayant tous une pression partielle en oxygène supérieure à 8 kPa.
7. Procédé selon la revendication 6 dans lequel ce ou ces flux sont de l'air.
8. Procédé selon l'une des revendications précédentes dans lequel le catalyseur est en mouvement.
9. Procédé selon la revendication 8 dans lequel le catalyseur est en lit mobile.
10. Procédé selon la revendication 9 mis en œuvre dans un four rotatif, un four à lit fluide, un four à bande, un four à lit croulant ou un dispositif à lit ascendant.
11. Procédé selon l'une des revendications précédentes dans lequel ledit liquide organique utilisé en deuxième étape est choisi dans le groupe constitué par le kérosène, le gasoil, les distillats sous vide, une base huileuse, les cires et les paraffines de point d'ébullition initial supérieure à 180°C.
12. Procédé selon l'une des revendications précédentes dans lequel ledit composé organique contient au moins un hétéroatome choisi parmi l'oxygène, le soufre et l'azote.
13. Procédé selon la revendication 12 dans lequel ledit composé organique est choisi parmi les alcools, aldéhydes, cétones, esters, aminés, amides, mercaptans, sulfures et sulfones.
14. Procédé selon la revendication 13 dans lequel le composé organique est un ester choisi de préférence parmi les huiles végétales ou animales, les triglycérides d'acides gras partiellement insaturés.
PCT/FR2004/000272 2003-02-11 2004-02-06 Passivation de catalyseur d'hydroconversion sulfure WO2004071655A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/526,499 US7582587B2 (en) 2003-02-11 2004-02-06 Passivation of sulphur hydroconversion catalyst
JP2006502133A JP5016918B2 (ja) 2003-02-11 2004-02-06 硫化された水素化転化触媒の不動態化
CA2485665A CA2485665C (fr) 2003-02-11 2004-02-06 Passivation de catalyseur d'hydroconversion sulfure
DE112004000001.7T DE112004000001B4 (de) 2003-02-11 2004-02-06 Passivierung eines Sulfidkatalysators zur Hydrierumwandlung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR03/01634 2003-02-11
FR0301634A FR2850882B1 (fr) 2003-02-11 2003-02-11 Passivation de catalyseur d'hydroconversion sulfure

Publications (1)

Publication Number Publication Date
WO2004071655A1 true WO2004071655A1 (fr) 2004-08-26

Family

ID=32731959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/000272 WO2004071655A1 (fr) 2003-02-11 2004-02-06 Passivation de catalyseur d'hydroconversion sulfure

Country Status (7)

Country Link
US (1) US7582587B2 (fr)
JP (1) JP5016918B2 (fr)
CA (1) CA2485665C (fr)
DE (1) DE112004000001B4 (fr)
FR (1) FR2850882B1 (fr)
LU (1) LU91102B1 (fr)
WO (1) WO2004071655A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1814664A2 (fr) * 2004-10-01 2007-08-08 ExxonMobil Research and Engineering Company Reduction ex-situ et passivation seche de catalyseurs a metaux nobles

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880823B1 (fr) * 2005-01-20 2008-02-22 Total France Sa Catalyseur d'hydrotraitement, son procede de preparation et et son utilisation
FR2915908B1 (fr) * 2007-05-10 2010-09-03 Eurecat Sa Procede de sulfuration ou presulfuration de particules solides d'un catalyseur ou d'un adsorbant
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US8889455B2 (en) 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US8890271B2 (en) 2010-06-30 2014-11-18 Zena Technologies, Inc. Silicon nitride light pipes for image sensors
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
CA2742549C (fr) 2008-11-10 2017-07-04 Institut National De La Recherche Scientifique Precurseurs de catalyseurs, catalyseurs et leurs procedes de production
MY166873A (en) * 2011-12-16 2018-07-24 Basf Corp Protected reduced metal catalyst
FR2994394B1 (fr) * 2012-08-09 2015-08-21 Eurecat Sa Procede de passivation par un compose azote d'un catalyseur zeolitique, en particulier d'un catalyseur d'hydrocraquage
CN113083376A (zh) * 2019-12-23 2021-07-09 内蒙古伊泰煤基新材料研究院有限公司 一种加氢裂化催化剂的钝化方法
GB202100248D0 (en) * 2021-01-08 2021-02-24 Johnson Matthey Plc Catalyst passivation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838066A (en) * 1971-10-01 1974-09-24 Standard Oil Co Method for stabilizing pyrophoric materials in a catalyst bed
US6059956A (en) * 1994-10-07 2000-05-09 Europeene De Retraitment De Catalyseurs Eurecat Off-site pretreatment of a hydrocarbon treatment catalyst
US6093309A (en) * 1993-05-04 2000-07-25 Cri International, Inc. Method of treating spontaneously combustible catalysts
US20020000394A1 (en) * 2000-04-11 2002-01-03 Sonja Eijsbouts Process for sulfiding a catalyst containing an S-containing additive

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905636A (en) * 1957-06-27 1959-09-22 Universal Oil Prod Co Manufacture and use of supported molybdenum-containing catalysts
US5094991A (en) * 1983-08-29 1992-03-10 Chevron Research Company Slurry catalyst for hydroprocessing heavy and refractory oils
DE3562987D1 (en) 1984-10-30 1988-07-07 Eurecat Europ Retrait Catalys Method for presulfiding a catalyst for the treatment of hydrocarbons
FR2689420B1 (fr) * 1992-04-01 1994-06-17 Eurecat Europ Retrait Catalys Procede de presulfuration de catalyseur de traitement d'hydrocarbures.
CN1100617C (zh) 1993-05-04 2003-02-05 Cri国际有限公司 一种处理可自燃的催化剂的方法
FR2743512B1 (fr) * 1996-01-17 1998-03-13 Eurecat Europ Retrait Catalys Procede d'incorporation de soufre dans la porosite d'un catalyseur de traitement d'hydrocarbures
FR2749779B1 (fr) * 1996-06-12 1998-09-11 Eurecat Europ Retrait Catalys Procede de presulfuration de catalyseurs d'hydrotraitement
US5922638A (en) * 1996-06-12 1999-07-13 Europeene De Retraitement De Catalyseurs Eurecat Process for presulfurizing hydrotreatment catalysts
US5958816A (en) * 1997-02-28 1999-09-28 Tricat, Inc. Method of presulfiding and passivating a hydrocarbon conversion catalyst
FR2767072B1 (fr) * 1997-08-11 1999-09-10 Eurecat Europ Retrait Catalys Protection de catalyseurs par depot de couche protectrice
FR2784312B1 (fr) * 1998-10-12 2000-11-10 Eurecat Europ Retrait Catalys Presulfuration hors site en presence de molecule hydrocarbonee
FR2874838B1 (fr) * 2004-09-08 2006-11-24 Inst Francais Du Petrole Procede de sulfuration de catalyseurs d'hydrotraitement
US7407909B2 (en) * 2004-10-01 2008-08-05 Exxonmobil Research And Engineering Company Ex-situ reduction and dry passivation of noble metal catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838066A (en) * 1971-10-01 1974-09-24 Standard Oil Co Method for stabilizing pyrophoric materials in a catalyst bed
US6093309A (en) * 1993-05-04 2000-07-25 Cri International, Inc. Method of treating spontaneously combustible catalysts
US6059956A (en) * 1994-10-07 2000-05-09 Europeene De Retraitment De Catalyseurs Eurecat Off-site pretreatment of a hydrocarbon treatment catalyst
US20020000394A1 (en) * 2000-04-11 2002-01-03 Sonja Eijsbouts Process for sulfiding a catalyst containing an S-containing additive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1814664A2 (fr) * 2004-10-01 2007-08-08 ExxonMobil Research and Engineering Company Reduction ex-situ et passivation seche de catalyseurs a metaux nobles
EP1814664A4 (fr) * 2004-10-01 2011-05-11 Exxonmobil Res & Eng Co Reduction ex-situ et passivation seche de catalyseurs a metaux nobles

Also Published As

Publication number Publication date
LU91102B1 (fr) 2006-02-28
FR2850882A1 (fr) 2004-08-13
US7582587B2 (en) 2009-09-01
JP5016918B2 (ja) 2012-09-05
FR2850882B1 (fr) 2005-03-18
JP2006517467A (ja) 2006-07-27
CA2485665A1 (fr) 2004-08-26
US20060154812A1 (en) 2006-07-13
DE112004000001T5 (de) 2005-05-25
DE112004000001B4 (de) 2021-12-02
CA2485665C (fr) 2011-09-27

Similar Documents

Publication Publication Date Title
CA2485665C (fr) Passivation de catalyseur d'hydroconversion sulfure
CA2160069C (fr) Procede de pretraitement hors site d'un catalyseur de traitement d'hydrocarbures
CA2523698C (fr) Traitement hors site de catalyseurs d'hydrogenation
CA2093172C (fr) Procede de presulfuration de catalyseur de traitement d'hydrocarbures
EP0181254B1 (fr) Procédé de présulfuration de catalyseur de traitement d'hydrocarbures
CA2286403C (fr) Presulfuration hors site en presence de molecule hydrocarbonee
CA2822996C (fr) Procede de passivation par un compose azote d'un catalyseur zeolitique, en particulier d'un catalyseur d'hydrocraquage
CA2316675C (fr) Precarbonation de catalyseur d'hydrotraitement
EP1800749A2 (fr) Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur présentant un support spécifique
JP2006517467A5 (fr)
CA2499696C (fr) Passivation par traitement thermique oxydant de catalyseur d'hydrotraitement sulfure
FR2749779A1 (fr) Procede de presulfuration de catalyseurs d'hydrotraitement
CA2714067C (fr) Procede de sulfuration de catalyseurs de traitement d'hydrocarbures
CA2714330C (fr) Procede de sulfuration de catalyseurs de traitement d'hydrocarbures
FR2680514A1 (fr) Procede de demarrage d'une conversion d'hydrocarbures par traitement prealable du catalyseur par un agent soufre puis par l'hydrogene dilue.
WO2021224172A1 (fr) Catalyseur d'hydrogenation comprenant un support et un ratio nimo specifique
JP2001510399A (ja) 現場外で予備硫化した炭化水素転化触媒

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2485665

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006502133

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006154812

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526499

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10526499

Country of ref document: US