WO2004071524A1 - Albuminlösung und verfahren zu ihrer herstellung - Google Patents

Albuminlösung und verfahren zu ihrer herstellung Download PDF

Info

Publication number
WO2004071524A1
WO2004071524A1 PCT/EP2004/001397 EP2004001397W WO2004071524A1 WO 2004071524 A1 WO2004071524 A1 WO 2004071524A1 EP 2004001397 W EP2004001397 W EP 2004001397W WO 2004071524 A1 WO2004071524 A1 WO 2004071524A1
Authority
WO
WIPO (PCT)
Prior art keywords
albumin
solution
albumin solution
stabilizer
range
Prior art date
Application number
PCT/EP2004/001397
Other languages
English (en)
French (fr)
Inventor
Werner Gehringer
Katharina Pock
Jürgen Römisch
Tor-Einar Svae
Christoph Kannicht
Original Assignee
Octapharma Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SI200430395T priority Critical patent/SI1592439T1/sl
Priority to US10/544,833 priority patent/US20060234907A1/en
Application filed by Octapharma Ag filed Critical Octapharma Ag
Priority to BR0407458-0A priority patent/BRPI0407458A/pt
Priority to EP04710818A priority patent/EP1592439B1/de
Priority to AU2004212324A priority patent/AU2004212324B2/en
Priority to CA002514163A priority patent/CA2514163A1/en
Priority to YUP-2005/0624A priority patent/RS50891B/sr
Priority to DK04710818T priority patent/DK1592439T3/da
Priority to MXPA05008276A priority patent/MXPA05008276A/es
Priority to JP2006501841A priority patent/JP2006517938A/ja
Priority to UAA200508678A priority patent/UA80469C2/uk
Priority to DE502004003834T priority patent/DE502004003834D1/de
Publication of WO2004071524A1 publication Critical patent/WO2004071524A1/de
Priority to IL169828A priority patent/IL169828A0/en
Priority to NO20053677A priority patent/NO20053677L/no
Priority to CY20071101052T priority patent/CY1106793T1/el

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/38Albumins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock

Definitions

  • the invention relates to a therapeutically usable virus-inactivated albumin and a method for its production.
  • Albumin is the most strongly represented plasma protein in the blood plasma. Albumin can bind many endogenous and exogenous substances to its molecule. One of its main functions is based on this binding capacity: the transport of the substances bound to albumin.
  • albumin is also an important depot for a variety of compounds, such as long chain fatty acids, bilirubin, tryptophan, thyroxine or metal ions. Active pharmaceutical ingredients such as warfarin, digitoxin or naproxen are also bound to albumin and transported.
  • albumin preparations are produced by means of a modified Cohn fractionation, this method generally consisting of several fractionation steps.
  • Pasteurization (10 hours at 60 ° C) of the albumin concentrate has been used as a virus inactivation step for decades.
  • Stabilizers are added to avoid denaturing albumin during this step.
  • sodium caprylate (sodium octanoate) or N-acetyltryptophan or a combination of both are used as stabilizers.
  • the object of the present invention is to provide an albumin preparation which does not have this disadvantage.
  • Figure 2 illustrates the binding behavior of albumins of different origins in the presence of different concentrations of phenylbutazone.
  • Fig. 3 shows the binding behavior of various albumins' illustrated provenance in the presence of various concentrations of warfarin.
  • albumin according to the invention has a binding capacity which is at least 10% higher than albumin virus-inactivated by pasteurization, typically 20 to 500% increased binding capacity, in particular 100% to 500% increased binding capacity. Depending on the substance to be bound, even higher values are possible in individual cases.
  • the substances are, in particular, those which are bound and / or transported by native albumin, which in particular includes low molecular weight active substances.
  • the low molecular weight active ingredients are organic or inorganic substances, nucleic acids, polypeptides, which typically have a molecular weight of ⁇ . Have 10,000 da.
  • the albumin according to the invention can be in a liquid solution or in a solid state, in particular in a lyophilized form.
  • indole stabilizer is intended to encompass all stabilizers which have an indole structure, e.g. N-acetyl tryptophan.
  • albumin is also mentioned among other proteins.
  • the SD reagents can be removed with vegetable oils, for example soybean oil, and subsequent hydrophobic interaction chromatography.
  • vegetable oils for example soybean oil
  • the method according to claim 8 is therefore to be regarded in one aspect as an analogy method for the production of the albumin according to the invention.
  • a matrix is preferably proposed there, for example a silica matrix, to which hydrophobic side chains, namely branched or unbranched C 6 -C 24 alkyl chains, are bound.
  • hydrophobic matrix instead of a matrix which carries, for example, C 18 alkyl chains as hydrophobic side chains, has a higher binding capacity for adsorbing detergents. Accordingly, no further hydrophobic groups need be bound to the matrix used according to the invention. A method using such a matrix is therefore also the subject of the invention.
  • Virus inactivation is advantageously carried out at a temperature in the range from 25 to 40 ° C.
  • a preferred embodiment of the method according to the invention consists in that the virus inactivation is carried out over a period in the range from 4 to 6 hours.
  • Glycine is a very good stabilizer.
  • Castor oil is very suitable for oil extraction.
  • hydrophobic matrices used according to the invention can carry branched or linear aliphatic groups with more than 24 carbon atoms.
  • PKA precallikrein activator activity
  • HMWK high molecular weight kininogen
  • PKA is usually inactivated during the pasteurization of protein preparations. Since heat treatment, by which experience has shown that the PKA is at least partially inactivated, is disadvantageous for the albumin produced according to the process for the reasons mentioned above, PKA can be removed by special measures if necessary. This includes incubation with activated carbon with subsequent filtration, preferably with depth filters, or direct filtration through filters containing activated carbon.
  • Ion exchangers such as cation or anion exchangers
  • cation or anion exchangers are also well suited for removing the PKA. This can be done by contacting the albumin-containing solution with the matrix in columns, or batch processes familiar to the person skilled in the art. Alternatively, dextran sulfate or heparin matrices can be used to reduce PKA.
  • the PKA is reduced in the albumin-containing solution obtained, in the ideal case it is no longer detectable.
  • PKA is identical to the activated (coagulation) factor XII (FXIIa), which is generated from its proenzyme form (FXII).
  • FXIIa activated (coagulation) factor XII
  • FXIII proenzyme
  • FXII proenzyme
  • the depletion of the FXII can optionally be carried out in order to enable long-term storage of the albumin in the liquid state. This is also important after thawing an albumin solution that may be stored in a frozen state. Accordingly, the albumin solution can be frozen after filling into the final containers, but can also be cooled in a liquid or freeze-dried state and stored at a temperature of up to 40 ° C.
  • any precallikrein activator activity that may be present before or after steps (a), (b) or (c) can be removed in a manner known per se, the albumin solution in particular
  • A) is brought into contact with activated carbon, after which the activated carbon is removed from the albumin solution, or
  • Step (A) is carried out at an albumin concentration between 1 and 25% by weight, in particular between 5 and 10% by weight.
  • Step (B) is carried out in particular at an albumin concentration between 5 and 10% by weight.
  • a further embodiment of the method according to the invention consists in that the ion exchanger is an anion exchanger and the albumin solution is buffered with sodium acetate in the range from 100 to 150 mmol / l and the pH in the range from 5.0 to 6.0, in particular ⁇ 5.5 lies.
  • the ion exchanger is a cation exchanger and the Albumin solution is buffered with sodium acetate in the range of 20-30 mmol / l and the pH is in the range of 4.8-6.0, in particular in the range of 4.8-5.2.
  • the invention relates. furthermore an albumin solution which can be obtained by the process according to the invention.
  • This method is applicable to albumin solutions obtained from various sources, e.g. from blood plasma or serum, from albumin-containing fractions from plasma fractionation, from albumin obtained from culture supernatant after recombinant production or transgenically produced albumin or from the medium containing the albumin, such as milk.
  • aqueous albumin solution from the Cohn process (after dia / ultrafiltration) with a protein content of about 23%, Triton X-100 and tri-n-butyl phosphate (TNBP) are added to a concentration of 1% each.
  • the albumin solution is then stirred at 30 ° C. for 4 hours.
  • castor oil is first added with stirring to a concentration of 5%, while the solution is brought to a temperature in the range from 20-25 ° C. The mixture is then stirred for 30 minutes. After stirring, the 60 minute mixture is left to stand, whereby a heavy, aqueous phase and a light phase form.
  • the heavy phase is separated off and filtered through a filter with membranes with a pore size of ⁇ 1 ⁇ m and ⁇ 0.45 ⁇ m.
  • the light phase (oil phase) contains the TNBP and is discarded.
  • the filtered solution is passed through a solid phase extraction column to separate the Triton X-100.
  • a polystyrene-divinylbenzene polymer (Amberchrome CG 161) without hydrophobic side chains is used as the hydrophobic matrix.
  • Water for injection is used to wash out the column, this process being monitored by measuring the UV absorption at 280 nm.
  • the column is regenerated after use.
  • the following can be added as stabilizers: glycine, glutamate, arginine, maltose, sorbitol or mixtures of the substances.
  • the solution is then sterile filtered through a membrane filter with a pore size of ⁇ 0.2 ⁇ m.
  • the sterile-filtered solution is filled into sterile, pyrogen-free PVC bags under aseptic conditions and labeled.
  • the labeled bags are frozen at a temperature of ⁇ -60 ° C so that the temperature inside the bags reaches ⁇ -30 ° C.
  • the bags are stored at this temperature ( ⁇ . -30 ° C).
  • An albumin solution with a protein concentration of 5-10% by weight is subjected to ion exchange chromatography (DEAE-Sepharose, Q-Sepharose) at pH 5-6, in particular ⁇ 5.5, in a 100-150 mmol sodium buffered system , Due to the high ionic strength, a PKA-free albumin solution is obtained in one pass.
  • ion exchange chromatography DEAE-Sepharose, Q-Sepharose
  • An albumin solution with a protein concentration of 5-10 wt .-% is at pH 5-6, preferably 4.8-5.2, in a 20-30 mmol / l sodium acetate buffered system of an ion exchange Chromatography (SP-Toyopearl, CM-Sepharose) subjected.
  • SP-Toyopearl, CM-Sepharose an ion exchange Chromatography
  • the solution is then sterile filtered through a membrane filter with a pore size of ⁇ 0.2 ⁇ m.
  • the sterile-filtered solutions are filled into sterile, pyrogen-free PVC bags and labeled under aseptic conditions.
  • the labeled bags are frozen at a temperature of ⁇ -60 ° C so that the temperature inside the bags reaches ⁇ -30 ° C.
  • the bags are stored at this temperature ( ⁇ . -30 ° C) .
  • SEC size exclusion chromatography
  • an SEC column is equilibrated with a buffer solution containing the binding ligands (eg phenylbutazone or warfarin).
  • the absorption in the UV range is monitored continuously.
  • the protein is applied to the column and eluted in the equilibration buffer.
  • Bound ligand elutes together with the albumin, the unbound, usually smaller ligand, elutes accordingly later.
  • the absorption of the bound ligand usually interferes with the absorption of the albumin and possible accompanying substances such as stabilizers.
  • the later "negative" so-called "vacancy” peak is caused by the depletion of the ligand in the subsequent buffer, which takes up more area the more bound to the previously eluted albumin.
  • Koizumi et al. (Biomed Chromatogr 1998; 12: 203-210) used this method in a slightly modified form to investigate the binding capacities of substances on albumin or its affinities, for example by adding constant concentrations of albumins in separate runs with increasing amounts of the ligand and thus the binding capacity in the form of albumin-to-substance ratios could be determined.
  • a Biosep-SEC-S 4 ⁇ 00 column, 300x4.6 mm micron (Phenomenenx) on a Shimadzu HPLC system was used for this investigation.
  • the buffer flow rate was 0.35 ml / min, the column having been equilibrated with 50 mM potassium phosphate buffer, pH 7.4.
  • the protein concentration was 50 ⁇ M, the injection volume 80 ⁇ l.
  • Phenylbutazone was tracked at 263 nm, warfarin at 308 nm. The linear absorption ranges had previously been determined.
  • the albumin described in this application was used (1) and two commercially available (stabilized) albumin preparations (2,3). These were 20% albumin solutions.
  • FIG. 1 shows a superposition of four different chromatograms, the column being equilibrated in 50 ⁇ M phenylbutazone (in phosphate buffer).
  • the albumin initially eluted, the peak indicating the sum of the protein absorption and that of the bound substance.
  • an N-acetyl-tryptophan (stabilizer) peak is usually seen in the case of a commercial albumin.
  • the 'vacancy' peak appears in the form of a 'negative' absorption representation relative to the level of the equilibration buffer including the substance. The higher (in the negative sense) this peak or the larger the peak area, the more substance has bound to the previously eluted albumin.
  • FIG. 2 shows the UV absorptions of three phenylbutazone concentrations bound to albumin (after subtraction of the buffer peak).
  • albumins containing caprylate and N-acetyl-tryptophan
  • albumin prepared by the process described in this application were chromatographed and the binding qualities compared.
  • the peak in area and height are clearly larger in the case of the new albumin. This applies similarly to the second example, namely warfarin, as shown in FIG. 3.
  • the column was loaded with a 1% Triton X-100 solution.
  • the Triton X was 1% Triton X-100 solution.
  • the RP-18 gel binds 140 mg Triton X-100 / ml gel and the Amberchrome gel binds 160 mg Triton X-100 / ml gel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

Die Erfindung betrifft ein therapeutisch einsetzbares virusinaktiviertes Albumin sowie ein Verfahren zur Herstellung eines therapeutisch einsetzbaren virusinaktivierten Albumins, gekennzeichnet durch die Kombination folgender Schritte: (a) Unterziehen einer ersten wässerigen Albuminlösung einer Behandlung zur Virusinaktivierung nach dem SD-Verfahren durch Kontaktierung mit SD-Reagenzien bei einer Temperatur unter 45°C; (b) Entfernen der SD-Reagenzien durch Ölextraktion und anschließender hydrophober Wechselwirkungschromatographie zumindest im wesentlichen, wobei zur Chromatographie eine hydrophobe Matrix, insbesondere eine Matrix, an welcher gegebenenfalls hydrophobe Gruppen gebunden sein können verwendet wird, mit der Maßgabe, dass diese Gruppen aliphatische Gruppen mit C > 24 sind, und eine zweite Albuminlösung erhalten wird, welche; (c) gegebenenfalls mit einem oder mehreren Stabilisatoren aus der Gruppe Zucker, Aminosäuren und Zuckeralkohole versetzt wird, mit der Maßgabe, dass als Stabilisator kein Indol-Stabilisator und keine C6-C10-Fettsäure eingesetzt wird, wonach; (d) die gegebenenfalls mit Stabilisator versetzte, zweite Albuminlösung endkonfektioniert und sterilfiltriert und gegebenenfalls in Endbehältnisse abgefüllt wird.

Description

Albuminlosung und Verfahren zu ihrer Herstellung
Die Erfindung betrifft ein therapeutisch einsetzbares virusinaktiviertes Albumin und ein Verfahren zu seiner Herstellung.
Albumin is das im Blutplasma anteilsmäßig am stärksten vertretene Plasmaprotein. Albumin kann viele endogene und exogene Stoffe an sein Molekül binden. Auf dieser Bindungskapazität beruht auch eine seiner Hauptfunktionen : der Transport der an Albumin gebundenen Stoffe.
Aufgrund dieser Bindungskapazität stellt Albumin auch ein wichtiges Depot für eine Vielzahl von Verbindungen dar, wie z.B. langkettige Fettsäuren, Bilirubin, Tryptophan, Thyroxin oder Metallionen. Auch verabreichte pharmazeutische Wirkstoffe, wie Warfarin, Digitoxin oder Naproxen werden an Albumin gebunden und transportiert.
In diesem Zusammenhang ist es jedoch entscheidend zu wissen, dass lediglich der freie Anteil des jeweiligen pharmazeutischen Wirkstoffes, d.h. der nicht an Albumin gebundene, jener ist, der die pharmakologische Wirkung entfaltet. Eine Reduktion des an Albumin gebundenen Teils erhöht den freien Anteil und damit die pharmakologische Aktivität.
Sämtliche der im Handel erhältlichen Albuminpräparate werden mittels einer modifizierten Cohn-Fraktionierung hergestellt, wobei dieses Verfahren in der Regel aus mehreren Fraktionierungsschritten besteht. Die Pasteurisierung ( 10 Stunden bei 60°C) des Albuminkonzentrates wird als Virusinaktivierungsschritt seit Jahrzehnten angewendet. Zur Vermeidung der Denaturierung von Albumin während dieses Schrittes werden Stabilisatoren zugesetzt. Gemäß Europäischer Pharmacopoeia werden als Stabilisatoren Natriumcaprylat (Natriumoctanoat) oder N-Acetyltryptophan oder eine Kombination von beiden verwendet.
BESTATIGUNGSKOPIE Um Virus inaktivierte Faktor VIII Präparate oder andere Plasmaproteine zu gewinnen, wird das sogenannte SD-Verfahren angewendet, wie z.B. in der EP- A-0 131 740 beschrieben. Auf diese Offenlegungsschrift wird ausdrücklich Bezug genommen.
Der Anmelderin ist aufgrund eigener Studien bekannt, dass die Bindungskapazität von kommerziell erhältlichem Albumin . im Vergleich zu natürlichem Albumin erheblich beeinträchtigt ist. Dies wird darauf zurückgeführt, dass die bei der Pasteurisierung verwendeten Stabilisatoren vom Albumin gebunden werden und auf diese Weise wichtige Transportstellen besetzen, wodurch die Bindungskapazität abnimmt. Dies bedeutet, dass Patienten, die solche Albuminpräparationen erhalten, bei Verabreichung von pharmazeutischen Wirkstoffen einer beträchtlich erhöhten Konzentration an freiem, d.h. nicht an Albumin gebundenem Wirkstoff ausgesetzt sind, was für den Patienten naturgemäß eine erhöhte Gefahr überschießender pharmakologischer Wirkungen und Nebenwirkungen mit sich bringt.
Die vorliegende Erfindung stellt sich die Aufgabe, eine Albuminpräparation zur Verfügung zu stellen, welche diesen Nachteil nicht aufweist.
Fig. 1 zeigt das UV-Absorptionsverhalten von Albuminen verschiedener Provenienz in Abhängigkeit von der Elutionszeit während der chromatographischen Trennung.
Fig. 2 illustriert das Bindungsverhalten von Albuminen verschiedener Provenienz in Gegenwart von verschiedenen Konzentrationen von Phenylbutazon.
Fig. 3 illustriert das Bindungsverhalten von Albuminen verschiedener' Provenienz in Gegenwart von verschiedenen Konzentrationen von Warfarin.
Gelöst wird das Problem durch ein therapeutisch einsetzbares virusinaktiviertes Albumin mit gegenüber durch Pasteurisierung virusinaktiviertem Albumin erhöhter Bindungskapazität für Substanzen. Das erfindungsgemäße Albumin weist insbesondere eine um mindestens 10 % erhöhte Bindungskapazität gegenüber durch Pasteurisierung virusinaktiviertem Albumin auf, typischer Weise 20 bis 500 % erhöhte Bindungskapazität, insbesondere 100 % bis 500 % erhöhte Bindungskapazität, auf. In Abhängigkeit von der zu bindenden Substanz sind in Einzelfällen auch noch höhere Werte möglich.
Die Substanzen sind insbesondere solche, die von nativem Albumin gebunden und/oder transportiert werden, wozu insbesondere niedermolekulare Wirkstoffe gehören. Insbesondere sind die niedermolekularen Wirkstoffe organische oder anorganische Substanzen, Nukleinsäuren, Polypeptide, die typischer Weise ein Molekulargewicht von <. 10 000 Da aufweisen.
Für die angesprochenen therapeutischen Zwecke kann das erfindύngsgemäße Albumin in flüssiger Lösung oder in festem Zustand, insbesondere in lyophylisierter Form vorliegen.
Das erfindungsgemäße Albumin ist auch erhältlich durch einem Verfahren, welches gekennzeichnet ist durch die Kombination folgender Schritte:
(a) Unterziehen einer ersten wässerigen Albuminlösung einer Behandlung zur Virusinaktivierung nach dem SD-Verfahren durch Kontaktierung mit SD- Reagenzien bei einer Temperatur unter 45°C,
(b) Entfernen der SD-Reagenzien durch Olextraktion und anschließender hydrophober Wechselwirkungschromatographie zumindest im wesentlichen, wobei zur Chromatographie eine hydrophobe Matrix, insbesondere eine Matrix, an welcher gegebenenfalls hydrophobe Gruppen gebunden sein können verwendet wird, mit der Maßgabe, dass diese Gruppen aliphatische Gruppen mit C > 24 sind, und eine zweite Albuminlösung erhalten wird, welche
(c) gegebenenfalls mit einem oder mehreren Stabilisatoren aus der Gruppe Zucker, Aminosäuren und Zuckeralkohole versetzt wird, mit der Maßgabe, dass als Stabilisator kein Indol-Stabilisator und keine C6-Cι0- Fettsäure eingesetzt wird, wonach (d) die gegebenenfalls mit Stabilisator versetzte, zweite Albuminlösung endkonfektioniert und steril filtriert und gegebenenfalls in Endbehältnisse abgefüllt wird.
Der Begriff Indol-Stabilisator soll sämtliche Stabilisatoren umfassen, welche ein Indol-Gerüst aufweisen, also z.B. N-Acetyltryptophan.
Das SD-(=Solvens/Detergens)-Verfahren zur Inaktivierung von Viren ist aus der EP-A - 0 131 740 bekannt. In dieser Druckschrift ist unter anderen Proteinen auch Albumin genannt.
Aus der EP-A - 0 366 946 ist zwar bekannt, dass die SD-Reagenzien mit Pflanzenölen, z.B. Sojaöl, und anschließender hydrophober Wechselwirkungschromatographie entfernt werden können. Das Verfahren gemäß Anspruch 8 ist soweit es sich mit dem Verfahren gemäß EP-A - 0 366 946 überschneidet mithin in einem Aspekt als Analogieverfahren zur Herstellung des erfindungsgemäßen Albumins anzusehen. Zur Chromatographie wird jedoch dort vorzugsweise eine Matrix, z.B. eine Silicamatrix, vorgeschlagen, an welche hydrophobe Seitenketten, und zwar verzweigte oder unverzweigte C6-C24-Alkyl ketten gebunden sind.
Es hat sich überraschenderweise gezeigt, dass der Einsatz einer hydrophoben Matrix anstelle einer Matrix, die als hydrophobe Seitenketten beispielsweise C18-Alkyl ketten trägt, eine höhere Bindungskapazität zur Adsorption von Detergenzien besitzt. Entsprechend brauchen an die erfindungsgemäß verwendete Matrix keine weiteren hydrophoben Gruppen gebunden sein. Ein Verfahren unter Verwendung einer solchen Matrix ist daher auch Gegenstand der Erfindung.
Die Virusinaktivierung wird vorteilhaft bei einer Temperatur im Bereich von 25 bis 40 °C vorgenommen.
Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, dass die Virusinaktivierung während eines Zeitraumes im Bereich von 4 bis 6 Stunden vorgenommen wird. Als Stabilisator eignet sich sehr gut Glycin.
Zur Olextraktion eignet sich sehr gut Rizinusöl.
Es hat sich als für den Reinigungseffekt als besonders vorteilhaft erwiesen, wenn als hydrophobe Matrix ein Polystyrol-Divinylbenzol-Polymer oder ein Polymer auf Methacrylat-Basis verwendet wird.
Die erfindungsgemäß eingesetzten hydrophoben Matrizes können verzweigte oder lineare aliphatische Gruppen mit mehr als 24 C-Atomen tragen.
Abhängig vom verwendeten Ausgangsmaterial kann ein Schritt zur Abreicherung der sogenannten Präkallikrein-Aktivator-Aktivität (PKA) erforderlich sein. PKA ist bekannt dafür, durch Freisetzung der vasoaktiven Substanz Bradykinin aus dem hochmolekularen Kininogen (HMWK) zum Abfall des Blutdruckes nach Administration PKA-haltiger Präparate zu führen.
PKA wird in der Regel während der Pasteurisierung von Proteinpräparaten inaktiviert. Da eine Hitzebehandlung, durch welche die PKA erfahrungsgemäß zumindest partiell inaktiviert wird, aus oben genannten Gründen unvorteilhaft für das verfahrensgemäß hergestellte Albumin ist, kann PKA, falls erforderlich, durch spezielle Maßnahmen entfernt werden. Dazu gehört die Inkubation mit Aktivkohle mit nachfolgender Filtration, bevorzugt mit Tiefenfiltern, oder das direkte Filtrieren durch Aktivkohle-haltige Filter.
Ferner eignen sich Ionenaustauscher, wie Kationen- oder Anionenaustauscher, gut zur Entfernung der PKA. Dies kann durch Kontaktieren der albuminhaltigen Lösung mit der Matrix in Säulen , oder dem Fachmann vertrauten Batch- Verfahren erfolgen. Alternativ können Dextransulfat- oder Heparinmatrices zur Reduktion von PKA eingesetzt werden.
In der erhaltenen albuminhaltigen Lösung ist die PKA reduziert, im optimalen Fall nicht mehr nachweisbar. PKA ist nach dem heutigen Stand der Technik identisch mit dem aktivierten (Gerinnungs-) Faktor XII (FXIIa), der aus seiner Proenzymform (FXII) generiert wird. Dies kann an Oberflächen autokatalytisch oder durch enzymatische Einwirkung, beispielsweise des Kallikreins, erfolgen. Entsprechend ist auch eine Abreicherung des FXII (Proenzymes) als Ausgangssubstanz der PKA empfehlenswert, jedoch nicht zwingend erforderlich. Um jedoch einer erneuten Generierung von PKA aus der Proenzymform vorzubeugen, kann diese auch durch Ionenaustauscherchromatographie entfernt werden. Das Abreichern des FXII kann gegebenenfalls durchgeführt werden, um eine langfristige Lagerung des Albumins in flüssigem Zustand zu ermöglichen. Dies ist auch nach Auftauen einer gegebenenfalls in gefrorenem Zustand gelagerten Albuminlösung wichtig. Entsprechend kann die Albuminlösung nach Abfüllung in die Endbehältnisse tiefgefroren werden, jedoch auch in flüssigem oder gefriergetrocknetem Zustand gekühlt und bis zu einer Temperatur von 40°C gelagert werden.
Zur Entfernung des PKA bzw. von PKA-Vorläufersubstanzen kann somit vor oder nach den Schritten (a), (b) oder (c) gegebenenfalls vorhandene Präkallikrein-Aktivator-Aktivität (PKA) in an sich bekannter Weise entfernt werden, wobei die Albuminlösung insbesondere
A) mit Aktivkohle in Kontakt gebracht wird, wonach d ie Aktivkohle aus der Albuminlösung entfernt wird, oder
B) einer Ionenaustauschchromatographie unterzogen wird.
Der Schritt (A) wird bei einer Albuminkonzentration zwischen 1 und 25 Gew.-%, insbesondere zwischen 5 und 10 Gew.-%, vorgenommen.
Der Schritt (B) wird insbesondere bei einer Albuminkonzentration zwischen 5 und 10 Gew.-% durchgeführt.
Eine weitere Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, dass der Ionenaustauscher ein Anionenaustauscher ist und die Albuminlösung mit Natriumacetat im Bereich von 100 - 150 mMol/l gepuffert ist und der pH im Bereich von 5,0 -6,0, insbesondere <5,5 liegt.
Ferner wird ein Verfahren beschrieben, das dadurch gekennzeichnet ist, dass der Ionenaustauscher ein Kationenaustauscher ist und die Albuminlösung mit Natriumacetat im Bereich von 20 -30 mmol/l gepuffert ist und der pH im Bereich von 4,8 - 6,0, insbesondere im Bereich von 4,8-5, 2 liegt.
Die Erfindung betrifft . ferner eine Albuminlösung, welche nach dem erfindungsgemäßen Verfahren erhältlich ist. Dieses Verfahren ist anwendbar auf Albuminlösungen, gewonnen aus verschiedenen Quellen, z.B. aus Blutplasma oder -serum, aus albuminhaltigen Fraktionen der Plasmafraktionierung, aus Kulturüberstand gewonnenem Albumin nach rekombinanter Herstellung oder transgen hergestelltem Albumin oder aus dem das Albumin enthaltenden Medium, wie Milch.
Eine bevorzugte Ausführungsform der Erfindung wird an Hand des nachfolgenden Beispiels näher beschrieben.
Beispiel
1000 g einer wässerigen Albuminlösung aus dem Cohn-Verfahren (nach Dia- /Ultrafiltration) mit einem Proteingehalt von etwa 23% werden Triton X-100 und Tri-n-butylphosphat (TNBP) bis zu einer Konzentration von jeweils 1% zugegeben. Anschließend wird die Albuminlösung 4 Stunden bei 30°C gerührt.
Zur Entfernung der SD-Reagenzien wird zunächst Rizinusöl unter Rühren bis zu einer Konzentration von 5% zugegeben, während die Lösung auf eine Temperatur im Bereich von 20-25°C gebracht wird. Danach wird das Gemisch 30 Minuten gerührt. Nach dem Rühren wird das 60 Minuten Gemisch ruhen gelassen, wobei sich ein schwere, wässerige Phase und eine leichte Phase ausbilden. Die schwere Phase wird abgetrennt und über ein Filter mit Membranen einer Porengröße von < 1 μm und < 0,45 μm filtriert. Die leichte Phase (Ölphase) enthält das TNBP und wird verworfen.
Die filtrierte Lösung wird zur Abtrennung des Triton X-100 über eine Festphasenextraktionssäule geführt. Als hydrophobe Matrix wird ein Polystyrol- Divinylbenzol-Polymer (Amberchrome CG 161) ohne hydrophobe Seitenketten verwendet. Wasser zur Injektion wird verwendet, um die Säule auszuwaschen, wobei dieser Vorgang durch Messung der UV-Absorption bei 280 nm überwacht wird. Nach Verwendung wird die Säule regeneriert.
Als Stabilisatoren können zugegeben werden: Glyzin, Glutamat, Arginin, Maltose, Sorbit oder Mischungen der Substanzen.
Die erhaltene Lösung wird auf pH=7,0 gebracht und der Proteingehalt auf 200 g/l und der Natriumgehalt auf 80 mMol/l Na+ eingestellt. Dann wird die Lösung durch ein Membranfilter mit einer Porengöße von <0,2 μm sterilfiltriert.
Die sterilfiltrierte Lösung wird unter aseptischen Bedingungen in sterile, pyrogen-freie PVC-Beutel abgefüllt und etikettiert.
Die etikettierten Beutel werden bei einer Temperatur von <-60°C tiefgefroren, sodass die Temperatur im Inneren der Beutel <-30°C erreicht. Bei dieser Temperatur (<.-30°C) werden die Beutel gelagert.
Präkallikreinabreicherung
Für den Fall der PKA-Abreicherung kann nach folgenden Varianten vorgegangen werden: a) Eine Albuminlösung mit einer Proteinkonzentration von 1-25 Gew.-%, insbesondere 5-10 Gew.-% wird mit 3-10 Gew.-%, insbesondere 5 Gew.-% Aktivkohle bei pH = 5 eine Stunde gerührt. Anschließend wird die Aktivkohle ab filtriert. b Eine Albuminlösung mit einer Proteinkonzentration von 5-10 Gew.-% wird bei pH 5- 6, insbesondere < 5,5, in einem 100-150 mMol Natriumacetat gepufferten System einer Ionenaustausch- chromatographie (DEAE-Sepharose, Q-Sepharose) unterworfen. Durch die hohe Ionenstärke wird im Durchlauf eine PKA freie Albuminlösung gewonnen. c) Eine Albuminlösung mit einer Proteinkonzentration von 5-10 Gew.-% wird bei pH 5- 6, bevorzugt 4,8-5,2, in einem 20-30 mMol/l Natriumacetat gepufferten System einer Ionenaustausch- Chromatographie (SP-Toyopearl, CM-Sepharose) unterworfen. Im Durchlauf wird eine PKA-freie Albuminlösung gewonnen.
Endformulierung
Die erhaltenen Lösungen werden jeweils auf pH = 7,0 gebracht und der Proteingehalt auf 200 g/l und der Natriumgehalt auf 80 mMol/l Na+ eingestellt. Dann wird die Lösung durch ein Membranfilter mit einer Porengöße von <0,2 μm sterilfiltriert.
Die sterilfiltrierten Lösungen werden unter aseptischen Bedingungen in sterile, pyrogenfreie PVC-Beutel abgefüllt und etikettiert.
Die etikettierten Beutel werden bei einer Temperatur von <-60°C tiefgefroren, sodass die Temperatur im Inneren der Beutel <-30°C erreicht. Bei dieser Temperatur (<.-30°C) werden die Beutel gelagert.Messung der Bindung von Substanzen an verschiedene Albumin-Präparationen
Eine direkte Methode zur Bestimmung der Bindungseigenschaften von Substanzen an Albumin bietet die Größenausschluss-Chromatographie (SEC, size exclusion chromatography) nach Hummel und Dreyer (Biochim Biophys Acta 1962; 63: 530-532).
Dazu wird eine SEC-Säule mit einer den Bindungsliganden (z.B. Phenylbutazon oder Warfarin) enthaltenden Pufferlösung äquilibriert. Die Absorption im UV-Bereich wird kontinuierlich verfolgt. Das Protein wird auf die Säule aufgetragen und in dem Aquilibrierungspuffer eluiert. Gebundener Ligand eluiert dabei zusammen mit dem Albumin, der ungebundene, meist kleinere Ligand, eluiert entsprechend später. Die Absorption des gebundenen Liganden interferiert dabei meist mit der Absorption des Albumins und möglichen Begleitsubstanzen, wie Stabilisatoren. Der später eluierende 'negative' sog. 'vacancy' Peak wird durch die Depletion des Liganden im nachfolgenden Puffer verursacht, der um so mehr Fläche einnimmt je mehr an das vorher eluierte Albumin gebunden wurde. Koizumi et al. (Biomed Chromatogr 1998; 12: 203-210) verwendeten diese Methode in leicht modifizierter Form zur Untersuchung der Bindungskapazitäten von Substanzen an Albumin bzw. deren Affinitäten, indem beispielsweise konstante Konzentrationen Albumins in separaten Läufen mit steigenden Mengen des Liganden versetzt wurden und so die Bindungskapzität in Form von Albumin- zu-Substanz Ratios ermittelt werden konnten.
Es wurde eine Biosep-SEC-S 4Ö00 Säule, 300x4,6 mm micron (Phenomenenx) auf einer Shimadzu HPLC Anlage für diese Untersuchungen verwendeten. Die Pufferflussrate betrug 0,35 ml/min, wobei die Säule mit 50 mM Kalium-Phosphat Puffer, pH 7.4, äquilibriert worden war. Die Proteinkonzentration betrug 50 μM, das Injektionsvolumen 80 μl. Phenylbutazone wurde bei 263 nm verfolgt, Warfarin bei 308 nm. Die linearen Absorptionsbereiche waren zuvor bestimmt worden.
Es wurde das in dieser Anmeldung beschriebene Albumin verwendet (1), sowie zwei kommerziell erhältliche (stabilisierte) Albumin-Präparate (2,3). Es handelte sich dabei um 20%ige Albuminlösungen.
Fig. 1 stellt eine Überlagerung vier verschiedener Chromatogramme dar, wobei die Säule in 50 μM Phenylbutazon äquilibriert war (in Phosphat-Puffer). Bei einer Retentionszeit von 11 Minuten eluierte das Albumin zunächst, wobei der Peak die Summe aus Protein-Absorption und der der gebundenen Substanz anzeigt. Bei 14,5 min zeigt sich im Falle eines kommerziellen Albumin in der Regel ein N-Acetyl-Tryptophan (Stabilisator) Peak. Nach 18,5 min erscheint der 'vacancy' Peak in Form einer 'negativen' Absorptionsdarstellung relativ zum Level des Aquilibrierungspuffer samt Substanz. Je höher (im negativen Sinne) dieser Peak ist bzw. je größer die Peakfläche, um so mehr Substanz hat an das vorher eluierte Albumin gebunden.
Fig. 2 zeigt die UV-Absorptionen dreier Phenylbutazon-Konzentrationen gebunden an Albumin (nach Subtraktion des Puffer-Peaks). Dazu wurden zwei kommerziell erhältliche (Caprylat und N-Acetyl-Tryptophan enthaltende) Albumine, sowie das nach dem in dieser Anmeldung beschriebenen Verfahren hergestellte Albumin chromatographiert und die Bindungsqualitäten verglichen. Bei vergleichbaren molaren Konzentrationen von Phenylbutazon zu Albumin zeigt sich klar, dass der Peak in Hohe und Fläche eindeutig größer im Falle des neuen Albumins sind. Dies gilt in ähnlicher Weise für das zweite Beispiel, nämlich Warfarin, wie in Fig. 3 dargestellt.
Diese Ergebnisse unterstreichen, dass das kommerzielle Albumin dem hier beschriebenen Albumin in seiner Bindungseigenschaft unterlegen ist.
Vergleich der Bindungskapazität von RP-18-Säulen im Vergleich zu Polystyrol- Divinylbenzol-Polymeren (Amberchrome 161 M).
Testsystem : Säulenvolumen : 44 ml
Flussrate: 4 ml/min
Die Säule wurde mit einer 1% Triton X-100 Lösung geladen. Der Triton X
Gehalt im Eluat nach jedem Säulenvolumen mittels , Umkehrphasen HPLC gemessen. Wenn Triton im Eluat nachweisbar war, war die Kapazität des Gels erreicht.
Ergebnis:
Das RP-18-Gel bindet 140 mg Triton X-100/ml Gel und das Amberchrome-Gel bindet 160 mg Triton X-100/ml Gel.

Claims

Patentansprüche
1. Therapeutisch einsetzbares virusinaktiviertes Albumin mit gegenüber durch Pasteurisierung virusinaktiviertem Albumin erhöhter Bindungskapazität für Substanzen.
2. Albumin nach Anspruch 1. wobei die Bindungskapazität gegenüber durch Pasteurisierung virusinaktiviertem Albumin um mindestens 10 % erhöht ist.
3. Albumin nach Anspruch 1 und/oder 2, wobei die Bindungskapazität gegenüber durch Pasteurisierung virusinaktiviertem Albumin um mindestens 20 bis 500 % erhöht ist.
4. Albumin nach mindestens einem der Ansprüche 1 bis 3, wobei die Substanzen niedermolekulare Wirkstoffe sind.
5. Albumin nach mindestens einem der Ansprüche 1 bis 4, wobei die niedermolekulare Wirkstoffe organische Substanzen, Nukleinsären, Polypeptide sind, die ein Molekulargewicht von höchstens 10 000 Da aufweisen.
6. Albumin nach mindestens einem der Ansprüche 1 bis 5 in flüssiger Lösung oder in festem Zustand.
7. Albumin nach Anspruch 6 in lyophylisierter Form.
8. Verfahren zur Herstellung von Albumin, gekennzeichnet durch die Kombination folgender Schritte:
(a) Unterziehen einer ersten wässerigen Albuminlösung einer Behandlung zur Virusinaktivierung nach dem SD-Verfahren durch Kontaktierung mit SD-Reagenzien bei einer Temperatur unter 45°C,
(b) Entfernen der SD-Reagenzien durch Olextraktion und anschließender hydrophober Wechselwirkungschromatographie zumindest im wesentlichen, wobei zur Chromatographie eine hydrophobe Matrix, insbesondere eine Matrix, an welcher gegebenenfalls hydrophobe Gruppen gebunden sein können verwendet wird, mit der Maßgabe, dass diese Gruppen aliphatische Gruppen mit C > 24 sind, und eine zweite Albuminlösung erhalten wird, welche
(c) gegebenenfalls mit einem oder mehreren Stabilisatoren aus der Gruppe Zucker, Aminosäuren und Zuckeralkohole versetzt wird, mit der Maßgabe, dass als Stabilisator kein Indol-Stabilisator und keine C6-Cιo- Fettsäure eingesetzt wird, wonach
(d) die gegebenenfalls mit Stabilisator versetzte, zweite Albuminlösung endkonfektioniert und sterilfiltriert und gegebenenfalls in Endbehältnisse abgefüllt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Virusinaktivierung bei einer Temperatur im Bereich von 25 bis 40 °C vorgenommen wird.
10. Verfahren nach einem der Ansprüche 8 und/oder 9, dadurch gekennzeichnet, dass die Virusinaktivierung während eines Zeitraumes im Bereich von 4 bis 6 Stunden vorgenommen wird.
11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass als Stabilisator Glycin, Glutamat, Arginin, oder Lysin bzw. eine Kombination davon eingesetzt wird.
12. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass als Stabilisator Maltose und/oder Sorbitol eingesetzt wird.
13. Verfahren nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass zur Olextraktion Rizinusöl eingesetzt wird.
14. Verfahren nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass als hydrophobe Matrix ein Polystyrol- Divinylbenzol-Polymer oder ein Polymer auf Methacrylat-Basis verwendet wird.
15. Verfahren nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass verzweigte oder lineare aliphatische Gruppen mit mehr als 24 C-Atomen an die Matrix gebunden sind.
16. Verfahren nach einem der Ansprüche 8 bis 15, dadurch gekennzeichnet, dass die Albuminlösung nach Abfüllung in die Endbehältnisse tiefgefroren wird.
17. Verfahren nach einem der Ansprüche 8 bis 16, dadurch gekennzeichnet, dass vor oder nach den Schritten (a), (b) oder (c) gegebenenfalls vorhandene Präkallikrein-Aktivator-Aktivität (PKA) in an sich bekannter Weise entfernt wird.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Albuminlösung zur Entfernung der gegebenenfalls vorhandenen Präkallikrein-Aktivator-Aktivität a) mit Aktivkohle in Kontakt gebracht wird, wonach die Aktivkohle aus der Albuminlösung entfernt wird, oder b) einer Ionenaustauschchromatographie unterzogen wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass der Schritt (A) bei einer Albuminkonzentration zwischen 1 und 25 Gew.-% durchgeführt wird.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Albuminkonzentration zwischen 5 und 10 Gew.-% beträgt.
21. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass der Schritt (B) bei einer Albuminkonzentration zwischen 5 und 10 Gew.-% durchgeführt wird.
22. Verfahren . nach einem der Ansprüche 18 oder 21, dadurch gekennzeichnet, dass der Ionenaustauscher ein Anionenaustauscher ist und die Albuminlösung mit Natriumacetat im Bereich von 100 - 150 mMol gepuffert ist und der pH im Bereich von 5,0 - 6,0 liegt.
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass der pH < 5,5 ist.
24. Verfahren nach einem der Ansprüche 18 oder 21, dadurch gekennzeichnet, dass der Ionenaustauscher ein Kationenaustauscher ist und die Albuminlösung mit Natriumacetat im Bereich von 20 - 30 mMol gepuffert ist und der pH im Bereich von 4,8 - 6,0 liegt.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass der pH im Bereich von 4,8-5,2 liegt.
26. Albuminlösung, erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 25.
PCT/EP2004/001397 2003-02-13 2004-02-13 Albuminlösung und verfahren zu ihrer herstellung WO2004071524A1 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
MXPA05008276A MXPA05008276A (es) 2003-02-13 2004-02-13 Solucion de albumina y metodo para producirla.
DK04710818T DK1592439T3 (da) 2003-02-13 2004-02-13 Fremgangsmåde til fremstilling af en albuminoplösning
BR0407458-0A BRPI0407458A (pt) 2003-02-13 2004-02-13 Solução de albumina e processo para sua preparação
US10/544,833 US20060234907A1 (en) 2004-02-13 2004-02-13 Albumin solution and process for the production thereof
AU2004212324A AU2004212324B2 (en) 2003-02-13 2004-02-13 Albumin solution and method for the production thereof
CA002514163A CA2514163A1 (en) 2003-02-13 2004-02-13 Albumin solution and method for the production thereof
JP2006501841A JP2006517938A (ja) 2003-02-13 2004-02-13 アルブミン溶液およびその調製のための製法
SI200430395T SI1592439T1 (sl) 2003-02-13 2004-02-13 Postopek za pripravo albuminske raztopine
EP04710818A EP1592439B1 (de) 2003-02-13 2004-02-13 Verfahren zur herstellung einer albuminlösung
YUP-2005/0624A RS50891B (sr) 2003-02-13 2004-02-13 Postupak za pripremanje rastvora albumina
UAA200508678A UA80469C2 (en) 2003-02-13 2004-02-13 Method for the production of albumin
DE502004003834T DE502004003834D1 (de) 2003-02-13 2004-02-13 Verfahren zur herstellung einer albuminlösung
IL169828A IL169828A0 (en) 2003-02-13 2005-07-21 Albumin solution and method for the production thereof
NO20053677A NO20053677L (no) 2003-02-13 2005-07-29 Fremgangsmate for fremstilling av albumin
CY20071101052T CY1106793T1 (el) 2003-02-13 2007-08-07 Διαλυμα αλβουμινης και μεθοδος για την παρασκευη του

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT2182003 2003-02-13
ATA218/2003 2003-02-13

Publications (1)

Publication Number Publication Date
WO2004071524A1 true WO2004071524A1 (de) 2004-08-26

Family

ID=32854882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001397 WO2004071524A1 (de) 2003-02-13 2004-02-13 Albuminlösung und verfahren zu ihrer herstellung

Country Status (22)

Country Link
EP (1) EP1592439B1 (de)
JP (1) JP2006517938A (de)
KR (1) KR20050103292A (de)
CN (1) CN100384471C (de)
AT (1) ATE362376T1 (de)
AU (1) AU2004212324B2 (de)
BR (1) BRPI0407458A (de)
CA (1) CA2514163A1 (de)
CY (1) CY1106793T1 (de)
DE (1) DE502004003834D1 (de)
DK (1) DK1592439T3 (de)
ES (1) ES2285427T3 (de)
IL (1) IL169828A0 (de)
MX (1) MXPA05008276A (de)
NO (1) NO20053677L (de)
PL (1) PL376644A1 (de)
PT (1) PT1592439E (de)
RS (1) RS50891B (de)
RU (1) RU2305556C2 (de)
UA (1) UA80469C2 (de)
WO (1) WO2004071524A1 (de)
ZA (1) ZA200506452B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005023155A1 (de) * 2005-05-13 2006-11-16 Albutec Gmbh Albuminlösung
WO2007079886A1 (de) * 2005-12-22 2007-07-19 Csl Behring Gmbh Oktanoatreduziertes human albumin
EP2072056A1 (de) 2007-11-12 2009-06-24 Grifols, S.A. Verfahren zur Gewinnung von hocheffizientem Humanalbumin zur Verwendung in der Entgiftungstherapie
US7851446B2 (en) 2007-10-26 2010-12-14 Grifols, S.A. Use of therapeutic human albumin for treatment of alzheimer'S disease
US10220101B2 (en) 2010-04-19 2019-03-05 Vergell Medical S.A. Combination of drugs with protein-binding prodrugs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111195351A (zh) * 2020-01-20 2020-05-26 华兰生物工程重庆有限公司 5%低浓度人血白蛋白的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366946A1 (de) * 1988-10-07 1990-05-09 New York Blood Center, Inc. Entfernen von Verfahrenschemikalien aus labilen biologischen Gemischen durch hydrophobe Austauschchromatographie
DE19729778A1 (de) * 1997-07-11 1999-01-21 Blutspendedienst Der Drk Lande Verfahren zur Herstellung von virusinaktivierten biologischen Flüssigkeiten
US5919907A (en) * 1997-12-22 1999-07-06 Shanbrom Technologies Llc Preparation and utilization of a novel sterile albumin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669961B2 (ja) * 1984-09-25 1994-09-07 株式会社ミドリ十字 免疫グロブリンの加熱処理方法
US5250662A (en) * 1989-10-05 1993-10-05 Alpha Therapeutic Corporation Albumin purification
IL136552A (en) * 2000-06-05 2005-05-17 Omrix Biopharmaceuticals Ltd Method for the inactivation of viruses by a solvent - detergent combination and by nanofiltration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366946A1 (de) * 1988-10-07 1990-05-09 New York Blood Center, Inc. Entfernen von Verfahrenschemikalien aus labilen biologischen Gemischen durch hydrophobe Austauschchromatographie
DE19729778A1 (de) * 1997-07-11 1999-01-21 Blutspendedienst Der Drk Lande Verfahren zur Herstellung von virusinaktivierten biologischen Flüssigkeiten
US5919907A (en) * 1997-12-22 1999-07-06 Shanbrom Technologies Llc Preparation and utilization of a novel sterile albumin

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005023155A1 (de) * 2005-05-13 2006-11-16 Albutec Gmbh Albuminlösung
US8236927B2 (en) 2005-05-13 2012-08-07 Albutec Gmbh Stabilizer molecule-depleted albumin solution
JP2008545626A (ja) * 2005-05-13 2008-12-18 アルブテック ゲーエムベーハー 安定化剤分子を除去するアルブミン液
JP2009520714A (ja) * 2005-12-22 2009-05-28 ツェー・エス・エル・ベーリング・ゲー・エム・ベー・ハー 低オクタノエート型ヒトアルブミン
AU2006334795B2 (en) * 2005-12-22 2012-02-16 Csl Behring Gmbh Octanoate-reduced human albumin
WO2007079886A1 (de) * 2005-12-22 2007-07-19 Csl Behring Gmbh Oktanoatreduziertes human albumin
JP2012233007A (ja) * 2005-12-22 2012-11-29 Csl Behring Gmbh 低オクタノエート型ヒトアルブミン
US8877711B2 (en) 2005-12-22 2014-11-04 Csl Behring Gmbh Octanoate-reduced human albumin
US7851446B2 (en) 2007-10-26 2010-12-14 Grifols, S.A. Use of therapeutic human albumin for treatment of alzheimer'S disease
EP2072056A1 (de) 2007-11-12 2009-06-24 Grifols, S.A. Verfahren zur Gewinnung von hocheffizientem Humanalbumin zur Verwendung in der Entgiftungstherapie
US8088416B2 (en) 2007-11-12 2012-01-03 Grifols, S.A. Process for obtaining high efficiency human albumin for use in detoxification therapy
US8231599B2 (en) 2007-11-12 2012-07-31 Grifols, S.A. Process for obtaining high efficiency human albumin for use in detoxification therapy
US10220101B2 (en) 2010-04-19 2019-03-05 Vergell Medical S.A. Combination of drugs with protein-binding prodrugs
US10426841B2 (en) 2010-04-19 2019-10-01 Vergell Medical S.A. Combination of drugs with protein-binding prodrugs

Also Published As

Publication number Publication date
RS50891B (sr) 2010-08-31
DE502004003834D1 (de) 2007-06-28
MXPA05008276A (es) 2006-03-21
PL376644A1 (pl) 2006-01-09
ZA200506452B (en) 2007-01-31
RU2305556C2 (ru) 2007-09-10
AU2004212324B2 (en) 2009-05-07
EP1592439B1 (de) 2007-05-16
CY1106793T1 (el) 2012-05-23
ES2285427T3 (es) 2007-11-16
AU2004212324A1 (en) 2004-08-26
UA80469C2 (en) 2007-09-25
PT1592439E (pt) 2007-06-22
NO20053677L (no) 2005-10-31
ATE362376T1 (de) 2007-06-15
RU2005128507A (ru) 2006-01-20
CN1798573A (zh) 2006-07-05
NO20053677D0 (no) 2005-07-29
KR20050103292A (ko) 2005-10-28
DK1592439T3 (da) 2007-09-10
CA2514163A1 (en) 2004-08-26
BRPI0407458A (pt) 2006-01-31
EP1592439A1 (de) 2005-11-09
RS20050624A (en) 2007-06-04
CN100384471C (zh) 2008-04-30
JP2006517938A (ja) 2006-08-03
IL169828A0 (en) 2011-08-01

Similar Documents

Publication Publication Date Title
EP0784632B1 (de) Verfahren zur gewinnung von hochreinem von willebrand-faktor
DE69333928T2 (de) Verbesserte solubilisierung und stabilisierung des faktor viii-komplexes
EP0124506B1 (de) Verfahren zur Inaktivierung von vermehrungsfähigen Krankheitserregern
AT407115B (de) Verfahren zur herstellung eines konzentrates von standardisiertem, menschlichem von willebrand-faktor
DE2801123C2 (de) Verfahren zur Herstellung eines intravenös applizierbaren Serumeiweiß-Präparates
EP1005492B1 (de) Reinigung von von willebrand-faktor durch kationenaustauscherchromatographie
DE19531637A1 (de) Pharmazeutische Zusammensetzung zur Behandlung von Blutgerinnungsstörugnen, Verfahren zur Herstellung derselben und deren Verwendung
DE2734821B2 (de) Blutgerinnungsfördernde Präparation und Verfahren zu ihrer Herstellung
EP0971958B1 (de) Verfahren zur reinigung von faktor viii/vwf-komplex mittels kationenaustauscherchromatographie
EP0973544B1 (de) Immuntolerante prothrombinkomplex-präparation
EP1012191B1 (de) VERFAHREN ZUR GEWINNUNG VON HOCHREINEM vWF ODER FACTOR VIII/vWF-KOMPLEX
WO1994013329A1 (de) Verfahren zur herstellung eines virussicheren biologischen präparates
EP0855917A1 (de) Stabile pharmazeutische darreichungsformen enthaltend parathormon
CH641046A5 (de) Verfahren zur herstellung bestaendiger urokinasemittel.
DE3612137A1 (de) Steriles plasmaaustauschmittel
EP1592439B1 (de) Verfahren zur herstellung einer albuminlösung
AT403765B (de) Verfahren zur herstellung einer präparation enthaltend einen hochgereinigten komplex
EP0120835B1 (de) Verfahren zur Inaktivierung von Unverträglichkeitsreaktionen verursachenden Substanzen
DE2734150B2 (de) Verfahren zur Herstellung von Human-Lysozympräparaten
AT402153B (de) Protein-s-hältige pharmazeutische präparation
AT409336B (de) Verfahren zur herstellung einer c1-esterase-inhibitor (c1-inh)-hältigen zusammensetzung
DE2715748B2 (de) Gereinigte aktive Verbindung des Plasminogen-Typs menschlichen Ursprungs und ihre Verwendung
AT404358B (de) Verfahren zur chromatographischen reinigung bzw. fraktionierung von von willebrand-faktor aus einem vwf-hältigen ausgangsmaterial
DE2428955A1 (de) Verfahren zur extraktion von bestandteilen mit in vivo antikoagulierender wirkung aus schlangengiften und daraus erhaltene produkte
DE3034529C2 (de) Leukorekrutin: Ein Entzündungsmediatorprotein aus Säugerserum zur Induzierung einer Leukozytosereaktion, Herstellungsverfahren, Gewinnung in molekular einheitlicher, kristallisierbarer und biologisch spezifisch wirkender Form und Leukorekrutin enthaltendes Arzneimittel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: P-2005/0624

Country of ref document: YU

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 169828

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2514163

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004212324

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 376644

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/008276

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004710818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1876/CHENP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20048038643

Country of ref document: CN

Ref document number: 2006501841

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004212324

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005/06452

Country of ref document: ZA

Ref document number: 200506452

Country of ref document: ZA

Ref document number: 1020057014946

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005128507

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 1020057014946

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004710818

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0407458

Country of ref document: BR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006234907

Country of ref document: US

Ref document number: 10544833

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10544833

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004710818

Country of ref document: EP