WO2004070112A1 - Fabrication d'un voile en fibres de verre et de cellulose en milieu cationique - Google Patents

Fabrication d'un voile en fibres de verre et de cellulose en milieu cationique Download PDF

Info

Publication number
WO2004070112A1
WO2004070112A1 PCT/FR2004/000014 FR2004000014W WO2004070112A1 WO 2004070112 A1 WO2004070112 A1 WO 2004070112A1 FR 2004000014 W FR2004000014 W FR 2004000014W WO 2004070112 A1 WO2004070112 A1 WO 2004070112A1
Authority
WO
WIPO (PCT)
Prior art keywords
process water
dispersion
fibers
cationic
cellulose
Prior art date
Application number
PCT/FR2004/000014
Other languages
English (en)
Inventor
Michel Droux
Carl Desaint Jean
Original Assignee
Saint-Gobain Vetrotex France S.A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP04700461A priority Critical patent/EP1581696B1/fr
Priority to JP2006502085A priority patent/JP2006517621A/ja
Priority to BR0406508-5A priority patent/BRPI0406508A/pt
Priority to DE602004004362T priority patent/DE602004004362T2/de
Application filed by Saint-Gobain Vetrotex France S.A filed Critical Saint-Gobain Vetrotex France S.A
Priority to NZ540530A priority patent/NZ540530A/en
Priority to EA200501100A priority patent/EA007362B1/ru
Priority to US10/541,121 priority patent/US8157957B2/en
Priority to MXPA05006960A priority patent/MXPA05006960A/es
Priority to KR1020117027568A priority patent/KR101236413B1/ko
Priority to KR1020057012718A priority patent/KR101127969B1/ko
Priority to CA2512753A priority patent/CA2512753C/fr
Priority to AU2004209310A priority patent/AU2004209310A1/en
Publication of WO2004070112A1 publication Critical patent/WO2004070112A1/fr
Priority to NO20053750A priority patent/NO20053750L/no
Priority to US13/355,596 priority patent/US8273214B2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/38Inorganic fibres or flakes siliceous
    • D21H13/40Inorganic fibres or flakes siliceous vitreous, e.g. mineral wool, glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres

Definitions

  • the invention relates to a process for the manufacture in a cationic medium of a veil comprising glass fibers and cellulose fibers.
  • the sails comprising cellulose fibers and glass fibers have both a high tensile strength and a high tear resistance. This combination of properties makes this type of material an excellent candidate for the strengthening of shingles, often called “Canadian shingles”. These shingles are generally obtained by impregnating a fibrous structure such as a veil with a tar or asphalt.
  • the sails of the present invention generally have a surface mass ranging from 20 to 150 g / m 2 and more particularly 30 to 130 g / m 2 , for example around 100 g / m 2 .
  • WO 9913154 teaches a process for the wet preparation of a glass / cellulose veil comprising 5 to 15% of binder. According to this document, the dispersion of the fibers is ensured in the presence of an anionic viscosity modifier (Nalco 2388) and a dispersant, the nature of which is not specified.
  • an anionic viscosity modifier Naco 2388
  • a dispersant the nature of which is not specified.
  • WO 0111138 teaches a two-step preparation process comprising a first step of preparing a suspension comprising cellulose fibers and a cationic polymer, a second step of preparing a suspension comprising glass fibers, a dispersant and a viscosity modifier, these two suspensions then being brought together before passing over a forming fabric.
  • This document teaches nothing about the ionic character or not of the process water at the time of its passage on the formation fabric.
  • the aqueous solution in which the fibers are dispersed is called process water.
  • process water The Applicant has discovered that the nature of the ionic character of the process water at the time of the suspension of the suspension comprising the two types of fibers on the forming fabric was of great importance for the quality of the dispersion itself and therefore for the homogeneity of the veil formed.
  • the method according to the invention is particularly simple because it allows the suspension in a single step and directly in the process water of both glass fibers and cellulose fibers.
  • the manufacture of a continuous veil involves the passage of a bed of fibers dispersed by a set of several successive devices each having to apply to said fibers a particular treatment.
  • the fiber bed after its formation in a "formation device”, then passes if necessary a "binder depositing device” then a “steaming device”.
  • the transport of the bed through these devices is carried out by means of scrolling belts, the bed generally being able to be caused to pass from one carpet to another.
  • the method according to the invention comprises:
  • the process water is cationic at least as soon as fibers are added to it.
  • the process water and the dispersion which contains it remains cationic at least until it passes over the forming fabric.
  • it is generally permanently cationic.
  • the process can be continuous, the process water being recycled and having a cationic character throughout its circulation loop.
  • the cationic nature of the process water is at the origin of a favorable dispersion of the glass and cellulose fibers from the introduction of these in said water, until passing over the forming fabric.
  • a cationic polymer or any other cationic product
  • a cationic polymer or any other cationic product
  • neither cellulose fiber nor glass fiber is generally treated with a cationic species before being introduced into the process water.
  • Maintaining a cationic character of the process water does not exclude the presence in said water, if necessary, of ingredients of an anionic, nonionic or amphoteric character (that is to say both cationic and anionic ) since, overall, thanks to the presence of at least one other ingredient with a cationic character, the overall cationic character of the process water is ensured.
  • the process water contains at least one cationic dispersant in an amount sufficient for the process water to be cationic.
  • the ionic character of the process water can be determined by potentiometric determination.
  • a particle charge detector such as that of the M ⁇ tek PCD 03 brand and a M ⁇ tek Titrator PCD-Two titrator.
  • the principle of the method consists in neutralizing a determined volume (for example 10 ml) of the process water whose cationic character is to be determined, by a measured volume of an anionic titrating aqueous solution.
  • titrating solution it is possible, for example, to use a solution of sodium polyethylene sulfonate (called "Pes-Na"), for example at 10 "3 N.
  • the cationic character of the process water can be expressed by the number of milliliters of Pes-Na solution necessary to neutralize 10 milliliters of metered process water.
  • the process water is cationic so that 10 ml of process water can be neutralized with 1 to 10 ml of anionic titrating solution at 10 " 3 N and more preferably with 1.5 to 4 ml of the said water.
  • anionic titrating solution preferably the process water is cationic from 1.10 "4 N to 1.10 " 3 N and more preferably from 1, 5.10 "4 N to 4.10 " 4 N.
  • the fibers To be dispersed in water, the fibers must be able to remain in the individual state and not to combine mixed in the process water. If chopped strands, a set of fibers, are dispersed in water, these strands must be able to defilamentise in dispersion in water. “Yarn” is understood to mean a set of contiguous filaments and more particularly comprising from 10 to 2000 fibers. Thus, the fibers can be introduced into the process water in the form of threads more particularly comprising 10 to 2000 fibers.
  • the glass fibers may have been sized during their manufacture, to be collected if necessary in the form of threads, in particular by sizing liquids comprising an organosilane and / or a tackifier (“film former” in English). It is preferable in this case not to dry the fibers before dispersing them in water, so as to prevent them from sticking together, which would hinder their dispersion in the form of individual filaments.
  • Cellulose fibers are generally obtained from wood pulp.
  • This wood pulp is generally obtained from commercial sheets of cardboard which are softened with water. This water used to soften the cardboard is then used to transport the pulp to the installation for producing the dispersion.
  • This water / pulp mixture generally contains just enough water to be able to transport the pulp by flow.
  • This pulp / water mixture before reaching the middle of the dispersion generally contains from 70 to 99% by weight of water and 1 to 30% by weight of cellulose.
  • the two types of fibers can be dispersed in process water, for example in a pulper.
  • This dispersing can be carried out initially in a pulper for example with a proportion of fibers such that the sum of the mass of glass fibers + cellulose fibers ranges from 0.01% to 0.5% by weight of the sum of the weight of the fibers and the process water.
  • the dispersion of fibers / process water at the time of passing into the stage of formation of the bed on the forming fabric is such that the sum of the mass of the fibers represents 0.01 to 0.5% by weight of said dispersion and preferably 0.02 to 0.05% by weight of said dispersion.
  • the dispersion may undergo a decrease in fiber concentration when passing from the pulper to the bed-forming device.
  • the ratio of the mass of glass fibers to that of the mass of cellulose fibers is the same as that desired in the final veil.
  • the process water may include a thickener to increase the viscosity of the process water.
  • This thickener can be present from 0 to
  • This thickener can for example be a hydroxyethylcellulose (for example Natrosol 250HHR from Hercules).
  • Hydroxyethylcellulose is an anionic compound.
  • the process water generally comprises a cationic dispersant.
  • This cationic dispersant can generally be present in an amount of 0 to 0.1% by weight in the process water.
  • This cationic dispersant can be, for example, guanidine or a fatty chain amine.
  • One can in particular use the aerosol C 61 marketed by CYTEC. It can also be a polyoxylated alkylamine.
  • the thickener is preferably introduced so that the process water has a viscosity of between 1 and 20 mPa.s at 20 ° C. and preferably between 3 and 16 mPa.s.
  • the process water / fibers dispersion is agitated, then sent to a permeable forming fabric allowing process water to flow through it and retaining the fibers on its surface.
  • Process water can be aspirated to improve its evacuation.
  • Process water can be recycled to be mixed with fibers again.
  • the fibers thus form a bed on the surface of the forming fabric.
  • the dispersion does not include the binder or the precursor of the final binder, and this binder where this binder precursor is generally applied to the web in a device for applying the binder or its precursor placed between the bed formation and heat treatment step.
  • the final veil (dry after heat treatment) generally comprises 8 to
  • the final veil usually includes
  • the binder can be of the type usually used in this kind of embodiment.
  • it may be plasticized polyvinyl acetate (PVAc) or acrylic styrene or self-crosslinkable acrylic or urea formaldehyde or melamine formaldehyde.
  • the excess binder can be evacuated by suction through the forming fabric.
  • the purpose of the heat treatment step is to evaporate the water and also carry out any chemical reactions between the various constituents and / or to transform the binder precursor into a binder and / or to give the binder its final structure.
  • the heat treatment can be carried out by heating between 140 and 250 ° C and more generally between 180 and 230 ° C.
  • the duration of the heat treatment generally ranges from 2 seconds to 3 minutes and more generally from 20 seconds to 1 minute (for example 30 seconds at 200 ° C.).
  • the veil can be dried and heat treated in a hot air oven circulating through the carpet.
  • FIG. 1 schematically represents an industrial process for the continuous preparation of a veil according to the invention.
  • Glass fibers are introduced in (g) into a pulper and the cellulose fibers are introduced into (c) in the same pulper in the presence of process water and with stirring to form a dispersion.
  • the mixture then optionally pours into a storage tank 2 through the pipe 3, the function of the storage tank being to increase the duration of mixing between the filaments and the process water.
  • This storage bin is optional.
  • the mixture is then brought through line 4 to line 5, which brings together the flow of mixture coming from line 4 with a flow of recycled process water and coming from the head box 6 ) through line 7. At this level, the fiber content in the fiber / process water mixture is greatly reduced.
  • Process water is drained at 14 and possibly sucked at 15 through the forming fabric 8 and is recycled via the pipe 17. This recycled water is then shared at 16, for example for around 10% for return to the pulper through line 10 and for approximately 90% to return to the headbox 6 through lines 9, 7 then 5. Circulation in the lines is ensured by pumps 11, 12 and 13.
  • the pump 11 is called the main pump ("fan pump” in English).
  • the veil in formation 18 then makes a "carpet jump" to the steaming device 19 carrying out the heat treatment, and the final veil is wound at 20.
  • the invention allows the production of sails whose tear resistance can even be greater than 430 or even greater than 450 gf as measured by ISO standard 1974, and this while showing a high tensile strength, generally greater than 22 kgf as measured according to ISO standard 3342 adapted in that the width of the cutting template of the test piece is 50 mm and the displacement speed of the clamps is 50 mm / min ⁇ 5 mm / min.
  • the glass / cellulose mass ratio (excluding binder) ranges from 2.4 / 97.5 to 14.6 / 85.3.
  • a cationic process water is prepared containing:
  • hydroxyethyl cellulose brand Natrosol 250HHR from the company Hercules
  • Aerosol C61 surfactant "alkylguanidine-amine-ethanol complex in isopropanol" as cationic dispersant
  • the viscosity of the process water is 15 mPa.s at 20 ° C before introduction of the cellulose and glass fibers.
  • this predispersion is placed in a rectangular laboratory hand sheet mold (30 cm ⁇ 30 cm) containing 25 liters of process water. The water is then drained and the fiber mixture is recovered on a forming fabric. The veil formed on the canvas passes over a suction slot where the excess process water is sucked. The form is then impregnated with a binder (of self-crosslinkable urea-formaldehyde type) in aqueous dispersion by soaking between two forming fabrics. The excess binder is evacuated by passage through a suction slot. The sheet obtained is then dried and heat treated in a hot air oven for 90 seconds at 200 ° C.).
  • a binder of self-crosslinkable urea-formaldehyde type
  • the invention leads to a veil whose grammage is 100 g / m 2 .
  • This veil has a high level of tear resistance.
  • the table below gives the tensile strength and tear strength values as a function of the glass / cellulose mass ratio:
  • An anionic process water is prepared containing:
  • anionic polyacrylamide brand Nalco D 9641 from the company Nalco
  • this predispersion is placed in a rectangular laboratory form (30 cm ⁇ 30 cm) containing 25 liters of process water. The water is then drained and the fiber mixture is recovered on a forming fabric.
  • the distribution of fibers on the canvas is very poor. There is flocculation of all the fibers (glass and cellulose) due to the anionic nature of the water. process.
  • the fibrous network comprises only re-agglomerated fibers. It is possible to pass over a suction slit where the excess process water is sucked in, to impregnate the fibers with a binder (self-crosslinkable urea-formaldehyde type) in aqueous dispersion by soaking between two forming fabrics , to evacuate the excess of binder by passage through a suction slit and to dry and heat treat the fibrous structure in an oven with hot air for 90 seconds at 200 ° C.
  • a binder self-crosslinkable urea-formaldehyde type

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Paper (AREA)
  • Nonwoven Fabrics (AREA)
  • Glass Compositions (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

L'invention concerne un procédé de préparation d'un voile comprenant des fibres de verre et des fibres de cellulose, comprenant -une étape de mise en dispersion dans une eau de procédé de fibres coupées de verre et de fibres de cellulose, puis, -une étape de formation d'un lit dans un dispositif de formation par passage de la dispersion sur une toile de formation à travers laquelle l'eau de procédé est drainée, les fibres étant retenues sur ladite toile, ladite dispersion comprenant au moment dudit passage une eau de procédé cationique, puis, -une étape de traitement thermique dans un dispositif d'étuvage. Ce procédé permet notamment la réalisation d'un voile comprenant - 2 à 12 % de cellulose, - 70 à 80 % de verre, - 8 à 27 % de liant et dont la résistance à la déchirure est supérieure à 430 gf.

Description

Λ
FABRICATION D'UN VOILE EN FIBRES DE VERRE ET DE
CELLULOSE EN MILIEU CATIONIQUE
L'invention concerne un procédé de fabrication en milieu cationique d'un voile comprenant des fibres de verre et des fibres de cellulose.
Les voiles comprenant des fibres cellulosiques et des fibres de verre présentent à la fois une forte résistance à la traction et une forte résistance à la déchirure. Cette combinaison de propriétés font de ce type de matériau un excellent candidat pour le renforcement des bardeaux (« shingle » en anglais), souvent appelés « bardeaux canadiens ». Ces bardeaux sont généralement obtenus par imprégnation d'une structure fibreuse comme un voile par un goudron ou asphalte.
On entend par voile (« veil » en anglais) un non-tissé constitué de filaments complètement dispersés. Les voiles de la présente invention ont généralement une masse surfacique allant de 20 à 150 g/m2 et plus particulièrement 30 à 130 g/m2, par exemple environ 100 g/m2.
Le WO 9913154 enseigne un procédé de préparation par voie humide d'un voile verre/cellulose comprenant 5 à 15 % de liant. Selon ce document, la dispersion des fibres est assurée en présence d'un modifieur de viscosité anionique (Nalco 2388) et d'un dispersant dont la nature n'est pas précisée.
Le WO 0111138 enseigne un procédé de préparation en deux étapes comprenant une première étape de préparation d'une suspension comprenant des fibres de cellulose et un polymère cationique, une seconde étape de préparation d'une suspension comprenant des fibres de verre, un dispersant et un modifieur de viscosité, ces deux suspensions étant ensuite réunis avant passage sur une toile de formation. Ce document n'enseigne rien sur le caractère ionique ou non de l'eau de procédé au moment de son passage sur la toile de formation.
La solution aqueuse dans laquelle les fibres sont dispersées est appelée eau de procédé. La demanderesse a découvert que la nature du caractère ionique de l'eau de procédé au moment du passage de la suspension comprenant les deux types de fibres sur la toile de formation revêtait une grande importance pour la qualité de la dispersion elle-même et en conséquence pour l'homogénéité du voile formé. Le procédé selon l'invention est particulièrement simple car il permet la mise en suspension en une seule étape et directement dans l'eau de procédé à la fois des fibres de verre et des fibres de cellulose.
La fabrication d'un voile en continu implique le passage d'un lit de fibres dispersées par un ensemble de plusieurs dispositifs successifs devant chacun appliquer aux dites fibres un traitement particulier. Le lit de fibres, après sa formation dans un « dispositif de formation », traverse ensuite le cas échéant un « dispositif de dépose de liant » puis un « dispositif d'étuvage ». Le transport du lit au travers de ces dispositifs est réalisé grâce à des tapis défilants, le lit pouvant généralement être amené à passer d'un tapis à l'autre. Le procédé selon l'invention comprend :
-une étape de mise en dispersion dans une eau de procédé de fibres coupées de verre et de fibres de cellulose, puis, -une étape de formation d'un lit dans un dispositif de formation par passage de la dispersion sur une toile de formation à travers laquelle l'eau de procédé est drainée, les fibres étant retenues sur ladite toile, ladite dispersion présentant au moment dudit passage une charge ionique positive (c'est-à-dire cationique) du fait que l'eau de procédé à cet instant est elle même cationique, de préférence telle que 10 millilitres de l'eau de procédé à cet instant est neutralisable par 1 à 4 millilitres de solution titrante anionique à 1.10"3 N puis,
-une étape de traitement thermique dans un dispositif d'étuvage. Selon l'invention, l'eau de procédé est cationique au moins dès que l'on commence à lui ajouter des fibres. De préférence, l'eau de procédé ainsi que la dispersion qui la contient reste cationique au moins jusqu'au passage sur la toile de formation. Dans un procédé en continu recyclant l'eau de procédé, celle-ci est généralement en permanence cationique. Ainsi, le procédé peut être continu, l'eau de procédé étant recyclée et présentant un caractère cationique tout au long de sa boucle de circulation.
Le caractère cationique de l'eau de procédé est à l'origine d'une dispersion favorable des fibres de verre et de cellulose dès l'introduction de celles-ci dans ladite eau, jusqu'au passage sur la toile de formation. Ainsi, selon l'invention, il n'est pas nécessaire de préparer une pré-dispersion à caractère cationique de l'un des types de fibre (cellulose ou verre) avant de mélanger lesdites fibres avec l'autre type de fibres. Notamment, Il n'est donc pas nécessaire par exemple d'appliquer un polymère cationique (ni un autre produit à caractère cationique) sur la cellulose dans une dispersion préalable, avant de mélanger ladite cellulose avec la fibre de verre dans l'eau de procédé. Il n'est pas non plus nécessaire d'appliquer un polymère cationique (ni un autre produit à caractère cationique) sur la fibre de verre dans une dispersion préalable, avant de mélanger ladite fibre de verre avec la cellulose dans l'eau de procédé. Ainsi, ni la fibre de cellulose ni la fibre de verre ne sont généralement traitées par une espèce cationique avant d'être introduits dans l'eau de procédé. Le maintien d'un caractère cationique de l'eau de procédé n'exclut pas la présence dans ladite eau si nécessaire d'ingrédients à caractère anionique, non- ionique ou amphotère (c'est-à-dire à la fois cationique et anionique) dès lors que globalement, grâce à la présence d'au moins un autre ingrédient à caractère cationique, le caractère globalement cationique de l'eau de procédé est assuré. Généralement, l'eau de procédé contient au moins un dispersant cationique en quantité suffisante pour que l'eau de procédé soit cationique.
Le caractère ionique de l'eau de procédé peut être déterminé par dosage potentiométrique. Pour cela, on peut notamment utiliser un détecteur de charge de particules comme celui de marque Mϋtek PCD 03 et un titrateur Mϋtek Titrator PCD-Two. Le principe de la méthode consiste à neutraliser un volume déterminé (par exemple 10 ml) de l'eau de procédé dont on veut déterminer le caractère cationique, par un volume mesuré d'une solution aqueuse titrante anionique. Comme solution titrante, on peut par exemple utiliser une solution de polyéthylène-sulfonate de sodium (dite « Pes-Na »), par exemple à 10"3N. On peut exprimer le caractère cationique de l'eau de procédé par le nombre de millilitres de solution de Pes-Na nécessaires pour neutraliser 10 millilitres d'eau de procédé dosée.
De préférence l'eau de procédé est cationique de sorte que 10 ml d'eau de procédé puisse être neutralisée par 1 à 10 ml de solution titrante anionique à 10" 3N et de manière encore préférée par 1,5 à 4 ml de ladite solution titrante anionique. Ceci revient également à dire que de préférence, l'eau de procédé est cationique de 1.10"4N à 1.10"3N et de manière encore préférée de 1 ,5.10"4N à 4.10"4N.
Pour être mises en dispersion dans l'eau, les fibres doivent pouvoir rester à l'état individuel et ne pas se regrouper mélangées dans l'eau de procédé. Si l'on disperse dans l'eau des fils coupés, ensemble de fibres, ces fils doivent pouvoir se défilamentiser en dispersion dans l'eau. On entend par « fil » un ensemble de filaments contigus et comprenant plus particulièrement de 10 à 2000 fibres. Ainsi, les fibres peuvent être introduites dans l'eau de procédé sous la forme de fils comprenant plus particulièrement 10 à 2000 fibres.
Les fibres de verre peuvent avoir été ensimées lors de leur fabrication, pour être rassemblés le cas échéant sous forme de fils, notamment par des liquides d'ensimage comprenant un organosilane et / ou un agent collant (« film former » en anglais ). M est préférable dans ce cas de ne pas sécher les fibres avant de les mettre en dispersion dans l'eau, de façon à éviter qu'ils ne se collent entre eux, ce qui gênerait leur dispersion à l'état de filaments individuels.
Les fibres de cellulose sont généralement obtenues à partir de pulpe de bois. Cette pulpe de bois est généralement obtenues à partir de feuilles commerciales en carton que l'on ramollit avec de l'eau. Cette eau utilisée pour ramollire le carton sert ensuite au transport de la pulpe en direction de l'installation de réalisation de la dispersion. Ce mélange eau / pulpe contient généralement juste l'eau suffisante pour pouvoir véhiculer la pulpe par écoulement. Ce mélange pulpe / eau avant d'atteindre le milieu de la dispersion contient généralement de 70 à 99 % en poids d'eau et 1 à 30% en poids de cellulose. La mise en dispersion dans l'eau de procédé des deux types de fibres peut être réalisée, par exemple dans un pulpeur. Cette mise en dispersion peut être réalisée dans un premier temps dans un pulpeur par exemple avec une proportion de fibres telle que la somme de la masse fibres de verre + fibres de cellulose aille de 0,01% à 0,5% en poids de la somme du poids des fibres et de l'eau de procédé.
De préférence, la dispersion fibres/eau de procédé au moment de passer dans l'étape de formation du lit sur la toile de formation est telle que la somme de la masse des fibres représente 0,01 à 0,5% en poids de ladite dispersion et de préférence 0,02 à 0,05% en poids de ladite dispersion. La dispersion peut subir une diminution de concentration en fibres en passant du pulpeur au dispositif de formation du lit.
Dans l'eau de procédé, le rapport de la masse des fibres de verre sur celui de la masse des fibres de cellulose est le même que celui souhaité dans le voile final.
L'eau de procédé peut comprendre un épaississant pour faire augmenter la viscosité de l'eau de procédé. Cet épaississant peut être présent à raison de 0 à
0,5 % en poids dans l'eau de procédé. Cet épaississant peut par exemple être une hydroxyéthylcellulose (par exemple Natrosol 250HHR de Hercules).
L'hydroxyéthylcellulose est un composé de type anionique.
L'eau de procédé comprend généralement un dispersant cationique. Ce dispersant cationique peut généralement être présent à raison de 0 à 0,1% en poids dans l'eau de procédé. Ce dispersant cationique peut être par exemple la guanidine ou une aminé à chaîne grasse. On peut notamment utiliser l'aérosol C 61 commercialisé par CYTEC. Il peut également s'agir d'une alkylamine polyoxylée.
On introduit de préférence l'épaississant de façon à ce que l'eau de procédé présente à 20°C une viscosité comprise entre 1 et 20 mPa.s et de préférence comprise entre 3 et 16 mPa.s.
La dispersion eau de procédé/fibres est agitée, puis envoyée sur une toile de formation perméable laissant s'écouler l'eau de procédé à travers elle et retenant les fibres à sa surface. L'eau de procédé peut être aspirée pour améliorer son évacuation. L'eau de procédé peut être recyclée pour être de nouveau mélangée avec des fibres. Les fibres forment ainsi un lit en surface de la toile de formation.
Il n'est pas nécessaire de faire passer le lit formé par un dispositif d'application d'un liant si l'on a déjà mis dans la dispersion un liant ou un précurseur de liant du voile final. Cependant, généralement, la dispersion ne comprend pas le liant ou le précurseur du liant final, et ce liant où ce précurseur de liant sont généralement appliqués sur le voile dans un dispositif d'application du liant ou de son précurseur placé entre l'étape de formation du lit et l'étape du traitement thermique. Le voile final (sec après traitement thermique) comprend généralement 8 à
27 % en poids de liant et plus généralement 15 à 21 % en poids de liant, le reste de la masse du voile étant généralement constitué par la masse, des fibres ce qui inclut les éventuels produits d'ensimage qui les recouvrent. Ainsi, le voile final comprend généralement
- 2 à 12 % de cellulose,
- 70 à 80 % de verre,
- 8 à 27 % de liant.
Si l'on choisit d'appliquer au moins une partie du liant total par un dispositif d'application d'un liant, on applique généralement celui-ci sous la forme d'une dispersion aqueuse
- soit par trempage entre deux toiles de formation auquel cas le produit maintenu entre les deux toiles est plongé dans un bain par l'intermédiaire de paires de rouleaux, - soit par dépôt sur le lit de fibres, par une cascade, ce qui signifie que la dispersion aqueuse de liant est coulée sur la nappe de fibres selon un filet perpendiculaire à ladite nappe et perpendiculaire au sens de défilement de ladite nappe.
Le liant peut être du type de ceux habituellement utilisés dans ce genre de réalisation. Notamment il peut s'agir d'acétate de polyvinyle (PVAc) plastifié ou styrène acrylique ou acrylique auto-réticulable ou urée formol ou mélamine formol.
L'excès de liant peut être évacué par aspiration à travers la toile de formation.
L'étape de traitement thermique à pour but d'évaporer l'eau ainsi que réaliser les éventuelles réactions chimiques entre les différents constituants et/ou pour transformer le précurseur de liant en liant et/ou pour donner au liant sa structure finale. Le traitement thermique peut être réalisé par chauffage entre 140 et 250°C et plus généralement entre 180 et 230°C. La durée du traitement thermique va généralement de 2 secondes à 3 minutes et plus généralement de 20 secondes à 1 minute (par exemple 30 secondes à 200°C). Le voile peut être séché et traité thermiquement en étuve à air chaud à circulation au travers du tapis.
La figure 1 représente schématiquement un procédé industriel de préparation en continu d'un voile selon l'invention. Les fibres de verre sont introduites en (g) dans un pulpeur et les fibres de cellulose sont introduites en (c) dans le même pulpeur en présence d'eau de procédé et sous agitation pour former une dispersion. Le mélange se déverse ensuite éventuellement dans un bac de stockage 2 à travers la canalisation 3, la fonction du bac de stockage étant de d'augmenter la durée de mélange entre les filaments et l'eau de procédé. Ce bac de stockage est facultatif. Le mélange est ensuite amené à travers la canalisation 4 à la canalisation 5, laquelle rassemble le flux de mélange provenant de la canalisation 4 à un flux d'eau de procédé recyclé et provenant de la caisse de tête 6 (« head box » en anglais) à travers la canalisation 7. A ce niveau, la teneur en fibres dans le mélange fibres/eau de procédé est fortement abaissée. De l'eau de procédé est drainée en 14 et éventuellement aspirée en 15 à travers la toile de formation 8 et est recyclée par l'intermédiaire de la canalisation 17. Cette eau recyclée est ensuite partagée en 16, par exemple pour environ 10% pour retourner vers le pulpeur à travers la canalisation 10 et pour environ 90% pour retourner vers la caisse de tête 6 à travers les canalisations 9, 7 puis 5. La circulation dans les canalisations est assurée par les pompes 11 , 12 et 13. La pompe 11 est appelée pompe principale (« fan pump » en anglais). Le voile en formation 18 fait ensuite un « saut de tapis » vers le dispositif d'étuvage 19 réalisant le traitement thermique, et le voile final est enroulé en 20. L'invention permet la réalisation de voiles dont la résistance à la déchirure peut même être supérieure à 430 voire supérieure à 450 gf tel que mesuré par la norme ISO 1974, et ce tout en montrant une forte résistance à la traction, généralement supérieure à 22 kgf telle que mesurée selon la norme ISO 3342 adaptée en ce que la largeur du gabarit de découpe de l'éprouvette est de 50 mm et que la vitesse de déplacement des pinces est de 50 mm/min ± 5 mm/min. Ceci vaut notamment pour un voile selon l'invention dont le rapport massique verre/cellulose (hors liant) va de 2,4 / 97,5 à 14,6 / 85,3.
EXEMPLE Dans ce qui suit, on décrit un mode de réalisation de laboratoire non continu. On prépare une eau de procédé cationique contenant :
- 0,25 % en poids d'hydroxyéthyl cellulose (de marque Natrosol 250HHR de la société Hercules) en tant qu'épaississant, - 0,015% en poids d'Aérosol C61 de Cytec (tensio-actif « complexe d'alkylguanidine-amine-ethanol dans l'isopropanol ») en tant que dispersant cationique,
- de l'eau pour compléter à 100% la composition de l'eau de procédé. Elle présente le caractère cationique requis au sens de la présente invention compte tenu de ce qu'on mesure 2,6 ml de contre-ion à une concentration de 10"3N pour 10 ml d'eau de procédé. On met dans 5 litres de cette eau de procédé:
- 3 grammes de suspension de fibre de cellulose dans l'eau dont les caractéristiques sont : raffinage de 60°SR, siccité de 14,5% (soit 14,5 % de matière sèche),
- 8 grammes de fibre de verre de diamètre filamentaire d'environ 13 μm coupée à une longueur d'environ 18 mm.
La viscosité de l'eau de procédé est de 15 mPa.s à 20°C avant introduction des fibres de cellulose et de verre.
Après 7 minutes de forte agitation de cette dispersion, on met cette prédispersion dans une formette (« hand sheet mold » en anglais) de laboratoire rectangulaire (30 cm x 30 cm) contenant 25 litres de l'eau de procédé. L'eau est ensuite drainée et le mélange de fibres est récupéré sur une toile de formation. Le voile formé sur la toile passe sur une fente d'aspiration où l'eau de procédé en excès est aspirée. La formette est ensuite imprégnée par un liant (de type urée-formaldéhyde auto-réticulable) en dispersion aqueuse par trempage entre deux toiles de formation. L'excès de liant est évacué par passage sur une fente d'aspiration. La feuille obtenue est ensuite séchée et traitée thermiquement en étuve à air chaud 90 secondes à 200°C).
L'invention mène à un voile dont le grammage est de 100 g/m2. Ce voile présente un niveau de résistance à la déchirure élevée. Le tableau ci-dessous donne des valeurs de résistance à la traction et de résistance à la déchirure en fonction du rapport massique verre/cellulose :
Figure imgf000009_0001
Figure imgf000010_0001
On constate que la résistance à la déchirure est supérieure de 19% pour les voiles contenant 5 et 10 % de cellulose par rapport aux autres voiles, tout en ayant des résistances à la traction très élevées.
EXEMPLE COMPARATIF
Dans ce qui suit, on décrit un mode de réalisation de laboratoire non continu. On prépare une eau de procédé anionique contenant :
- 0,0044% en poids de polyacrylamide anionique (de marque Nalco D 9641 de la société Nalco) en tant qu'épaississant,
- 0,0044% en poids d'alkylamine grasse éthoxylée (de marque Schercopol DSB 140 de la société Scher Chemicals) en tant que dispersant cationique,
- de l'eau pour compléter à 100% la composition de l'eau de procédé. Elle présente le caractère anionique compte tenu de ce qu'on mesure 1 ,6 ml de contre-ion ( solution titrante cationique : Poly-DADMAC = Poly diallyl dimethyl ammonium chloride) à une concentration de 10"3N pour 10 ml d'eau de procédé.
On met dans 5 litres de cette eau de procédé: - 3 grammes de suspension dans l'eau de fibre de cellulose dont les caractéristiques sont : raffinage de 60°SR, siccité de 14,5% (soit 14,5 % de matière sèche),
- 8 grammes de fibre de verre de diamètre filamentaire d'environ 13 μm coupée à une longueur d'environ 18 mm. La viscosité de l'eau de procédé est de 2,6 mPa.s à 20°C avant introduction des fibres de cellulose et de verre.
Après 7 minutes de forte agitation de cette dispersion, on met cette prédispersion dans une formette de laboratoire rectangulaire (30 cm x 30 cm) contenant 25 litres de l'eau de procédé. L'eau est ensuite drainée et le mélange de fibres est récupéré sur une toile de formation.
La répartition des fibres sur la toile est très mauvaise . Il y a floculation de l'ensemble des fibres (verre et cellulose) due au caractère anionique de l'eau de procédé. Le réseau fibreux ne comporte que des fibres réagglomérées. Il est possible de passer sur une fente d'aspiration où l'eau de procédé en excès est aspirée, d'imprégner les fibres par un liant (de type urée-formaldéhyde auto- réticulable) en dispersion aqueuse par trempage entre deux toiles de formation, d'évacuer l'excès de liant par passage sur une fente d'aspiration et de sécher et traiter thermiquement la structure fibreuse en étuve à air chaud 90 secondes à 200°C.
Cependant, la structure fibreuse obtenue n'a aucune tenue et il est impossible de réaliser des tests de résistance mécanique.

Claims

REVENDICATIONS
1. Procédé de préparation d'un voile comprenant des fibres de verre et des fibres de cellulose, comprenant :
-une étape de mise en dispersion dans une eau de procédé de fibres coupées de verre et de fibres de cellulose, puis,
-une étape de formation d'un lit dans un dispositif de formation par passage de la dispersion sur une toile de formation à travers laquelle l'eau de procédé est drainée, les fibres étant retenues sur ladite toile, ladite dispersion comprenant au moment dudit passage une eau de procédé cationique, puis,
-une étape de traitement thermique dans un dispositif d'étuvage.
2. Procédé selon la revendication précédente caractérisé en ce que au moment du passage de la dispersion sur la toile de formation, l'eau de procédé est cationique de 1.10"4N à 1.10"3N.
3. Procédé selon la revendication précédente caractérisé en ce que au moment du passage de la dispersion sur la toile de formation, l'eau de procédé est cationique de 1 ,5.10"4N à 4.10"4N.
4. Procédé selon l'une des revendications précédentes caractérisé en ce que le procédé est continu, l'eau de procédé étant recyclée et présentant un caractère cationique tout au long de sa boucle de circulation.
5. Procédé selon l'une des revendications précédentes caractérisé en ce que l'eau de procédé comprend un dispersant cationique.
6. Procédé selon l'une des revendications précédentes caractérisé en ce que au moment du passage de la dispersion sur la toile de formation la somme de la masse des fibres représente 0,01 à 0,5% en poids de ladite dispersion.
7. Procédé selon l'une des revendications précédentes caractérisé en ce que au moment du passage de la dispersion sur la toile de formation la somme de la masse des fibres représente 0,02 à 0,05% en poids de ladite dispersion.
8. Procédé selon l'une des revendications précédentes caractérisé en ce que au moment du passage de la dispersion sur la toile de formation l'eau de procédé présente à 20°C une viscosité comprise entre 1 et 20 mPa.s.
9. Procédé selon l'une des revendications précédentes caractérisé en ce que au moment du passage de la dispersion sur la toile de formation l'eau de procédé présente à 20°C une viscosité comprise entre 3 et 16 mPa.s.
10. Procédé selon l'une des revendications précédentes caractérisé en ce qu'il comprend une étape comprenant un « dispositif de dépose de liant » entre la formation du lit et le traitement thermique.
11. Procédé selon l'une des revendications précédentes caractérisé en ce que le traitement thermique est réalisé entre 140 et 250°C.
12. Procédé selon l'une des revendications précédentes caractérisé en ce que le voile final comprend
- 2 à 12 % de cellulose, - 70 à 80 % de verre,
- 8 à 27 % de liant.
13. Procédé selon l'une des revendications précédentes caractérisé en ce que le voile final présente une masse surfacique allant de 20 à 150 g/m2.
14. Procédé selon l'une des revendications précédentes caractérisé en ce que le voile final présente une masse surfacique allant de 30 à 130 g/m2.
15. Procédé selon l'une des revendications précédentes caractérisé en ce que la fibre de cellulose est introduite dans l'eau de procédé sous la forme d'un mélange eau / pulpe.
16. Procédé selon l'une des revendications précédentes caractérisé en ce que la cellulose n'est pas traitée par un polymère cationique avant d'être introduite dans l'eau de procédé.
17. Procédé selon l'une des revendications précédentes caractérisé en ce que ni la fibre de cellulose ni la fibre de verre ne sont traitées par une espèce cationique avant d'être introduits dans l'eau de procédé.
18. Voile comprenant
- 2 à 12 % de cellulose, - 70 à 80 % de verre,
- 8 à 27 % de liant. dont la résistance à la déchirure est supérieure à 430 gf telle que mesuré par la norme ISO 1974.
19. Voile selon la revendication précédente caractérisé en ce que la résistance à la déchirure est supérieure à 450 gf telle que mesuré par la norme ISO 1974.
20. Voile selon l'une des revendications de voile précédentes caractérisé en ce que la résistance à la traction est supérieure à 22 kgf telle que mesurée selon la norme ISO 3342 adaptée en ce que la largeur du gabarit de découpe de l'éprouvette est de 50 mm et que la vitesse de déplacement des pinces est de 50 mm/min ± 5 mm/min.
PCT/FR2004/000014 2003-01-08 2004-01-07 Fabrication d'un voile en fibres de verre et de cellulose en milieu cationique WO2004070112A1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EA200501100A EA007362B1 (ru) 2003-01-08 2004-01-07 Получение сетки из стекловолокна и целлюлозного волокна в катионной среде
BR0406508-5A BRPI0406508A (pt) 2003-01-08 2004-01-07 Processo de preparação de um véu compreendendo fibras de vidro e fibras de celulose, e, véu
DE602004004362T DE602004004362T2 (de) 2003-01-08 2004-01-07 Herstellung eines vlieses aus glasfasern und zellstofffasern in einem kationischen medium
MXPA05006960A MXPA05006960A (es) 2003-01-08 2004-01-07 Fabricacion de un velo elaborado de vidrio y fibras de celulosa en medio cationico.
NZ540530A NZ540530A (en) 2003-01-08 2004-01-07 Method for making a fiber glass and cellulose mat in cationic medium
JP2006502085A JP2006517621A (ja) 2003-01-08 2004-01-07 ガラス及びセルロース繊維から作製されるベールのカチオン媒体中での製造
US10/541,121 US8157957B2 (en) 2003-01-08 2004-01-07 Method for making a fiber glass and cellulose mat in cationic medium
EP04700461A EP1581696B1 (fr) 2003-01-08 2004-01-07 Fabrication d un voile en fibres de verre et de cellulose en milieu cationique
KR1020117027568A KR101236413B1 (ko) 2003-01-08 2004-01-07 베일의 제조 방법 및 베일
KR1020057012718A KR101127969B1 (ko) 2003-01-08 2004-01-07 베일의 제조 방법 및 베일
CA2512753A CA2512753C (fr) 2003-01-08 2004-01-07 Fabrication d'un voile en fibres de verre et de cellulose en milieu cationique
AU2004209310A AU2004209310A1 (en) 2003-01-08 2004-01-07 Method for making a fiber glass and cellulose mat in cationic medium
NO20053750A NO20053750L (no) 2003-01-08 2005-08-04 Fremgangsmate for fremstilling av en fiberglass- og cellulosematte i kationisk medium.
US13/355,596 US8273214B2 (en) 2003-01-08 2012-01-23 Manufacture of a veil made of glass and cellulose fibers in cationic medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR03/00125 2003-01-08
FR0300125A FR2849655B1 (fr) 2003-01-08 2003-01-08 Fabrication d'un voile en fibres de verre et de cellulose en milieu cationique

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10541121 A-371-Of-International 2004-01-07
US13/355,596 Continuation US8273214B2 (en) 2003-01-08 2012-01-23 Manufacture of a veil made of glass and cellulose fibers in cationic medium

Publications (1)

Publication Number Publication Date
WO2004070112A1 true WO2004070112A1 (fr) 2004-08-19

Family

ID=32524736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/000014 WO2004070112A1 (fr) 2003-01-08 2004-01-07 Fabrication d'un voile en fibres de verre et de cellulose en milieu cationique

Country Status (17)

Country Link
US (2) US8157957B2 (fr)
EP (1) EP1581696B1 (fr)
JP (1) JP2006517621A (fr)
KR (2) KR101127969B1 (fr)
CN (1) CN100414040C (fr)
AT (1) ATE351943T1 (fr)
AU (1) AU2004209310A1 (fr)
BR (1) BRPI0406508A (fr)
CA (1) CA2512753C (fr)
DE (1) DE602004004362T2 (fr)
EA (1) EA007362B1 (fr)
FR (1) FR2849655B1 (fr)
MX (1) MXPA05006960A (fr)
NO (1) NO20053750L (fr)
NZ (1) NZ540530A (fr)
PL (1) PL214237B1 (fr)
WO (1) WO2004070112A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837503B1 (fr) * 2002-03-20 2004-06-04 Saint Gobain Vetrotex Voile a liant fibre pvoh
US8080171B2 (en) * 2007-06-01 2011-12-20 Ocv Intellectual Capital, Llc Wet-laid chopped strand fiber mat for roofing mat
US7927459B2 (en) * 2007-09-17 2011-04-19 Ocv Intellectual Capital, Llc Methods for improving the tear strength of mats
US20090162609A1 (en) * 2007-12-21 2009-06-25 Lee Jerry Hc Cationic fiberglass size
DE102008002087A1 (de) * 2008-05-29 2009-12-03 Voith Patent Gmbh Anlage zur Herstellung einer Faserstoffbahn
CN105829606B (zh) 2013-12-19 2020-03-20 3M创新有限公司 使用可再循环的废水来制备适用于污染控制设备或挡火物中的非织造纤维材料
WO2020234736A1 (fr) * 2019-05-21 2020-11-26 Minh Tam Do Panneau composite multicouche constitué de matériaux discrets et de plastique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB753485A (en) * 1952-09-18 1956-07-25 Hawley Products Co Sheet material of fibrous cellulose and glass fibrous rovings
WO1999013154A1 (fr) * 1997-09-08 1999-03-18 Elk Corporation Of Dallas Matrice de tapis structurale
WO2001011138A1 (fr) * 1999-08-05 2001-02-15 Owens Corning Mattes de fibres de verre et de fibres de cellulose et procede de fabrication
US6488811B1 (en) * 2001-04-30 2002-12-03 Owens Corning Fiberglas Technology, Inc. Multicomponent mats of glass fibers and natural fibers and their method of manufacture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112174A (en) * 1976-01-19 1978-09-05 Johns-Manville Corporation Fibrous mat especially suitable for roofing products
US5445878A (en) * 1993-09-20 1995-08-29 Georgia-Pacific Resins, Inc. High tear strength glass mat urea-formalehyde resins for hydroxyethyl cellulose white water
US5837620A (en) * 1996-10-10 1998-11-17 Johns Manville International, Inc. Fiber glass mats and method of making
US6418811B1 (en) 2000-05-26 2002-07-16 Ross-Hime Designs, Inc. Robotic manipulator
FR2836934B1 (fr) 2002-03-06 2004-05-07 Saint Gobain Vetrotex Mat de fils coupes par voie humide
FR2837503B1 (fr) 2002-03-20 2004-06-04 Saint Gobain Vetrotex Voile a liant fibre pvoh

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB753485A (en) * 1952-09-18 1956-07-25 Hawley Products Co Sheet material of fibrous cellulose and glass fibrous rovings
WO1999013154A1 (fr) * 1997-09-08 1999-03-18 Elk Corporation Of Dallas Matrice de tapis structurale
WO2001011138A1 (fr) * 1999-08-05 2001-02-15 Owens Corning Mattes de fibres de verre et de fibres de cellulose et procede de fabrication
US6488811B1 (en) * 2001-04-30 2002-12-03 Owens Corning Fiberglas Technology, Inc. Multicomponent mats of glass fibers and natural fibers and their method of manufacture

Also Published As

Publication number Publication date
MXPA05006960A (es) 2005-08-16
KR20050096126A (ko) 2005-10-05
US8273214B2 (en) 2012-09-25
US20060113050A1 (en) 2006-06-01
US20120118521A1 (en) 2012-05-17
BRPI0406508A (pt) 2005-12-06
KR101127969B1 (ko) 2012-03-30
EP1581696B1 (fr) 2007-01-17
NZ540530A (en) 2008-10-31
DE602004004362D1 (de) 2007-03-08
EP1581696A1 (fr) 2005-10-05
FR2849655A1 (fr) 2004-07-09
AU2004209310A1 (en) 2004-08-19
DE602004004362T2 (de) 2007-08-23
NO20053750L (no) 2005-09-20
KR101236413B1 (ko) 2013-02-22
FR2849655B1 (fr) 2005-02-11
KR20120013995A (ko) 2012-02-15
ATE351943T1 (de) 2007-02-15
CN1723313A (zh) 2006-01-18
CA2512753A1 (fr) 2004-08-19
CN100414040C (zh) 2008-08-27
CA2512753C (fr) 2011-09-13
US8157957B2 (en) 2012-04-17
PL378340A1 (pl) 2006-03-20
EA007362B1 (ru) 2006-10-27
EA200501100A1 (ru) 2005-12-29
PL214237B1 (pl) 2013-07-31
JP2006517621A (ja) 2006-07-27
NO20053750D0 (no) 2005-08-04

Similar Documents

Publication Publication Date Title
US8273214B2 (en) Manufacture of a veil made of glass and cellulose fibers in cationic medium
WO2001011138A1 (fr) Mattes de fibres de verre et de fibres de cellulose et procede de fabrication
FR1449737A (fr) Procédé de fabrication d'une nappe de fibres mêlées ou feutre
NL7907748A (nl) Polyvinylalcoholvezel en werkwijze voor het vervaardigen hiervan.
EP0100720B1 (fr) Feuille papetière à très fort taux de latex, son procédé de préparation et ses applications notamment comme produit de substitution de voiles de verre imprégnés
FR3048982A1 (fr) Procede de fabrication de papier impregne par un fluide a pression supercritique - papier impregne, notamment colore
CN110552233B (zh) 一种纸基透明材料及其制备方法与应用
FR2837503A1 (fr) Voile a liant fibre pvoh
EP1481128B1 (fr) Mat de fils coupes par voie humide
EP0177425B1 (fr) Produit non tissé en feuille à fibres longues et son procédé de réalisation
EP2929929B1 (fr) Procede de fabrication d'une emulsion d'anhydride alkenyle succinique
WO1995006776A1 (fr) Voile mineral
CN117867891A (zh) 一种高档礼品包装用纸及制造方法
EP3574140A1 (fr) Membranes bitumineuses d'étanchéité pour toiture
FR2718160A1 (fr) Feutre absorbant pour produits d'Hygiène.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 540530

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2004700461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/006960

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2006113050

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10541121

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004209310

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 378340

Country of ref document: PL

Ref document number: 1020057012718

Country of ref document: KR

Ref document number: 2512753

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006502085

Country of ref document: JP

Ref document number: 20048020048

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2004209310

Country of ref document: AU

Date of ref document: 20040107

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004209310

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200501100

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2004700461

Country of ref document: EP

Ref document number: 1020057012718

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0406508

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10541121

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004700461

Country of ref document: EP