EP0177425B1 - Produit non tissé en feuille à fibres longues et son procédé de réalisation - Google Patents

Produit non tissé en feuille à fibres longues et son procédé de réalisation Download PDF

Info

Publication number
EP0177425B1
EP0177425B1 EP85401922A EP85401922A EP0177425B1 EP 0177425 B1 EP0177425 B1 EP 0177425B1 EP 85401922 A EP85401922 A EP 85401922A EP 85401922 A EP85401922 A EP 85401922A EP 0177425 B1 EP0177425 B1 EP 0177425B1
Authority
EP
European Patent Office
Prior art keywords
fibres
polyelectrolyte
dose
long
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85401922A
Other languages
German (de)
English (en)
Other versions
EP0177425A1 (fr
Inventor
Louis Vandenbussche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Papeteries Dalle Et Lecomte SA
Original Assignee
Papeteries Dalle Et Lecomte SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Papeteries Dalle Et Lecomte SA filed Critical Papeteries Dalle Et Lecomte SA
Priority to AT85401922T priority Critical patent/ATE41794T1/de
Publication of EP0177425A1 publication Critical patent/EP0177425A1/fr
Application granted granted Critical
Publication of EP0177425B1 publication Critical patent/EP0177425B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N5/00Roofing materials comprising a fibrous web coated with bitumen or another polymer, e.g. pitch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • D21H15/06Long fibres, i.e. fibres exceeding the upper length limit of conventional paper-making fibres; Filaments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/71Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H5/00Special paper or cardboard not otherwise provided for
    • D21H5/12Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials
    • D21H5/1254Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials of fibres which have been treated to improve their dispersion in the paper-making furnish
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D5/00Roof covering by making use of flexible material, e.g. supplied in roll form
    • E04D5/02Roof covering by making use of flexible material, e.g. supplied in roll form of materials impregnated with sealing substances, e.g. roofing felt

Definitions

  • the present invention relates to nonwoven sheet products with long fibers and their manufacturing process by papermaking.
  • the present invention is particularly suitable for producing a dimensionally stable composite sheet capable of exhibiting very high resistance to punching, which can be impregnated, either with bitumen or the like, for example for use in waterproofing. of buildings (in particular of the roofs thereof), or of a resin serving as reinforcement for dimensional stabilization.
  • Such properties are sometimes contradictory and cannot be obtained using only one kind of fiber. It is therefore necessary to use several different kinds of fibers, which may also have different lengths and / or diameters. For example, resistance to aging and dimensional stability are provided by long glass fibers, while resistance to punching is obtained by polyester fibers also of great length.
  • Such a product is for example produced by the superposition of a veil of glass fibers and a veil of polyester fibers, assembled to one another (lamination) and impregnated with bitumen, a resin or the like.
  • the stirring of the fibers necessary for the dispersion of these and for the homogenization of the suspension, generates agglomerations of fibers beyond certain thresholds of length of said fibers.
  • the suspension in the pulper and the storage in the vat therefore limit the usable length of the fibers.
  • the length of the fibers that can be used is thus limited to 6 mm for a titer of 1.7 decitex and to 10 - 15 mm for fibers of higher titer, at the usual concentrations of 0.5 to 1% of feeding of the hydroformer.
  • these artificial and synthetic fibers used are cut to length in "cables" and the sections of cables thus cut form small compact bundles of fibers bonded by the sizes required for manufacture of these cables. After introduction into the water and under the effect of stirring, the bundles come apart, but at the same time, the released fibers are knotted together, all the more quickly the longer they are and the more size is less stable, in particular due to the addition of peptizing agents, surfactants, wetting agents and
  • the invention makes it possible to use such fibers for weight proportions of at least 50% of the finished dry product.
  • the degree of bursting of the long fiber bundles is controlled and they can be kept in a controlled open position for a sufficiently long time, which corresponds to that which flows between the suspending the fibers in preparation and introducing them into the paper machine.
  • the size of the fibers is very important, since it determines the choice of high molecular weight polyelectrolytes to be used according to the types of size, these polyelectrolytes should be chosen from anionic or cationic type.
  • the long sized fibers used in the plurality of operations a), b) and c) of step B of the process according to the invention can be of different types, lengths and diameters. They can also be of the same nature, but of different lengths and diameters.
  • n polyelectrolytes used in this plurality of operations may be different; however, it is advantageous that the doses of polyelectrolytes necessary for the preparation of the suspension of long fibers consist of the same product.
  • short fibers of different natures, synthetic or mineral can be mixed with the cellulosic fibers of said slurry.
  • this porridge can undergo a known treatment based on
  • At least one polyelectrolyte of said treatment is the same as the high molecular weight polyelectrolyte used in the n operations of step B) of preparation of the suspension of long fibers.
  • the long fibers are incorporated into said suspension in decreasing order of difficulties in setting and maintaining suspension: for equal or close, the fibers are introduced successively with decreasing lengths, and at equal or close length, by title croissant.
  • shorter fibers for example of different natures, can be added to it.
  • the present invention relates to a sheet nonwoven product obtained industrially by the papermaking process and comprising cellulosic fibers.
  • This product is remarkable in that it comprises mineral or organic fibers whose length is at least 12 - 18 - 24 - 30 or 34 mm respectively for titles of 1.7 - 3.3 - 4.4 - 6 , 7 or 11 decitex, these long fibers representing at least 30% of the dry weight of said product.
  • Such a product can then have high properties of resistance to punching, impact and tearing, while undergoing significant elongations.
  • such a product can undergo a reinforcing surface treatment.
  • a slurry of cellulosic fibers is prepared in any known manner, for example from a mechanical pulp, a semi-chemical pulp, d '' chemical pulp, unbleached pulp, bleached pulp, soda dough, sulphate dough, kraft dough, bisulphate dough, rags, straw paste, etc ...
  • This slurry in addition to the cellulose fibers and water, can incorporate a coloring matter and is subjected to agitation capable of suspending the fibrous particles.
  • the weight concentration of the cellulosic fibers is for example between 2.5 and 4% and the pulp thus produced is refined to obtain a dewatering index of between approximately 10 and 60 degrees Shopper.
  • the suspension of fibers from installation 1 is introduced (at 2) into a storage tank A.
  • fillers (bonding products and synthetic and / or short mineral fibers, that is to say of which the length is at most equal to approximately 6 mm), are added (in 3). .
  • the mixture then being in the vat A is treated with one or more cationic agents for preparing cellulose, such as those listed in list 22 above and introduced in 4. This or these cationic agents are fixed on the fibers and polarize them uniformly.
  • the proportion used is generally comprised, by weight, between 0.3 and 5% of the dry fibrous material.
  • the excess cationic agent and the free particles of the fibrous suspension are then neutralized by a weak ionic polarization solution, of the anionic type, the active substance of which is for example chosen, from those gathered in the list 111 above and introduced in 5.
  • the required amount of this active substance is for example between 0.3 and 15% of the weight of the dry mixture.
  • the mixture found in the vat A is treated with an anionic polyelectrolyte, of high molecular weight, introduced in 6 and chosen for example from the list given by list 1 above.
  • concentration of this anionic polyelectrolyte is for example between 0.2 and 8% by weight of the dry cellulose.
  • the anionic polyelectrolytes of lists 1 and III are prepared and stored at a concentration of approximately 0.6% a few times before their introduction into 5 and 6 in the vat A.
  • vat B in another vat B capable of generating controlled agitation with constant turbulence movement, a first dose of water is introduced at 7 and at 8 1 the first long sized fibers which are difficult to disperse.
  • a first dose of a high molecular weight polyelectrolyte for example of the anionic type if the hydrated size of said fibers is also anionic.
  • This polyelectrolyte is preferably the same as that used in step A above.
  • the concentration by weight of this high molecular weight polyelectrolyte can be between 0.2 and 5% of the weight of said first fibers.
  • a second dose of water is introduced into the vat 8 (via 7) and second long fibers with size having the same polarity as the first ones (in 8 2 ). These second long fibers are chosen to be less difficult to disperse than said first fibers.
  • a second dose of high molecular weight anionic polyelectrolyte for example that previously used, is added at 9. This second dose is adjusted to keep the polyelectrolyte concentration constant, relative to the total amount of fiber and relative to water.
  • the alternating addition is continued, in the vat 8, of doses of water, long fibers and anionic polyelectrolyte until the nth and last long fibers introduced in 8n.
  • a nonionic surfactant or of the same polarity (anionic in the example chosen) as the polyelectrolyte used previously is then added.
  • the slurry of the vat A is then introduced, respecting the proportions chosen for the constitution of the final nonwoven product.
  • the concentration by weight of fibers in the mixture obtained is at least equal to 1%.
  • This mixture of said fibrous suspension and slurry feeds a hydroformer 11, by means of a pump 12.
  • the liquid mass 13, containing the fibers and feeding the fabric 14 of the hydroformer 11, passes for the most part through said fabric 14 by depositing said fibers thereon in order to form a veil and falls into a receptacle 15 (arrows 16), from which it is brought back to the hydroformer 11 by a pump 17 and a pipe 18.
  • the tank 8 is connected in parallel on line 18, by pump 12.
  • the concentration by weight of fibers of the liquid mass 13 is for example between 0.1% o and 0.5% o.
  • the pH of the liquid mass 13 is adjusted by adding an acid or a base, before introduction into the hydroformer 11. It has in fact been observed that the balance between the fibers dispersed in the fiber bundles is influenced by the pH value. Each fiber solution has an optimal pH value from this point of view.
  • the optimum pH value is determined, case by case, by experimentation.
  • the veil of fibers is optionally treated at the surface with a binder, for example chosen from those from list III above.
  • the treatment can be carried out in a saturation scarf (not shown). Said veil, which is still partially wet, can then be treated with a coating of foam, by wet saturation or spraying before the sheet dries.
  • a 3% suspension of cellulose fibers bleached with sodium hydroxide is prepared in a 6000 liter hydrosherper 1.
  • the fibers have an approximate length of 6 mm and the dough is refined at 40 ° Shopper.
  • the hydroformer 11 is supplied with the mixture of suspensions contained in the vats A and B, diluted by the pump 17 to provide a liquid mass 13 having a total weight concentration of fibers equal to 1.4%.
  • a sheet of nonwoven product is then obtained, the grammage of which is 130 g / m2, and the elongation of 3%.
  • the longitudinal and transverse tear strengths are 30 and 24 kP respectively.
  • the dimensional stability of the product at 200 ° C is 0.1%.
  • a 3% suspension of cellulose fibers bleached with sodium hydroxide is prepared in a 6000 1 hydrrapulper 1.
  • the fibers have an approximate length of 6 mm and the dough is refined at 60 ° Shopper.
  • the pH of the mixture is brought back to the value of 7.5.
  • the mixture 13 supplied to the hydroformer 11 has a concentration of 1.6% of fibers.
  • a suspension is prepared at 3% of cellulose fibers bleached with soda, refined at 60 ° Shopper.
  • the pH is adjusted to 7.2.
  • the fibrous slurry thus obtained is mixed with one or other of the fibrous suspensions obtained in step B of Examples 1 or 2.

Description

  • La présente invention concerne les produits non tissés en feuille à fibres longues et leur procédé de fabrication par voie papetière.
  • Quoique non exclusivement, la présente invention est particulièrement appropriée à la réalisation d'une feuille composite stable dimensionnellement et capable de présenter de très fortes résistances au poinçonnement, pouvant être imprégnée, soit de bitume ou analogue en vue par exemple d'une utilisation en étanchéité de bâtiments (notamment de la toiture de ceux-ci), soit d'une résine servant de renfort de stabilisation dimensionnelle.
  • On sait que les produits composites fibreux en feuille, destinés à la réalisation des étanchéités dans l'industrie du bâtiment, doivent présenter les propriétés suivantes:
    • - une bonne stabilité dimensionnelle;
    • - une bonne résistance au vieillissement;
    • - une bonne résistance aux agents atmosphériques, aux produits chimiques, aux chocs thermiques, aux variations hygrothermiques du support sur lequel ils sont disposés, etc....;
    • - une bonne résistance au poinçonnement, notamment si des hommes et du matériel doivent circuler sur lesdits produits, après leur pose;
    • - une bonne résistance à l'abrasion; et
    • - une bonne aptitude à l'imprégnation par le bitume, les élastomères, etc... en vue de permettre de les rendre étanches.
  • De telles propriétés sont parfois contradictoires et ne peuvent être obtenues au moyen d'une seule sorte de fibres. Il est donc nécessaire de mettre en oeuvre plusieurs sortes de fibres différentes, pouvant présenter de plus des longueurs et/ou des diamètres différents. Par exemple, la résistance au vieillissement et la stabilité dimensionnelle sont assurées par de longues fibres de verre, alors que la résistance au poinçonnement est obtenue par des fibres de polyester également de grande longueur.
  • Actuellement, un tel produit est par exemple réalisé par la superposition d'un voile de fibres de verre et d'un voile de fibres de polyester, assemblés l'un à l'autre (complexage) et imprégnés de bitume, d'une résine ou analogue.
  • Cependant, un tel produit connu ne permet pas d'obtenir des propriétés optimales. En effet, afin de donner au voile de verre une résistance mécanique suffisante, permettant le complexage, il est nécessaire que ledit voile de verre présente une épaisseur qui est supérieure à l'épaisseur qui correspondrait à la proportion souhaitée de fibres de verre dans le produit fini; il en résulte que celui-ci est trop rigide et ne résiste pas assez ni aux contraintes de chocs, ni aux contraintes de variations dimensionnelles de son support. Par ailleurs, le voile de fibres de polyester est réalisé, de façon connue, par la méthode fondue en continu, de sorte que les fibres de polyester ne sont que partiellement étirées et que leur longueur n'est pas stabilisée: il en résulte que le produit fini est moins stable dimensionnellement qu'il devrait l'être.
  • La présente invention a pour objet de remédier à ces inconvénients. Quelques-uns de ses objectifs principaux sont donc les suivants:
    • - realiser un produit fibreux en feuille stable dimensionnellement et thermiquement susceptible d'être imprégné et formant une feuille composite dans laquelle des fibres de natures, longueurs et/ou diamètres différents sont intimement mêlées, afin de permettre l'obtention de meilleures propriétés pour le produit fini et l'éventuelle incorporation de charges, inertes ou susceptibles de conférer d'autres propriétés au produit fini;
    • - réduire à la quantité juste suffisante la proportion des fibres de verre ou analogues, afin d'améliorer la résistance du produit fini aux contraintes de chocs et de variations dimensionnelles;
    • - permettre l'utilisation de fibres de polyester ou analogues de grande longueur étirées jusqu'à leur stabilisation dimensionnelle, afin d'améliorer la stabilité dimensionnelle du produit fini.
  • Pour atteindre ces objectifs, il serait avantageux de pouvoir mettre en oeuvre le procédé de fabrication des produits fibreux non tissés par voie humide sur machine papetière; cependant, ceci se révèle jusqu'à présent impossible.
  • On sait en effet que pour fabriquer des produits non tissés par voie humide, on commence par disperser des fibres dans de l'eau au moyen d'un pulpeur, puis la suspension obtenue est stockée dans un cuvier destiné à la maintenir homogène et pourvu à cet effet d'une hélice d'agitation. Un tel cuvier sert de volant pour alimenter un hydroformeur, sur la toile inclinée duquel se forme par filtration le voile de matière non tissée. Ainsi, cette technique par voie humide de fabrication de produits non tissés est calquée sur la technique de fabrication des papiers.
  • Toutefois, si l'utilisation des fibres papetières, relativement courtes, mises en dispersion et en suspension de cette façon, ne soulève pas de difficultés, il n'en va pas de même des fibres artificielles et synthétiques de grande longueur.
  • En effet, l'agitation des fibres, nécessaire à la dispersion de celles-ci et à l'homogénéisation de la suspension, engendre des agglomérations de fibres au-delà de certains seuils de longueur desdites fibres. La mise en suspension dans le pulpeur et le stockage dans le cuvier limitent donc la longueur utilisable des fibres. Par exemple, la longueur des fibres utilisables est ainsi limitée à 6 mm pour un titre de 1,7 décitex et à 10 - 15 mm pour des fibres de plus forts titres, aux concentrations habituelles de 0,5 à 1 % d'alimentation de l'hydroformeur.
  • Généralement, ces fibres artificielles et - synthétiques utilisées sont coupées à longueur dans des "câbles" et les tronçons de câbles ainsi coupés forment des petits faisceaux compacts de fibres collées par les ensimages nécessaires à la fabrication de ces câbles. Après introduction dans l'eau et sous l'effet de l'agitation, les faisceaux se défont, mais en même temps, les fibres libérées se nouent les unes aux autres, d'autant plus rapidement qu'elles sont plus longues et que l'ensimage est moins stable, notamment à cause de l'addition d'agents peptisants, tensio-actifs, mouillants et
  • dispersants.
  • Pour éviter certains effets de ces ensimages, on connaît déjà des solutions de désensimage destinées à préimprégner les faisceaux de fibres préalablement à leur introduction dans le pulpeur. Généralement, les faisceaux fibreux, prétraités dans une telle solution de désensimage, s'ouvrent totalement en l'espace de 10 à 15 secondes. Cependant, dans le cas de fibres longues, de telles solutions de désensimage n'empêchent pas la réagglomération des fibres, d'autant plus que certaines fibres, comme par exemple les fibres de verre ou de polyester, présentent une tendance à s'agglomérer par attraction mutuelle. De telles fibres, après dispersion, ne se nouent pas, mais s'agglomèrent en faisceaux de fibres accolées.
  • Pour remédier à cet inconvénient, on a déjà proposé d'ajouter au liquide de dispersion des polyélectrolytes, permettant de charger électriquement les fibres au fur et à mesure qu'elles quittent les faisceaux fibreux au cours de la dispersion, de sorte qu'elles n'aient plus tendance à s'attirer mutuellement après séparation.
  • Dans certains cas, pour éviter la réagglomération des fibres dispersées, on a également proposé d'augmenter la viscosité de la masse liquide du disperseur soit en ajoutant un épaississant, soit en introduisant de l'air dans ce liquide.
  • On a remarqué de plus que si l'on introduit des faisceaux de fibres à disperser dans un milieu qui contient déjà des fibres longues dispersées, la dispersion desdits faisceaux était entravée et ceci d'autant plus que les fibres déjà dispersées sont d'autant plus longues. En revanche, si le milieu contient des fibres courtes déjà dispersées comme certaines fibres papetières par exemple, la dispersion des faisceaux de fibres longues peut être favorisée.
  • Cependant, ces observations et propositions résultent d'expériences de laboratoires et sont insuffisantes à elles-seules pour résoudre les difficultés mentionnées ci-dessus et permettre de réaliser industriellement, par voie papetière, des produits non tissés à fibres longues.
  • Compte-tenu de ce qui précède, d'autres objectifs de la présente invention sont donc, à partir des éléments connus de-la technique antérieure rappelée ci-dessus:
    • - une feuille de produit non tissé, contenant des fibres longues cellulosiques, synthétiques, minérales, etc..., stable dimensionnellement et thermiquement, obtenue industriellement par voie papetière;
    • - la réalisation industrielle d'une telle feuille sur une machine connue de fabrication d'un produit non tissé par voie papetière, avec des fibres de différentes longueurs et/ou de différents diamètres;
    • - la préparation, en vue de son utilisation sur machine à papier, d'une suspension aqueuse de fibres de longueurs et/ou de diamètres
    différents.
  • Par fibres longues, on entend dans la présente description des fibres dont la longueur est supérieure à 6 mm pour un titre de 1,7 décitex et à 15 mm pour des titres supérieurs. A titre d'exemple, la présente invention permet de fabriquer des produits non tissés par voie papetière à partir de fibres dont la longueur est au moins égale à:
    • - 12 mm pour un titre de 1,7 décitex
    • - 18 mm pour un titre de 3,3 décitex
    • - 24 mm pour un titre de 4,4 décitex
    • - 30 mm pour un titre de 6,7 décitex
    • - 34 mm pour un titre de 11 décitex.
  • De plus, l'invention permet d'utiliser de telles fibres pour des proportions pondérales d'au moins 50 % du produit sec fini.
  • A ces fins, selon l'invention, le procédé pour la réalisation d'une suspension de fibres longues utilisables sur machine papetière, ces fibres ayant une longueur d'au moins 12-18-24-30 ou 34 mm respectivement pour des titres de 1,7 - 3,3 - 4,4 - 6,7 ou 11 décitex est caractérisé en ce qu'on opère de la façon suivante:
    • a) dans une première dose d'eau, on met en suspension une première dose de premières fibres longues ensimées et on y ajoute une première dose d'un premier polyélectrolyte à haut poids moléculaire de même caractère ionique que l'ensimage hydraté desdites premières fibres, la proportion pondérale dudit premier polyélectrolyte étant comprise entre 0,2 et 5 % du poids desdites premières fibres;
    • b) après stabilisation de la suspension produite sous a), on ajoute à celle-ci une seconde dose d'eau, puis une seconde dose de secondes fibres longues, dont l'ensimage hydraté a le même caractère ionique que celui desdites premières fibres, ainsi qu'une seconde dose d'un second polyélectrolyte à haut poids moléculaire de même caractère ionique que l'ensimage hydraté desdites secondes fibres, la proportion pondérale cumulée du premier et du second polyélectrolytes par rapport au poids cumulé desdites premières et secondes fibres restant dans la même fourchette que celle du premier polyélectrolyte par rapport auxdites premières fibres;
    • c) on poursuit l'élaboration de ladite suspension de fibres longues jusqu'aux nièmes fibres en ajoutant à la suspension cumulée contenant les n-1 )ièmes premières fibres, une nième dose d'eau, puis une nième dose de nièmes fibres longues, dont l'ensimage hydraté a le même caractère ionique que celui des (n-1)ièmes fibres, ainsi qu'une nième dose d'un nième polyélectrolytes à haut poids moléculaire de même caractère ionique que l'ensimage hydraté desdites (n-1 )ièmes fibres, la proportion pondérale cumulée des n polyélectrolytes par rapport au poids cumulé desdites n fibres resant dans la même fourchette que celle du premier polyélectrolyte par rapport auxdites premières fibres.
  • De plus, selon l'invention, le procédé pour la réalisation industrielle par voie papetière d'un produit non tissé en feuille à base de fibres longues ensimées, ces fibres ayant une longueur d'au moins 12 - 18 - 24 - 30 ou 34 mm respectivement pour des titres de 1,7 - 3,3 - 4,4 - 6,7 ou 11 décitex est caractérisé en ce que:
    • A) On commence par réaliser une bouillie de fibres cellulosiques, dont la concentration pondérale en fibres est comprise entre 2,5 et 4 % et dont l'indice de gouttage est compris entre environ 10 et 60 degrés Shopper;
    • B) On réalise par ailleurs une suspension de fibres longues en opérant de la façon décrite ci-dessus; puis
    • C) On incorpore ladite bouillie de fibres cellulosiques à ladite suspension des n fibres longues et on alimente une machine papetière avec le mélange résultant de l'incorporation.
  • Ainsi, grâce à la présente invention, on contrôle le degré d'éclatement des faisceaux de fibres longues et on peut maintenir ceux-ci dans une position d'ouverture contrôlée pendant un temps suffisamment long, qui correspond à celui qui s'écoule entre la mise en suspension des fibres en préparation et l'introduction de celles-ci dans la machine papetière.
  • En effet, lorsque les faisceaux de fibres longues sont introduits dans l'eau, leur ensimage s'hydrate et engendre des forces ioniques permettant leur division jusqu'aux fibres élémentaires. Si cette eau contient un polyélectrolyte de même charge électrique que l'ensimage hydraté, il se crée au sein du liquide un champ de forces, dont l'intensité dépend de la proportion dudit polyélectrolyte. En choisissant de façon adéquate cette proportion, on peut donc faire en sorte qu'il y ait équilibre entre les forces ioniques de division dues à l'ensimage hydraté et les forces dues au polyélectrolyte on bloque alors la division des faisceaux en fibres, tout en évitant leur réagglomération. On peut alors, par détermination de la proportion adéquate du polyélectrolyte, maintenir l'équilibre des forces jusqu'à l'introduction dans la machine papetière.
  • En opérant conformément à l'invention, dose de fibres longues après dose de fibres longues, les faisceaux de chaque dose de fibres (sauf pour la première) se dispersent dans un milieu liquide contenant déjà des fibres dispersées en équilibre. Il en résulte un effet de synergie cumulatif, favorisé par le fait que l'apport d'une nouvelle dose de polyélectrolyte maintient constante la teneur de celui-ci. Grâce au procédé selon l'invention par étapes cumulatives, on peut obtenir, dans la suspension, une concentration en fibres dispersées bien plus importante que celle qu'il serait possible d'obtenir en introduisant toutes les fibres longues en une seule fois. Ensuite, l'addition de la bouillie de fibres cellulosiques permet de maintenir la dispersion des fibres longues jusqu'à la machine papetière.
  • On remarquera que, dans la mise en oeuvre de l'invention, l'ensimage des fibres est très important, puisqu'il détermine le choix des polyélectrolytes à haut poids moléculaire à utiliser selon les types d'ensimage, ces polyélectrolytes devront être choisis de type anionique ou de type cationique.
  • Les fibres longues ensimées mises en oeuvre dans la pluralité des opérations a), b) et c) de l'étape B du procédé conforme à l'invention, peuvent être de natures, de longueurs et diamètres différents. Elles peuvent également être de même nature, mais de longueurs et de diamètres différents.
  • De même, les n polyélectrolytes mis en oeuvre dans cette pluralité d'opérations peuvent être différents; cependant, il est avantageux que les doses de polyélectrolytes nécessaires à l'élaboration de la suspension de fibres longues soient constituées du même produit.
  • Dans le cas le plus fréquent où l'ensimage hydraté des fibres longues utilisées est de type anionique, le ou les polyélectrolytes anioniques à haut poids moléculaire utilisés dans les opérations a), b) et c) de l'étape B peuvent être choisis parmi les substances rassemblées dans la liste 1 ci-après:
    • - resine polyacrylamide
    • - resine polyamidamine
    • - résine polyamine (I)
    • - résine carboxyvinylique
    • - résine polyéthylènamine
    • - résine polyéthylènamine modifiée.
  • Avantageusement, des fibres courtes de natures différentes, synthétiques ou minérales, peuvent être mélangées aux fibres cellulosiques de ladite bouillie.
  • De plus, de façon connue, cette bouillie peut subir un traitement connu à base de
  • polyélectrolytes.
  • Par exemple, il est usuel de traiter une bouillie de cellulose avec les produits cationiques répertoriés dans la liste Il ci-après:
    • - sulfate d'aluminium
    • - polychlorure d'aluminium
    • - aluminate de sodium et de calcium
    • - polyéthylènamine (II)
    • - résine polyamide épichlorydrine
    • - résine polyamide amine
    • - résine aminoplaste
    • - résine phénoplaste
    • - fécule
    • - amidon carboxyméthyle
    • - polysaccharide
    • - galactomane
    • - hydrochlorure.
  • De même, il est usuel de traiter une bouillie de cellulose avec les produits anioniques énoncés dans la liste III ci-après:
    • - carboxyméthylcellulose
    • - gélatine
    • - méthyléthylcellulose
    • - alcool polyvinylique
    • - alginate
    • - dextrine (III)
    • - monogalactane
    • - polysaccharide
    • - resine carboxyvinylique
    • - copolymère d'acrylate
    • - latex synthétique.
  • Dans le cas où la bouillie de fibres cellulosiques, éventuellement additionnées d'autres fibres minérales ou synthétiques, subit un tel traitement, il est avantageux qu'au moins un polyélectrolyte dudit traitement soit le même que le polyélectrolyte à haut poids moléculaire utlisé dans les n opérations de l'étape B) de préparation de la suspension des fibres longues.
  • De préférence, les fibres longues sont incorporées à ladite suspension suivant un ordre décroissant de difficultés de mise et de maintien en suspension: à titre égal ou proche, les fibres sont introduites successivement avec des longueurs décroissantes, et à longueur égale ou proche, par titre croissant.
  • Après l'incorporation successive des fibres longues dans ladite suspension, on peut ajouter à celle-ci des fibres plus courtes, par exemple de natures différentes.
  • Ainsi, la présente invention concerne un produit non tissé en feuille obtenu industriellement par voie papetière et comportant des fibres cellulosiques. Ce produit est remarquable en ce qu'il comporte des fibres minérales ou organiques dont la longueur est au moins de 12 - 18 - 24 - 30 ou 34 mm respectivement pour des titres de 1,7 - 3,3 - 4,4 - 6,7 ou 11 décitex, ces fibres longues représentant au moins 30 % du poids sec dudit produit.
  • Un tel produit peut alors présenter des propriétés élevées de résistance au poinçonnement, aux chocs et aux déchirures, tout en subissant des allongements importants.
  • En effet, pour cela, il suffit de prévoir des fibres de titre élevé pour fournir la résistance au poinçonnement et à la déchirure, et des fibres de titre moindre pour donner la résistance ponctuelle et la cohésion.
  • Eventuellement, un tel produit peut subir un traitement de surface de renforcement.
  • Il peut incorporer toutes sortes de fibres:
    • - synthétiques: de types polyamide, polyester, acrylique, céramique, etc...
    • - cellulosiques de type acétate, triacétate, viscose, etc.
    • - minérales verre, laine de roche, carbone, bore, mallastonite, métallique, etc.
  • La figure unique du dessin annexé fera bien comprendre comment l'invention peut être réalisée.
  • Cette figure unique illustre schématiquement un mode de mise en oeuvre de la présente invention.
  • A - D'un côté dans une installation 1, comprenant un pulpeur (ou hydrapulpeur), on prépare de toutes façons connues une bouillie de fibres cellulosiques, par exemple à partir d'une pâte mécanique, d'une pâte mi-chimique, d'une pâte chimique, d'une pâte écrue, d'une pâte blanchie, d'une pâte à la soude, d'une pâte au sulfate, d'une pâte kraft, d'une pâte au bisulfate, d'une pâte de chiffons, d'une pâte de paille, etc...Cette bouillie, outre les fibres cellulosiques et l'eau, peut incorporer une matière colorante et elle est soumise à une agitation apte à la mise en suspension des particules fibreuses.
  • La concentration en poids des fibres cellulosiques est par exemple comprise en 2,5 et 4 % et la pâte ainsi produite est raffinée pour obtenir un indice d'éguttage compris entre environ 10 et 60 degrés Shopper.
  • Après raffinage, la suspension des fibres provenant de l'installation 1 est introduite (en 2) dans un cuvier de stockage A.
  • Eventuellement, à cette suspension de fibres cellulosiques, on ajoute (en 3) des charges, des produits de collage et des fibres synthétiques et/ou minérales courtes, c'est-à-dire dont la longueur est au plus égale à environ 6 mm.
  • Le mélange se trouvant alors dans le cuvier A est traité par un ou plusieurs agents cationiques de préparation de la cellulose, tels que ceux répertoriés dans la liste 22 ci-dessus et introduits en 4. Ce ou ces agents cationiques se fixent sur les fibres et polarisent ces dernières uniformément. La proportion utilisée est généralement comprise, en poids, entre 0,3 et 5 % de la matière fibreuse seche.
  • L'excédent d'agent cationique et les particules libres de la suspension fibreuse sont ensuite neutralisés par une solution de polarisation ionique faible, de type anionique, dont la substance active est par exemple choisie, parmi celles rassemblées dans la liste 111 ci-dessus et introduite en 5. La quantité requise de cette substance active est par exemple comprise en 0,3 et 15 % du poids du mélange sec.
  • Enfin, le mélange se trouvant dans le cuvier A est traité par un polyélectrolyte anionique, de haut poids moléculaire, introduit en 6 et choisi par exemple sur la liste donnée par la liste 1 ci-dessus. La concentration de ce polyélectrolyte anionique est par exemple comprise entre 0,2 et 8 % en poids de la cellulose sèche.
  • Les polyélectrolytes anioniques des listes 1 et III sont préparés et stockés à une concentration d'environ 0,6 % quelques temps avant leur introduction en 5 et 6 dans le cuvier A.
  • Le mélange ainsi obtenu, contenu dans le cuvier A, est stocké dans celui-ci sous agitation.
  • B - Par ailleurs, dans un autre cuvier B susceptible d'engendrer une agitation contrôlée à mouvement de turbulence constant, on introduit, en 7, une première dose d'eau et en 81 des premières fibres longues ensimées difficiles à disperser.
  • Dès dispersion desdites premières fibres, on ajoute en 9 une première dose d'un polyélectrolyte de haut poids moléculaire, par exemple de type anionique si l'ensimage hydraté desdites fibres est également anionique.
  • Ce polyélectrolyte est de préférence le même que celui utilisé dans l'étape A ci-dessus. La concentration en poids de ce polyélectrolyte de haut poids moléculaire peut être compris entre 0,2 et 5 % du poids desdites premières fibres.
  • Après stabilisation de cette solution, on introduit une seconde dose d'eau dans le cuvier 8 (par l'intermédiaire de 7) et des secondes fibres longues à ensimage de même polarité que les preremières (en 82). Ces secondes fibres longues sont choisies pour être moins difficiles à disperser que lesdites premières fibres.
  • Dès dispersion desdites secondes fibres, on ajoute en 9 une seconde dose de polyélectrolyte anionique de haut poids moléculaire, par exemple celui précédemment utilisé. Cette seconde dose est ajustée pour maintenir constante la concentration en polyélectrolyte, par rapport à la quantité totale de fibres et par rapport à l'eau.
  • On continue l'addition alternée, dans le cuvier 8, de doses d'eau, de fibres longues et de polyélectrolyte anionique jusqu'aux nièmes et dernières fibres longues introduites en 8n.
  • Ensuite, il est possible d'introduire, en 10, d'autres fibres, par exemple plus courtes. On ajoute alors un agent tensio-actif non ionique ou de même polarité (anionique dans l'exemple choisi) que le polyélectrolyte utilisé précédemment.
  • Dans la suspension fibreuse du cuvier 8, on introduit alors la bouillie du cuvier A, en respectant les proportions choisies pour la constitution du produit non tissé final. La concentration pondérale en fibres du mélange obtenu est au moins égale à 1 %.
  • Ce mélange desdites suspension et bouillie fibreuses alimente un hydroformeur 11, par l'intermédiaire d'une pompe 12. La masse liquide 13, contenant les fibres et alimentant la toile 14 de l'hydroformeur 11, traverse pour sa plus grande part ladite toile 14 en déposant lesdites fibres sur celle-ci afin de former un voile et tombe dans un réceptacle 15 (flèches 16), d'où elle est ramenée à l'hydroformeur 11 par une pompe 17 et une canalisation 18. Le cuvier 8 est relié en parallèle sur la canalisation 18, par la pompe 12.
  • La concentration pondérale en fibres de la masse liquide 13 est par exemple comprise entre 0,1 %o et 0,5 %o.
  • Eventuellement, le pH de la masse liquide 13 est ajustée par addition d'un acide ou d'une base, avant introduction dans l'hydroformeur 11. On a en effet remarqué que l'équilibre entre les fibres dispersées des faisceaux de fibres était influencé par la valeur du pH. A chaque solution fibreuse correspond une valeur de pH optimale de ce point de vue.
  • La valeur optimale du pH est déterminée, cas par cas, par expérimentation.
  • A la sortie de l'hydroformeur 11 le voile de fibres est éventuellement traité en surface par un liant, par exemple choisi parmi ceux de la liste III ci-dessus. Le traitement peut s'effectuer dans un foulard de saturation (non représenté). On peut ensuite traiter ledit voile, encore partiellement humide, par une enduction de mousse, par saturation humide ou pulvérisation avant le séchage de la feuille.
  • EXEMPLE 1
  • Dans un hydrapulpeur 1 de 6000 litres, on prépare sous agitation rapide, une suspension à 3 % de fibres de cellulose blanchie à la soude. Les fibres ont une longueur approximative de 6 mm et la pâte est raffinée à 40° Shopper.
  • A) Dans le cuvier A, sous agitation faible, on introduit dans l'ordre:
    • - 500 I. d'eau;
    • - 666 1. de la suspension de fibres cellulosiques à 3% (en 2);
    • - 0,5 1. d'un agent anti-mousse;
    • - 41. de résine polyamide épichlorydrine, par exemple celle vendue par la Société HERCULES sous le nom commercial de KYMENE 557 (en 4);
    • - 4,4 1. de carboxyméthylcellulose diluée à 2,5 % en poids, par exemple celle vendue par la Société HERCULES sous le nom commercial de 7 ML (en 5);
    • - 11 I. d'une solution à 6 %o de résine polyacrylamide à haut poids moléculaire, par exemple celle vendue par la Société AMERICAN CYANAMID sous le nom commercial de C 130 (en 6).
  • On complète avec de l'eau pour atteindre un volume de 1400 I et on ramène le pH de la suspension à une valeur supérieure à 7,5, par addition de soude caustique ou de carbonate de soude.
  • B) Dans le cuvier B, on introduit successivement:
    • - 1800 I. d'eau (en 7);
    • - 15 kg. de fibres polyester ayant un titre de 6,7 décitex et une longueur de 30 mm (en 81);
    • - 0,5 I. d'une solution à 6 %o de résine polyacrylamide C130 (en 9);
    • - 600 I. d'eau (en 7);
    • - 15 kg. de fibres polyester ayant un titre de 11 décitex et une longueur de 34 mm (en 82);
    • - 0, 166 I. de la solution à 6 %o de C130 (en 9);
    • - 600 d'eau (en 7);
    • - 15 kg. de fibres polyester ayant un titre de 1,7 décitex et une longueur de 18 mm (en 83);
    • - 0,166 1. de la solution à 6 %o de C130 (en 9);
    • - 600 1. d'eau (en 7);
    • - 10 kg. de fibres polyester ayant un titre de 1,7 décitex et une longueur de 6 mm (en 84);
    • - 0,166 I. de la solution à 6 %o de C130 (en 9);
    • - 600 l. d'eau (en 7);
    • - 5 kg. de fibres de verre ayant un titre de 1,1 decitex et une longueur de 4,5 mm (en 85);
    • - 0,5 1. d'un agent dispersant, par exemple celui connu commercialement sous le nom de ZONTES KV (en 9).
  • Ensuite, on alimente l'hydroformeur 11 avec le mélange des suspensions contenues dans les cuviers A et B, dilué par la pompe 17 pour fournir une masse liquide 13 ayant une concentration pondérale totale en fibres égales à 1,4 %.
  • En aval de l'hydroformeur 11, le voile fibreux est traité en foulard par une solution comportant:
    • - 60 1. d'une résine styrène acrylique, par exemple celle vendue sous la référence 6147/2 de la Société HOECHST;
    • - 4 I. de mélamine CASURIT de la même société; et
    • - 0,4 l. du catalyseur NKA de la même société.
  • On obtient alors une feuille de produit non tissé dont le grammage est de 130 g/m2, et l'allongement de 3 %. Les résistances longitudinales et transversales à la déchirure sont respectivement de 30 et 24 kP. La stabilité dimensionnelle du produit à 200° C est de 0,1 %.
  • EXEMPLE II
  • Dans un hydrapulpeur 1 de 6000 1., on prépare sous agitation rapide, une suspension à 3 % de fibres de cellulose blanchie à la soude. Les fibres ont une longueur approximative de 6 mm et la pâte est raffinée à 60° Shopper.
  • A) Dans le cuvier A, sous agitation faible, on introduit dans l'ordre:
    • - 500 1. d'eau;
    • - 100 cm3 d'un agent dispersant anionique, par exemple celui commercialement connu sous le nom DUSPERSE 49, venu par la société BUCKMAN LABORATORIES;
    • - 660 1. de la suspension de fibres cellulosiques à 3% (en 2);
    • - 0,5 l. d'un agent anti-mousse;
    • - 4 de résine polyamide épichlorydrine, par exemple celle vendue par la société HERKULES sous le nom commercial de KYMENE 557 (en 4);
  • 4,5 I. de carboxyméthylcellulose diluée à 2,5 % en poids, par exemple celle vendue par la Société HERCULES sous le nom commercial de 7 ML (en 5);
    • - 10 kg de fibres de polyester ayant un titre de 1,7 deniers et une longueur de 6 mm;
    • - 5 kg. de fibres de verre ayant un titre de 1,1 décitex et une longueur de 4,5 mm;
  • - 11 l. d'une solution à 6 %o de résine polyacrylamide à haut poids moléculaire, par exemple celle vendue par la société AMERICAN CYANAMID sous le nom commercial de C130 (en 9).
  • Le pH du mélange est ramené à la valeur de 7,5.
  • B) Dans le cuvier B, on introduit successivement:
    • - 1800 1. d'eau (en 7);
    • - 15 kg. de fibres polyester ayant un titre de 6,7 décitex et une longueur de 30 mm (en 81);
    • - 90 1. d'une solution à 6 %o de résine polyacrylamide C130 (en 9);
    • - 600 1. d'eau (en 7);
    • - 15 kg. de fibres polyester ayant un titre de 11 décitex et une longueur de 34 mm (en 82);
    • - 30 1. d'une solution à 6 %o de C130;
    • - 600 I. d'eau;
    • - 15 kg. de fibres polyester ayant un titre de 1,7 décitex et une longueur de 18 mm.;
    • - 30 1. d'une solution à 6 %o de C130;
    • - 1400 1. de la solution préparée sous A;
    • - 100 cm3 de l'agent dispersant GUPERSE 49;
    • - 50 cm3 d'agent anti-mousse.
  • Le mélange 13 fourni à l'hydroformeur 11 possède une concentration de 1,6 % de fibres.
  • EXEMPLE III
  • Dans l'hydrapulpeur 1, on prépare une suspension à 3 % de fibres de cellulose blanchie à la soude, raffinée à 60° Shopper.
  • A) Dans le cuvier A, sous agitation faible, on introduit dans l'ordre:
    • - 500 1. d'eau;
    • - 660 1. de la suspension de fibres cellulosiques à 3%;
    • - 4 1. de résine polyamide épichlorydrine KYMENE 557;
    • - 65 I. d'un liant acrylique dilué à 20 %, par exemple celui portant la référence commerciale P339 et vendu par la société ROHM et HAAS;
    • - 11 1. d'une solution à 6 %o de résine polyacrylamide C130;
    • - Un complément d'eau pour 1400 l.
  • Le pH est réglé à 7,2.
  • On mélange la bouillie fibreuse ainsi obtenue à l'une ou l'autre des suspensions fibreuses obtenues dans l'étape B des exemples 1 ou 2.

Claims (15)

1. Procédé pour la réalisation d'une suspension de fibres longues utilisables sur machine papetière, ces fibres ayant une longueur d'au moins 12 - 18 - 24 - 30 ou 34 mm respectivement pour des titres de 1,7 - 3,3 - 4,4 - 6,7 ou 11 décitex,
caractérisé en ce qu'on opère de la façon suivante:
a) dans une première dose d'eau, on met en suspension une première dose de premières fibres longues ensimées et on y ajoute une première dose d'un premier polyélectrolyte à haut poids moléculaire de même caractère ionique que l'ensimage hydraté desdites premières fibres, la proportion pondérale dudit premier polyélectrolyte étant comprise entre 0,2 et 0,5 % du poids desdites premières fibres;
b) après stabilisation de la suspension produite sous a), on ajoute à celle-ci une seconde dose d'eau, puis une seconde dose de secondes fibres longues, dont l'ensimage hydraté a le même caractère ionique que celui desdites premières fibres, ainsi qu'une seconde dose d'un second polyélectrolyte à haut poids moléculaire de même caractère ionique que l'ensimage hydraté desdites secondes fibres, la proportion pondérale cumulée du premier et du second polyélectrolytes par rapport au poids cumulé desdites premières et secondes fibres restant dans la même fourchette que celle du premier polyélectrolyte par rapport auxdites premières fibres ;
c) on poursuit l'élaboration de ladite suspension de fibres longues jusqu'aux nièmes en ajoutant à la suspension cumulée contenant les (n-1 )ièmes premières fibres, une nième dose d'eau, puis une nième dose de nièmes fibres longues, dont l'ensimage hydraté a le même caractère ionique que celui des (n-l)ièmes fibres, ainsi qu'une même dose d'un nième polyélectrolyte à haut poids moléculaire de même caractère ionique que l'ensimage hydraté desdites (n- 1)ièmes fibres, la proportion pondérale cumulée des n polyélectrolytes par rapport au poids cumulé desdites n fibres restant dans la même fourchette que celle du premier polyélectrolyte par rapport auxdites premières fibres.
2. Procédé pour la réalisation indusrielle par voie papetière d'un produit non tissé en feuille à base de fibres longues ensimées, ces fibres ayant une longueur d'au moins 12 - 18 - 24 - 30 ou 34 mm respectivement pour des titres de 1,7 - 3,3 - 4,4 - 6,7 ou 11 décitex,
caractérisé en ce que:
A) On commence par réaliser une bouillie de fibres cellulosiques, dont la concentration pondérale en fibres est comprise entre 2,5 et 4 % et dont l'indice de gouttage est compris entre environ 10 et 60 degrés Shopper;
B) On réalise par ailleurs une suspension de libres longues en opérant de la façon décrite dans la revendication 1; puis
C) On incorpore ladite bouillie de fibres cellulosiques à ladite suspension des n fibres longues et on alimente une machine papetière avec le mélange résultant de l'incorporation.
3. Procédé selon l'une des revendications 1 ou 2,
caractérisé en ce que les fibres longues mentionnées dans la pluralité des opérations a),
b) et c) sont de natures, de longueurs et de diamètres différents.
4. Procédé selon l'une des revendications 1 ou 2,
caractérisé en ce que les fibres longues mentionnées dans la pluralité des opérations a), b) et c) sont de même nature, mais de longueurs et de diamètres différents.
5. Procédé selon l'une quelconque des revendications 1 à 4,
caractérisé en ce que les n doses de polyélectrolyte sont constituées du même produit.
6. Procédé selon l'une quelconque des revendications 1 à 5, mise en oeuvre pour des fibres longues dont l'ensimage hydraté est de type anionique,
caractérisé en ce que les doses de polyélectrolyte sont constituées d'au moins une substance de la liste suivante:
- résine polyacrylamide
- resine polyamidamine
- résine polyamine
- résine carboxyvinylique
- resine polyéthylènamine
- resine polyéthylènamine modifiée.
7. Procédé selon l'une quelconque des revendications 2 à 6,
caractérisé en ce que des fibres courtes de natures différentes sont mélangées aux fibres cellulosiques de ladite bouillie.
8. Procédé selon la revendication 2 et l'une quelconque des revendications 5 à 7, selon lequel la bouillie de fibres cellulosiques subit un traitement à base de polyélectrolytes,
caractérisé en ce qu'au moins un polyélectrolyte dudit traitement de cette bouillie est le même que le polyélectrolyte à haut poids moléculaire utilisé dans la réalisation de ladite suspension de fibres longues.
9. Procédé selon l'une quelconque des revendications 1 à 8,
caractérisé en ce que, dans la réalisation de la suspension de fibres longues, celles-ci sont incorporées suivant un ordre décroissant de difficultés de mise et de maintien en suspension.
10. Procédé selon l'une quelconque des revendications 1 à 9,
caractérisé en ce que, après l'incorporation successive des fibres longues dans ladite suspension, on ajoute à celle-ci des fibres plus courtes de nature différente.
11. Procédé selon l'une quelconque des revendications 2 à 10,
caractérisé en ce que, à la sortie de la machine papetière, on soumet la feuille du produit non tissé à un traiement de surface de renforcement.
12. Produit non tissé en feuille obtenu industriellement par voie papetière et comportant des fibres cellulosiques,
caractérisé en ce qu'il incorpore de plus des fibres minérales ou organiques dont la longueur est au moins de 12 - 18 - 24 - 30 ou 34 mm respectivement pour des tigres de 1,7 - 3,3 - 4,1 - 6,7 ou 11 décitex, ces fibres longues représentant au moins 30 % du poids sec dudit produit.
13. Produit non tissé selon la revendication 12,
caractérisé en ce qu'il incorpore de plus des fibres minérales ou organiques plus courtes.
14. Produit non tissé selon l'une des revendications 12 ou 13,
caractérisé en ce qu'il comporte des fibres de verre et des fibres de polyester.
15. Produit non tissé selon la revendication 14,
caractérisé en ce qu'il est pourvu d'une enduction le rendant étanche en vue d'une utilisation dans l'industrie du batiment.
EP85401922A 1984-10-05 1985-10-02 Produit non tissé en feuille à fibres longues et son procédé de réalisation Expired EP0177425B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85401922T ATE41794T1 (de) 1984-10-05 1985-10-02 Nichtgewebtes langfaseriges blatterzeugnis und sein herstellungsverfahren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8415315A FR2571388B1 (fr) 1984-10-05 1984-10-05 Produit non tisse en feuille a fibres longues et son procede de realisation par voie papetiere
FR8415315 1984-10-05

Publications (2)

Publication Number Publication Date
EP0177425A1 EP0177425A1 (fr) 1986-04-09
EP0177425B1 true EP0177425B1 (fr) 1989-03-29

Family

ID=9308380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401922A Expired EP0177425B1 (fr) 1984-10-05 1985-10-02 Produit non tissé en feuille à fibres longues et son procédé de réalisation

Country Status (4)

Country Link
EP (1) EP0177425B1 (fr)
AT (1) ATE41794T1 (fr)
DE (1) DE3569135D1 (fr)
FR (1) FR2571388B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8621680D0 (en) * 1986-09-09 1986-10-15 Du Pont Filler compositions
DE9210235U1 (fr) * 1992-07-30 1992-10-29 Ems-Inventa Ag, Zuerich, Ch
CN113201863B (zh) * 2021-04-06 2022-04-22 武汉纺织大学 一种医用防护服用吸附抗菌非织造布的制作装置及工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2198232A (en) * 1938-11-15 1940-04-23 Shopneck Henry Philip Process of manufacturing a waterlaid felt
US3102838A (en) * 1960-02-23 1963-09-03 John A Manning Paper Company I Fiber treatment and resulting product
NL133247C (fr) * 1967-05-18
DE2110599B2 (de) * 1971-03-05 1978-04-27 Schuller, Werner Hugo Wilhelm, 8022 Gruenwald Verfahren zur Herstellung eines Glasfaservlieses nach dem Naßvliesverfahren
US4129674A (en) * 1972-10-27 1978-12-12 Johns-Manville Corporation Fibrous mat especially suitable for roofing products and a method of making the mat
FR2410084A1 (fr) * 1977-11-23 1979-06-22 Arjomari Prioux Produit cellulosique, son procede de preparation et son application, notamment dans le domaine des panneaux de revetement en remplacement de l'amiante
US4245689A (en) * 1978-05-02 1981-01-20 Georgia Bonded Fibers, Inc. Dimensionally stable cellulosic backing web
FR2435554A1 (fr) * 1978-09-08 1980-04-04 Dalle & Lecomte Papeteries Produit papetier a forte teneur en charge
SU962399A1 (ru) * 1981-03-31 1982-09-30 Центральный научно-исследовательский институт бумаги Способ подготовки бумажной массы к отливу

Also Published As

Publication number Publication date
FR2571388A1 (fr) 1986-04-11
FR2571388B1 (fr) 1987-01-16
EP0177425A1 (fr) 1986-04-09
ATE41794T1 (de) 1989-04-15
DE3569135D1 (en) 1989-05-03

Similar Documents

Publication Publication Date Title
BE1006908A3 (fr) Nouveau produit complexe a base de fibres et de charges, et procede de fabrication d'un tel nouveau produit.
US4007083A (en) Method for forming wet-laid non-woven webs
FR2505908A1 (fr)
CA2464136C (fr) Pate a papier mecanique blanchie et son procede de fabrication
CN1439071A (zh) 在纸浆加工过程中向纸浆添加吸附性化学添加剂的方法和通过所说的方法制作的产品
FR2604198A1 (fr) Procede de traitement d'une pate papetiere par une solution enzymatique.
BE897108A (fr) Papier pour pnneau de revetements muraux en gypse
CN104583491A (zh) 制备纸产品的方法以及纸产品
US20180264386A1 (en) Filter media comprising cellulose filaments
US8273214B2 (en) Manufacture of a veil made of glass and cellulose fibers in cationic medium
CH644972A5 (fr) Membrane pour batterie alcaline et batterie alcaline la contenant.
CH640900A5 (fr) Produit papetier a forte teneur en charge.
EP0177425B1 (fr) Produit non tissé en feuille à fibres longues et son procédé de réalisation
EP0100720B1 (fr) Feuille papetière à très fort taux de latex, son procédé de préparation et ses applications notamment comme produit de substitution de voiles de verre imprégnés
EP1485536B1 (fr) Voile a liant fibre pvoh
FR2655070A1 (fr) Pate papetiere a base de fibres cellulosiques et de fibres minerales (verre) sous forme de laine.
FR2700163A1 (fr) Procédé pour la fabrication d'un matériau de construction.
JPH08188981A (ja) 微細繊維化パルプシートの製造方法
JP2967947B2 (ja) 抄紙用ランダム複合繊維、該繊維を用いた抄紙方法および該方法により得られる紙
JP2005248335A (ja) マイナスイオン発生板紙
FR2701275A1 (fr) Procédé et installation pour la récupération de fibres cellulosiques d'origine papetière, et papier obtenu à partir de telles fibres récupérées.
JPH04352897A (ja) 抄紙方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860321

17Q First examination report despatched

Effective date: 19871008

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890329

REF Corresponds to:

Ref document number: 41794

Country of ref document: AT

Date of ref document: 19890415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3569135

Country of ref document: DE

Date of ref document: 19890503

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911002

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911008

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911014

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911021

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911031

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911211

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921031

Ref country code: CH

Effective date: 19921031

Ref country code: BE

Effective date: 19921031

BERE Be: lapsed

Owner name: PAPETERIES DALLE ET LECOMTE

Effective date: 19921031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921002

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930701

EUG Se: european patent has lapsed

Ref document number: 85401922.1

Effective date: 19930510