WO2004065775A1 - Procede pour calculer des variations de pression dans un systeme d'alimentation en carburant d'un moteur a combustion interne et a injection directe de carburant et pour commander et reguler le fonctionnement des soupapes d'injection - Google Patents

Procede pour calculer des variations de pression dans un systeme d'alimentation en carburant d'un moteur a combustion interne et a injection directe de carburant et pour commander et reguler le fonctionnement des soupapes d'injection Download PDF

Info

Publication number
WO2004065775A1
WO2004065775A1 PCT/EP2004/000581 EP2004000581W WO2004065775A1 WO 2004065775 A1 WO2004065775 A1 WO 2004065775A1 EP 2004000581 W EP2004000581 W EP 2004000581W WO 2004065775 A1 WO2004065775 A1 WO 2004065775A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
fuel
pressure
fourier
actuation
Prior art date
Application number
PCT/EP2004/000581
Other languages
German (de)
English (en)
Inventor
Marco Claudio Pio Brunelli
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP04704585A priority Critical patent/EP1585895B1/fr
Publication of WO2004065775A1 publication Critical patent/WO2004065775A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1429Linearisation, i.e. using a feedback law such that the system evolves as a linear one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • F02D2200/0604Estimation of fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails

Definitions

  • the invention relates to a method for calculating pressure fluctuations in a fuel supply system of an internal combustion engine working with direct fuel injection and for controlling its injection valves.
  • the common rail injection system known per se is used above all. At least for the latter, multiple injection methods are known, with which to improve the mixture preparation and Combustion process the amount of fuel required for an operation in an engine cylinder is injected in, for example, three partial injection processes.
  • a pre-injection improves the mixture preparation and thus the onset of combustion during the main injection.
  • Post-injection of fuel ultimately serves primarily to improve the exhaust gas behavior of the internal combustion engine.
  • Injection systems with multiple injection methods occur during the injection processes, pressure waves in the lines leading to the injection nozzles, which in the worst case reduce the nominal value of the injection pressure and thus have a negative effect on the efficiency and reliability of the injection system of the internal combustion engine. For example, it may happen that the required target injection pressure is not available at the injection nozzle during an injection process and therefore the desired amount of fuel is not injected for a given injection duration. Depending on the pressure wave phase, this can lead to both an oversupply and an undersupply of fuel as well as different injection pressures. This worsens the drive power and the nominal exhaust gas behavior of the internal combustion engine.
  • pressure waves are also generated by all other actuation processes of the injection valves of the injection system, so that a large number of partial pressure waves overlap in the injection system.
  • the control device mentioned for adapting the injection duration of a partial fuel injection does not solve the problem of the fuel supply to the cylinder caused by the pressure waves solved sufficiently.
  • a compensation device in which a piezo actuator applies the frequency of a fuel pressure wave by converting the mechanical force exerted on this sensor. true, converted into an electrical signal and made available to a control device.
  • This control device uses this frequency information and the knowledge of the undisturbed start of injection and the undisturbed end of injection of the injection valve to adjust the level of the injection pressure of the following injection process.
  • a method for determining the injection time in an internal combustion engine working with direct fuel injection is known, with which the pressure fluctuations occurring in the feed line to an injection valve during two successive injection processes within the same working cycle of the cylinder with a mathematical correction term be taken into account.
  • the actuation time for the injection valves is then changed with the corrected pressure value, so that the correct amount of fuel is injected.
  • the correction term is determined by means of a so-called ⁇ least squares estimator "which, depending on the geometric data of the fuel injection system, such as the length of the supply line from the common supply line to the injection valve, and the properties of the fuel determine the probable injection pressure at the Fuel injector nozzle estimates.
  • DE 199 50 222 AI describes a method by which Fourier analysis of the fuel pressure in a high-pressure fuel supply system of a direct-injection internal combustion engine is intended to determine the defect-free functioning of components of this system. It is not a question of fuel pressure fluctuations, which are primarily or secondarily caused by a functionally correct actuation of the fuel injection valves, but rather those which arise due to incorrect behavior of components in the fuel supply system.
  • DE 197 40 608 AI discloses a method for determining at least one fuel injection-related parameter for an internal combustion engine with a common rail injection system. With this procedure the
  • Pressure in the manifold pressure chamber of the common rail injection system that is jointly assigned to the engine combustion chambers is detected in its course by means of a pressure sensor of the distributor pressure chamber via a respective injection curtain for a respective combustion chamber. From this pressure curve an associated pressure curve pattern is obtained, from which the at least one fuel-related parameter is indi- is determined for each combustion chamber and each injection process.
  • the object of the invention is to present a method for reducing the effects of the pressure waves described at the outset, with which the efficiency of the internal combustion engine is further increased and the reliability of the overall system comprising the internal combustion engine and the fuel injection system is improved.
  • This method should also be usable for fuel injection systems of different dimensions without major changes.
  • the method according to the invention is based on the knowledge that the fuel pressure vibrations occurring in a direct injection fuel injection system can be reliably described in the steady state with the aid of a Fourier analysis.
  • the temporal fluctuations in the fuel pressure and thus in the fuel volume flow when the injection valve is open are also not considered for the entire fuel supply system, but only for predefined fixed points in the area of the lines and for predefined volumes. These points are nodes in a one-dimensional grid, which is conceptually spanned in the injection line system and to which the continuity equations are applied to describe the temporal development of the system. By definition, the pressure vibration analyzes performed for these nodes also apply to all other locations in the injection system under consideration.
  • the fuel injection system should not actually be considered as an isolated system. Rather, in the fuel injection system, in addition to the oscillation typical in an isolated system, there are also those which are generated by the external excitation of the valve actuation.
  • the pressure of the fuel also oscillates after a certain excitation time around its equilibrium value (ie the static pressure) with the same period as the external excitation source.
  • the time dependence of this oscillation can be calculated using the mathematical method of the Fourier transform.
  • the injection system can be regarded as a high-pressure hydraulic system that has settled after a few work cycles of the internal combustion engine, in which the geometric Properties of the spray system and the properties of certain types of fuel are constants.
  • the actuation of the injection valves represents an external source of excitation for the fuel pressure oscillations in the injection system.
  • the method of the transfer function is used to determine the fuel pressure vibrations occurring in such an injection system, the response function of which indicates the sum of the amplitudes and phases of the pressure wave with which it vibrates around the target pressure in the fuel supply system.
  • the pressure oscillation phases and pressure oscillation amplitudes calculated in this way are then compared with target values for the actuation times, the fuel injection pressure and / or the injection volume.
  • at least one correction value is then calculated from the deviation for the originally intended actuation time, the originally intended actuation duration and / or the originally intended injection volume.
  • at least one of the previous target values mentioned is changed by applying a correction value for the next and / or all subsequent injection processes in such a way that the disadvantages arising from the fuel pressure oscillation are compensated for.
  • This method also uses the equation to determine the time dependence of the fuel pressure and / or the fuel volume flow / ⁇ 2 ⁇ - n - t
  • n 0 • t ⁇ , 2 ⁇ - n - t, i ⁇
  • X k , 0 means the equilibrium value of the component X k of the state variable X for the pressure and the volume flow
  • 1 the number of non-zero components of the state variable of the external excitation F
  • X n the Fourier components of the amplitude value and the Fourier components of the phase value between the k-th state variable and the i-th control variable
  • f cn and c l n the coefficients of the Fourier transformation of the control variable i
  • t the time
  • T the period of a fuel pressure oscillation
  • Cosine and sine components as well as n an integer index value.
  • a specific control process can include the following process steps:
  • the geometric parameters of the injection system and / or the properties of the fuel are preferably specified as constants, although these can also be determined at suitable time intervals by means of suitable measuring devices.
  • X should be referred to as the vector which specifies the pressure and volume flow values at the aforementioned nodes of the injection system.
  • the components X k of the vector X are referred to as state variables of the fuel. The derivation of the vector X over time then applies
  • A is a matrix which specifies the geometric parameters of the system and the liquid properties of the fuel
  • F (t) is the vector of the actuation process of the injection valves or, in particular, the vector of the injected liquid quantity at the respective injection valves.
  • the components of F (t) are periodic functions and are referred to as control variables, all of which have the same period T and generally have different phase positions from one another.
  • fj (t) can be viewed as a periodic function which is due to an i-th injection process and is broken down into its cosine and sine components.
  • ti may be required to shift the range of values of the variability range from f (t) to (-T / 2, T / 2).
  • amplitudes and phases of the vibrations can be calculated between the control variable and the state variable X k at the frequency f n with the formalism of the Fourier transform.
  • the Fourier transformation is always calculated numerically, even if, in certain cases, an approximate analytical expression could be given for certain variables or constants.
  • each Fourier component of the injected flow induces an oscillation of the volume flow and of the pressure at the node in question, the phase and amplitude of which are known. Since this system is linear, the time behavior of Xk can be viewed as the sum of all contributions of the Fourier components of the control variables.
  • the index s and the index c represent the coefficients of the cosine and sine components.
  • t stands for the time elapsed between two injection processes on the same injection valve
  • ⁇ t for the injection duration
  • Qi nj for the maximum fuel volume flow at the injection valve.
  • the injection duration ⁇ t and the maximum volume flow Q in j were set so that the correct injection quantity was available at the operating point of the cylinder under consideration.
  • the point in time t a at which the fuel is injected into the cylinder was chosen so differently for each of the injection valves that the correct injection sequence was obtained.
  • the cycle duration T was also calculated so that the desired engine speed was set.
  • FIG. 2 shows the graphically plotted percentage error between the pressure profiles of the comparison calculations shown in FIG. 1.
  • FIG. 2 shows how well the calculated pressure fluctuations actually match between the complex simulation program 'Arnesim' and the method according to the invention, which works much faster and requires less injection system data, in which the percentage error between the two calculation methods for a common rail System in connection with a four-cylinder internal combustion engine is shown during a complete injection period with a length of 0.1 second. As this error history shows, this error never exceeds the value of 0.09%, which is a very good match between the Results of both calculation methods can be determined.
  • the proposed method for determining the pressure fluctuations can advantageously be used in open-loop and closed-loop control methods for actuating the injection valves of direct-injection fuel injection systems. These systems can be both common rail and pump-injector systems. It is particularly advantageous in the calculation method according to the invention that the correction of the injection times can be calculated analytically using a formula which contains a clear and explicit dependency on the system geometry and the injection characteristic.
  • the frequencies, amplitudes and phases that are used in this mathematical expression to calculate the pressure fluctuations and for the injection timing and, if necessary, injection duration correction are predetermined a priori by the injection system and do not have to be determined by continuously repeated measurements.
  • Standard means for simulating hydraulic systems are available. Therefore, the calculation time in the simulation of injection processes in stationary operating points of an internal combustion engine can be reduced considerably.
  • this calculation can also be carried out using a vehicle computer, for example when starting up for the first time or at predetermined intervals while the vehicle is in operation. In the latter case, it is preferable to determine only the viscosity of the fuel and to perform a one-time simulation run.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Dans les moteurs à combustion interne dotés de système d'injection directe de carburant, on peut observer des variations de pression dans le système d'injection, ces variations augmentant la consommation de carburant et altérant les propriétés des gaz d'échappement. L'invention concerne un procédé pour calculer les variations de pression dans un système d'alimentation en carburant, procédé selon lequel les soupapes d'injection du système d'injection sont commandées de manière à éviter les inconvénients susmentionnés. La présente invention se base en cela sur le fait que le système d'alimentation en carburant est un circuit hydraulique haute pression fermé soumis à l'action des soupapes d'injection en tant que sources de variations externes. L'analyse de Fourier permet d'étudier la variation de pression hydrostatique ainsi créée et de calculer des valeurs de correction pour changer le moment de l'injection, la durée de l'injection et/ou le volume de l'injection. La dépendance temporelle de la pression du liquide et/ou du débit volumétrique du liquide est calculée au moyen d'une équation séparée.
PCT/EP2004/000581 2003-01-24 2004-01-23 Procede pour calculer des variations de pression dans un systeme d'alimentation en carburant d'un moteur a combustion interne et a injection directe de carburant et pour commander et reguler le fonctionnement des soupapes d'injection WO2004065775A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04704585A EP1585895B1 (fr) 2003-01-24 2004-01-23 Procede pour calculer des variations de pression dans un systeme d'alimentation en carburant d'un moteur a combustion interne et a injection directe de carburant et pour commander et reguler le fonctionnement des soupapes d'injection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10302806.4 2003-01-24
DE2003102806 DE10302806B4 (de) 2003-01-24 2003-01-24 Verfahren zur Berechnung von Druckschwankungen in einem Kraftstoffversorgungssystem einer mit Kraftstoff-Direkteinspritzung arbeitenden Brennkraftmaschine und zur Steuerung derer Einspritzventile

Publications (1)

Publication Number Publication Date
WO2004065775A1 true WO2004065775A1 (fr) 2004-08-05

Family

ID=32694957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/000581 WO2004065775A1 (fr) 2003-01-24 2004-01-23 Procede pour calculer des variations de pression dans un systeme d'alimentation en carburant d'un moteur a combustion interne et a injection directe de carburant et pour commander et reguler le fonctionnement des soupapes d'injection

Country Status (3)

Country Link
EP (1) EP1585895B1 (fr)
DE (1) DE10302806B4 (fr)
WO (1) WO2004065775A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878576A1 (fr) * 2004-12-01 2006-06-02 Bosch Gmbh Robert Procede et dispositif d'excitation de variation de pression dans un systeme d'alimentation en carburant d'un moteur a combustion interne
WO2011092042A1 (fr) * 2010-01-29 2011-08-04 Robert Bosch Gmbh Procédé et dispositif de contrôle d'un injecteur de carburant
CN102251898A (zh) * 2010-05-18 2011-11-23 罗伯特·博世有限公司 用于监控喷射装置的喷射阀的方法
CN102959220A (zh) * 2010-06-25 2013-03-06 欧陆汽车有限责任公司 用于调节内燃机的喷油系统的方法
US8608127B2 (en) 2011-01-24 2013-12-17 Fluke Corporation Piezoelectric proportional control valve
US20150233318A1 (en) * 2014-02-19 2015-08-20 GM Global Technology Operations LLC Method of operating an internal combustion engine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005056704B4 (de) * 2005-11-28 2013-05-29 Continental Automotive Gmbh Verfahren zur Erzielung einer vorgesehenen Einspritzmenge von Kraftstoff in einen Verbrennungsmotor
DE102006033459B3 (de) * 2006-07-19 2007-10-31 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006034514B4 (de) 2006-07-26 2014-01-16 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung einer Brennkraftmaschine
DE102007045606B3 (de) 2007-09-25 2009-02-26 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine mit Common-Railsystem einschließlich Einzelspeichern
DE102007060768B4 (de) 2007-12-17 2024-06-13 Robert Bosch Gmbh Verfahren zur Drifterkennung und Driftkompensation von Injektoren
DE102014225530A1 (de) * 2014-12-11 2016-06-16 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffinjektors
DE102015111209B4 (de) * 2015-07-10 2017-02-16 Denso Corporation Technik zur Erfassung von Druckänderungen in einem Kraftstoffversorgungssystem in Folge einer Pumpförderung
DE102015226138B3 (de) 2015-12-21 2016-12-29 Continental Automotive Gmbh Verfahren zur Ermittlung der Zusammensetzung des zum Betrieb eines Verbrennungsmotors verwendeten Kraftstoffes
JP6281581B2 (ja) * 2016-01-27 2018-02-21 トヨタ自動車株式会社 内燃機関の制御装置
DE102017209386B4 (de) * 2017-06-02 2024-05-08 Vitesco Technologies GmbH Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb
CN113062811B (zh) * 2021-03-08 2022-02-22 哈尔滨工程大学 一种根据喷油器入口压力信号的频谱特征对喷油过程关键时间特征识别的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19950222A1 (de) * 1999-10-19 2001-04-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Diagnose eines Kraftstoffversorgungssystems
US6311669B1 (en) * 1998-03-16 2001-11-06 Siemens Aktiengesellschaft Method for determining the injection time in a direct-injection internal combustion engine
WO2002038936A1 (fr) * 2000-11-07 2002-05-16 Mtu Friedrichshafen Gmbh Regulation de concentricite pour moteurs diesel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19740608C2 (de) * 1997-09-16 2003-02-13 Daimler Chrysler Ag Verfahren zur Bestimmung einer kraftstoffeinspritzbezogenen Kenngröße für einen Verbrennungsmotor mit Hochdruckspeicher-Einspritzanlage
DE10217592A1 (de) * 2002-04-19 2003-11-06 Siemens Ag Injektor zur Einspritzung von Kraftstoff

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6311669B1 (en) * 1998-03-16 2001-11-06 Siemens Aktiengesellschaft Method for determining the injection time in a direct-injection internal combustion engine
DE19950222A1 (de) * 1999-10-19 2001-04-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Diagnose eines Kraftstoffversorgungssystems
WO2002038936A1 (fr) * 2000-11-07 2002-05-16 Mtu Friedrichshafen Gmbh Regulation de concentricite pour moteurs diesel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878576A1 (fr) * 2004-12-01 2006-06-02 Bosch Gmbh Robert Procede et dispositif d'excitation de variation de pression dans un systeme d'alimentation en carburant d'un moteur a combustion interne
WO2011092042A1 (fr) * 2010-01-29 2011-08-04 Robert Bosch Gmbh Procédé et dispositif de contrôle d'un injecteur de carburant
CN102713222A (zh) * 2010-01-29 2012-10-03 罗伯特·博世有限公司 用于测试燃料喷射器的方法和装置
US8646322B2 (en) 2010-01-29 2014-02-11 Robert Bosch Gmbh Method and device for testing a fuel injector
CN102713222B (zh) * 2010-01-29 2015-09-23 罗伯特·博世有限公司 用于测试燃料喷射器的方法和装置
CN102251898A (zh) * 2010-05-18 2011-11-23 罗伯特·博世有限公司 用于监控喷射装置的喷射阀的方法
CN102959220A (zh) * 2010-06-25 2013-03-06 欧陆汽车有限责任公司 用于调节内燃机的喷油系统的方法
US9353698B2 (en) 2010-06-25 2016-05-31 Continental Automotive Gmbh Method for regulating a fuel injection system of an internal combustion engine
US8608127B2 (en) 2011-01-24 2013-12-17 Fluke Corporation Piezoelectric proportional control valve
US20150233318A1 (en) * 2014-02-19 2015-08-20 GM Global Technology Operations LLC Method of operating an internal combustion engine
GB2523318A (en) * 2014-02-19 2015-08-26 Gm Global Tech Operations Inc Method of operating an internal combustion engine
US9765725B2 (en) 2014-02-19 2017-09-19 GM Global Technology Operations LLC Method of operating an internal combustion engine

Also Published As

Publication number Publication date
DE10302806B4 (de) 2004-12-09
EP1585895B1 (fr) 2006-05-24
EP1585895A1 (fr) 2005-10-19
DE10302806A1 (de) 2004-08-12

Similar Documents

Publication Publication Date Title
EP1585895B1 (fr) Procede pour calculer des variations de pression dans un systeme d'alimentation en carburant d'un moteur a combustion interne et a injection directe de carburant et pour commander et reguler le fonctionnement des soupapes d'injection
EP1913249B1 (fr) Procede et dispositif pour commander un systeme d'injection d'un moteur a combustion interne
EP1064457B1 (fr) Procede pour determiner le temps d'injection dans un moteur a combustion interne a injection directe
DE102008054690B4 (de) Verfahren und Vorrichtung zur Kalibrierung von Teileinspritzungen in einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE102006034514B4 (de) Verfahren zur Steuerung einer Brennkraftmaschine
EP2297444B1 (fr) Procédé et dispositif de compensation des ondes de pression lors des injections successives d'un système d'injection de moteur à combustion interne
DE102008043165B4 (de) Verfahren und Vorrichtung zur Kalibrierung der Voreinspritzmenge einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
EP2148070A2 (fr) Procédé destiné à la détermination de la masse de carburant injectée lors d'une injection unique et dispositif destiné à la réalisation du procédé
DE102005036192A1 (de) Verfahren zur Steuerung eines Einspritzsystems einer Brennkraftmaschine
DE112015002823T5 (de) System und Verfahren zur Einspritzdüsensteuerung für Mehrfachimpuls-Kraftstoffeinspritzung
WO2004090315A1 (fr) Procede pour determiner une duree d'injection dans un moteur a combustion interne avec une valeur de caracteristiques et une valeur de correction, et procede pour determiner la valeur de correction
DE102006026928A1 (de) Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Brennkraftmaschine und Softwareprodukt
DE102012102336A1 (de) Vorrichtung zum Abschätzen eines Kraftstoffeinspritzzustands
DE102005014920A1 (de) Verfahren zur zylinderindividuellen Einstellung von Einspritzzeiten einer Verbrennungskraftmaschine
DE102006043326A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10305523A1 (de) Verfahren und Vorrichtung zur Nullmengenkalibrierung eines Kraftstoffeinspritzsystems eines Kraftfahrzeuges im Fahrbetrieb
DE102004053418B4 (de) Verfahren und Vorrichtung zur druckwellenkompensierenden Steuerung zeitlich aufeinanderfolgender Einspritzungen in einem Einspritzsystem einer Brennkraftmaschine
DE102006033459B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10305525B4 (de) Verfahren und Vorrichtung zur Adaption der Druckwellenkorrektur in einem Hochdruck-Einspritzsystem eines Kraftfahrzeuges im Fahrbetrieb
EP3763933B1 (fr) Procédé de réglage de la pression de rampe basé sur le débit volumique synchronique de pompe, en particulier sélective par cylindre pour un système d'alimentation en carburant d'une machine à combustion interne avec mesure de courant et régulation de courant des organes de réglage de la pression de rampe
DE102008005154A1 (de) Verfahren und Vorrichtung zur Überwachung einer Motorsteuereinheit
EP2520788A2 (fr) Procédé de commander d'un système d'injection de carburant d'un moteur à combustion interne
DE102008002216A1 (de) Verfahren zum Betreiben eines Einspritzsystems mit mindestens zwei Rails für eine Brennkraftmaschine
DE60019262T2 (de) Brennstoffeinspritzanlage
DE102008001180A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004704585

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004704585

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2004704585

Country of ref document: EP