EP3763933B1 - Procédé de réglage de la pression de rampe basé sur le débit volumique synchronique de pompe, en particulier sélective par cylindre pour un système d'alimentation en carburant d'une machine à combustion interne avec mesure de courant et régulation de courant des organes de réglage de la pression de rampe - Google Patents

Procédé de réglage de la pression de rampe basé sur le débit volumique synchronique de pompe, en particulier sélective par cylindre pour un système d'alimentation en carburant d'une machine à combustion interne avec mesure de courant et régulation de courant des organes de réglage de la pression de rampe Download PDF

Info

Publication number
EP3763933B1
EP3763933B1 EP20184711.8A EP20184711A EP3763933B1 EP 3763933 B1 EP3763933 B1 EP 3763933B1 EP 20184711 A EP20184711 A EP 20184711A EP 3763933 B1 EP3763933 B1 EP 3763933B1
Authority
EP
European Patent Office
Prior art keywords
pressure
control
rail
pump
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20184711.8A
Other languages
German (de)
English (en)
Other versions
EP3763933A1 (fr
Inventor
Josef Halfpaap
Andrej Barski
Ines Tschoeke
Andreas Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102019129323.5A external-priority patent/DE102019129323A1/de
Priority claimed from DE102019129306.5A external-priority patent/DE102019129306A1/de
Priority claimed from DE102019129320.0A external-priority patent/DE102019129320A1/de
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3763933A1 publication Critical patent/EP3763933A1/fr
Application granted granted Critical
Publication of EP3763933B1 publication Critical patent/EP3763933B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • F02D41/3872Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves characterised by leakage flow in injectors

Definitions

  • the invention relates to a method for regulating a rail pressure caused by a high-pressure pump in a fuel storage for a fuel supply system of an internal combustion engine, wherein a crank angle-related or cam angle-related fixed angle difference of the internal combustion engine between a top dead center position of a cylinder piston of a cylinder of the internal combustion engine and a top dead center position Position of the pump piston of the high-pressure pump of the fuel supply system is taken into account when metering the delivery volume of the high-pressure pump.
  • a method for regulating a rail pressure caused by a high-pressure pump in a fuel rail for an internal combustion engine in which the rail pressure is regulated synchronously with an engine speed of the internal combustion engine of the high-pressure pump.
  • the rail pressure is therefore not regulated in the known fixed, time-synchronous calculation grid, but rather in a time-variable, engine speed-synchronous calculation grid, the respective grid interval of which is preferably from one top dead center to the next, based on a single cylinder or all cylinders of the internal combustion engine extends.
  • the high-pressure pump provides a quantity of fuel with each pump delivery stroke.
  • the sequence of pump delivery strokes of the high-pressure pump does not follow the fixed scanning pattern of the rail pressure controller, but is determined by the current operating state of the internal combustion engine.
  • the known fuel supply system includes a rail pressure regulator for using the proposed method.
  • a high-pressure pump is supplied with fuel from a tank by a pre-feed pump via a low-pressure line.
  • the high-pressure pump pumps fuel into a fuel rail via a high-pressure line.
  • the delivery volume of the high-pressure pump is set according to a delivery volume control value that a rail pressure regulator has calculated to regulate the rail pressure in the fuel rail.
  • the rail pressure controller is composed of a PID controller and a pilot control unit.
  • the PID controller is given a rail pressure control deviation supplied, which has been calculated as the difference between the rail pressure setpoint calculated synchronously with the engine speed and the actual rail pressure value detected synchronously with the engine speed with a rail pressure sensor, and calculates an additive correction volume flow synchronously with the engine speed.
  • a calculation carried out synchronously with the engine speed means that this calculation is carried out once per top dead center of the internal combustion engine.
  • the pilot control unit is supplied with an injection quantity calculated synchronously with the engine speed and a desired pressure change value, so that the pilot control unit calculates a pilot control value synchronously with the engine speed.
  • the sum of the additive correction volume flow and the pilot control value is fed to the high-pressure pump as a delivery volume control value in order to specify the delivery volume of the current delivery stroke and to set the rail pressure setpoint ps in the fuel rail.
  • the publication is supplemented DE 10 2006 026 928 A1 referred. It describes a method for operating an injection system of an internal combustion engine, which includes a combustion chamber, an injector for injecting fuel into the combustion chamber and a high-pressure fuel pump for generating a time-dependent injection pressure, with the steps: determining an injection quantity of fuel to be injected into the combustion chamber by the injector, Determining at least one injection time window for injecting the fuel, then calculating the time-dependent injection pressure present at the injector at the beginning of the injection time window, then determining at least one injection time interval from the at least one injection time window based on the calculated one at the injector at the beginning of the Injection time window, time-dependent injection pressure applied, so that at the end of the at least one injection time interval essentially the injection quantity has been injected, and then injecting the fuel in the at least one injection time interval.
  • DE 10 2016 211 128 A1 a further method for regulating a rail pressure caused by a high-pressure pump in a fuel rail for an internal combustion engine, wherein the rail pressure regulated by a regulator is adjusted by at least one adjusting device on the fuel rail side.
  • the at least one fuel rail-side adjusting device is set based on a volume flow value determined by the controller.
  • the invention is based on the object of improving the rail pressure control.
  • the starting point of the invention is that in a classic time-synchronous rail pressure control that works in a 10ms sampling grid, depending on the engine speed, the engine-synchronous pump event is under-sampled or over-sampled. This disadvantageously leads to pressure oscillations in the form of beats and aliasing, which cannot be completely corrected even at stationary operating points.
  • the conventional rail pressure control should also be adapted to the task to suit the newly available high-pressure pumps, which can provide a volume flow for each work cycle.
  • the best possible control performance should be achieved with deviations between the setpoint and actual value of less than 2% of the current setpoint. Furthermore, computing time and code memory in the control unit should be saved, the calibration and validation effort should be reduced and easy adaptation to different pump designs, pressure control valve variants and high-pressure components should be made possible.
  • a method for regulating a rail pressure caused by a high-pressure pump in a fuel storage for a fuel supply system of an internal combustion engine is already known, wherein a crank angle-related or cam angle-related fixed angle difference of the internal combustion engine between a top dead center position of a cylinder piston of a cylinder of the internal combustion engine and a Top dead center position of the pump piston of the high-pressure pump of the fuel supply system is taken into account when metering the delivery volume of the high-pressure pump.
  • a recurring discretization of a control deviation of the rail pressure occurs in synchronism with the pump per segment, which corresponds to one revolution of a crankshaft and thus the movement of the pump piston of the high-pressure pump from the top dead center position of the pump piston to the next top dead center position in the fuel storage and based on the discrete control deviation, a volume-related discrete volume control difference, in particular cylinder-selective, is calculated.
  • the discrete control deviation is calculated as the difference between the discretized actual rail pressure and the discretized target rail pressure, in particular cylinder-selective, by combining discretized pressure information from a rail pressure sensor of the actively detected pump-synchronous segment with the discretized target rail pressure of the Working cycle of the preceding pump-synchronous segment is compared in order to determine the discrete, in particular cylinder-selective, control difference.
  • the method is characterized in that the volume-related discrete volume control difference is supplied as an input variable to a control module for the high-pressure pump and a control module for a pressure control valve assigned to the fuel storage, the discrete volume control difference being linked to a pilot control module, whereby the pump is synchronous and in particular the manipulated variables for the high-pressure pump and the pressure control valve are calculated in an output module in a cylinder-selective manner for each segment and are fed to the actuators of the high-pressure pump and the pressure control valve for volume-based and in particular cylinder-selective adjustment of the rail pressure.
  • the manipulated variables of the actuators of the components for regulating the rail pressure in the fuel storage are supplied to an output module and are calculated in the output module for volume-based adjustment of the rail pressure, with current detection and Current control of the actuators is carried out on the basis of an observer model.
  • the volume-related discrete volume control difference is supplied as an input variable to a control module for the high-pressure pump and a control module for a pressure control valve assigned to the fuel storage, the discrete volume control difference being linked to a pilot control module, whereby The control variables for the high-pressure pump and the pressure control valve are calculated in an output module in an output module and fed to the actuators of the high-pressure pump and the pressure control valve for volume-based adjustment of the rail pressure.
  • the non-cylinder-selective approach also provides that the discrete control deviation is calculated as the difference between the discretized actual rail pressure and the discretized target rail pressure by combining discretized pressure information from a rail pressure sensor of the actively detected pump-synchronous segment with the discretized target rail pressure a working cycle of the previous pump-synchronous segment is compared to determine the discrete control difference.
  • the volume-related discrete volume control difference is calculated cylinder-selective by supplying the volume-related discrete volume control difference as cylinder-selective input variables to a control module for the high-pressure pump and a control module for a pressure control valve assigned to the fuel storage, whereby the discrete volume -Control difference is linked to a pilot control module, whereby the manipulated variables for the high-pressure pump and the pressure control valve are calculated in an output module in a pump-synchronous and cylinder-selective manner for each segment and are fed to the actuators of the high-pressure pump and the pressure control valve for volume-based, cylinder-selective adjustment of the rail pressure.
  • the discrete control deviation is calculated cylinder-selective as the difference between the discretized actual rail pressure and the discretized target rail pressure by combining discretized pressure information from a rail pressure sensor of the actively detected pump-synchronous segment with the discretized target rail pressure, of the pump-synchronous segment preceding one working cycle is compared in order to determine the discrete cylinder-selective control difference, as is explained in detail in the description.
  • the target rail pressure is discretized at a time that is determined with a trigger start signal that is issued repeatedly at the beginning of a pump-synchronous segment. It is intended that the actual rail pressure is recorded and discretized repeatedly within the segment started by the trigger start signal.
  • the detected minimum discrete pressure or the detected maximum discrete pressure or the discrete mean value is used as the actual value for comparison with the discrete target rail pressure, depending on the system requirements when pressure builds up the maximum discrete pressure and, when the pressure is reduced, the minimum discrete pressure is used to reduce control oscillations, in particular cylinder-selective control oscillations, or to avoid overshoots or undershoots, in particular cylinder-selective overshoots or undershoots.
  • a special aspect of the invention further provides that the discrete control deviation is converted into the volume flow-based discrete volume control difference or volume flow-based discrete cylinder-selective volume control difference, with a permanent fuel leakage of the high-pressure system of the fuel supply system also being taken into account by addition.
  • the injectors receive the same quantity setpoints from cylinder to cylinder in stationary operation, which are compared cylinder-selective with the quantity decreases from the rail, with injection quantity errors being determined cylinder-selectively, which are assigned to the injectors, with a type of quantity deviations being determined Error groups are assigned.
  • the injection quantity errors are advantageously grouped depending on the cause, in particular depending on the level of the injection quantity error resulting from the target/actual comparison, the injectors being in operation in an error group with an injector defect, an error group with an aging-related injector drift or an error group with a changing Switching leakage quantity are assigned, the injection quantity errors being determined within the cylinder-selective control in the controller and advantageously corrected in the injection system and/or leading to a replacement of the respective injector(s).
  • a correction in the injection system can be made in various ways.
  • the correction takes place by changing the injector activation duration.
  • non-cylinder-selective fuel supply system (basic concept) and the cylinder-selective fuel supply system (extension of the basic concept) differ in terms of the building blocks, as will become clear below.
  • the fuel supply system includes an observer module that observes a signal processing chain for current detection and current control of the actuators of the fuel supply system, as is also detailed in the description.
  • the internal combustion engine is advantageously operated with any liquid fuel or fuel mixture, whereby the linearization of the conversion of pressure difference into volume flow difference can be advantageously adapted to the respective fuel by means of a physically different elasticity modulus.
  • the method explained and the design of the fuel supply system can be applied and used not only for diesel engines, which are designed in particular as common-rail diesel engines, but also for gasoline engines that use a gasoline engine - spark-ignited - combustion process.
  • the Figure 1 shows a fuel supply system 100, which has a volume flow-based pump-synchronous, in particular cylinder-selective rail pressure control according to Figure 2A and 2 B is operated.
  • a high-pressure pump 1 is supplied with fuel from a fuel tank 3 by a pre-feed pump 2 via a low-pressure line 2.1.
  • the high-pressure pump 1 pumps fuel into a fuel reservoir, in particular into a fuel rail 4, via a high-pressure line 1.4.
  • the fuel rail 4 includes a rail pressure sensor 7, which detects the rail pressure p7 in the fuel rail 4.
  • the fuel rail 4 further comprises a pressure control valve 8, which within the method controls a predeterminable volume flow V8 from the fuel rail 4 via a return line 8.2.1 into the low-pressure line 2.1.
  • the injectors 9n have leakage lines which open into a common return line 9.3.
  • the return line 9.3 opens into a high-pressure pump return line 1.3 of the high-pressure pump 1, which leads back to the fuel tank 3.
  • a control unit S1 in particular an engine control unit, is connected via control lines (without reference numbers) directly to the duo sensor 6, the high-pressure pump 1, the pressure control valve 8, the rail pressure sensor 7 and the injectors 91, 92, 93, 94 and, in the exemplary embodiment, indirectly via a control unit S2 is connected to the pre-feed pump 2, which is designed as a low-pressure pump.
  • the Figure 2A shows the volume flow-based pump-synchronous control structure for rail pressure control in the basic concept, which is stored in an electronic control device, in particular the control device S1, which is set up to carry out one of the methods presented above.
  • the control device S1 and the control device S2 are operated via a computer program to carry out the method, a machine-readable storage medium with the computer program recorded thereon being provided on the computer.
  • volume flow-based pump-synchronous control structure for rail pressure control is based on the Figure 2A explained in detail below.
  • the rail pressure sensor 7 provides the control circuit consisting of a pilot control model, a controller and an actuator of the high-pressure pump 1 with the corresponding pressure information.
  • the input variable of the method for operating the fuel supply system 100 according to the invention is a certain volume flow, which is supplied to the high-pressure pump 1 or discharged through the pressure control valve 8.
  • the object of the invention is therefore that the complete high-pressure control, i.e. the rail pressure high-pressure control within the rail 4 of the fuel supply system 100, from a time-based cyclical calculation of a rail pressure controller for regulating the rail pressure in the rail 4 to a volume flow-based and pump-synchronous one based on the engine segment of the internal combustion engine discrete calculation for rail pressure control (in a two-position concept (pressure control valve control and high-pressure pump control).
  • the pressure information p7 Act from the rail pressure sensor 7 of a motor-synchronous/pump-synchronous segment is compared with the target rail pressure p7 target of the previous motor-synchronous/pump-synchronous segment (this is referred to as the delayed target rail pressure) in order to determine the discrete control deviation ⁇ p7.
  • This pressure difference ⁇ p7 is converted into a volume difference via the elastic modulus E of the fuel and via the fuel temperature T6 determined by the duo sensor 6 and processed as an input variable ⁇ V Rail in a controlled system.
  • This volume difference ⁇ V Rail is supplied as an input variable to the controlled system using the digital metering unit (not shown), which is preferably arranged in the pump room of the high-pressure pump 1 or by controlling the pressure control valve 8, and the actuators of the high-pressure pump 1 or the pressure control valve 8 are controlled, with the discretization , that is, the calculation of the volume difference ⁇ V Rail can be varied synchronously with the pump for each motor segment.
  • the digital metering unit (not shown), which is preferably arranged in the pump room of the high-pressure pump 1 or by controlling the pressure control valve 8, and the actuators of the high-pressure pump 1 or the pressure control valve 8 are controlled, with the discretization , that is, the calculation of the volume difference ⁇ V Rail can be varied synchronously with the pump for each motor segment.
  • the volume balance of the volume flow-based segment-synchronous calculation assumes a constant volume V H of the high-pressure system, in which, depending on the pressure, there is a certain volume of fuel, which is basically supplied via the high-pressure pump 1 and discharged via the pressure control valve 1.
  • the volumes a) and b) are taken event-related, while c) the permanent fuel leakage VDLeck of the high-pressure system is discretized via a Z-transformation.
  • an event-related discretization of the permanent leakage V DLeck of the high-pressure system takes place, so that the volumes a), b), c) can be added accordingly as the total volume V Ges-Ab taken from the high-pressure system.
  • the so-called load and/or speed-dependent change request in the rail pressure the so-called pressure change request (also referred to as dynamic volume flow component) within the rail 4, which is achieved by supplying fuel volume (pressure increase) via the high-pressure pump 1 as a V ⁇ p rail specification or by discharging fuel volume (pressure reduction) via the pressure control valve 8 within the volume balance as V ⁇ p rail specification .
  • the high-pressure pump 1 has, in a known manner and advantageously, a fixed assignment of the pump TDC in a segment-synchronous/cylinder-synchronous manner every 180° crank angle of the internal combustion engine to the cylinder piston TDCs of the cylinder pistons (not shown) of the internal combustion engine, whereby the engine speed corresponds to the high-pressure pump speed matches.
  • the calculation according to the invention is carried out via a trigger start signal nsync (see Figures 2A and 2 B and Figure 3 ), whereby the calculation is carried out segment-synchronously/cylinder-synchronously every 180° crank angle, whereby the calculation of the variables of the controlled system is carried out separately for each of the cylinders or the associated injectors 9n, which inject into this cylinder.
  • a trigger start signal nsync see Figures 2A and 2 B and Figure 3
  • the volume flow-based pump-synchronous control structure for rail pressure control of the high-pressure pump 1 includes a signal detection module B1 for signal detection of the rail pressure p7 by means of the rail pressure sensor 7.
  • the detection of the rail pressure p7 takes place time-synchronously within the module B1 for the signal detection of the rail pressure p7 in a measuring grid in ms steps, with an actual value discretely segment-synchronously within the segment within the module B2, which is referred to as the actual value discretization module p7 Actual is recorded and saved as the minimum pressure p 7Actual-min and as the maximum pressure p 7Actual-max , with these pressures p 7Actual-min , p 7Actual-max and also as the actual value p7 Actual an average value p7 Actual-50% of Press p 7Act-min , p 7Act-max is calculated within the segment and also saved.
  • the volume flow-based pump-synchronous control structure for rail pressure control of the high-pressure pump 1 includes a setpoint specification module A1 for the setpoint specification of the rail pressure p7 target , which is stored in the form of map data in the computer program of the engine control unit, which arises from the respective combustion process used and is predetermined.
  • this target rail pressure p7 target is also discretized from any current specified time grid, that is, a conversion is carried out from the Time “slices” into the segment “slices”, at the time nsync dem (trigger start signal), i.e. at the start of the calculation.
  • the target rail pressure p7 target at time nsync is "frozen" with the start of a time slice of the segment
  • This procedure is necessary because the system always has a time delay.
  • the control value of a pilot control generates an increase in the volume flow into the rail after the pump has delivered. Therefore, the target value p7 target used to form the difference is delayed by exactly one working cycle and compared with the actual value p7 actual of the following working cycle.
  • the minimum pressure p 7min or the maximum jerk p 7max or the mean value p7 50% is available as a discrete actual value p7.
  • the control there is the possibility (selection of several discrete signals from the setpoint discretization module A2) for the control as the actual value p7Is the minimum discrete pressure p7Ist-min or the maximum discrete pressure p7Ist-max or to use the discrete mean value p7 actual-50% to compare the selected value with the discrete target rail pressure P7 target , whereby, depending on the system requirements, the value p7 actual-max is used when the pressure builds up and the value p7 actual-min is used when the pressure is reduced is used to reduce control oscillations or to avoid overshoots or undershoots.
  • control error calculation module A2/B2 (see Figure 2A ) into which the discretized target rail pressure values p7 target and the discretized actual rail pressure values p7 actual are received and compared segment-synchronously and calculated as a control error and saved.
  • E pressure- and temperature-dependent specific modulus of elasticity of the respective fuel
  • V H are the volume of the high-pressure fuel system of the fuel supply system 100.
  • This conversion into the segment-synchronous volume error ⁇ V Rail has the advantage that the non-linear fuel properties of the fuel are taken into account in the control.
  • a discrete volume control difference ⁇ V Rail is available as an input variable for a controller module C, C1, C8, which is used directly for the volume flow-based actuators E1, E8 (high-pressure pump 1 and pressure control valve 8).
  • the controller module C, C1, C8 includes as a sub-module a controller state machine C, which, depending on the requirements, adjusts the pressure based on volume flow/volume flow, i.e. depending on the discrete volume control difference ⁇ V determined in the conversion module A2 ⁇ /B2 ⁇ Rail increases or decreases, and this decides whether control intervention via a PID controller module C1 of the high-pressure pump 1 (see Figure 2A ) “pressure increasing” or “pressure reducing” via a PID controller module C8 of the pressure control valve 8.
  • the structure also includes: Figure 2A a pilot control volume flow value module D as a fault controller for the segment-synchronous volume flow-based pilot control (command variable with disturbance variable compensation) of the fuel supply system, the command variable of which is combined with the PID controller module C1 of the high-pressure pump 1 and the PID controller module C8 of the pressure control valve 8, so that The PID controller modules C1, C8 only have to compensate for the control fluctuations of the fuel supply system.
  • a pilot control volume flow value module D as a fault controller for the segment-synchronous volume flow-based pilot control (command variable with disturbance variable compensation) of the fuel supply system, the command variable of which is combined with the PID controller module C1 of the high-pressure pump 1 and the PID controller module C8 of the pressure control valve 8, so that The PID controller modules C1, C8 only have to compensate for the control fluctuations of the fuel supply system.
  • the pre-control volume flow value module D receives the segment-synchronous volume flows mentioned under a) to d) in addition as pre-control variables, so that control of the controlled system is already guaranteed in the pre-control volume flow value module D.
  • the values of the fault controller of the pilot control volume flow value block D which are controlled by the PID controller blocks C1, C8, are (compare Figure 2 ) is fed to an output module E, which electrically controls the actuators E1 and E8 of the high-pressure pump 1 and the pressure control valve 8 and adjusts the actuators E1 and E8 as required via the control system in a pump-segment-synchronous, volume-based manner.
  • n number of cylinders or the associated injectors 9n (compare Figure 1 )
  • a separate cylinder-selective control deviation ⁇ V Rail in particular a proportional component and / or an integrator component and / or a differential component, is calculated and according to the cylinder-selective control deviation ⁇ V Rail , the control values E1, E8 are cylinder for cylinder and injector for injector 9n respectively Injection event for Injection event is selected segment-synchronously and, as explained above, is output based on volume flow for the high-pressure pump 1 or the pressure control valve 8.
  • the injectors 9n receive the same quantity setpoints from cylinder to cylinder in stationary operation, but different quantity decreases V 9n result from the rail 4 due to injector scattering, according to the invention, for example, the individual integrator shares of the cylinder-selective controllers C1 n , C8 n show the quantity deviations between the injectors 9 n , which can have various causes. Depending on the type of quantity deviations, the causes can most likely be assigned to specific error groups.
  • a discrete volume control difference ⁇ V Rail is available as an input variable for a controller module C, C1, C8, which is used directly for the volume flow-based actuators E1, E8 (high-pressure pump 1 and pressure control valve 8), whereby segment-synchronously for Each cylinder or injector 9n “only one” control structure is used repeatedly.
  • a segment-synchronous discrete volume control difference ⁇ V Rail is available as an input variable for several (n) controller modules C1n, C8n, which, according to the "cylinder-selective" extension, is available directly for the volume flow-based actuators E1, E8 (high-pressure pump 1 and pressure control valve 8 ) is used.
  • controller State machine C decides whether the control interventions are segment-synchronous via several PID controller modules C1n of the high-pressure pump 1 (see Figure 2B ) “pressure increasing” or via several PID controller modules C8n of the pressure control valve 8 “pressure decreasing” should be done in a cylinder-selective manner.
  • the structure also includes: Figure 2B a pilot control volume flow value module D as a fault controller for the segment-synchronous volume flow-based pilot control (command variable with disturbance variable compensation) of the fuel supply system 100, the command variable of which is combined with the PID controller modules C1n of the high-pressure pump 1 and the PID controller modules C8n of the pressure control valve 8, so that the PID controller modules C1n, C8n only have to compensate for the control fluctuations of the fuel supply system.
  • a pilot control volume flow value module D as a fault controller for the segment-synchronous volume flow-based pilot control (command variable with disturbance variable compensation) of the fuel supply system 100, the command variable of which is combined with the PID controller modules C1n of the high-pressure pump 1 and the PID controller modules C8n of the pressure control valve 8, so that the PID controller modules C1n, C8n only have to compensate for the control fluctuations of the fuel supply system.
  • the high pressure control can now be carried out cylinder-selectively through the cylinder-selective control - in an extension of the basic concept - that is, for each cylinder or each injection process, an adapted, cylinder-selectively corrected manipulated variable is output as actuator output E1 of the high-pressure pump 1 or actuator output E8 of the pressure control valve 8.
  • the respective PID controller modules C1n, C8n can each be calibrated separately.
  • a simple diagnostic function (on-board diagnosis without removal) or a diagnostic function (on-board diagnosis without removal) with a correction function is provided.
  • a specific cylinder-related or injector-related error can be permitted via the diagnostic function up to a predeterminable threshold value and only after the threshold value is exceeded is a cylinder-related or injector-related error correction carried out.
  • the injection quantity errors there is in particular the possibility of grouping the injection quantity errors depending on the cause, with the injectors 9n, for example, during operation of an error group with an injector defect (on-board diagnosis of an injector defect without removal), or another error group with an aging-related injector drift (on-board diagnosis of the injector drift without removal). ) or another error group with a changing switching leakage quantity V SLeck (on-board diagnosis of too high a switching leakage without removal), the injection quantity errors being advantageously within the On-board diagnosis can be called up to replace the defective injector 9n or can be taken into account and corrected within the cylinder-selective control.
  • the cylinder-selective control information that is, the individual injection quantity errors of the individual injectors 9n, can generally be adapted and used to improve the pilot control D of the injectors 9n.
  • the respective cylinder-selective controlled variable C1n, C8n can also be advantageously converted into another reference variable, in particular considering the internal engine torque of the respective cylinders, so that by supporting the cylinder-selective rail pressure control, a cylinder-selective torque-dependent control is made possible, in which the cylinder-selective control information in particular can be used for cylinder torque equalization by, for example, passing a corresponding pilot control value from the cylinder-selective rail pressure control to a cylinder-selective torque controller.
  • a further aspect of the invention is that the high-pressure control in the described non-cylinder-selective control or in the described cylinder-selective control outputs an adapted corrected manipulated variable in an actuator output E1 of the high-pressure pump 1 or in an actuator output E8 of the pressure control valve 8.
  • PWM pulse width modulation
  • AD converter analog to digital converter
  • PWM-synchronous current measurement systems in which a hardware filter with a high cut-off frequency is used to eliminate high-frequency interference, have the following disadvantages: No average value-free measurement can be carried out. A sampling is carried out that lies in the frequency range of the HW filter with a high CPU load because the sampling frequency is coupled to the PWM basic frequency. With small PWM duty cycles, undersampling can occur due to alias errors, which leads to a center shift. The procedure is therefore rarely used.
  • Time-synchronous current detection systems in which a HW filter with a low cutoff frequency is used to smooth the PWM oscillation on the current signal, have the following disadvantages: Due to the low cutoff frequency and high filter time constant, these HW filters have a high phase shift. The controller must be adapted to a relatively slow HW filter. The time-synchronous current detection systems also have poor control behavior in the event of faults because the actual value reaches the controller with a delay due to the slow HW filtering.
  • current detection systems use a measuring resistor to use the voltage drop across the measuring resistor to determine the current in the actuator. This value is recorded cyclically using an AD converter and provided to the current control as an actual value. This current measurement value is regulated in a closed control loop. For sampling, this measured value must be filtered in front of the analog/digital converter using an analog hardware (HW) low-pass filter with a correspondingly defined cutoff frequency (usually between 10Hz and 50Hz for time-synchronous current measurement). This filter is usually an RC element. This creates a signal delay and a phase response that is a major disadvantage for the control loop, which is why the (internal) current controls are designed to be relatively slow.
  • HW analog hardware
  • the actuators for the actuator output E1, E8 of the high-pressure pump 1 and the pressure control valve 8 of the high-pressure control are the inner control circuits, with the actual hydraulic pressure control already explained (compare the components of the hydraulic pressure control in the Figures 2A and 2 B and the associated description) represent the external control loops.
  • the solution according to the invention consists in a modified signal processing or signal processing chain, which according to the invention is an in Figure 3 Observer model shown includes.
  • an observer component W is integrated into the signal processing chain and is advantageously used in the signal processing chain to control components 1 and 8.
  • This observer W integrated into the signal processing chain, improves the current detection of the high-pressure pump 1 and the pressure control valve 8 and their current control in the described non-cylinder-selective rail pressure control and in the cylinder-selective rail pressure control equally.
  • the current detection is improved using the observer model in such a way that the delay times and phase shifts in the current detection, which arise from the analog filtering (HW filter) of the signal, are avoided, with the model ensuring that the observer W is constantly tracked , in which a so-called observation error converges to zero, where the observation error is defined as the difference between the measured value and the observed value.
  • HW filter analog filtering
  • the system according to the invention for current detection is in Figure 3 arranged in the output module component E and in Figure 3 illustrated in a schematically illustrated system diagram extracted from the output module component E.
  • the current detection system according to the invention is based on a time-synchronous current detection and a so-called state reconstruction or state vector construction.
  • the system diagram extracted from output module component E illustrates a voltage value u (which corresponds to a pulsating coil current or a pulsating coil voltage of a conventional PWM-synchronous current detection), which represents the input variable of the system for current detection.
  • the voltage u represents the input variable of the coil 1 Ls + R the control unit of the components 1, 8 to be controlled is supplied.
  • the output signal of the coil 1 Ls + R is a current value i 1 , which is called the effective value of the coil 1 Ls + R is sought as a control current for controlling components 1, 8, which cannot be measured without appropriate processing of the signal.
  • the current value i 1 or effective value of the coil 1 Ls + R represents the input variable for a hardware filter HW for filtering the current value i 1 , which in turn outputs the current value i 2 , which ultimately represents the input variable for a software filter SW for attenuating the signal of the current value i 2 in the control unit, so that according to this Signal processing chain a signal of a current value is available.
  • the voltage value u thus represents the input value into the observer module W, whereby the current value i 3 represents the output value of the signal processing chain, which is also made available to the observer module W, whereby the observer module W has the underlying observer module.
  • Model calculates a new voltage value u in parallel to the previously explained signal processing chain.
  • observation error is defined as the difference between the measured value i1 and the observed value i3.
  • This solution according to the invention makes it possible to achieve a high performance and stability of the current detection that meets the requirements, thereby improving the internal current control loops With high performance, the following advantageous properties of the current detection according to the invention by means of observer W can be understood in detail:
  • This type of current detection has only a small phase shift because it is controlled based on the model value of the observer, which corresponds to the real current value, which, however, is only due to the disadvantages of the phase response of the filtering would be recorded after the filter runtime.
  • the detection with an observer is faster, so that the control based on it is also faster.
  • the current detection according to the invention does not require averaging, which means that it is more precise, in particular in contrast to the commonly used PWM-synchronous current detection (with averaging). With the current detection according to the invention, no aliasing effects occur, that is, incorrect signal determination with undersampling, as is the case with other current detection methods, does not occur.

Claims (16)

  1. Procédé de régulation d'une pression de rampe (p7Soll) provoquée par une pompe haute pression (1) dans un réservoir de carburant (4) pour un système d'alimentation en carburant (100) d'un moteur à combustion interne, dans lequel une différence angulaire fixe par rapport à l'angle du vilebrequin ou de la came du moteur à combustion interne entre une position de point mort haut d'un piston de cylindre d'un cylindre du moteur à combustion interne et une position de point mort haut du piston de pompe de la pompe haute pression (1) du système d'alimentation en carburant (100) est prise en compte lors de l'évaluation du volume de refoulement de la pompe haute pression (1), dans lequel de manière répétée et synchrone avec la pompe, pour chaque segment, qui correspond à une rotation d'un vilebrequin et ainsi au mouvement du piston de pompe de la pompe haute pression (1) de la position de point mort haut du piston de pompe à la position de point mort haut suivante, une discrétisation d'un écart de régulation (Δp7) de la pression de rampe (p7) dans le réservoir de carburant (4) est effectuée et une différence de régulation de volume discrète (ΔVRail) par rapport au volume est calculée à partir de l'écart de régulation discret (Δp7), dans lequel
    l'écart de régulation discret (Δp7) est calculé comme une différence entre la pression de rampe réelle discrétisée (p7Ist) et la pression de rampe de consigne discrétisée (p7Soll),
    caractérisé en ce que
    une information de pression discrétisée (p7Ist) d'un capteur de pression de rampe (7) du segment synchrone avec la pompe détecté de manière active est comparée à la pression de rampe de consigne discrétisée (p7Soll) du segment synchrone avec la pompe qui précède un cycle de travail, afin de déterminer l'écart de régulation discret (Δp7), dans lequel
    la différence de régulation de volume discrète (ΔVRail) est fournie comme grandeur d'entrée d'un module de régulation (C1n) pour la pompe haute pression (1) et un module de régulation (C8n) pour une soupape de régulation de pression (8) associée au réservoir de carburant (4), dans lequel la différence de régulation de volume discrète (ΔVRail) est liée à un module de régulation pilote (D), moyennant quoi de manière synchrone avec la pompe, pour chaque segment, les grandeurs de réglage pour la pompe haute pression (1) et la soupape de régulation de pression (8) sont calculées dans un module de sortie (E8) et fournies aux organes de réglage (E1, E8) de la pompe haute pression (1) et de la soupape de régulation de pression (8) pour un réglage basé sur le volume de la pression de rampe (p7Soll).
  2. Procédé selon la revendication 1, caractérisé en ce que l'écart de régulation discret (Δp7) est calculé comme différence entre la pression de rampe réelle discrétisée (p7Ist) et la pression de rampe de consigne discrétisée (p7Soll) de manière sélective par cylindre, en ce qu'une information de pression discrétisée (p7Ist) d'un capteur de pression de rampe (7) du segment synchrone avec la pompe détecté de manière active est comparée à la pression de rampe de consigne discrétisée (p7Soll) du segment synchrone avec la pompe qui précède un cycle de travail, afin de déterminer l'écart de régulation sélectif par cylindre discret (Δp7).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la pression de rampe de consigne (p7Soll) est discrétisée à un instant, qui est fixé avec un signal de début de déclenchement (nsync), qui est émis de manière répétée au début d'un segment synchrone avec la pompe.
  4. Procédé selon les revendications 1 ou 2 et 3, caractérisé en ce que la pression de rampe réelle (p7Ist) est détectée de manière répétée et discrétisée au sein du segment démarré par le signal de début de déclenchement (nsync).
  5. Procédé selon la revendication 4, caractérisé en ce que la pression de rampe réelle (p7Ist), qui est détectée de manière répétée au sein du segment synchrone avec la pompe, est discrétisée comme
    • dans le segment de pression de rampe réelle maximale (p7Ist-max) et
    • dans le segment de pression de rampe réelle minimale (p7Ist-min) et
    • dans le segment de valeur moyenne calculée (p7Ist-50 %)
    et est comparée de manière sélective à la pression de rampe de consigne discrétisée (p7Soll) pour déterminer l'écart de régulation discret (Δp7), en particulier l'écart de régulation sélectif par cylindre discret (Δp7).
  6. Procédé selon la revendication 5, caractérisé en ce que pour la régulation, en guise de valeur réelle (p7Ist) la pression discrète minimale détectée (p7Ist-min) ou la pression discrète maximale détectée (p7Ist-max) ou la valeur moyenne discrète (p7Ist-50 %) est utilisée pour la comparaison avec la pression de rampe de consigne discrète (p7Soll), dans lequel selon les exigences du système, lors d'une montée de pression, la pression discrète maximale (p7Ist-max) est utilisée et lors d'une réduction de pression, la pression discrète minimale (p7Ist-min) est utilisée, afin de réduire des oscillations de régulation, en particulier de réduire les oscillations de régulation de manière sélective par cylindre ou d'éviter les sur- ou sous-oscillations, en particulier d'éviter de sur- ou sous-oscillations de manière sélective par cylindre.
  7. Procédé selon la revendication 5 ou 6, caractérisé en ce que l'écart de régulation discret (Δp7), en particulier l'écart de régulation sélectif par cylindre discret (Δp7) est converti en la différence de régulation de volume discrète basée sur le flux volumique (ΔV7 = ΔVRail), en particulier la différence de régulation de volume sélective par cylindre discrète basée sur le flux volumique (ΔVRail), dans lequel en outre une fuite permanente de carburant (VDLeck) du système haute pression du système d'alimentation en carburant est prise en compte par l'addition.
  8. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'écart de régulation discret basé sur la pression (Δp7 = ΔpRail) est converti en une différence de régulation de volume basée sur le flux volumique (ΔVRail), dans lequel, lors de la conversion, le module d'élasticité spécifique dépendant de la pression et de la température (E) du carburant respectif et le volume spatial (VH) du système haute pression de carburant du système d'alimentation en carburant (100) sont pris en compte conformément à la formule de conversion Δ V Rail = V H E p T Δ p Rail
    Figure imgb0012
    , en particulier de manière sélective par cylindre.
  9. Procédé selon les revendications 1 et 8, caractérisé en ce que lors de la conversion répétée par segment synchrone avec la pompe de l'écart de régulation discret basé sur la pression (Δp7) en la différence de régulation de volume discrète par rapport au volume (ΔVRail),
    a) les quantités d'injection de carburant (V9n) des injecteurs (9n) et
    a) les fuites de commutation de carburant (VSLeck) des injecteurs (9n) et
    c) une demande de modification de pression (VΔp-Rail-Vorgabe) par rapport à la pression de rampe de consigne (p7Soll) du réservoir de carburant (4) sont pris en compte, dans lequel
    d) la fuite permanente de carburant (VDLeck) du système haute pression du système d'alimentation en carburant (100) est déterminée par une conversion séparée répétée par segment synchrone avec la pompe avec une transformée en Z et est ajoutée à la différence de régulation de volume discrète par rapport au volume (ΔV7 = ΔVRail).
  10. Procédé selon les revendications 2 et 8, caractérisé en ce que lors de la conversion répétée par segment synchrone avec la pompe de l'écart de régulation sélectif par cylindre discret basé sur la pression (Δp7) en la différence de régulation de volume discrète par rapport au volume (ΔVRail),
    a) les quantités d'injection de carburant (V9n) des injecteurs (9n) de manière sélective par cylindre et
    a) les fuites de commutation de carburant (VSLeck) des injecteurs (9n) de manière sélective par cylindre et
    c) une demande de modification de pression (VΔp-Rail-Vorgabe) sélective par cylindre par rapport à la pression de rampe de consigne (p7Soll) du réservoir de carburant (4) sont pris en compte, dans lequel
    d) la fuite permanente de carburant (VDLeck) du système haute pression du système d'alimentation en carburant (100) est déterminée par une conversion séparée répétée par segment synchrone avec la pompe avec une transformée en Z et est ajoutée à la différence de régulation de volume discrète par rapport au volume (ΔV7 = ΔVRail).
  11. Procédé selon la revendication 10, caractérisé en ce que les injecteurs (9n) en fonctionnement stationnaire, obtiennent les mêmes valeurs de consigne de quantités d'un cylindre à l'autre, qui sont comparées de manière sélective par cylindre avec les réceptions de quantités (V9n) provenant de la rampe (4), dans lequel, de manière sélective par cylindre, des erreurs de quantité d'injection sont constatées, qui sont associées aux injecteurs (9n), dans lequel un type des écarts de quantités est attribué à des groupes d'erreurs déterminés.
  12. Procédé selon la revendication 11, caractérisé en ce que les erreurs de quantité d'injection sont regroupées en fonction de la cause, en particulier en fonction de l'amplitude de l'erreur de quantité d'injection résultat de la comparaison valeur de consigne/réelle, dans lequel les injecteurs (9n), en fonctionnement, sont attribués à un groupe d'erreurs avec un défaut d'injecteur, un groupe d'erreurs avec une dérive d'injecteur liée au vieillissement ou un groupe d'erreurs avec une quantité de fuite de commutation variable (VSLeck), dans lequel les erreurs de quantité d'injection sont déterminées au sein de la régulation sélective par cylindre dans le régulateur (C1n, C8n) et corrigées dans le système d'injection et/ou entraînent un échange du ou des injecteurs (9n).
  13. Procédé selon la revendication 1 ou 2, caractérisé en ce que les grandeurs de réglage des organes de réglage des composants (1, 8) pour la régulation de la pression de rampe (p7Soll) dans le réservoir de carburant (4) sont fournies à un module de sortie (E1, E8) et calculées dans le module de sortie (E1, E8) pour le réglage basé sur le volume de la pression de rampe (p7Soll), dans lequel une détection de courant et une régulation de courant de l'organe de réglage (1, 8) sont effectuées sur la base d'un modèle d'observateur.
  14. Système d'alimentation en carburant (100) conçu pour exécuter le procédé selon au moins l'une des revendications 1 et 3 à 9,
    caractérisé en ce que le système d'alimentation en carburant (100), pour la détermination d'une
    • grandeur d'entrée discrète pour un module de régulateur (C1) pour la pompe haute pression (1) et pour la détermination d'une grandeur d'entrée discrète pour un module de régulateur (C8) pour une soupape de régulation de pression (8) associée au réservoir de carburant (4), comprend les modules supplémentaires suivants,
    • un module de définition de valeur de consigne (A1) de la pression de rampe (p7Soll) et un module de discrétisation de valeur de consigne associé (A2) et
    • un module de détection de signal de valeur réelle (B1) de la pression de rampe (p7Ist) et un module de discrétisation de valeur réelle (B2),
    • ainsi qu'un module de calcul d'erreur de régulateur (A2/B2) et
    • comprend un module de conversion (A2`/B2`), qui effectue une conversion d'un écart de régulation discrétisé basé sur la pression (Δp7 = ΔpRail) en une différence de régulation basée sur le flux volumique (ΔVRail), dans lequel
    • le module de conversion (A2`/B2`) est lié à une machine d'état de régulateur (C), qui délivre les grandeurs d'entrée discrètes pour le module de régulateur (C1) de la pompe haute pression (1) et les grandeurs d'entrée discrètes pour le module de régulateur (C8) de la soupape de régulation de pression (8),
    • dans lequel les modules de régulateur (C1, C8) sont liés à un module de régulation pilote (D), moyennant quoi, au moyen du module de régulation pilote (D) et des modules de régulateurs mis en ligne (C1, C8), de manière synchrone avec la pompe, par segment, les grandeurs de réglage pour la pompe haute pression (1) et la soupape de régulation de pression (8) sont fournies et calculées à un module de sortie (E8) et fournies aux organes de réglage (E1, E8) de la pompe haute pression (1) et de la soupape de régulation de pression (8) pour le réglage basé sur le volume de la pression de rampe (p7Soll).
  15. Système d'alimentation en carburant (100) conçu pour exécuter de manière sélective par cylindre le procédé selon au moins l'une des revendications 1 à 13, caractérisé en ce que le système d'alimentation en carburant (100)
    • pour la détermination des grandeurs de réglage discrètes respectives des cylindres respectifs, de manière sélective par cylindre comprend plusieurs (n) modules de régulateur (C1n) pour la pompe haute pression (1) et pour la détermination des grandeurs d'entrée discrètes respectives des cylindres respectifs, de manière sélective par cylindre, plusieurs (n) modules de régulateur (C8n) pour une soupape de régulation de pression (8) associée au réservoir de carburant (4) et
    • un module de définition de valeur de consigne (A1) de la pression de rampe (p7Soll) et un module de discrétisation de valeur de consigne associé (A2) et
    • un module de détection de signal de valeur réelle (B1) de la pression de rampe (p7Ist) et un module de discrétisation de valeur réelle (B2),
    • ainsi qu'un module de calcul d'erreur de régulateur (A2/B2) et
    • comprend un module de conversion (A2`/B2`), qui effectue une conversion d'un écart de régulation discrétisé basé sur la pression (Δp7 = ΔpRail) en une différence de régulation basée sur le flux volumique (ΔVRail), dans lequel
    • le module de conversion (A2`/B2`) est lié à une machine d'état de régulateur (C), qui délivre les grandeurs d'entrée discrètes de manière sélective par cylindre au module de régulateur (C1n) respectif de la pompe haute pression (1) et les grandeurs d'entrée discrètes de manière sélective par cylindre au module de régulateur (C8n) respectif de la soupape de régulation de pression (8),
    • dans lequel les modules de régulateur (C1n, C8n) sont liés respectivement de manière sélective par cylindre à un module de régulation pilote (D), moyennant quoi, au moyen du module de régulation pilote (D) et des modules de régulateurs mis en ligne (C1, C8) de manière sélective par cylindre, de manière synchrone avec la pompe, par segment, les grandeurs de réglage pour la pompe haute pression (1) et la soupape de régulation de pression (8) sont fournies et calculées à un module de sortie (E8) et fournies aux organes de réglage (E1, E8) de la pompe haute pression (1) et de la soupape de régulation de pression (8) pour le réglage basé sur le volume sélectif par cylindre de la pression de rampe (p7Soll).
  16. Système d'alimentation en carburant (100) selon la revendication 14 ou 15 caractérisé en ce que le système d'alimentation en carburant (100) comprend un module d'observateur (W), qui observe une chaîne de traitement de signal ( 1 Ls + R
    Figure imgb0013
    , HW, SW) pour la détection de courant et la régulation de courant des organes de réglage (1, 8) du système d'alimentation en carburant (100).
EP20184711.8A 2019-07-12 2020-07-08 Procédé de réglage de la pression de rampe basé sur le débit volumique synchronique de pompe, en particulier sélective par cylindre pour un système d'alimentation en carburant d'une machine à combustion interne avec mesure de courant et régulation de courant des organes de réglage de la pression de rampe Active EP3763933B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102019118932 2019-07-12
DE102019118914 2019-07-12
DE102019118923 2019-07-12
DE102019129323.5A DE102019129323A1 (de) 2019-07-12 2019-10-30 Verfahren zur volumenstrombasierten pumpensynchronen und zylinderselektiven Raildruckregelung für ein Kraftstoffversorgungssystem einer Brennkraftmaschine
DE102019129306.5A DE102019129306A1 (de) 2019-07-12 2019-10-30 Verfahren zur Stromerfassung und Stromregelung der Stellglieder einer volumenstrombasierten pumpensynchronen nichtzylinderselektiven oder zylinderselektiven Raildruckregelung für ein Kraftstoffversorgungssystem einer Brennkraftmaschine
DE102019129320.0A DE102019129320A1 (de) 2019-07-12 2019-10-30 Verfahren zur volumenstrombasierten pumpensynchronen Raildruckregelung für ein Kraftstoffversorgungssystem einer Brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP3763933A1 EP3763933A1 (fr) 2021-01-13
EP3763933B1 true EP3763933B1 (fr) 2023-11-15

Family

ID=71527664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20184711.8A Active EP3763933B1 (fr) 2019-07-12 2020-07-08 Procédé de réglage de la pression de rampe basé sur le débit volumique synchronique de pompe, en particulier sélective par cylindre pour un système d'alimentation en carburant d'une machine à combustion interne avec mesure de courant et régulation de courant des organes de réglage de la pression de rampe

Country Status (1)

Country Link
EP (1) EP3763933B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113153556B (zh) * 2021-05-13 2022-11-29 潍柴动力股份有限公司 一种轨压控制方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710638B1 (fr) * 2005-04-07 2007-09-26 HONDA MOTOR CO., Ltd. Contrôleur
DE102008041577B4 (de) * 2007-08-31 2012-11-22 Denso Corporation Kraftstoffdrucksteuergerät für eine Brennkraftmaschine
DE102011004031B4 (de) * 2011-02-14 2014-03-13 Continental Automotive Gmbh Einspritzsystem und Verfahren zum Begrenzen eines Druckes in dem Einspritzsystem für eine Brennkraftmaschine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016204386A1 (de) 2016-03-16 2017-09-21 Robert Bosch Gmbh Verfahren zum Regeln eines durch eine Hochdruckpumpe bewirkten Kraftstoffraildrucks
DE102016211128A1 (de) * 2016-06-22 2017-12-28 Robert Bosch Gmbh Verfahren zum volumenstrombasierten Regeln eines durch eine Hochdruckpumpe bewirkten Kraftstoffraildrucks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710638B1 (fr) * 2005-04-07 2007-09-26 HONDA MOTOR CO., Ltd. Contrôleur
DE102008041577B4 (de) * 2007-08-31 2012-11-22 Denso Corporation Kraftstoffdrucksteuergerät für eine Brennkraftmaschine
DE102011004031B4 (de) * 2011-02-14 2014-03-13 Continental Automotive Gmbh Einspritzsystem und Verfahren zum Begrenzen eines Druckes in dem Einspritzsystem für eine Brennkraftmaschine

Also Published As

Publication number Publication date
EP3763933A1 (fr) 2021-01-13

Similar Documents

Publication Publication Date Title
DE102006034514B4 (de) Verfahren zur Steuerung einer Brennkraftmaschine
DE102012102336B4 (de) Vorrichtung zum Abschätzen eines Kraftstoffeinspritzzustands
EP3698032B1 (fr) Procédé de commande et de régulation d'un moteur à combustion interne sur la base de modèles
EP2148070A2 (fr) Procédé destiné à la détermination de la masse de carburant injectée lors d'une injection unique et dispositif destiné à la réalisation du procédé
DE102010042736B4 (de) Verfahren zur Mengenausgleichregelung bei einer Brennkraftmaschine
DE102013220589B3 (de) Verfahren zum Betrieb einer Brennkraftmaschine sowie Einrichtung zum Steuern und Regeln einer Brennkraftmaschine, Einspritzsystem und Brennkraftmaschine
DE112015002823T5 (de) System und Verfahren zur Einspritzdüsensteuerung für Mehrfachimpuls-Kraftstoffeinspritzung
EP1716331A1 (fr) Procede de synchronisation des cylindres en termes de quantites d'injection de carburant dans un moteur thermique
DE102012218176A1 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems
DE102014217582A1 (de) Verfahren zur Steuerung der Kraftstoffeinspritzung und Common-Rail-Einspritz- und Steuerungssysteme
WO2020030351A1 (fr) Procédé et dispositif pour faire fonctionner un moteur à combustion comprenant un système d'injection à rampe commune
DE10303765B4 (de) Sammlereinspritzsystem
EP2142785A1 (fr) Procédé et dispositif de commande d'injection d'un moteur à combustion interne
EP3763933B1 (fr) Procédé de réglage de la pression de rampe basé sur le débit volumique synchronique de pompe, en particulier sélective par cylindre pour un système d'alimentation en carburant d'une machine à combustion interne avec mesure de courant et régulation de courant des organes de réglage de la pression de rampe
DE102018115208B4 (de) System und Verfahren zur Bewertung des Fahrzeugkraftstoffeinspritzsystems
WO2008092779A1 (fr) Procédé et dispositif de correction de l'injection de carburant
DE102019129306A1 (de) Verfahren zur Stromerfassung und Stromregelung der Stellglieder einer volumenstrombasierten pumpensynchronen nichtzylinderselektiven oder zylinderselektiven Raildruckregelung für ein Kraftstoffversorgungssystem einer Brennkraftmaschine
WO2014202202A1 (fr) Procédé et dispositif de commande permettant de corriger la durée d'injection des injecteurs d'un moteur à combustion interne
DE102014211314A1 (de) Verfahren zum Korrigieren einer pumpenverursachten Abweichung einer Ist-Einspritzmenge von einer Soll-Einspritzmenge
WO2017075645A1 (fr) Moteur à combustion interne à diagnostic d'injecteur de carburant
WO2007141099A1 (fr) Procédé et dispositif de commande du dosage de carburant dans au moins une chambre de combustion d'un moteur à combustion interne
EP3011159A1 (fr) Procédé et système de commande de correction du début d'injection des injecteurs d'un moteur à combustion interne
DE102013105355B4 (de) Kraftstoffeinspritzungssteuervorrichtung, die für Mehrfacheinspritzung optimiert ist
DE10305525B4 (de) Verfahren und Vorrichtung zur Adaption der Druckwellenkorrektur in einem Hochdruck-Einspritzsystem eines Kraftfahrzeuges im Fahrbetrieb
DE102011100108B4 (de) Bestimmung einer Einspritzventilkennlinie und Verringerung eines Einspritzmengenunterschieds bei einem Verbrennungsmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210713

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 63/02 20060101ALN20230525BHEP

Ipc: F02M 59/36 20060101ALN20230525BHEP

Ipc: F02D 41/14 20060101ALN20230525BHEP

Ipc: F02D 41/00 20060101ALI20230525BHEP

Ipc: F02D 41/38 20060101AFI20230525BHEP

INTG Intention to grant announced

Effective date: 20230619

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230710

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006008

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240215

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315