EP3763933B1 - Method for volumetric flow based pump-synchronous, in particular cylinder-selective rail pressure control for a fuel supply system of a combustion engine with current detection and current regulation of the actuators of the rail pressure control - Google Patents

Method for volumetric flow based pump-synchronous, in particular cylinder-selective rail pressure control for a fuel supply system of a combustion engine with current detection and current regulation of the actuators of the rail pressure control Download PDF

Info

Publication number
EP3763933B1
EP3763933B1 EP20184711.8A EP20184711A EP3763933B1 EP 3763933 B1 EP3763933 B1 EP 3763933B1 EP 20184711 A EP20184711 A EP 20184711A EP 3763933 B1 EP3763933 B1 EP 3763933B1
Authority
EP
European Patent Office
Prior art keywords
pressure
control
rail
pump
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20184711.8A
Other languages
German (de)
French (fr)
Other versions
EP3763933A1 (en
Inventor
Josef Halfpaap
Andrej Barski
Ines Tschoeke
Andreas Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102019129323.5A external-priority patent/DE102019129323A1/en
Priority claimed from DE102019129306.5A external-priority patent/DE102019129306A1/en
Priority claimed from DE102019129320.0A external-priority patent/DE102019129320A1/en
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3763933A1 publication Critical patent/EP3763933A1/en
Application granted granted Critical
Publication of EP3763933B1 publication Critical patent/EP3763933B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • F02D41/3872Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves characterised by leakage flow in injectors

Definitions

  • the invention relates to a method for regulating a rail pressure caused by a high-pressure pump in a fuel storage for a fuel supply system of an internal combustion engine, wherein a crank angle-related or cam angle-related fixed angle difference of the internal combustion engine between a top dead center position of a cylinder piston of a cylinder of the internal combustion engine and a top dead center position Position of the pump piston of the high-pressure pump of the fuel supply system is taken into account when metering the delivery volume of the high-pressure pump.
  • a method for regulating a rail pressure caused by a high-pressure pump in a fuel rail for an internal combustion engine in which the rail pressure is regulated synchronously with an engine speed of the internal combustion engine of the high-pressure pump.
  • the rail pressure is therefore not regulated in the known fixed, time-synchronous calculation grid, but rather in a time-variable, engine speed-synchronous calculation grid, the respective grid interval of which is preferably from one top dead center to the next, based on a single cylinder or all cylinders of the internal combustion engine extends.
  • the high-pressure pump provides a quantity of fuel with each pump delivery stroke.
  • the sequence of pump delivery strokes of the high-pressure pump does not follow the fixed scanning pattern of the rail pressure controller, but is determined by the current operating state of the internal combustion engine.
  • the known fuel supply system includes a rail pressure regulator for using the proposed method.
  • a high-pressure pump is supplied with fuel from a tank by a pre-feed pump via a low-pressure line.
  • the high-pressure pump pumps fuel into a fuel rail via a high-pressure line.
  • the delivery volume of the high-pressure pump is set according to a delivery volume control value that a rail pressure regulator has calculated to regulate the rail pressure in the fuel rail.
  • the rail pressure controller is composed of a PID controller and a pilot control unit.
  • the PID controller is given a rail pressure control deviation supplied, which has been calculated as the difference between the rail pressure setpoint calculated synchronously with the engine speed and the actual rail pressure value detected synchronously with the engine speed with a rail pressure sensor, and calculates an additive correction volume flow synchronously with the engine speed.
  • a calculation carried out synchronously with the engine speed means that this calculation is carried out once per top dead center of the internal combustion engine.
  • the pilot control unit is supplied with an injection quantity calculated synchronously with the engine speed and a desired pressure change value, so that the pilot control unit calculates a pilot control value synchronously with the engine speed.
  • the sum of the additive correction volume flow and the pilot control value is fed to the high-pressure pump as a delivery volume control value in order to specify the delivery volume of the current delivery stroke and to set the rail pressure setpoint ps in the fuel rail.
  • the publication is supplemented DE 10 2006 026 928 A1 referred. It describes a method for operating an injection system of an internal combustion engine, which includes a combustion chamber, an injector for injecting fuel into the combustion chamber and a high-pressure fuel pump for generating a time-dependent injection pressure, with the steps: determining an injection quantity of fuel to be injected into the combustion chamber by the injector, Determining at least one injection time window for injecting the fuel, then calculating the time-dependent injection pressure present at the injector at the beginning of the injection time window, then determining at least one injection time interval from the at least one injection time window based on the calculated one at the injector at the beginning of the Injection time window, time-dependent injection pressure applied, so that at the end of the at least one injection time interval essentially the injection quantity has been injected, and then injecting the fuel in the at least one injection time interval.
  • DE 10 2016 211 128 A1 a further method for regulating a rail pressure caused by a high-pressure pump in a fuel rail for an internal combustion engine, wherein the rail pressure regulated by a regulator is adjusted by at least one adjusting device on the fuel rail side.
  • the at least one fuel rail-side adjusting device is set based on a volume flow value determined by the controller.
  • the invention is based on the object of improving the rail pressure control.
  • the starting point of the invention is that in a classic time-synchronous rail pressure control that works in a 10ms sampling grid, depending on the engine speed, the engine-synchronous pump event is under-sampled or over-sampled. This disadvantageously leads to pressure oscillations in the form of beats and aliasing, which cannot be completely corrected even at stationary operating points.
  • the conventional rail pressure control should also be adapted to the task to suit the newly available high-pressure pumps, which can provide a volume flow for each work cycle.
  • the best possible control performance should be achieved with deviations between the setpoint and actual value of less than 2% of the current setpoint. Furthermore, computing time and code memory in the control unit should be saved, the calibration and validation effort should be reduced and easy adaptation to different pump designs, pressure control valve variants and high-pressure components should be made possible.
  • a method for regulating a rail pressure caused by a high-pressure pump in a fuel storage for a fuel supply system of an internal combustion engine is already known, wherein a crank angle-related or cam angle-related fixed angle difference of the internal combustion engine between a top dead center position of a cylinder piston of a cylinder of the internal combustion engine and a Top dead center position of the pump piston of the high-pressure pump of the fuel supply system is taken into account when metering the delivery volume of the high-pressure pump.
  • a recurring discretization of a control deviation of the rail pressure occurs in synchronism with the pump per segment, which corresponds to one revolution of a crankshaft and thus the movement of the pump piston of the high-pressure pump from the top dead center position of the pump piston to the next top dead center position in the fuel storage and based on the discrete control deviation, a volume-related discrete volume control difference, in particular cylinder-selective, is calculated.
  • the discrete control deviation is calculated as the difference between the discretized actual rail pressure and the discretized target rail pressure, in particular cylinder-selective, by combining discretized pressure information from a rail pressure sensor of the actively detected pump-synchronous segment with the discretized target rail pressure of the Working cycle of the preceding pump-synchronous segment is compared in order to determine the discrete, in particular cylinder-selective, control difference.
  • the method is characterized in that the volume-related discrete volume control difference is supplied as an input variable to a control module for the high-pressure pump and a control module for a pressure control valve assigned to the fuel storage, the discrete volume control difference being linked to a pilot control module, whereby the pump is synchronous and in particular the manipulated variables for the high-pressure pump and the pressure control valve are calculated in an output module in a cylinder-selective manner for each segment and are fed to the actuators of the high-pressure pump and the pressure control valve for volume-based and in particular cylinder-selective adjustment of the rail pressure.
  • the manipulated variables of the actuators of the components for regulating the rail pressure in the fuel storage are supplied to an output module and are calculated in the output module for volume-based adjustment of the rail pressure, with current detection and Current control of the actuators is carried out on the basis of an observer model.
  • the volume-related discrete volume control difference is supplied as an input variable to a control module for the high-pressure pump and a control module for a pressure control valve assigned to the fuel storage, the discrete volume control difference being linked to a pilot control module, whereby The control variables for the high-pressure pump and the pressure control valve are calculated in an output module in an output module and fed to the actuators of the high-pressure pump and the pressure control valve for volume-based adjustment of the rail pressure.
  • the non-cylinder-selective approach also provides that the discrete control deviation is calculated as the difference between the discretized actual rail pressure and the discretized target rail pressure by combining discretized pressure information from a rail pressure sensor of the actively detected pump-synchronous segment with the discretized target rail pressure a working cycle of the previous pump-synchronous segment is compared to determine the discrete control difference.
  • the volume-related discrete volume control difference is calculated cylinder-selective by supplying the volume-related discrete volume control difference as cylinder-selective input variables to a control module for the high-pressure pump and a control module for a pressure control valve assigned to the fuel storage, whereby the discrete volume -Control difference is linked to a pilot control module, whereby the manipulated variables for the high-pressure pump and the pressure control valve are calculated in an output module in a pump-synchronous and cylinder-selective manner for each segment and are fed to the actuators of the high-pressure pump and the pressure control valve for volume-based, cylinder-selective adjustment of the rail pressure.
  • the discrete control deviation is calculated cylinder-selective as the difference between the discretized actual rail pressure and the discretized target rail pressure by combining discretized pressure information from a rail pressure sensor of the actively detected pump-synchronous segment with the discretized target rail pressure, of the pump-synchronous segment preceding one working cycle is compared in order to determine the discrete cylinder-selective control difference, as is explained in detail in the description.
  • the target rail pressure is discretized at a time that is determined with a trigger start signal that is issued repeatedly at the beginning of a pump-synchronous segment. It is intended that the actual rail pressure is recorded and discretized repeatedly within the segment started by the trigger start signal.
  • the detected minimum discrete pressure or the detected maximum discrete pressure or the discrete mean value is used as the actual value for comparison with the discrete target rail pressure, depending on the system requirements when pressure builds up the maximum discrete pressure and, when the pressure is reduced, the minimum discrete pressure is used to reduce control oscillations, in particular cylinder-selective control oscillations, or to avoid overshoots or undershoots, in particular cylinder-selective overshoots or undershoots.
  • a special aspect of the invention further provides that the discrete control deviation is converted into the volume flow-based discrete volume control difference or volume flow-based discrete cylinder-selective volume control difference, with a permanent fuel leakage of the high-pressure system of the fuel supply system also being taken into account by addition.
  • the injectors receive the same quantity setpoints from cylinder to cylinder in stationary operation, which are compared cylinder-selective with the quantity decreases from the rail, with injection quantity errors being determined cylinder-selectively, which are assigned to the injectors, with a type of quantity deviations being determined Error groups are assigned.
  • the injection quantity errors are advantageously grouped depending on the cause, in particular depending on the level of the injection quantity error resulting from the target/actual comparison, the injectors being in operation in an error group with an injector defect, an error group with an aging-related injector drift or an error group with a changing Switching leakage quantity are assigned, the injection quantity errors being determined within the cylinder-selective control in the controller and advantageously corrected in the injection system and/or leading to a replacement of the respective injector(s).
  • a correction in the injection system can be made in various ways.
  • the correction takes place by changing the injector activation duration.
  • non-cylinder-selective fuel supply system (basic concept) and the cylinder-selective fuel supply system (extension of the basic concept) differ in terms of the building blocks, as will become clear below.
  • the fuel supply system includes an observer module that observes a signal processing chain for current detection and current control of the actuators of the fuel supply system, as is also detailed in the description.
  • the internal combustion engine is advantageously operated with any liquid fuel or fuel mixture, whereby the linearization of the conversion of pressure difference into volume flow difference can be advantageously adapted to the respective fuel by means of a physically different elasticity modulus.
  • the method explained and the design of the fuel supply system can be applied and used not only for diesel engines, which are designed in particular as common-rail diesel engines, but also for gasoline engines that use a gasoline engine - spark-ignited - combustion process.
  • the Figure 1 shows a fuel supply system 100, which has a volume flow-based pump-synchronous, in particular cylinder-selective rail pressure control according to Figure 2A and 2 B is operated.
  • a high-pressure pump 1 is supplied with fuel from a fuel tank 3 by a pre-feed pump 2 via a low-pressure line 2.1.
  • the high-pressure pump 1 pumps fuel into a fuel reservoir, in particular into a fuel rail 4, via a high-pressure line 1.4.
  • the fuel rail 4 includes a rail pressure sensor 7, which detects the rail pressure p7 in the fuel rail 4.
  • the fuel rail 4 further comprises a pressure control valve 8, which within the method controls a predeterminable volume flow V8 from the fuel rail 4 via a return line 8.2.1 into the low-pressure line 2.1.
  • the injectors 9n have leakage lines which open into a common return line 9.3.
  • the return line 9.3 opens into a high-pressure pump return line 1.3 of the high-pressure pump 1, which leads back to the fuel tank 3.
  • a control unit S1 in particular an engine control unit, is connected via control lines (without reference numbers) directly to the duo sensor 6, the high-pressure pump 1, the pressure control valve 8, the rail pressure sensor 7 and the injectors 91, 92, 93, 94 and, in the exemplary embodiment, indirectly via a control unit S2 is connected to the pre-feed pump 2, which is designed as a low-pressure pump.
  • the Figure 2A shows the volume flow-based pump-synchronous control structure for rail pressure control in the basic concept, which is stored in an electronic control device, in particular the control device S1, which is set up to carry out one of the methods presented above.
  • the control device S1 and the control device S2 are operated via a computer program to carry out the method, a machine-readable storage medium with the computer program recorded thereon being provided on the computer.
  • volume flow-based pump-synchronous control structure for rail pressure control is based on the Figure 2A explained in detail below.
  • the rail pressure sensor 7 provides the control circuit consisting of a pilot control model, a controller and an actuator of the high-pressure pump 1 with the corresponding pressure information.
  • the input variable of the method for operating the fuel supply system 100 according to the invention is a certain volume flow, which is supplied to the high-pressure pump 1 or discharged through the pressure control valve 8.
  • the object of the invention is therefore that the complete high-pressure control, i.e. the rail pressure high-pressure control within the rail 4 of the fuel supply system 100, from a time-based cyclical calculation of a rail pressure controller for regulating the rail pressure in the rail 4 to a volume flow-based and pump-synchronous one based on the engine segment of the internal combustion engine discrete calculation for rail pressure control (in a two-position concept (pressure control valve control and high-pressure pump control).
  • the pressure information p7 Act from the rail pressure sensor 7 of a motor-synchronous/pump-synchronous segment is compared with the target rail pressure p7 target of the previous motor-synchronous/pump-synchronous segment (this is referred to as the delayed target rail pressure) in order to determine the discrete control deviation ⁇ p7.
  • This pressure difference ⁇ p7 is converted into a volume difference via the elastic modulus E of the fuel and via the fuel temperature T6 determined by the duo sensor 6 and processed as an input variable ⁇ V Rail in a controlled system.
  • This volume difference ⁇ V Rail is supplied as an input variable to the controlled system using the digital metering unit (not shown), which is preferably arranged in the pump room of the high-pressure pump 1 or by controlling the pressure control valve 8, and the actuators of the high-pressure pump 1 or the pressure control valve 8 are controlled, with the discretization , that is, the calculation of the volume difference ⁇ V Rail can be varied synchronously with the pump for each motor segment.
  • the digital metering unit (not shown), which is preferably arranged in the pump room of the high-pressure pump 1 or by controlling the pressure control valve 8, and the actuators of the high-pressure pump 1 or the pressure control valve 8 are controlled, with the discretization , that is, the calculation of the volume difference ⁇ V Rail can be varied synchronously with the pump for each motor segment.
  • the volume balance of the volume flow-based segment-synchronous calculation assumes a constant volume V H of the high-pressure system, in which, depending on the pressure, there is a certain volume of fuel, which is basically supplied via the high-pressure pump 1 and discharged via the pressure control valve 1.
  • the volumes a) and b) are taken event-related, while c) the permanent fuel leakage VDLeck of the high-pressure system is discretized via a Z-transformation.
  • an event-related discretization of the permanent leakage V DLeck of the high-pressure system takes place, so that the volumes a), b), c) can be added accordingly as the total volume V Ges-Ab taken from the high-pressure system.
  • the so-called load and/or speed-dependent change request in the rail pressure the so-called pressure change request (also referred to as dynamic volume flow component) within the rail 4, which is achieved by supplying fuel volume (pressure increase) via the high-pressure pump 1 as a V ⁇ p rail specification or by discharging fuel volume (pressure reduction) via the pressure control valve 8 within the volume balance as V ⁇ p rail specification .
  • the high-pressure pump 1 has, in a known manner and advantageously, a fixed assignment of the pump TDC in a segment-synchronous/cylinder-synchronous manner every 180° crank angle of the internal combustion engine to the cylinder piston TDCs of the cylinder pistons (not shown) of the internal combustion engine, whereby the engine speed corresponds to the high-pressure pump speed matches.
  • the calculation according to the invention is carried out via a trigger start signal nsync (see Figures 2A and 2 B and Figure 3 ), whereby the calculation is carried out segment-synchronously/cylinder-synchronously every 180° crank angle, whereby the calculation of the variables of the controlled system is carried out separately for each of the cylinders or the associated injectors 9n, which inject into this cylinder.
  • a trigger start signal nsync see Figures 2A and 2 B and Figure 3
  • the volume flow-based pump-synchronous control structure for rail pressure control of the high-pressure pump 1 includes a signal detection module B1 for signal detection of the rail pressure p7 by means of the rail pressure sensor 7.
  • the detection of the rail pressure p7 takes place time-synchronously within the module B1 for the signal detection of the rail pressure p7 in a measuring grid in ms steps, with an actual value discretely segment-synchronously within the segment within the module B2, which is referred to as the actual value discretization module p7 Actual is recorded and saved as the minimum pressure p 7Actual-min and as the maximum pressure p 7Actual-max , with these pressures p 7Actual-min , p 7Actual-max and also as the actual value p7 Actual an average value p7 Actual-50% of Press p 7Act-min , p 7Act-max is calculated within the segment and also saved.
  • the volume flow-based pump-synchronous control structure for rail pressure control of the high-pressure pump 1 includes a setpoint specification module A1 for the setpoint specification of the rail pressure p7 target , which is stored in the form of map data in the computer program of the engine control unit, which arises from the respective combustion process used and is predetermined.
  • this target rail pressure p7 target is also discretized from any current specified time grid, that is, a conversion is carried out from the Time “slices” into the segment “slices”, at the time nsync dem (trigger start signal), i.e. at the start of the calculation.
  • the target rail pressure p7 target at time nsync is "frozen" with the start of a time slice of the segment
  • This procedure is necessary because the system always has a time delay.
  • the control value of a pilot control generates an increase in the volume flow into the rail after the pump has delivered. Therefore, the target value p7 target used to form the difference is delayed by exactly one working cycle and compared with the actual value p7 actual of the following working cycle.
  • the minimum pressure p 7min or the maximum jerk p 7max or the mean value p7 50% is available as a discrete actual value p7.
  • the control there is the possibility (selection of several discrete signals from the setpoint discretization module A2) for the control as the actual value p7Is the minimum discrete pressure p7Ist-min or the maximum discrete pressure p7Ist-max or to use the discrete mean value p7 actual-50% to compare the selected value with the discrete target rail pressure P7 target , whereby, depending on the system requirements, the value p7 actual-max is used when the pressure builds up and the value p7 actual-min is used when the pressure is reduced is used to reduce control oscillations or to avoid overshoots or undershoots.
  • control error calculation module A2/B2 (see Figure 2A ) into which the discretized target rail pressure values p7 target and the discretized actual rail pressure values p7 actual are received and compared segment-synchronously and calculated as a control error and saved.
  • E pressure- and temperature-dependent specific modulus of elasticity of the respective fuel
  • V H are the volume of the high-pressure fuel system of the fuel supply system 100.
  • This conversion into the segment-synchronous volume error ⁇ V Rail has the advantage that the non-linear fuel properties of the fuel are taken into account in the control.
  • a discrete volume control difference ⁇ V Rail is available as an input variable for a controller module C, C1, C8, which is used directly for the volume flow-based actuators E1, E8 (high-pressure pump 1 and pressure control valve 8).
  • the controller module C, C1, C8 includes as a sub-module a controller state machine C, which, depending on the requirements, adjusts the pressure based on volume flow/volume flow, i.e. depending on the discrete volume control difference ⁇ V determined in the conversion module A2 ⁇ /B2 ⁇ Rail increases or decreases, and this decides whether control intervention via a PID controller module C1 of the high-pressure pump 1 (see Figure 2A ) “pressure increasing” or “pressure reducing” via a PID controller module C8 of the pressure control valve 8.
  • the structure also includes: Figure 2A a pilot control volume flow value module D as a fault controller for the segment-synchronous volume flow-based pilot control (command variable with disturbance variable compensation) of the fuel supply system, the command variable of which is combined with the PID controller module C1 of the high-pressure pump 1 and the PID controller module C8 of the pressure control valve 8, so that The PID controller modules C1, C8 only have to compensate for the control fluctuations of the fuel supply system.
  • a pilot control volume flow value module D as a fault controller for the segment-synchronous volume flow-based pilot control (command variable with disturbance variable compensation) of the fuel supply system, the command variable of which is combined with the PID controller module C1 of the high-pressure pump 1 and the PID controller module C8 of the pressure control valve 8, so that The PID controller modules C1, C8 only have to compensate for the control fluctuations of the fuel supply system.
  • the pre-control volume flow value module D receives the segment-synchronous volume flows mentioned under a) to d) in addition as pre-control variables, so that control of the controlled system is already guaranteed in the pre-control volume flow value module D.
  • the values of the fault controller of the pilot control volume flow value block D which are controlled by the PID controller blocks C1, C8, are (compare Figure 2 ) is fed to an output module E, which electrically controls the actuators E1 and E8 of the high-pressure pump 1 and the pressure control valve 8 and adjusts the actuators E1 and E8 as required via the control system in a pump-segment-synchronous, volume-based manner.
  • n number of cylinders or the associated injectors 9n (compare Figure 1 )
  • a separate cylinder-selective control deviation ⁇ V Rail in particular a proportional component and / or an integrator component and / or a differential component, is calculated and according to the cylinder-selective control deviation ⁇ V Rail , the control values E1, E8 are cylinder for cylinder and injector for injector 9n respectively Injection event for Injection event is selected segment-synchronously and, as explained above, is output based on volume flow for the high-pressure pump 1 or the pressure control valve 8.
  • the injectors 9n receive the same quantity setpoints from cylinder to cylinder in stationary operation, but different quantity decreases V 9n result from the rail 4 due to injector scattering, according to the invention, for example, the individual integrator shares of the cylinder-selective controllers C1 n , C8 n show the quantity deviations between the injectors 9 n , which can have various causes. Depending on the type of quantity deviations, the causes can most likely be assigned to specific error groups.
  • a discrete volume control difference ⁇ V Rail is available as an input variable for a controller module C, C1, C8, which is used directly for the volume flow-based actuators E1, E8 (high-pressure pump 1 and pressure control valve 8), whereby segment-synchronously for Each cylinder or injector 9n “only one” control structure is used repeatedly.
  • a segment-synchronous discrete volume control difference ⁇ V Rail is available as an input variable for several (n) controller modules C1n, C8n, which, according to the "cylinder-selective" extension, is available directly for the volume flow-based actuators E1, E8 (high-pressure pump 1 and pressure control valve 8 ) is used.
  • controller State machine C decides whether the control interventions are segment-synchronous via several PID controller modules C1n of the high-pressure pump 1 (see Figure 2B ) “pressure increasing” or via several PID controller modules C8n of the pressure control valve 8 “pressure decreasing” should be done in a cylinder-selective manner.
  • the structure also includes: Figure 2B a pilot control volume flow value module D as a fault controller for the segment-synchronous volume flow-based pilot control (command variable with disturbance variable compensation) of the fuel supply system 100, the command variable of which is combined with the PID controller modules C1n of the high-pressure pump 1 and the PID controller modules C8n of the pressure control valve 8, so that the PID controller modules C1n, C8n only have to compensate for the control fluctuations of the fuel supply system.
  • a pilot control volume flow value module D as a fault controller for the segment-synchronous volume flow-based pilot control (command variable with disturbance variable compensation) of the fuel supply system 100, the command variable of which is combined with the PID controller modules C1n of the high-pressure pump 1 and the PID controller modules C8n of the pressure control valve 8, so that the PID controller modules C1n, C8n only have to compensate for the control fluctuations of the fuel supply system.
  • the high pressure control can now be carried out cylinder-selectively through the cylinder-selective control - in an extension of the basic concept - that is, for each cylinder or each injection process, an adapted, cylinder-selectively corrected manipulated variable is output as actuator output E1 of the high-pressure pump 1 or actuator output E8 of the pressure control valve 8.
  • the respective PID controller modules C1n, C8n can each be calibrated separately.
  • a simple diagnostic function (on-board diagnosis without removal) or a diagnostic function (on-board diagnosis without removal) with a correction function is provided.
  • a specific cylinder-related or injector-related error can be permitted via the diagnostic function up to a predeterminable threshold value and only after the threshold value is exceeded is a cylinder-related or injector-related error correction carried out.
  • the injection quantity errors there is in particular the possibility of grouping the injection quantity errors depending on the cause, with the injectors 9n, for example, during operation of an error group with an injector defect (on-board diagnosis of an injector defect without removal), or another error group with an aging-related injector drift (on-board diagnosis of the injector drift without removal). ) or another error group with a changing switching leakage quantity V SLeck (on-board diagnosis of too high a switching leakage without removal), the injection quantity errors being advantageously within the On-board diagnosis can be called up to replace the defective injector 9n or can be taken into account and corrected within the cylinder-selective control.
  • the cylinder-selective control information that is, the individual injection quantity errors of the individual injectors 9n, can generally be adapted and used to improve the pilot control D of the injectors 9n.
  • the respective cylinder-selective controlled variable C1n, C8n can also be advantageously converted into another reference variable, in particular considering the internal engine torque of the respective cylinders, so that by supporting the cylinder-selective rail pressure control, a cylinder-selective torque-dependent control is made possible, in which the cylinder-selective control information in particular can be used for cylinder torque equalization by, for example, passing a corresponding pilot control value from the cylinder-selective rail pressure control to a cylinder-selective torque controller.
  • a further aspect of the invention is that the high-pressure control in the described non-cylinder-selective control or in the described cylinder-selective control outputs an adapted corrected manipulated variable in an actuator output E1 of the high-pressure pump 1 or in an actuator output E8 of the pressure control valve 8.
  • PWM pulse width modulation
  • AD converter analog to digital converter
  • PWM-synchronous current measurement systems in which a hardware filter with a high cut-off frequency is used to eliminate high-frequency interference, have the following disadvantages: No average value-free measurement can be carried out. A sampling is carried out that lies in the frequency range of the HW filter with a high CPU load because the sampling frequency is coupled to the PWM basic frequency. With small PWM duty cycles, undersampling can occur due to alias errors, which leads to a center shift. The procedure is therefore rarely used.
  • Time-synchronous current detection systems in which a HW filter with a low cutoff frequency is used to smooth the PWM oscillation on the current signal, have the following disadvantages: Due to the low cutoff frequency and high filter time constant, these HW filters have a high phase shift. The controller must be adapted to a relatively slow HW filter. The time-synchronous current detection systems also have poor control behavior in the event of faults because the actual value reaches the controller with a delay due to the slow HW filtering.
  • current detection systems use a measuring resistor to use the voltage drop across the measuring resistor to determine the current in the actuator. This value is recorded cyclically using an AD converter and provided to the current control as an actual value. This current measurement value is regulated in a closed control loop. For sampling, this measured value must be filtered in front of the analog/digital converter using an analog hardware (HW) low-pass filter with a correspondingly defined cutoff frequency (usually between 10Hz and 50Hz for time-synchronous current measurement). This filter is usually an RC element. This creates a signal delay and a phase response that is a major disadvantage for the control loop, which is why the (internal) current controls are designed to be relatively slow.
  • HW analog hardware
  • the actuators for the actuator output E1, E8 of the high-pressure pump 1 and the pressure control valve 8 of the high-pressure control are the inner control circuits, with the actual hydraulic pressure control already explained (compare the components of the hydraulic pressure control in the Figures 2A and 2 B and the associated description) represent the external control loops.
  • the solution according to the invention consists in a modified signal processing or signal processing chain, which according to the invention is an in Figure 3 Observer model shown includes.
  • an observer component W is integrated into the signal processing chain and is advantageously used in the signal processing chain to control components 1 and 8.
  • This observer W integrated into the signal processing chain, improves the current detection of the high-pressure pump 1 and the pressure control valve 8 and their current control in the described non-cylinder-selective rail pressure control and in the cylinder-selective rail pressure control equally.
  • the current detection is improved using the observer model in such a way that the delay times and phase shifts in the current detection, which arise from the analog filtering (HW filter) of the signal, are avoided, with the model ensuring that the observer W is constantly tracked , in which a so-called observation error converges to zero, where the observation error is defined as the difference between the measured value and the observed value.
  • HW filter analog filtering
  • the system according to the invention for current detection is in Figure 3 arranged in the output module component E and in Figure 3 illustrated in a schematically illustrated system diagram extracted from the output module component E.
  • the current detection system according to the invention is based on a time-synchronous current detection and a so-called state reconstruction or state vector construction.
  • the system diagram extracted from output module component E illustrates a voltage value u (which corresponds to a pulsating coil current or a pulsating coil voltage of a conventional PWM-synchronous current detection), which represents the input variable of the system for current detection.
  • the voltage u represents the input variable of the coil 1 Ls + R the control unit of the components 1, 8 to be controlled is supplied.
  • the output signal of the coil 1 Ls + R is a current value i 1 , which is called the effective value of the coil 1 Ls + R is sought as a control current for controlling components 1, 8, which cannot be measured without appropriate processing of the signal.
  • the current value i 1 or effective value of the coil 1 Ls + R represents the input variable for a hardware filter HW for filtering the current value i 1 , which in turn outputs the current value i 2 , which ultimately represents the input variable for a software filter SW for attenuating the signal of the current value i 2 in the control unit, so that according to this Signal processing chain a signal of a current value is available.
  • the voltage value u thus represents the input value into the observer module W, whereby the current value i 3 represents the output value of the signal processing chain, which is also made available to the observer module W, whereby the observer module W has the underlying observer module.
  • Model calculates a new voltage value u in parallel to the previously explained signal processing chain.
  • observation error is defined as the difference between the measured value i1 and the observed value i3.
  • This solution according to the invention makes it possible to achieve a high performance and stability of the current detection that meets the requirements, thereby improving the internal current control loops With high performance, the following advantageous properties of the current detection according to the invention by means of observer W can be understood in detail:
  • This type of current detection has only a small phase shift because it is controlled based on the model value of the observer, which corresponds to the real current value, which, however, is only due to the disadvantages of the phase response of the filtering would be recorded after the filter runtime.
  • the detection with an observer is faster, so that the control based on it is also faster.
  • the current detection according to the invention does not require averaging, which means that it is more precise, in particular in contrast to the commonly used PWM-synchronous current detection (with averaging). With the current detection according to the invention, no aliasing effects occur, that is, incorrect signal determination with undersampling, as is the case with other current detection methods, does not occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Regeln eines durch eine Hochdruckpumpe in einem Kraftstoffspeicher bewirkten Raildrucks für ein Kraftstoffversorgungssystem einer Brennkraftmaschine, wobei eine kurbelwinkelbezogene oder nockenwinkelbezogene feste Winkeldifferenz der Brennkraftmaschine zwischen einer Oberen-Totpunkt-Position eines Zylinderkolbens eines Zylinders der Brennkraftmaschine und einer Oberen-Totpunkt-Position des Pumpenkolbens der Hochdruckpumpe des Kraftstoffversorgungssystems bei der Zumessung des Fördervolumens der Hochdruckpumpe berücksichtigt wird.The invention relates to a method for regulating a rail pressure caused by a high-pressure pump in a fuel storage for a fuel supply system of an internal combustion engine, wherein a crank angle-related or cam angle-related fixed angle difference of the internal combustion engine between a top dead center position of a cylinder piston of a cylinder of the internal combustion engine and a top dead center position Position of the pump piston of the high-pressure pump of the fuel supply system is taken into account when metering the delivery volume of the high-pressure pump.

Aus der Druckschrift DE 10 2016 204 386 A1 ist bereits ein Verfahren zum Regeln eines durch eine Hochdruckpumpe in einem Kraftstoffrail bewirkten Raildrucks für einen Brennkraftmotor bekannt, bei dem der Raildruck synchron zu einer Motordrehzahl des Brennkraftmotors der Hochdruckpumpe geregelt wird. Die Regelung des Raildrucks erfolgt also nicht in dem bekannten festen, zeitsynchronen Berechnungsraster, sondern erfolgt in einem zeitlich variablen, motordrehzahlsynchronen Berechnungsraster, dessen jeweiliges Rasterintervall sich bevorzugt von einem bis zum nächsten durchlaufenen oberen Totpunkt, bezogen auf einen einzigen Zylinder oder alle Zylinder, des Brennkraftmotors erstreckt. Die Hochdruckpumpe stellt mit jedem Pumpenförderhub eine Kraftstoffmenge bereit. Die Abfolge der Pumpenförderhübe der Hochdruckpumpe folgt zeitlich aber nicht dem festen Abtastraster des Raildruckreglers, sondern wird durch den aktuellen Betriebszustand des Brennkraftmotors bestimmt.From the publication DE 10 2016 204 386 A1 a method for regulating a rail pressure caused by a high-pressure pump in a fuel rail for an internal combustion engine is already known, in which the rail pressure is regulated synchronously with an engine speed of the internal combustion engine of the high-pressure pump. The rail pressure is therefore not regulated in the known fixed, time-synchronous calculation grid, but rather in a time-variable, engine speed-synchronous calculation grid, the respective grid interval of which is preferably from one top dead center to the next, based on a single cylinder or all cylinders of the internal combustion engine extends. The high-pressure pump provides a quantity of fuel with each pump delivery stroke. However, the sequence of pump delivery strokes of the high-pressure pump does not follow the fixed scanning pattern of the rail pressure controller, but is determined by the current operating state of the internal combustion engine.

Das bekannte Kraftstoffversorgungssystem umfasst einen Raildruckregler zur Anwendung des vorgeschlagenen Verfahrens. Eine Hochdruckpumpe wird von einer Vorförderpumpe über eine Niederdruckleitung mit Kraftstoff aus einem Tank versorgt. Über eine Hochdruckleitung pumpt die Hochdruckpumpe Kraftstoff in ein Kraftstoffrail. Das Fördervolumen der Hochdruckpumpe ist gemäß einem Fördervolumen-Steuerwert eingestellt, den ein Raildruckregler zur Regelung des Raildrucks im Kraftstoffrail berechnet hat. Der Raildruckregler ist aus einem PID-Regler und einer Vorsteuerungseinheit zusammengesetzt. Dem PID-Regler wird eine Raildruck-Regelabweichung zugeführt, die als Differenz des synchron zur Motordrehzahl berechneten Raildruck-Sollwertes und des synchron zur Motordrehzahl mit einem Raildrucksensor erfassten Raildruck-Istwertes berechnet worden ist, und berechnet synchron zur Motordrehzahl einen additiven Korrekturvolumenstrom. Eine synchron zur Motordrehzahl vorgenommene Berechnung bedeutet, dass diese Berechnung einmal pro durchlaufenen oberen Totpunkt des Brennkraftmotors erfolgt.The known fuel supply system includes a rail pressure regulator for using the proposed method. A high-pressure pump is supplied with fuel from a tank by a pre-feed pump via a low-pressure line. The high-pressure pump pumps fuel into a fuel rail via a high-pressure line. The delivery volume of the high-pressure pump is set according to a delivery volume control value that a rail pressure regulator has calculated to regulate the rail pressure in the fuel rail. The rail pressure controller is composed of a PID controller and a pilot control unit. The PID controller is given a rail pressure control deviation supplied, which has been calculated as the difference between the rail pressure setpoint calculated synchronously with the engine speed and the actual rail pressure value detected synchronously with the engine speed with a rail pressure sensor, and calculates an additive correction volume flow synchronously with the engine speed. A calculation carried out synchronously with the engine speed means that this calculation is carried out once per top dead center of the internal combustion engine.

Der Vorsteuerungseinheit wird eine synchron zur Motordrehzahl berechnete Einspritzmenge und eine erwünschter Druckänderungswert zugeführt, sodass die Vorsteuerungseinheit synchron zur Motordrehzahl einen Vorsteuerungswert berechnet. Die Summe des additiven Korrekturvolumenstroms und des Vorsteuerungswertes wird als Fördervolumen-Steuerwert an die Hochdruckpumpe gespeist, um das Fördervolumen des aktuellen Förderhubs vorzugeben und um den Raildruck-Sollwert ps im Kraftstoffrail einzustellen.The pilot control unit is supplied with an injection quantity calculated synchronously with the engine speed and a desired pressure change value, so that the pilot control unit calculates a pilot control value synchronously with the engine speed. The sum of the additive correction volume flow and the pilot control value is fed to the high-pressure pump as a delivery volume control value in order to specify the delivery volume of the current delivery stroke and to set the rail pressure setpoint ps in the fuel rail.

Ergänzend wird auf die Druckschrift DE 10 2006 026 928 A1 verwiesen. Sie beschreibt ein Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, die einen Brennraum, einen Injektor zum Einspritzen von Kraftstoff in den Brennraum und eine Hochdruckkraftstoffpumpe zum Erzeugen eines zeitabhängigen Einspritzdrucks umfasst, mit den Schritten: Ermitteln einer vom Injektor in den Brennraum einzuspritzenden Einspritzmenge an Kraftstoff, Ermitteln mindestens eines Einspritz-Zeitfensters für das Einspritzen des Kraftstoffs, anschließend Berechnen des zu Beginn des Einspritz-Zeitfensters am Injektor anliegenden zeitabhängigen Einspritzdrucks, anschließend Ermitteln mindestens eines Einspritz-Zeitintervalls aus dem mindestens einen Einspritz-Zeitfenster anhand des berechneten, am Injektor zu Beginn des Einspritz-Zeitfensters anliegenden, zeitabhängigen Einspritzdrucks, sodass am Ende des mindestens einen Einspritz-Zeitintervalls im Wesentlichen die Einspritzmenge eingespritzt worden ist, und anschließend Einspritzen des Kraftstoffs in dem mindestens einen Einspritz-Zeitintervall.The publication is supplemented DE 10 2006 026 928 A1 referred. It describes a method for operating an injection system of an internal combustion engine, which includes a combustion chamber, an injector for injecting fuel into the combustion chamber and a high-pressure fuel pump for generating a time-dependent injection pressure, with the steps: determining an injection quantity of fuel to be injected into the combustion chamber by the injector, Determining at least one injection time window for injecting the fuel, then calculating the time-dependent injection pressure present at the injector at the beginning of the injection time window, then determining at least one injection time interval from the at least one injection time window based on the calculated one at the injector at the beginning of the Injection time window, time-dependent injection pressure applied, so that at the end of the at least one injection time interval essentially the injection quantity has been injected, and then injecting the fuel in the at least one injection time interval.

Schließlich offenbart die Druckschrift DE 10 2016 211 128 A1 ein weiteres Verfahren zum Regeln eines durch eine Hochdruckpumpe in einem Kraftstoffrail bewirkten Raildrucks für einen Brennkraftmotor, wobei der durch einen Regler geregelte Raildruck durch mindestens eine kraftstoffrailseitige Stellvorrichtung eingestellt wird. Die mindestens eine kraftstoffrailseitige Stellvorrichtung wird auf Grundlage eines durch den Regler ermittelten Volumenstromwertes gestellt.Finally, the publication reveals DE 10 2016 211 128 A1 a further method for regulating a rail pressure caused by a high-pressure pump in a fuel rail for an internal combustion engine, wherein the rail pressure regulated by a regulator is adjusted by at least one adjusting device on the fuel rail side. The at least one fuel rail-side adjusting device is set based on a volume flow value determined by the controller.

Der Erfindung liegt die Aufgabe zugrunde die Raildruckregelung zu verbessern.The invention is based on the object of improving the rail pressure control.

Ausgangspunkt der Erfindung ist es, dass es bei einer klassischen zeitsynchronen Raildruckregelung, die im 10ms Abtastraster arbeitet, je nach Motordrehzahl zu Unter- oder Überabtastungen des motorsynchronen Pumpenevents kommt. Dadurch kommt es in nachteiliger Weise zu Druckschwingungen in Form von Schwebungen sowie Aliasing, die selbst in stationären Betriebspunkten nicht vollständig ausgeregelt werden können.The starting point of the invention is that in a classic time-synchronous rail pressure control that works in a 10ms sampling grid, depending on the engine speed, the engine-synchronous pump event is under-sampled or over-sampled. This disadvantageously leads to pressure oscillations in the form of beats and aliasing, which cannot be completely corrected even at stationary operating points.

Die herkömmliche Raildruckregelung soll ferner aufgabengemäß an die neu verfügbaren Hochdruckpumpen, die für jedes Arbeitsspiel einen Volumenstrom stellen können, angepasst werden.The conventional rail pressure control should also be adapted to the task to suit the newly available high-pressure pumps, which can provide a volume flow for each work cycle.

Dabei soll eine bestmögliche Regelperformance mit Abweichungen zwischen Soll- und Istwert von weniger als 2% des aktuellen Sollwerts erreicht werden. Weiterhin soll Rechenzeit und Codespeicher im Steuergerät eingespart werden, und der Kalibrierungs- und Absicherungsaufwand soll reduziert sowie eine einfache Anpassung an verschiedene Pumpenausführungen, Druckregelventilvarianten und Hochdruckkomponenten ermöglicht werden.The best possible control performance should be achieved with deviations between the setpoint and actual value of less than 2% of the current setpoint. Furthermore, computing time and code memory in the control unit should be saved, the calibration and validation effort should be reduced and easy adaptation to different pump designs, pressure control valve variants and high-pressure components should be made possible.

Insbesondere negativ wirken sich diese Effekte bei modernen Hochdruckpumpen aus, bei denen das Fördervolumen von einem Förderhub zum nächsten im kompletten Stellbereich beeinflusst wird. Abhilfe schafft bisher nur eine extrem geringe Kreisverstärkung, womit der klassische zeitsynchrone Raildruckregler, insbesondere in dynamischen Druckänderungssituationen dem nachfolgend erläuterten Verfahren gemäß der Erfindung weit unterlegen ist.These effects have a particularly negative impact on modern high-pressure pumps, in which the delivery volume is influenced from one delivery stroke to the next over the entire adjustment range. So far, the only solution has been an extremely low circuit gain, which means that the classic time-synchronous rail pressure controller is far inferior to the method according to the invention explained below, especially in dynamic pressure change situations.

Gemäß den vorhergehenden Ausführungen ist bereits ein Verfahren zum Regeln eines durch eine Hochdruckpumpe in einem Kraftstoffspeicher bewirkten Raildrucks für ein Kraftstoffversorgungssystem einer Brennkraftmaschine bekannt, wobei eine kurbelwinkelbezogene oder nockenwinkelbezogene feste Winkeldifferenz der Brennkraftmaschine zwischen einer Oberen-Totpunkt-Position eines Zylinderkolbens eines Zylinders der Brennkraftmaschine und einer Oberen-Totpunkt-Position des Pumpenkolbens der Hochdruckpumpe des Kraftstoffversorgungssystems bei der Zumessung des Fördervolumens der Hochdruckpumpe berücksichtigt wird.According to the previous statements, a method for regulating a rail pressure caused by a high-pressure pump in a fuel storage for a fuel supply system of an internal combustion engine is already known, wherein a crank angle-related or cam angle-related fixed angle difference of the internal combustion engine between a top dead center position of a cylinder piston of a cylinder of the internal combustion engine and a Top dead center position of the pump piston of the high-pressure pump of the fuel supply system is taken into account when metering the delivery volume of the high-pressure pump.

Von diesem Ausgangspunkt ausgehend ist vorgesehen, dass wiederkehrend pumpensynchron je Segment, das einer Umdrehung einer Kurbelwelle und somit der Bewegung des Pumpenkolbens der Hochdruckpumpe von der Oberen-Totpunkt-Position des Pumpenkolbens zur nächsten Oberen-Totpunkt-Position entspricht, eine Diskretisierung einer Regelabweichung des Raildrucks im Kraftstoffspeicher vorgenommen und von der diskreten Regelabweichung ausgehend eine volumenbezogene diskrete Volumen-Regeldifferenz, insbesondere zylinderselektiv berechnet wird.Starting from this starting point, it is provided that a recurring discretization of a control deviation of the rail pressure occurs in synchronism with the pump per segment, which corresponds to one revolution of a crankshaft and thus the movement of the pump piston of the high-pressure pump from the top dead center position of the pump piston to the next top dead center position in the fuel storage and based on the discrete control deviation, a volume-related discrete volume control difference, in particular cylinder-selective, is calculated.

Weiter ist vorgesehen, dass die diskrete Regelabweichung als Differenz aus dem diskretisierten Ist-Raildruck und dem diskretisierten Soll-Raildruck, insbesondere zylinderselektiv berechnet wird, indem eine diskretisierte Druckinformation eines Raildruck-Sensor des aktiv erfassten pumpensynchronen Segmentes mit dem diskretisierten Soll-Raildruck des um ein Arbeitsspiel vorhergehenden pumpensynchronen Segmentes verglichen wird, um die diskrete, insbesondere zylinderselektive Regeldifferenz zu bestimmen.It is further provided that the discrete control deviation is calculated as the difference between the discretized actual rail pressure and the discretized target rail pressure, in particular cylinder-selective, by combining discretized pressure information from a rail pressure sensor of the actively detected pump-synchronous segment with the discretized target rail pressure of the Working cycle of the preceding pump-synchronous segment is compared in order to determine the discrete, in particular cylinder-selective, control difference.

Erfindungsgemäß zeichnet sich das Verfahren dadurch aus, dass die volumenbezogene diskrete Volumen-Regeldifferenz als Eingangsgröße einem Regelbaustein für die Hochdruckpumpe und einem Regelbaustein für ein dem Kraftstoffspeicher zugeordnetes Druckregelventil zugeführt wird, wobei die diskrete Volumen-Regeldifferenz mit einem Vorsteuer-Baustein verknüpft wird, wodurch pumpensynchron und insbesondere zylinderselektiv je Segment die Stellgrößen für die Hochdruckpumpe und das Druckregelventil in einem Ausgabe-Baustein berechnet und den Stellgliedern der Hochdruckpumpe und des Druckregelventils zur volumenbasierten und insbesondere zylinderselektiven Einstellung des Raildrucks zugeführt werden.According to the invention, the method is characterized in that the volume-related discrete volume control difference is supplied as an input variable to a control module for the high-pressure pump and a control module for a pressure control valve assigned to the fuel storage, the discrete volume control difference being linked to a pilot control module, whereby the pump is synchronous and in particular the manipulated variables for the high-pressure pump and the pressure control valve are calculated in an output module in a cylinder-selective manner for each segment and are fed to the actuators of the high-pressure pump and the pressure control valve for volume-based and in particular cylinder-selective adjustment of the rail pressure.

Bevorzugt ist bei der nicht zylinderselektiven Vorgehensweise und der zylinderselektiven Vorgehensweise vorgesehen, dass die Stellgrößen der Stellglieder der Komponenten zum Regeln des Raildrucks in dem Kraftstoffspeicher einem Ausgabe-Baustein zugeführt und in dem Ausgabe-Baustein zur volumenbasierten Einstellung des Raildrucks berechnet werden, wobei eine Stromerfassung und Stromregelung der Stellglieder auf der Basis eines Beobachter-Modells durchgeführt wird.In the non-cylinder-selective approach and the cylinder-selective approach, it is preferably provided that the manipulated variables of the actuators of the components for regulating the rail pressure in the fuel storage are supplied to an output module and are calculated in the output module for volume-based adjustment of the rail pressure, with current detection and Current control of the actuators is carried out on the basis of an observer model.

Bevorzugt ist bei der nicht zylinderselektiven Vorgehensweise vorgesehen, dass die volumenbezogene diskrete Volumen-Regeldifferenz als Eingangsgröße einem Regelbaustein für die Hochdruckpumpe und einem Regelbaustein für ein dem Kraftstoffspeicher zugeordnetes Druckregelventil zugeführt wird, wobei die diskrete Volumen-Regeldifferenz mit einem Vorsteuer-Baustein verknüpft wird, wodurch pumpensynchron je Segment die Stellgrößen für die Hochdruckpumpe und das Druckregelventil in einem Ausgabe-Baustein berechnet und den Stellgliedern der Hochdruckpumpe und des Druckregelventils zur volumenbasierten Einstellung des Raildrucks zugeführt werden.In the non-cylinder-selective approach, it is preferably provided that the volume-related discrete volume control difference is supplied as an input variable to a control module for the high-pressure pump and a control module for a pressure control valve assigned to the fuel storage, the discrete volume control difference being linked to a pilot control module, whereby The control variables for the high-pressure pump and the pressure control valve are calculated in an output module in an output module and fed to the actuators of the high-pressure pump and the pressure control valve for volume-based adjustment of the rail pressure.

Vorgesehen ist bei der nicht zylinderselektiven Vorgehensweise ferner, dass die diskrete Regelabweichung als Differenz aus dem diskretisierten Ist-Raildrucks und dem diskretisierten Soll-Raildruck berechnet wird, indem eine diskretisierte Druckinformation eines Raildruck-Sensor des aktiv erfassten pumpensynchronen Segmentes mit dem diskretisierten Soll-Raildruck des um ein Arbeitsspiel vorhergehenden pumpensynchronen Segmentes verglichen wird, um die diskrete Regeldifferenz zu bestimmen.The non-cylinder-selective approach also provides that the discrete control deviation is calculated as the difference between the discretized actual rail pressure and the discretized target rail pressure by combining discretized pressure information from a rail pressure sensor of the actively detected pump-synchronous segment with the discretized target rail pressure a working cycle of the previous pump-synchronous segment is compared to determine the discrete control difference.

Bei der anderen die Grundkonzeption erweiternden zylinderselektiven Vorgehensweise, wird die volumenbezogene diskrete Volumen-Regeldifferenz zylinderselektiv berechnet, indem die volumenbezogene diskrete Volumen-Regeldifferenz als zylinderselektive Eingangsgrößen einem Regelbaustein für die Hochdruckpumpe und einem Regelbaustein für ein dem Kraftstoffspeicher zugeordnetes Druckregelventil zugeführt wird, wobei die diskrete Volumen-Regeldifferenz mit einem Vorsteuer-Baustein verknüpft wird, wodurch pumpensynchron und zylinderselektiv je Segment die Stellgrößen für die Hochdruckpumpe und das Druckregelventil in einem Ausgabe-Baustein berechnet und den Stellgliedern der Hochdruckpumpe und des Druckregelventils zur volumenbasierten zylinderselektiven Einstellung des Raildrucks zugeführt werden.In the other cylinder-selective approach that expands the basic concept, the volume-related discrete volume control difference is calculated cylinder-selective by supplying the volume-related discrete volume control difference as cylinder-selective input variables to a control module for the high-pressure pump and a control module for a pressure control valve assigned to the fuel storage, whereby the discrete volume -Control difference is linked to a pilot control module, whereby the manipulated variables for the high-pressure pump and the pressure control valve are calculated in an output module in a pump-synchronous and cylinder-selective manner for each segment and are fed to the actuators of the high-pressure pump and the pressure control valve for volume-based, cylinder-selective adjustment of the rail pressure.

Bevorzugt ist bei der zylinderselektiven Vorgehensweise vorgesehen, dass die diskrete Regelabweichung als Differenz aus dem diskretisierten Ist-Raildrucks und dem diskretisierten Soll-Raildruck zylinderselektiv berechnet wird, indem eine diskretisierte Druckinformation eines Raildruck-Sensor des aktiv erfassten pumpensynchronen Segmentes mit dem diskretisierten Soll-Raildruck, des um ein Arbeitsspiel vorhergehenden pumpensynchronen Segmentes verglichen wird, um die diskrete zylinderselektive Regeldifferenz zu bestimmen, wie in der Beschreibung detailliert erläutert ist.In the cylinder-selective approach, it is preferably provided that the discrete control deviation is calculated cylinder-selective as the difference between the discretized actual rail pressure and the discretized target rail pressure by combining discretized pressure information from a rail pressure sensor of the actively detected pump-synchronous segment with the discretized target rail pressure, of the pump-synchronous segment preceding one working cycle is compared in order to determine the discrete cylinder-selective control difference, as is explained in detail in the description.

Erfindungsgemäß wird der Soll-Raildruck zu einem Zeitpunkt diskretisiert der mit einem Triggerstartsignal festgelegt wird, das wiederkehrend zu Beginn eines pumpensynchronen Segmentes ausgegeben wird. Vorgesehen ist, dass der Ist-Raildruck innerhalb des durch das Triggerstartsignal gestarteten Segmentes wiederkehrend erfasst und diskretisiert wird.According to the invention, the target rail pressure is discretized at a time that is determined with a trigger start signal that is issued repeatedly at the beginning of a pump-synchronous segment. It is intended that the actual rail pressure is recorded and discretized repeatedly within the segment started by the trigger start signal.

Dabei ist bevorzugt vorgesehen, dass der Ist-Raildruck, der innerhalb des pumpensynchronen Segmentes wiederkehrend erfasst wird, als

  • in dem Segment maximaler Ist-Raildruck und
  • in dem Segment minimaler Ist-Raildruck und
  • in dem Segment berechneter Mittelwert
diskretisiert und wahlweise mit dem diskretisierten Soll-Raildruck zur Bestimmung der diskreten, insbesondere zylinderselektiven Regelabweichung verglichen wird.It is preferably provided that the actual rail pressure, which is recorded repeatedly within the pump-synchronous segment, as
  • in the segment maximum actual rail pressure and
  • in the segment minimum actual rail pressure and
  • Average calculated in the segment
discretized and optionally compared with the discretized target rail pressure to determine the discrete, in particular cylinder-selective, control deviation.

Vorgesehen ist ferner bevorzugt, dass für die Regelung, insbesondere zylinderselektive Regelung als Ist-Wert der erfasste minimale diskrete Druck oder der erfasste maximale diskrete Druck oder der diskrete Mittelwert zum Vergleich mit dem diskreten Soll-Raildruck verwendet wird, wobei je nach Systemanforderung bei einem Druckaufbau der maximale diskrete Druck und bei einem Druckabbau der minimale diskrete Druck verwendet wird, um Regelschwingungen, insbesondere zylinderselektiv Regelschwingungen zu reduzieren beziehungsweise Über- oder Unterschwinger, insbesondere zylinderselektive Über- oder Unterschwinger zu vermeiden.It is also preferred that for the control, in particular cylinder-selective control, the detected minimum discrete pressure or the detected maximum discrete pressure or the discrete mean value is used as the actual value for comparison with the discrete target rail pressure, depending on the system requirements when pressure builds up the maximum discrete pressure and, when the pressure is reduced, the minimum discrete pressure is used to reduce control oscillations, in particular cylinder-selective control oscillations, or to avoid overshoots or undershoots, in particular cylinder-selective overshoots or undershoots.

Ein besonderer Aspekt der Erfindung sieht ferner vor, dass die diskrete Regelabweichung in die volumenstrombasierte diskrete Volumen-Regeldifferenz beziehungsweise volumenstrombasierte diskrete zylinderselektive Volumen-Regeldifferenz umgerechnet wird, wobei zusätzlich eine Kraftstoff-Dauerleckage des Hochdrucksystems des Kraftstoffversorgungssystems durch Addition berücksichtigt wird.A special aspect of the invention further provides that the discrete control deviation is converted into the volume flow-based discrete volume control difference or volume flow-based discrete cylinder-selective volume control difference, with a permanent fuel leakage of the high-pressure system of the fuel supply system also being taken into account by addition.

Die druckbasierte diskretisierte Regelabweichung ΔpRail beziehungsweise druckbasierte diskretisierte zylinderselektive Regelabweichung ΔpRail wird in vorteilhafter Weise in eine volumenstrombasierte Volumen-Regeldifferenz ΔVRail beziehungsweise volumenstrombasierte zylinderselektive Volumen-Regeldifferenz ΔVRail umgerechnet, wobei bei der Umrechnung das druck - und temperaturabhängige spezifische Elastizitätsmodul E des jeweiligen Kraftstoffs und das Raumvolumen VH des Kraftstoff-Hochdrucksystems des Kraftstoffversorgungssystems gemäß der Umrechnungsformel Δ V Rail = V H E p T Δ p Rail

Figure imgb0001
berücksichtigt, insbesondere zylinderselektiv berücksichtigt wird.The pressure-based discretized control deviation Δp Rail or pressure-based discretized cylinder-selective control deviation Δp Rail is advantageously converted into a volume flow-based volume control difference ΔV Rail or volume flow-based cylinder-selective volume control difference ΔV Rail , the pressure- and temperature-dependent specific elasticity modulus E of the respective fuel being used during the conversion and the space volume V H of the fuel high pressure system of the fuel supply system according to the conversion formula Δ v Rail = v H E p T Δ p Rail
Figure imgb0001
taken into account, in particular taken into account in a cylinder-selective manner.

Bei der pumpensynchronen segmentweise wiederkehrenden Umrechnung der druckbasierten diskreten Regelabweichung, insbesondere zylinderselektiven Regelabweichung in die volumenbezogene diskrete Volumen-Regeldifferenz, insbesondere zylinderselektive Volumen-Regeldifferenz werden,

  1. a) die Kraftstoff-Einspritzmengen der Injektoren, insbesondere zylinderselektiv und
  2. b) die Kraftstoff-Schaltleckagen der Injektoren, insbesondere zylinderselektiv und
  3. c) ein Druckänderungswunsch bezüglich des Soll-Raildrucks des Kraftstoffspeichers, insbesondere zylinderselektiv berücksichtigt,
    wobei ferner
  4. d) die Kraftstoff-Dauerleckage des Hochdrucksystems des Kraftstoffversorgungssystems durch eine pumpensynchrone segmentweise wiederkehrende separate Umrechnung mit einer Z-Transformation ermittelt und der volumenbezogenen diskreten Volumen-Regeldifferenz hinzugefügt wird, beziehungsweise bei zylinderselektiver Vorgehensweise, wird die Kraftstoff-Dauerleckage den volumenbezogenen diskreten zylinderselektiven Volumen-Regeldifferenzen anteilig hinzugefügt.
During the pump-synchronous, segment-wise recurring conversion of the pressure-based discrete control deviation, in particular cylinder-selective control deviation, into the volume-related discrete volume control difference, in particular cylinder-selective volume control difference,
  1. a) the fuel injection quantities of the injectors, in particular cylinder-selective and
  2. b) the fuel switching leaks of the injectors, especially cylinder-selective and
  3. c) a pressure change request with regard to the target rail pressure of the fuel storage, in particular taken into account in a cylinder-selective manner,
    whereby further
  4. d) the permanent fuel leakage of the high-pressure system of the fuel supply system is determined by a pump-synchronous, segment-wise recurring, separate conversion with a Z transformation and is added to the volume-related discrete volume control difference, or in the case of a cylinder-selective approach, the permanent fuel leakage is the volume-related discrete cylinder-selective volume control differences added proportionately.

Spezifische zylinderselektive Vorgehensweise:Specific cylinder-selective approach:

Erfindungsgemäß ist es vorgesehen, dass die Injektoren im stationären Betrieb von Zylinder zu Zylinder dieselben Mengen-Sollwerte erhalten, die zylinderselektiv mit den Mengenabnahmen aus dem Rail verglichen werden, wobei zylinderselektiv Einspritzmengenfehler festgestellt werden, die den Injektoren zugeordnet werden, wobei eine Art der Mengenabweichungen bestimmten Fehlergruppen zugeordnet wird. Die Einspritzmengenfehler werden in vorteilhafter Weise ursachenabhängig, insbesondere in Abhängigkeit der Höhe, des sich im Soll/Ist-Vergleich ergebenden Einspritzmengenfehler gruppiert, wobei die Injektoren im Betrieb einer Fehlergruppe mit einem Injektordefekt, einer Fehlergruppe mit einer alterungsbedingten Injektordrift oder einer Fehlergruppe mit einer sich ändernden Schaltleckagemenge zugeordnet werden, wobei die Einspritzmengenfehler innerhalb der zylinderselektiven Regelung im Regler ermittelt und in vorteilhafter Weise im Einspritzsystem korrigiert werden und/oder zu einem Austausch des/der jeweiligen Injektors/Injektoren führen.According to the invention, it is provided that the injectors receive the same quantity setpoints from cylinder to cylinder in stationary operation, which are compared cylinder-selective with the quantity decreases from the rail, with injection quantity errors being determined cylinder-selectively, which are assigned to the injectors, with a type of quantity deviations being determined Error groups are assigned. The injection quantity errors are advantageously grouped depending on the cause, in particular depending on the level of the injection quantity error resulting from the target/actual comparison, the injectors being in operation in an error group with an injector defect, an error group with an aging-related injector drift or an error group with a changing Switching leakage quantity are assigned, the injection quantity errors being determined within the cylinder-selective control in the controller and advantageously corrected in the injection system and/or leading to a replacement of the respective injector(s).

Eine Korrektur im Einspritzsystem kann auf verschiedene Art und Weise erfolgen. In einer bevorzugten Ausgestaltung findet die Korrektur durch Änderung der Injektor-Ansteuerdauer statt.A correction in the injection system can be made in various ways. In a preferred embodiment, the correction takes place by changing the injector activation duration.

Das nicht zylinderselektive Kraftstoffversorgungssystem (Grundkonzeption) und das zylinderselektive Kraftstoffversorgungssystem(Erweiterung der Grundkonzeption) unterscheiden sich hinsichtlich der Bausteine, wie nachfolgend deutlich wird.The non-cylinder-selective fuel supply system (basic concept) and the cylinder-selective fuel supply system (extension of the basic concept) differ in terms of the building blocks, as will become clear below.

Das dem Verfahren zugehörige Kraftstoffversorgungssystem ist zur Durchführung des Verfahrens eingerichtet, wobei das Kraftstoffversorgungssystem in der Grundkonzeption (ohne zylinderselektive Raildruckregelung) zur Ermittlung einer diskreten Eingangsgröße für einen Regler-Baustein für die Hochdruckpumpe und zur Ermittlung einer diskreten Eingangsgröße für einen Regler-Baustein für ein dem Kraftstoffspeicher zugeordnetes Druckregelventil folgende weitere Bausteine umfasst,

  • einen Sollwertvorgabe-Baustein des Raildrucks und eine zugehörigen Sollwert-Diskretisierungs-Baustein und
  • einen Istwert-Signalerfassungs-Baustein des Raildrucks und einen Istwert-Diskretisierungs-Baustein,
  • sowie einen Regelfehler-Berechnungs-Baustein und
  • einen Umrechnungs-Baustein umfasst, der aus einer druckbasierten diskretisieren Regeldifferenz eine Umrechnung in eine volumenstrombasierte Regeldifferenz vornimmt,
  • wobei der Umrechnungs-Baustein mit einer Regler-Zustandsmaschine verknüpft ist, welche die diskrete Eingangsgröße für den Regler-Baustein der Hochdruckpumpe und die diskreten Eingangsgröße für den Regler-Baustein des Druckregelventils ausgibt,
  • wobei die Regler-Bausteine mit einem Vorsteuer-Baustein verknüpft sind, wodurch mittels des Vorsteuer-Bausteins und der aufgeschalteten Regler-Bausteine pumpensynchron je Segment die Stellgrößen für die Hochdruckpumpe und das Druckregelventil einem Ausgabe-Baustein zugeführt und berechnet werden, und den Stellgliedern der Hochdruckpumpe und des Druckregelventils zur volumenbasierten Einstellung des Raildrucks zugeführt werden.
The fuel supply system associated with the method is set up to carry out the method, the fuel supply system in the basic concept (without cylinder-selective rail pressure control) being used to determine a discrete input variable for a controller module for the high-pressure pump and to determine a discrete input variable for a regulator module for a pressure control valve assigned to the fuel storage comprising the following further modules,
  • a setpoint specification module for the rail pressure and an associated setpoint discretization module and
  • an actual value signal acquisition module for the rail pressure and an actual value discretization module,
  • as well as a control error calculation module and
  • comprises a conversion module that converts a pressure-based discretized control difference into a volume flow-based control difference,
  • wherein the conversion module is linked to a controller state machine, which outputs the discrete input variable for the controller module of the high-pressure pump and the discrete input variable for the controller module of the pressure control valve,
  • whereby the controller modules are linked to a pilot control module, whereby the control variables for the high-pressure pump and the pressure control valve are fed and calculated to an output module and calculated in pump synchronization per segment by means of the pilot control module and the connected controller modules, and to the actuators of the high-pressure pump and the pressure control valve for volume-based adjustment of the rail pressure.

Das dem Verfahren zugehörige Kraftstoffversorgungssystem ist in der Erweiterung der Grundkonzeption, nämlich mit zylinderselektiver Raildruckregelung zur Durchführung des Verfahrens erweitert eingerichtet, wobei das Kraftstoffversorgungssystem zu der Ermittlung der jeweiligen diskreten Eingangsgröße des jeweiligen Zylinders zylinderselektiv mehrere Regler-Bausteine für die Hochdruckpumpe und zur Ermittlung einer diskreten Eingangsgröße des jeweiligen Zylinders zylinderselektiv mehrere Regler-Bausteine für ein dem Kraftstoffspeicher zugeordnetes Druckregelventil folgende weitere Bausteine umfasst,

  • einen Sollwertvorgabe-Baustein des Raildrucks und eine zugehörigen Sollwert-Diskretisierungs-Baustein und
  • einen Istwert-Signalerfassungs-Baustein des Raildruck und einen Istwert-Diskretisierungs-Baustein,
  • sowie einen Regelfehler-Berechnungs-Baustein und
  • einen Umrechnungs-Baustein umfasst, der aus einer druckbasierten diskretisieren zylinderselektiven Regeldifferenz eine Umrechnung in eine volumenstrombasierte zylinderselektive Regeldifferenz vornimmt,
  • wobei der Umrechnungs-Baustein mit einer Regler-Zustandsmaschine verknüpft ist, welche zylinderselektiv die diskrete Eingangsgröße dem jeweiligen Regler-Baustein der Hochdruckpumpe und zylinderselektiv die diskreten Eingangsgröße dem jeweiligen Regler-Baustein des Druckregelventils ausgibt,
  • wobei die Regler-Bausteine jeweils zylinderselektiv mit einem Vorsteuer-Baustein verknüpft sind, wodurch mittels des Vorsteuer-Bausteins und der aufgeschalteten zylinderselektiven Regler-Bausteine pumpensynchron je Segment die Stellgrößen für die Hochdruckpumpe und das Druckregelventil einem Ausgabe-Baustein zugeführt und berechnet werden, und den Stellgliedern der Hochdruckpumpe und des Druckregelventils zur volumenbasierten zylinderselektiven Einstellung des Raildrucks zugeführt werden.
The fuel supply system associated with the method is expanded from the basic concept, namely with cylinder-selective rail pressure control for carrying out the method, with the fuel supply system having several cylinder-selective regulator modules for the high-pressure pump to determine the respective discrete input variable of the respective cylinder and to determine a discrete input variable of the respective cylinder, a plurality of regulator modules for a pressure control valve assigned to the fuel storage cylinder, comprising the following further modules,
  • a setpoint specification module for the rail pressure and an associated setpoint discretization module and
  • an actual value signal acquisition module for the rail pressure and an actual value discretization module,
  • as well as a control error calculation module and
  • comprises a conversion module which converts a pressure-based discretized cylinder-selective control difference into a volume flow-based cylinder-selective control difference,
  • whereby the conversion module is linked to a controller state machine, which selectively assigns the discrete input variable to the respective controller module High-pressure pump and cylinder-selective outputs the discrete input variable to the respective controller module of the pressure control valve,
  • wherein the controller modules are each linked to a pilot control module in a cylinder-selective manner, whereby the manipulated variables for the high-pressure pump and the pressure control valve are fed and calculated to an output module in a pump-synchronous manner per segment using the pilot control module and the connected cylinder-selective controller modules, and the Actuators of the high-pressure pump and the pressure control valve are supplied for volume-based, cylinder-selective adjustment of the rail pressure.

Ein noch weiterer Aspekt der Erfindung besteht darin, dass das Kraftstoffversorgungssystem einen Beobachter-Baustein umfasst, der eine Signalverarbeitungskette zur Stromerfassung und Stromregelung der Stellglieder des Kraftstoffversorgungssystem beobachtet, wie in der Beschreibung ebenfalls detailliert ist.Yet another aspect of the invention is that the fuel supply system includes an observer module that observes a signal processing chain for current detection and current control of the actuators of the fuel supply system, as is also detailed in the description.

In vorteilhafter Weise wird die Brennkraftmaschine mit einem beliebigen flüssigen Kraftstoff oder Kraftstoffgemisch betrieben, wodurch sich in vorteilhafter Weise die Linearisierung der Umrechnung von Druckdifferenz in Volumenstromdifferenz durch ein physikalisch anderes Elastizitätsmodul an den jeweiligen Kraftstoff anpassen lässt. Dadurch ist das erläuterte Verfahren und die Ausgestaltung des Kraftstoffversorgungssystems nicht nur für Dieselmotoren, die insbesondere als Common-Rail Dieselmotoren ausgeführt sind, sondern auch für Ottomotoren, die ein ottomotorisches - fremdgezündetes - Brennverfahren verwenden, anwendbar und einsetzbar.The internal combustion engine is advantageously operated with any liquid fuel or fuel mixture, whereby the linearization of the conversion of pressure difference into volume flow difference can be advantageously adapted to the respective fuel by means of a physically different elasticity modulus. As a result, the method explained and the design of the fuel supply system can be applied and used not only for diesel engines, which are designed in particular as common-rail diesel engines, but also for gasoline engines that use a gasoline engine - spark-ignited - combustion process.

Die Erfindung wird nachfolgend anhand der zugehörigen Zeichnungen erläutert. Es zeigen:

Figur 1
eine schematische Darstellung eines Kraftstoffversorgungssystems, das mit einer volumenstrombasierten pumpensynchronen Regelstruktur, insbesondere volumenstrombasierten pumpensynchronen und zylinderselektiven Regelstruktur zur Raildruckregelung gemäß dem erfindungsgemäßen Verfahren betrieben wird;
Figur 2A
die volumenstrombasierte pumpensynchrone Regelstruktur zur Raildruckregelung, die in einem elektronischen Steuergerät mit einem Mikroprozessor abgelegt und zur Ausführung des erfindungsgemäßen Verfahrens eingerichtet ist;
Figur 2B
die volumenstrombasierte pumpensynchrone und zylinderselektive Regelstruktur zur Raildruckregelung, die in einem elektronischen Steuergerät mit einem Mikroprozessor abgelegt und zur Ausführung des erfindungsgemäßen Verfahrens eingerichtet ist;
Figur 3
die erfindungsgemäße volumenstrombasierte pumpensynchrone Regelstruktur zur Raildruckregelung gemäß Figur 2A oder die erfindungsgemäße volumenstrombasierte pumpensynchrone und zylinderselektive Regelstruktur zur Raildruckregelung gemäß Figur 2B mit Stromerfassung und Stromregelung der Stellglieder der Raildruckregelung weiter erfindungsgemäß auf der Basis eines Beobachter-Modells.
The invention is explained below with reference to the associated drawings. Show it:
Figure 1
a schematic representation of a fuel supply system that is operated with a volume flow-based pump-synchronous control structure, in particular volume flow-based pump-synchronous and cylinder-selective control structure for rail pressure control according to the method according to the invention;
Figure 2A
the volume flow-based pump-synchronous control structure for rail pressure control, which is stored in an electronic control device with a microprocessor and is set up to carry out the method according to the invention;
Figure 2B
the volume flow-based pump-synchronous and cylinder-selective control structure for rail pressure control, which is stored in an electronic control device with a microprocessor and is set up to carry out the method according to the invention;
Figure 3
the volume flow-based pump-synchronous control structure for rail pressure control according to the invention Figure 2A or the volume flow-based pump-synchronous and cylinder-selective control structure according to the invention for rail pressure control Figure 2B with current detection and current control of the actuators of the rail pressure control further according to the invention on the basis of an observer model.

Die Figur 1 zeigt ein Kraftstoffversorgungssystem 100, das mit einer volumenstrombasierten pumpensynchronen, insbesondere zylinderselektiven Raildruckregelung gemäß den Figur 2A und 2B betrieben wird.The Figure 1 shows a fuel supply system 100, which has a volume flow-based pump-synchronous, in particular cylinder-selective rail pressure control according to Figure 2A and 2 B is operated.

Eine Hochdruckpumpe 1 wird von einer Vorförderpumpe 2 über eine Niederdruckleitung 2.1 mit Kraftstoff aus einem Kraftstofftank 3 versorgt. In der Niederdruckleitung 2.1 ist eine Filtereinheit 5 und ein Duo-Sensor 6, der Druck p6 und Temperatur T6 vor der Hochdruckpumpe 1 in der Niederdruckleitung 2.1 misst, angeordnet.A high-pressure pump 1 is supplied with fuel from a fuel tank 3 by a pre-feed pump 2 via a low-pressure line 2.1. A filter unit 5 and a duo sensor 6, which measures pressure p6 and temperature T6 in front of the high-pressure pump 1 in the low-pressure line 2.1, are arranged in the low-pressure line 2.1.

Über eine Hochdruckleitung 1.4 pumpt die Hochdruckpumpe 1 Kraftstoff in einen Kraftstoffspeicher, insbesondere in ein Kraftstoff-Rail 4. Das Kraftstoff-Rail 4 umfasst einen Raildruck-Sensor 7, der den Raildruck p7 im Kraftstoff-Rail 4 erfasst.The high-pressure pump 1 pumps fuel into a fuel reservoir, in particular into a fuel rail 4, via a high-pressure line 1.4. The fuel rail 4 includes a rail pressure sensor 7, which detects the rail pressure p7 in the fuel rail 4.

Das Kraftstoff-Rail 4 umfasst ferner ein Druckregelventil 8, welches innerhalb des Verfahrens einen vorgebbaren Volumenstrom V8 über eine Rücklaufleitung 8.2.1 in die Niederdruckleitung 2.1 aus dem Kraftstoff-Rail 4 absteuert.The fuel rail 4 further comprises a pressure control valve 8, which within the method controls a predeterminable volume flow V8 from the fuel rail 4 via a return line 8.2.1 into the low-pressure line 2.1.

Zwischen dem Kraftstoff-Rail 4 und den Injektoren 9n; (n = 1, 2, 3...) 91, 92, 93, 94 sind die Injektorleitungen 4.9 dargestellt, über welche die Injektoren 9n mit Kraftstoff versorgt werden.Between the fuel rail 4 and the injectors 9n; (n = 1, 2, 3...) 91, 92, 93, 94 show the injector lines 4.9, via which the injectors 9n are supplied with fuel.

Die Injektoren 9n weisen Leckageleitungen auf, die in eine gemeinsame Rücklaufleitung 9.3 münden. Die Rücklaufleitung 9.3 mündet in eine Hochdruckpumpen-Rücklaufleitung 1.3 der Hochdruckpumpe 1, die zum Kraftstofftank 3 zurückführt.The injectors 9n have leakage lines which open into a common return line 9.3. The return line 9.3 opens into a high-pressure pump return line 1.3 of the high-pressure pump 1, which leads back to the fuel tank 3.

Ein Steuergerät S1, insbesondere ein Motorsteuergerät ist über Steuerleitungen (ohne Bezugszeichen) direkt mit dem Duo-Sensor 6, der Hochdruckpumpe 1, dem Druckregelventil 8, dem Raildruck-Sensor 7 und den Injektoren 91, 92, 93, 94 und im Ausführungsbeispiel indirekt über ein Steuergerät S2 mit der als Niederdruckpumpe ausgelegten Vorförderpumpe 2 verbunden.A control unit S1, in particular an engine control unit, is connected via control lines (without reference numbers) directly to the duo sensor 6, the high-pressure pump 1, the pressure control valve 8, the rail pressure sensor 7 and the injectors 91, 92, 93, 94 and, in the exemplary embodiment, indirectly via a control unit S2 is connected to the pre-feed pump 2, which is designed as a low-pressure pump.

Die Figur 2A zeigt die volumenstrombasierte pumpensynchrone Regelstruktur zur Raildruckregelung in der Grundkonzeption, die in einem elektronischen Steuergerät, insbesondere dem Steuergerät S1 abgelegt ist, das zur Ausführung eines der oben vorgestellten Verfahren eingerichtet ist. Das Steuergerät S1 und das Steuergerät S2 werden über ein Computerprogramm zur Ausführung des Verfahrens betrieben, wobei auf dem Computer ein maschinenlesbares Speichermedium mit dem darauf aufgezeichneten Computerprogramm vorgesehen sind.The Figure 2A shows the volume flow-based pump-synchronous control structure for rail pressure control in the basic concept, which is stored in an electronic control device, in particular the control device S1, which is set up to carry out one of the methods presented above. The control device S1 and the control device S2 are operated via a computer program to carry out the method, a machine-readable storage medium with the computer program recorded thereon being provided on the computer.

Die volumenstrombasierte pumpensynchrone Regelstruktur zur Raildruckregelung wird anhand der Figur 2A nachfolgend detailliert erläutert.The volume flow-based pump-synchronous control structure for rail pressure control is based on the Figure 2A explained in detail below.

Die Grundidee des nachfolgend erläuterten Verfahrens für die zukünftigen Dieselmotoren, die als Common-Rail Dieselmotoren ausgeführt sind, besteht darin, dass ein benötigter Raildruck bis zu 2700 bar mit der Hochdruckpumpe 1 durch einen vorgebbaren Volumenstrom im Rail 4 erzeugt wird.The basic idea of the method explained below for future diesel engines, which are designed as common rail diesel engines, is that a required rail pressure of up to 2700 bar is generated with the high-pressure pump 1 by a predeterminable volume flow in the rail 4.

Bei positiver Mengenbilanz, das heißt ansteigendem Volumenstrom im Rail 4 steigt der Druck im Rail 4 an. Der Raildruck-Sensor 7 gibt dem Regelkreis bestehend aus einem Vorsteuerungs-Modell, einem Regler und einem Stellglied der Hochdruckpumpe 1 die entsprechende Druckinformation.With a positive mass balance, i.e. increasing volume flow in Rail 4, the pressure in Rail 4 increases. The rail pressure sensor 7 provides the control circuit consisting of a pilot control model, a controller and an actuator of the high-pressure pump 1 with the corresponding pressure information.

Die Eingangsgröße des Verfahrens zum Betrieb des erfindungsgemäßen Kraftstoffversorgungssystems 100 ist erfindungsgemäß ein bestimmter Volumenstrom, welcher der Hochdruckpumpe 1 zugeführt oder durch das Druckregelventil 8 abgeführt wird.According to the invention, the input variable of the method for operating the fuel supply system 100 according to the invention is a certain volume flow, which is supplied to the high-pressure pump 1 or discharged through the pressure control valve 8.

Der Gegenstand der Erfindung besteht somit darin, dass die komplette Hochdruckregelung mithin die Raildruck-Hochdruckregelung innerhalb des Rails 4 des Kraftstoffversorgungssystems 100, von einer zeitbasierten zyklischen Berechnung eines Raildruckreglers zur Regelung des Raildrucks im Rail 4 auf eine an das Motorsegment der Brennkraftmaschine angelehnte volumenstrombasierte und pumpensynchrone diskrete Berechnung zur Raildruckregelung (in einem Zweisteller-Konzept Druckregelventil-Ansteuerung und Hochdruckpumpen-Ansteuerung) umgestellt wird.The object of the invention is therefore that the complete high-pressure control, i.e. the rail pressure high-pressure control within the rail 4 of the fuel supply system 100, from a time-based cyclical calculation of a rail pressure controller for regulating the rail pressure in the rail 4 to a volume flow-based and pump-synchronous one based on the engine segment of the internal combustion engine discrete calculation for rail pressure control (in a two-position concept (pressure control valve control and high-pressure pump control).

Dazu ist es erfindungsgemäß notwendig, die zu beachtenden Volumenströme und das zugehörige Modell der erfindungsgemäßen Regelstruktur diskret zu beschreiben.For this purpose, according to the invention, it is necessary to discretely describe the volume flows to be taken into account and the associated model of the control structure according to the invention.

Dazu wird die Druckinformation p7Ist vom Raildruck-Sensor 7 eines motorsynchronen/pumpensynchronen Segmentes mit dem Soll-Raildruck p7Soll des vorhergehenden motorsynchronen/pumpensynchronen Segmentes (man spricht von dem verzögerten Soll-Raildruck) verglichen, um die diskrete Regelabweichung Δp7 zu bestimmen.For this purpose, the pressure information p7 Act from the rail pressure sensor 7 of a motor-synchronous/pump-synchronous segment is compared with the target rail pressure p7 target of the previous motor-synchronous/pump-synchronous segment (this is referred to as the delayed target rail pressure) in order to determine the discrete control deviation Δp7.

Diese Druckdifferenz Δp7 wird über das Elastizitätsmodul E des Kraftstoffs und über die mittels des Duo-Sensors 6 ermittelte Kraftstofftemperatur T6 in eine Volumendifferenz umgerechnet und als Eingangsgröße ΔVRail in einer Regelstrecke verarbeitet.This pressure difference Δp7 is converted into a volume difference via the elastic modulus E of the fuel and via the fuel temperature T6 determined by the duo sensor 6 and processed as an input variable ΔV Rail in a controlled system.

Diese Volumendifferenz ΔVRail wird mithilfe der digitalen Zumesseinheit (nicht dargestellt), die bevorzugt im Pumpenraum der Hochdruckpumpe 1 angeordnet ist oder durch Ansteuerung des Druckregelventils 8 als Eingangsgröße der Regelstrecke zugeführt und die Steller der Hochdruckpumpe 1 oder des Druckregelventils 8 werden angesteuert, wobei die Diskretisierung, das heißt die Berechnung Volumendifferenz ΔVRail für jedes Motorsegment pumpensynchron variiert werden kann.This volume difference ΔV Rail is supplied as an input variable to the controlled system using the digital metering unit (not shown), which is preferably arranged in the pump room of the high-pressure pump 1 or by controlling the pressure control valve 8, and the actuators of the high-pressure pump 1 or the pressure control valve 8 are controlled, with the discretization , that is, the calculation of the volume difference ΔV Rail can be varied synchronously with the pump for each motor segment.

Dazu wird eine Volumenbilanz erstellt, die physikalisch den sich einstellenden Druck p7Ist im Rail 4 beschreibt.For this purpose, a volume balance is created that physically describes the pressure p7 Actual in Rail 4.

Bei der Volumenbilanz der volumenstrombasierten segmentsynchronen Berechnung, wird von einem volumenkonstanten Raumvolumen VH des Hochdrucksystems ausgegangen, in dem sich druckabhängig eine bestimmtes Volumen an Kraftstoff befindet, der grundsätzlich über die Hochdruckpumpe 1 zugeführt und über das Druckregelventil 1 abgeführt wird.The volume balance of the volume flow-based segment-synchronous calculation assumes a constant volume V H of the high-pressure system, in which, depending on the pressure, there is a certain volume of fuel, which is basically supplied via the high-pressure pump 1 and discharged via the pressure control valve 1.

Das Raumvolumen VH des Hochdrucksystem des Kraftstoffversorgungssystems 100 umfasst das Raumvolumen des Rails 4, das Raumvolumen der Injektorleitungen 4.9 zu den Injektoren 9n, das Raumvolumen in den Injektoren 9n bis zur Drosselstelle innerhalb der Injektoren 9n, die Zuleitung 1.4 der Hochdruckpumpe 1 zum Rail 4 ab dem Rückschlagventil in der Zuleitung 4.9 und das Totvolumen der Hochdruckpumpe 1 (Totvolumen = Raumvolumen zwischen OT des Kolbens der Hochdruckpumpe 1 und dem Rückschlagventil in der Zuleitung zum Rail 4).The volume V H of the high-pressure system of the fuel supply system 100 includes the volume of the rail 4, the volume of the injector lines 4.9 to the injectors 9n, the volume of space in the injectors 9n up to the throttle point within the injectors 9n, the supply line 1.4 of the high-pressure pump 1 to the rail 4 the check valve in the supply line 4.9 and the dead volume of the high-pressure pump 1 (dead volume = volume of space between TDC of the piston of the high-pressure pump 1 and the check valve in the supply line to the rail 4).

Ausgehend von dem Raumvolumen VH des Hochdrucksystems des Kraftstoffversorgungssystems 100 wird aus dem Hochdrucksystem segmentsynchron ein Gesamt-Volumen VGes-Ab abgenommen, welches sich insgesamt

  1. a) aus den Kraftstoff-Einspritzmengen V9n über die Injektoren 91, 92, 93, 94 und
  2. b) den Kraftstoff-Schaltleckagen VSLeck der Injektoren 91, 92, 93, 94 sowie der
  3. c) der Kraftstoff-Dauerleckage VDLeck des Hochdrucksystems des Kraftstoffversorgungssystems 100
zusammensetzt.Starting from the spatial volume V H of the high-pressure system of the fuel supply system 100, a total volume V Ges-Ab is removed from the high-pressure system in a segment-synchronous manner, which is a total of
  1. a) from the fuel injection quantities V 9n via the injectors 91, 92, 93, 94 and
  2. b) the fuel switching leaks V SLeak of the injectors 91, 92, 93, 94 and the
  3. c) the permanent fuel leak V DLeak of the high pressure system of the fuel supply system 100
composed.

Die Volumina a) und b) werden eventbezogen abgenommen, während c) die Kraftstoff-Dauerleckage VDLeck des Hochdrucksystems über eine Z-Transformation diskretisiert wird. Das heißt, es findet eine Umrechnung der zeitlich nicht eventbezogenen Dauerleckage VDLeck des Hochdrucksystems in ein eventbezogenes segmentsynchrones diskretes Volumen statt. Mit anderen Worten, es findet eine eventbezogene Diskretisierung der Dauerleckage VDLeck des Hochdrucksystems statt, sodass die Volumina a), b), c) entsprechend als aus dem Hochdrucksystems als abgenommenes Gesamt-Volumen VGes-Ab addiert werden können.The volumes a) and b) are taken event-related, while c) the permanent fuel leakage VDLeck of the high-pressure system is discretized via a Z-transformation. This means that the non-event-related permanent leak V DLeck of the high-pressure system is converted into an event-related, segment-synchronous discrete volume. In other words, an event-related discretization of the permanent leakage V DLeck of the high-pressure system takes place, so that the volumes a), b), c) can be added accordingly as the total volume V Ges-Ab taken from the high-pressure system.

Hinzu kommt d) der sogenannte Last- und/oder drehzahlabhängige Änderungswunsch des Raildrucks, der sogenannte Druckänderungswunsch (auch als dynamischer Volumenstromanteil bezeichnet) innerhalb des Rails 4, der durch Zuführung von Kraftstoffvolumen (Druckerhöhung) über die Hochdruckpumpe 1 als VΔp-Rail-Vorgabe oder durch Abführung von Kraftstoffvolumen (Druckabsenkung) über das Druckregelventil 8 innerhalb der Volumenbilanz als VΔp-Rail-Vorgabe berücksichtigt wird.Added to this is d) the so-called load and/or speed-dependent change request in the rail pressure, the so-called pressure change request (also referred to as dynamic volume flow component) within the rail 4, which is achieved by supplying fuel volume (pressure increase) via the high-pressure pump 1 as a V Δp rail specification or by discharging fuel volume (pressure reduction) via the pressure control valve 8 within the volume balance as V Δp rail specification .

Je nachdem, ob der Druckänderungswunsch eine Druckerhöhung oder Druckabsenkung betrifft, wird

  • bei einer Druckerhöhung ein segmentsynchrones Volumen VZu zu dem Gesamt-Volumen VGes-Ab addiert oder
  • bei einer Druckabsenkung wird ein segmentsynchrones Volumen VGes-Ab von dem Gesamt-Volumen VGes-Ab subtrahiert
Depending on whether the pressure change request concerns an increase or decrease in pressure
  • When the pressure increases, a segment-synchronous volume V Zu is added to the total volume V Total-Ab or
  • When the pressure drops, a segment-synchronous volume V Ges-Ab is subtracted from the total volume V Ges-Ab

Die Hochdruckpumpe 1 weist in bekannter Weise und vorteilhafter Weise eine feste Zuordnung des Pumpen-OT segmentsynchron/zylindersynchron alle 180° Kurbelwinkel der Brennkraftmaschine zu den Zylinderkolben-OT`s der Zylinderkolben (nicht dargestellt) der Brennkraftmaschine auf, wobei die Motordrehzahl mit der Hochdruckpumpendrehzahl übereinstimmt. Zwischen dem Pumpen-OT und den Zylinderkolben-OT's kann ein gewisser fester Offset vorhanden sein, der jedoch bekannt ist und bei der festen Zuordnung entsprechend berücksichtigt werden kann.The high-pressure pump 1 has, in a known manner and advantageously, a fixed assignment of the pump TDC in a segment-synchronous/cylinder-synchronous manner every 180° crank angle of the internal combustion engine to the cylinder piston TDCs of the cylinder pistons (not shown) of the internal combustion engine, whereby the engine speed corresponds to the high-pressure pump speed matches. There may be a certain fixed offset between the pump TDC and the cylinder piston TDC, but this is known and can be taken into account accordingly in the fixed assignment.

Diese feste Zuordnung ermöglicht es die volumenstrombasierte und pumpensynchrone diskrete Berechnung zur Raildruckregelung auf diese Synchronität zu stützen und zu diskretisieren. Das heißt, man gewinnt nur eine diskrete Teilmenge aus einer kontinuierlichen Daten- oder Informationsmenge, wodurch eine Vereinfachung bei der Berechnung der Größen innerhalb der Regelstrecke erreicht wird.This fixed assignment makes it possible to base and discretize the volume flow-based and pump-synchronous discrete calculation for rail pressure control on this synchronicity. This means that only a discrete subset is obtained from a continuous amount of data or information, which simplifies the calculation of the variables within the controlled system.

Die erfindungsgemäße Berechnung erfolgt über ein Triggerstartsignal nsync (vergleiche Figuren 2A und 2B und Figur 3), wobei die Berechnung segmentsynchron/zylindersynchron alle 180° Kurbelwinkel durchgeführt wird, wobei die Berechnung der Größen der Regelstrecke für jeden der Zylinder beziehungsweise der zugehörigen Injektoren 9n, welche in dies Zylinder einspritzen getrennt durchgeführt wird.The calculation according to the invention is carried out via a trigger start signal nsync (see Figures 2A and 2 B and Figure 3 ), whereby the calculation is carried out segment-synchronously/cylinder-synchronously every 180° crank angle, whereby the calculation of the variables of the controlled system is carried out separately for each of the cylinders or the associated injectors 9n, which inject into this cylinder.

Gemäß der Figur 2A umfasst die volumenstrombasierte pumpensynchrone Regelstruktur zur Raildruckregelung der Hochdruckpumpe 1 einen Signalerfassung-Baustein B1 zur Signalerfassung des Raildrucks p7 mittels des Raildruck-Sensors 7.According to the Figure 2A The volume flow-based pump-synchronous control structure for rail pressure control of the high-pressure pump 1 includes a signal detection module B1 for signal detection of the rail pressure p7 by means of the rail pressure sensor 7.

Erfindungsgemäß erfolgt die Erfassung des Raildrucks p7 zeitsynchron innerhalb des Bausteins B1 zur Signalerfassung des Raildrucks p7 in einem Messraster in ms-Schritten, wobei innerhalb des Segmentes innerhalb des Bausteins B2, der als Istwert-Diskretisierungs-Baustein bezeichnet wird, segmentsynchron diskret ein Ist-Wert p7Ist als minimaler Druck p7Ist-min und als maximaler Druck p7Ist-max erfasst und abgespeichert werden, wobei aus diesen Drücken p7Ist-min, p7Ist-max ferner als Ist-Wert p7Ist ein Mittelwert p7Ist-50% der Drücke p7Ist-min, p7Ist-max innerhalb des Segmentes berechnet und ebenfalls abgespeichert wird.According to the invention, the detection of the rail pressure p7 takes place time-synchronously within the module B1 for the signal detection of the rail pressure p7 in a measuring grid in ms steps, with an actual value discretely segment-synchronously within the segment within the module B2, which is referred to as the actual value discretization module p7 Actual is recorded and saved as the minimum pressure p 7Actual-min and as the maximum pressure p 7Actual-max , with these pressures p 7Actual-min , p 7Actual-max and also as the actual value p7 Actual an average value p7 Actual-50% of Press p 7Act-min , p 7Act-max is calculated within the segment and also saved.

Gemäß der Figur 2A umfasst die volumenstrombasierte pumpensynchrone Regelstruktur zur Raildruckregelung der Hochdruckpumpe 1 einen Sollwertvorgabe-Baustein A1 zur Sollwertvorgabe des Raildrucks p7Soll die in Form von Kennfelddaten im Computerprogram des Motorsteuergerätes abgelegt sind, der aus dem jeweiligen applizierten Brennverfahren rührt und vorgegeben ist.According to the Figure 2A The volume flow-based pump-synchronous control structure for rail pressure control of the high-pressure pump 1 includes a setpoint specification module A1 for the setpoint specification of the rail pressure p7 target , which is stored in the form of map data in the computer program of the engine control unit, which arises from the respective combustion process used and is predetermined.

Dieser Soll-Raildruck p7Soll wird von einem derzeitigen beliebigen Vorgabe Zeitraster erfindungsgemäß ebenfalls diskretisiert, das heißt es erfolgt eine Umrechnung aus den Zeit"scheiben" in die Segment"scheibe", zum Zeitpunkt nsync dem (Triggerstartsignal), das heißt mit Beginn der Berechnung.According to the invention, this target rail pressure p7 target is also discretized from any current specified time grid, that is, a conversion is carried out from the Time "slices" into the segment "slices", at the time nsync dem (trigger start signal), i.e. at the start of the calculation.

Das heißt explizit, dass der erste in der Segmentscheibe vorliegende Wert innerhalb des Zeitrasters als Soll-Raildruck p7Soll "eingefroren" und somit diskretisiert wird. Diese Diskretisierung findet im Sollwert-Diskretisierungs-Baustein A2 statt.This explicitly means that the first value present in the segment disk is “frozen” within the time grid as the target rail pressure p7 target and is therefore discretized. This discretization takes place in the setpoint discretization module A2.

Dadurch, dass Soll-Raildruck p7Soll zum Zeitpunkt nsync mit dem Beginn einer Zeitscheibe des Segmentes "eingefroren" wird, liegt, der aus dem vorhergehenden Segment gewünschte Soll-Raildruck p7Soll (Ende des vorhergehendes Segmentes = Start nächstes Segment zum Zeitpunkt nsync) diskretisiert vor, und wird mit der Druckinformation p7Ist vom Raildruck-Sensor 7 aus dem aktuellen, das heißt dem nachfolgenden Segment innerhalb eines Arbeitsspieles diskretisiert und verglichen, wodurch eine diskrete Regelabweichung Δp7 je Segment (segmentsynchron) bestimmt werden kann. Diese Vorgehensweise ist notwendig, weil das System stets einen zeitlichen Verzug aufweist. Der Stellwert einer Vorsteuerung erzeugt eine Volumenstromerhöhung in das Rail nachdem die Pumpe gefördert hat. Deshalb wird der zur Differenzbildung herangezogene Sollwert p7Soll um genau ein Arbeitsspiel verzögert und mit dem Ist-Wert p7Ist des darauffolgenden Arbeitsspieles verglichen.Because the target rail pressure p7 target at time nsync is "frozen" with the start of a time slice of the segment, the target rail pressure p7 target desired from the previous segment (end of the previous segment = start of the next segment at time nsync) is discretized before, and is discretized and compared with the pressure information p7 Ist from the rail pressure sensor 7 from the current, i.e. the subsequent segment within a work cycle, whereby a discrete control deviation Δp7 can be determined per segment (segment-synchronous). This procedure is necessary because the system always has a time delay. The control value of a pilot control generates an increase in the volume flow into the rail after the pump has delivered. Therefore, the target value p7 target used to form the difference is delayed by exactly one working cycle and compared with the actual value p7 actual of the following working cycle.

Wie oben erläutert steht als diskreter Ist-Wert p7Ist der minimale Druck p7min oder der maximale ruck p7max oder der Mittelwert p750% zur Verfügung.As explained above, the minimum pressure p 7min or the maximum jerk p 7max or the mean value p7 50% is available as a discrete actual value p7.

In vorteilhafter Weise besteht innerhalb der Regelung die Möglichkeit (Auswahl mehrerer diskreter Signale aus dem Sollwert-Diskretisierungs-Baustein A2) für die Regelung als Ist-Wert p7Ist den minimalen diskreten Druck p7Ist-min oder den maximalen diskreten Druck p7Ist-max oder den diskreten Mittelwert p7Ist-50% zu verwenden, um den gewählten Wert mit dem diskreten Soll-Raildruck P7Soll zu vergleichen, wodurch je nach Systemanforderung bei einem Druckaufbau der Wert p7Ist-max und bei einem Druckabbau der Wert p7Ist-min verwendet wird, um Regelschwingungen zu reduzieren beziehungsweise Über- oder Unterschwinger zu vermeiden.Advantageously, within the control there is the possibility (selection of several discrete signals from the setpoint discretization module A2) for the control as the actual value p7Is the minimum discrete pressure p7Ist-min or the maximum discrete pressure p7Ist-max or to use the discrete mean value p7 actual-50% to compare the selected value with the discrete target rail pressure P7 target , whereby, depending on the system requirements, the value p7 actual-max is used when the pressure builds up and the value p7 actual-min is used when the pressure is reduced is used to reduce control oscillations or to avoid overshoots or undershoots.

Die entsprechende druckbezogene Berechnung erfolgt im Regelfehler-Berechnungs-Baustein A2/B2 (vergleiche Figur 2A) in den die diskretisierten Soll-Raildruck-Werte p7Soll und die diskretisierten Ist-Raildruck-Werte p7Ist eingehen und segmentsynchron verglichen und als Regelfehler berechnet ausgegeben und abgespeichert werden.The corresponding pressure-related calculation is carried out in the control error calculation module A2/B2 (see Figure 2A ) into which the discretized target rail pressure values p7 target and the discretized actual rail pressure values p7 actual are received and compared segment-synchronously and calculated as a control error and saved.

An dieser Stelle der Regelfehler-Berechnung erfolgt weiter erfindungsgemäß in einem Umrechnungs-Baustein A2`, B2` aus der druckbasierten diskretisieren Regelabweichung Δp7 = ΔpRail eine Umrechnung in eine volumenstrombasierte Regeldifferenz ΔVRail, das heißt eine Volumenstromdifferenz unter Auflösung einer Differentialgleichung, wobei E das druck- und temperaturabhängige spezifische Elastizitätsmodul des jeweiligen Kraftstoffs ist und VH, wie zuvor erläutert, das Raumvolumen des Kraftstoff-Hochdrucksystems des Kraftstoffversorgungssystems 100 sind. Δ V Rail = V H E p T Δ p Rail

Figure imgb0002
At this point in the control error calculation, according to the invention, the pressure-based discretized control deviation Δp7 = Δp Rail is converted into a volume flow-based control difference ΔV Rail in a conversion module A2', B2', i.e. a volume flow difference by solving a differential equation, where E is pressure- and temperature-dependent specific modulus of elasticity of the respective fuel and V H , as explained above, are the volume of the high-pressure fuel system of the fuel supply system 100. Δ v Rail = v H E p T Δ p Rail
Figure imgb0002

Diese Umrechnung in den segmentsynchronen Volumenfehler ΔVRail hat den Vorteil, dass die nichtlinearen Kraftstoffeigenschaften des Kraftstoffs bei der Regelung berücksichtigt werden.This conversion into the segment-synchronous volume error ΔV Rail has the advantage that the non-linear fuel properties of the fuel are taken into account in the control.

Die nichtlinearen Eigenschaften des Kraftstoffs hinsichtlich Druck und Temperatur und Kompressibilität werden in druckbasierten Systemen nicht abgebildet, worin ein wesentlicher Vorteil des vorliegenden Verfahrens zu sehen ist, da diese Nichtlinearitäten durch die Umrechnung in den segmentsynchronen Volumenfehler ΔVRail berücksichtigt werden.The nonlinear properties of the fuel in terms of pressure, temperature and compressibility are not represented in pressure-based systems, which is a significant advantage of the present method, since these nonlinearities are taken into account by converting them into the segment-synchronous volume error ΔV Rail .

Dadurch ist eine exakte Versteuerung und Regelung mit geringsten Regelfehlern auch in hochdynamischen Fahrsituationen möglich, wodurch sich entscheidende Vorteile hinsichtlich Brennstabilität und Emissionen ergeben.This enables precise control and regulation with minimal control errors even in highly dynamic driving situations, which results in decisive advantages in terms of combustion stability and emissions.

Als Zwischenzusammenfassung liegt somit gegenüber dem Stand der Technik eine Änderung in der Erfassung der Größen durch die Segmentierung in den Bausteinen A1, B1 und die Diskretisierung in den Bausteinen A2, B2 und eine Umrechnung von druckbasierten Größen auf volumenstrombasierte Größen in den Bausteinen A2/B2 sowie A2'/B2' vor.As an interim summary, compared to the prior art there is a change in the recording of the variables through the segmentation in the blocks A1, B1 and the discretization in the blocks A2, B2 and a conversion from pressure-based variables to volume flow-based variables in the blocks A2/B2 as well A2'/B2'.

Als Eingangsgröße für einen Regler-Baustein C, C1, C8 steht somit durch die Merkmale der beschriebenen Grundkonzeption eine diskrete Volumen Regeldifferenz ΔVRail zur Verfügung, die direkt für die volumenstrombasierenden Stellglieder E1, E8 (Hochdruckpumpe 1 und Druckregelventil 8) verwendet wird.Due to the features of the basic concept described, a discrete volume control difference ΔV Rail is available as an input variable for a controller module C, C1, C8, which is used directly for the volume flow-based actuators E1, E8 (high-pressure pump 1 and pressure control valve 8).

Auf die Erweiterung der Grundkonzeption, die "Zylinderselektive Regelung" wird nachfolgend noch unter der gleichlautenden Teilüberschrift noch detailliert eingegangen.The expansion of the basic concept, the "cylinder selective control", will be discussed in more detail below under the same subheading.

Der Regler-Baustein C, C1, C8 umfasst als Teil-Baustein eine Regler-Zustandsmaschine C, die je nach Anforderung den Druck volumenstrombasierend/volumenstrombasiert, das heißt in Abhängigkeit der diskreten im Umrechnungs-Baustein A2`/B2` ermittelten Volumen-Regeldifferenz ΔVRail erhöht oder verringert, und die darüber entscheidet, ob eine Regeleingriff über einen PID-Regler-Baustein C1 der Hochruckpumpe 1 (vergleiche Figur 2A) "druckerhöhend" oder über einen PID-Regler-Baustein C8 des Druckregelventils 8 "druckerniedrigend" erfolgen soll.The controller module C, C1, C8 includes as a sub-module a controller state machine C, which, depending on the requirements, adjusts the pressure based on volume flow/volume flow, i.e. depending on the discrete volume control difference ΔV determined in the conversion module A2`/B2` Rail increases or decreases, and this decides whether control intervention via a PID controller module C1 of the high-pressure pump 1 (see Figure 2A ) “pressure increasing” or “pressure reducing” via a PID controller module C8 of the pressure control valve 8.

Die Struktur umfasst zudem gemäß Figur 2A einen Vorsteuer-Volumenstromwert-Baustein D als Störungsregler für die segmentsynchrone volumenstrombasierte Vorsteuerung (Führungsgröße mit Störgrößenkompensation) des Kraftstoffversorgungssystem, dessen Führungsgröße mit dem PID-Regler-Baustein C1 der Hochruckpumpe 1 und dem PID-Regler-Baustein C8 des Druckregelventils 8 zusammengeführt ist, sodass die PID-Regler-Bausteine C1, C8 nur die Regelschwankungen des Kraftstoffversorgungssystems ausgleichen müssen.The structure also includes: Figure 2A a pilot control volume flow value module D as a fault controller for the segment-synchronous volume flow-based pilot control (command variable with disturbance variable compensation) of the fuel supply system, the command variable of which is combined with the PID controller module C1 of the high-pressure pump 1 and the PID controller module C8 of the pressure control valve 8, so that The PID controller modules C1, C8 only have to compensate for the control fluctuations of the fuel supply system.

Dem Vorsteuer-Volumenstromwert-Baustein D gehen als Vorsteuergrößen die unter a) bis d) genannten segmentsynchronen Volumenströmen in Addition zu, sodass in dem Vorsteuer-Volumenstromwert-Baustein D bereits die Führung der Regelstrecke gewährleistet ist.The pre-control volume flow value module D receives the segment-synchronous volume flows mentioned under a) to d) in addition as pre-control variables, so that control of the controlled system is already guaranteed in the pre-control volume flow value module D.

Die durch die PID-Regler-Bausteine C1, C8 ausgeregelten Werte des Störungsreglers des Vorsteuer-Volumenstromwert-Bausteins D werden (vergleiche Figur 2) einem Ausgabe-Baustein E zugeführt, der die Stellglieder E1 und E8 der Hochdruckpumpe 1 und des Druckregelventils 8 elektrisch ansteuert und die Stellglieder E1 und E8 nach Bedarf über die Regelstrecke pumpensegmentsynchron volumenbasiert verstellt.The values of the fault controller of the pilot control volume flow value block D, which are controlled by the PID controller blocks C1, C8, are (compare Figure 2 ) is fed to an output module E, which electrically controls the actuators E1 and E8 of the high-pressure pump 1 and the pressure control valve 8 and adjusts the actuators E1 and E8 as required via the control system in a pump-segment-synchronous, volume-based manner.

Erweiterung "Zylinderselektive Regelung":“Cylinder selective control” extension:

Erfindungsgemäß wird die zuvor hinsichtlich der Grundkonzeption erläuterte Raildruckregelung auf eine sogenannte "Zylinderselektive Regelung" erweitert, wie nachfolgend anhand der Figur 2B erläutert wird.According to the invention, the rail pressure control previously explained with regard to the basic concept is expanded to a so-called "cylinder selective control", as described below with reference to Figure 2B is explained.

Dazu wird für jeden Zylinder, n = Anzahl der Zylinder beziehungsweise der zugehörigen Injektoren 9n (vergleiche Figur 1) eine separate zylinderselektive Regelabweichung ΔVRail, insbesondere ein Proportional-Anteil und/oder ein Integrator-Anteil und/oder ein Differential-Anteil berechnet und gemäß der zylinderselektive Regelabweichung ΔVRail werden die Stellwerte E1, E8 Zylinder für Zylinder beziehungsweise Injektor für Injektor 9n beziehungsweise Einspritzevent für Einspritzevent segmentsynchron selektiert und wie zuvor erläutert volumenstrombasiert für die Hochdruckpumpe 1 oder das Druckregelventil 8 ausgegeben.For this purpose, for each cylinder, n = number of cylinders or the associated injectors 9n (compare Figure 1 ) a separate cylinder-selective control deviation ΔV Rail , in particular a proportional component and / or an integrator component and / or a differential component, is calculated and according to the cylinder-selective control deviation ΔV Rail , the control values E1, E8 are cylinder for cylinder and injector for injector 9n respectively Injection event for Injection event is selected segment-synchronously and, as explained above, is output based on volume flow for the high-pressure pump 1 or the pressure control valve 8.

Da die Injektoren 9n im stationären Betrieb von Zylinder zu Zylinder dieselben Mengen-Sollwerte erhalten, sich aber durch Injektorstreuungen unterschiedliche Mengenabnahmen V9n aus dem Rail 4 ergeben, zeigen erfindungsgemäß beispielsweise die einzelnen Integrator-Anteile der zylinderselektiven Regler C1n, C8n die Mengenabweichungen zwischen den Injektoren 9n, denen verschiedene Ursachen zugrunde liegen können. In Abhängigkeit der Art der Mengenabweichungen können die Ursachen mit großer Wahrscheinlichkeit bestimmten Fehlergruppen zugeordnet werden.Since the injectors 9n receive the same quantity setpoints from cylinder to cylinder in stationary operation, but different quantity decreases V 9n result from the rail 4 due to injector scattering, according to the invention, for example, the individual integrator shares of the cylinder-selective controllers C1 n , C8 n show the quantity deviations between the injectors 9 n , which can have various causes. Depending on the type of quantity deviations, the causes can most likely be assigned to specific error groups.

Gemäß Figur 2A steht als Eingangsgröße für einen Regler-Baustein C, C1, C8 somit in der erfindungsgemäßen Grundkonzeption eine diskrete Volumen-Regeldifferenz ΔVRail zur Verfügung, die direkt für die volumenstrombasierenden Stellglieder E1, E8 (Hochdruckpumpe 1 und Druckregelventil 8) verwendet wird, wobei segmentsynchron für jeden Zylinder beziehungsweise Injektor 9n "nur eine" Regelstruktur wiederholend genutzt wird. Auf eine Erweiterung, die sogenannte "Zylinderselektive Regelung" bei der mehrere Regelstruktur zylinderselektiv (vergleiche Figur 2B) genutzt werden, wird nachfolgend weiter detailliert erläutert.According to Figure 2A In the basic concept according to the invention, a discrete volume control difference ΔV Rail is available as an input variable for a controller module C, C1, C8, which is used directly for the volume flow-based actuators E1, E8 (high-pressure pump 1 and pressure control valve 8), whereby segment-synchronously for Each cylinder or injector 9n “only one” control structure is used repeatedly. An extension, the so-called "cylinder-selective control" in which several control structures are cylinder-selective (compare Figure 2B ) are used, is explained in more detail below.

Analog zu der Grundkonzeption steht als Eingangsgröße für mehrere (n) Regler-Bausteine C1n, C8n eine segmentsynchrone diskrete Volumen-Regeldifferenz ΔVRail zur Verfügung, die gemäß der Erweiterung "zylinderselektiv" direkt für die volumenstrombasierenden Stellglieder E1, E8 (Hochdruckpumpe 1 und Druckregelventil 8) verwendet wird.Analogous to the basic concept, a segment-synchronous discrete volume control difference ΔV Rail is available as an input variable for several (n) controller modules C1n, C8n, which, according to the "cylinder-selective" extension, is available directly for the volume flow-based actuators E1, E8 (high-pressure pump 1 and pressure control valve 8 ) is used.

Je Zylinder beziehungsweise Injektor 9n stehen als Teil-Bausteine, die einer Regler-Zustandsmaschine C zugeordnet sind, mehrere Regler-Bausteine C1n (im Ausführungsbeispiel n = 4; C11, C12, C13, C14), C8n (im Ausführungsbeispiel n = 4; C81, C82, C83, C84) zur Verfügung, die je nach segmentweiser Anforderung den Druck volumenstrombasierend/volumenstrombasiert, das heißt in Abhängigkeit der im Umrechnungs-Baustein A2`/B2` ermittelten diskreten Volumen-Regeldifferenz ΔVRail erhöhen oder verringern, wobei die Regler-Zustandsmaschine C darüber entscheidet, ob die Regeleingriffe segmentsynchron über mehrere PID-Regler-Bausteine C1n der Hochruckpumpe 1 (vergleiche Figur 2B) "druckerhöhend" oder über mehrere PID-Regler-Bausteine C8n des Druckregelventils 8 "druckerniedrigend" in zylinderselektiver Weise erfolgen sollen.For each cylinder or injector 9n there are several controller blocks C1n (in the exemplary embodiment n = 4; C11, C12, C13, C14), C8n (in the exemplary embodiment n = 4; C81) as sub-blocks that are assigned to a controller state machine C , C82, C83, C84) are available, which increase or decrease the pressure based on volume flow/volume flow depending on the segment requirements, i.e. depending on the discrete volume control difference ΔV Rail determined in the conversion module A2`/B2`, whereby the controller State machine C decides whether the control interventions are segment-synchronous via several PID controller modules C1n of the high-pressure pump 1 (see Figure 2B ) “pressure increasing” or via several PID controller modules C8n of the pressure control valve 8 “pressure decreasing” should be done in a cylinder-selective manner.

Die Struktur umfasst zudem gemäß Figur 2B einen Vorsteuer-Volumenstromwert-Baustein D als Störungsregler für die segmentsynchrone volumenstrombasierte Vorsteuerung (Führungsgröße mit Störgrößenkompensation) des Kraftstoffversorgungssystem 100, dessen Führungsgröße mit dem PID-Regler-Bausteinen C1n der Hochruckpumpe 1 und dem PID-Regler-Bausteinen C8n des Druckregelventils 8 zusammengeführt ist, sodass die PID-Regler-Bausteine C1n, C8n nur die Regelschwankungen des Kraftstoffversorgungssystems ausgleichen müssen.The structure also includes: Figure 2B a pilot control volume flow value module D as a fault controller for the segment-synchronous volume flow-based pilot control (command variable with disturbance variable compensation) of the fuel supply system 100, the command variable of which is combined with the PID controller modules C1n of the high-pressure pump 1 and the PID controller modules C8n of the pressure control valve 8, so that the PID controller modules C1n, C8n only have to compensate for the control fluctuations of the fuel supply system.

Hierdurch ergeben sich folgende Effekte:This results in the following effects:

Die Hochdruckregelung kann durch die zylinderselektive Regelung jetzt - in Erweiterung der Grundkonzeption - zylinderselektiv geführt werden, das heißt jedem Zylinder beziehungsweise jedem Einspritzvorgang wird zylinderselektiv eine angepasste zylinderselektiv korrigierte Stellgröße als Stellgliedausgabe E1 der Hochdruckpumpe 1 oder Stellgliedausgabe E8 des Druckregelventils 8 ausgegeben.The high pressure control can now be carried out cylinder-selectively through the cylinder-selective control - in an extension of the basic concept - that is, for each cylinder or each injection process, an adapted, cylinder-selectively corrected manipulated variable is output as actuator output E1 of the high-pressure pump 1 or actuator output E8 of the pressure control valve 8.

Mit anderen Worten, die jeweiligen PID-Regler-Bausteine C1n, C8n können jeder für sich ausgewertet separat kalibriert werden. Die Auswertung der im Ausführungsbeispiel vier einzelnen PID-Regler-Bausteine C1n oder C8n, das heißt der Vergleich, der im stationären Betrieb beispielsweise unterschiedlichen Integrator-Anteile und Proportional-Anteile lässt in vorteilhafter Weise eine zylinderbezogene beziehungsweise injektorbezogene Fehleranalyse und Ursacheneingruppierung zu, wobei einerseits eine einfache Diagnosefunktion (OnBoard-Diagnose ohne Ausbau) oder eine Diagnosefunktion (OnBoard-Diagnose ohne Ausbau) mit einer Korrekturfunktion vorgesehen ist.In other words, the respective PID controller modules C1n, C8n can each be calibrated separately. The evaluation of the four individual PID controller modules C1n or C8n in the exemplary embodiment, that is to say the comparison of the different integrator shares and proportional shares in stationary operation, for example, advantageously allows for a cylinder-related or injector-related error analysis and cause classification, on the one hand A simple diagnostic function (on-board diagnosis without removal) or a diagnostic function (on-board diagnosis without removal) with a correction function is provided.

Beispielsweise kann über die Diagnosefunktion eine bestimmter zylinderbezogener beziehungsweise injektorbezogener Fehler bis zu einem vorgebbaren Schwellwert zugelassen werden und erst nach Überschreitendes Schwellwert erfolgt eine zylinderbezogene beziehungsweise injektorbezogene Fehlerkorrektur.For example, a specific cylinder-related or injector-related error can be permitted via the diagnostic function up to a predeterminable threshold value and only after the threshold value is exceeded is a cylinder-related or injector-related error correction carried out.

Es besteht erfindungsgemäß insbesondere die Möglichkeit die Einspritzmengenfehler ursachenabhängig zu gruppieren, wobei die Injektoren 9n beispielsweise im Betrieb einer Fehlergruppe mit einem Injektordefekt (OnBoard-Diagnose eines Injektordefektes ohne Ausbau), oder einer andere Fehlergruppe mit einer alterungsbedingten Injektordrift (OnBoard-Diagnose der Injektordrift ohne Ausbau) oder einer anderen Fehlergruppe mit einer sich ändernden Schaltleckagemenge VSLeck (OnBoard-Diagnose einer zu hohen Schaltleckage ohne Ausbau) zugeordnet werden können, wobei die Einspritzmengenfehler in vorteilhafter Weise innerhalb der OnBoard-Diagnose zu einem Austausch des defekten Injektors 9n aufrufen oder innerhalb der zylinderselektiven Regelung berücksichtigt und korrigiert werden können.According to the invention, there is in particular the possibility of grouping the injection quantity errors depending on the cause, with the injectors 9n, for example, during operation of an error group with an injector defect (on-board diagnosis of an injector defect without removal), or another error group with an aging-related injector drift (on-board diagnosis of the injector drift without removal). ) or another error group with a changing switching leakage quantity V SLeck (on-board diagnosis of too high a switching leakage without removal), the injection quantity errors being advantageously within the On-board diagnosis can be called up to replace the defective injector 9n or can be taken into account and corrected within the cylinder-selective control.

Zudem können generell die zylinderselektiven Regelungsinformationen, das heißt die individualen Einspritzmengenfehler der einzelnen Injektoren 9n adaptiert werden und zur Verbesserung der Vorsteuerung D der Injektoren 9n genutzt werden.In addition, the cylinder-selective control information, that is, the individual injection quantity errors of the individual injectors 9n, can generally be adapted and used to improve the pilot control D of the injectors 9n.

Die jeweilige zylinderselektive Regelgröße C1n, C8n kann ferner in vorteilhafter Weise in eine andere Führungsgröße umgerechnet werden, wobei insbesondere an das innere Motormoment der jeweiligen Zylinder gedacht wird, sodass durch Unterstützung der zylinderselektiven Raildruckregelung eine zylinderselektive momentenabhängige Regelung ermöglicht wird, bei der die zylinderselektiven Regelungsinformationen insbesondere für die Momenten-Zylindergleichstellung genutzt werden können, indem beispielsweise einem zylinderselektiven Momenten-Regler ein entsprechender Vorsteuerwert aus der zylinderselektiven Raildruckregelung übergeben wird.The respective cylinder-selective controlled variable C1n, C8n can also be advantageously converted into another reference variable, in particular considering the internal engine torque of the respective cylinders, so that by supporting the cylinder-selective rail pressure control, a cylinder-selective torque-dependent control is made possible, in which the cylinder-selective control information in particular can be used for cylinder torque equalization by, for example, passing a corresponding pilot control value from the cylinder-selective rail pressure control to a cylinder-selective torque controller.

Erweiterung "Stromerfassung und Stromregelung der Stellglieder":Extension "Current detection and current control of the actuators":

Ein weiterer Aspekt der Erfindung besteht darin, dass die Hochdruckregelung bei der beschriebenen nichtzylinderselektiven Regelung oder bei der beschriebenen zylinderselektiven Regelung eine angepasste korrigierte Stellgröße in einer Stellgliedausgabe E1 der Hochdruckpumpe 1 oder in einer Stellgliedausgabe E8 des Druckregelventils 8 ausgibt.A further aspect of the invention is that the high-pressure control in the described non-cylinder-selective control or in the described cylinder-selective control outputs an adapted corrected manipulated variable in an actuator output E1 of the high-pressure pump 1 or in an actuator output E8 of the pressure control valve 8.

Um die erfindungsgemäßen Vorteile der nichtzylinderselektiven Regelung oder der beschriebenen zylinderselektiven Regelung ohne Systemschwäche im Bereich der Stromerfassung und Stromregelung des Druckregelventils 8 und der Hochdruckpumpe 1 in vollem Umfang nutzen zu können, wird nachfolgend ein Verfahren zur verbesserten Stromregelung mittels eines Beobachter-Modells für eine Raildruckregelung mit einem Druckregelventil 8 und/oder einer Hochdruckpumpe 1 erläutert.In order to be able to fully utilize the advantages according to the invention of the non-cylinder-selective control or the described cylinder-selective control without system weakness in the area of current detection and current control of the pressure control valve 8 and the high-pressure pump 1, a method for improved current control using an observer model for rail pressure control is presented below a pressure control valve 8 and / or a high pressure pump 1 explained.

Bisher werden Stromregelungen von Komponenten, insbesondere Hochdruck-Komponenten in der Automobilindustrie durch Pulsweitenmodulation (PWM) eines schnellen Schalters im Motorsteuergerät realisiert. Durch die PWM-Modulation stellt sich ein mittlerer Strom im Stellglied ein, der für eine Stromregelung mit einem analog zu digital Umsetzer (AD-Umsetzer) gemessen wird um diesen dann einem Regler als Ist-Größe bereitzustellen. Der gemessene Strom enthält durch die PWM-Modulation Frequenzen/Oszillationen die einem Vielfachen der PWM-Grundfrequenz entsprechen. Um den Strom fehlerfrei erfassen zu können gibt es zwei etablierte Verfahren.Up to now, current control of components, especially high-pressure components in the automotive industry, has been implemented using pulse width modulation (PWM) of a fast switch in the engine control unit. The PWM modulation creates an average current in the actuator, which is measured for current control with an analog to digital converter (AD converter) and then made available to a controller as the actual size. Due to the PWM modulation, the measured current contains frequencies/oscillations that are multiples of the PWM basic frequency are equivalent to. In order to be able to record the current without errors, there are two established methods.

Man unterscheidet in "PWM-synchrone Stromerfassungssysteme" und "Zeitsynchrone Stromerfassungssysteme".A distinction is made between “PWM-synchronous current detection systems” and “time-synchronous current detection systems”.

PWM-synchrone Stromerfassungssysteme, bei denen ein Hardware-Filter mit hoher Grenzfrequenz zur Eliminierung hochfrequenter Störungen zum Einsatz kommt, haben folgende Nachteile: Es kann keine mittelwertfreie Erfassung durchgeführt werden. Es erfolgt eine Abtastung die im Frequenzbereich des HW-Filters liegt mit hoher CPU-Last da die Abtastfrequenz an die PWM Grundfrequenz gekoppelt ist. Bei kleinen PWM-Tastverhältnissen kann es durch Aliasfehler zu Unterabtastungen kommen was zu einer Mittiniertverschiebung führt. Das Verfahren wird daher selten angewendet.PWM-synchronous current measurement systems, in which a hardware filter with a high cut-off frequency is used to eliminate high-frequency interference, have the following disadvantages: No average value-free measurement can be carried out. A sampling is carried out that lies in the frequency range of the HW filter with a high CPU load because the sampling frequency is coupled to the PWM basic frequency. With small PWM duty cycles, undersampling can occur due to alias errors, which leads to a center shift. The procedure is therefore rarely used.

Zeitsynchrone Stromerfassungssysteme, bei denen ein HW-Filter mit geringer Grenzfrequenz zur Glättung der PWM-Oszillation auf dem Stromsignal zum Einsatz kommt, haben folgende Nachteile: Durch die geringe Grenzfrequenz und hohe Filterzeitkonstante weisen diese HW-Filter eine hohe Phasenverschiebung auf. Die Regleranpassung muss an einen relativ langsamen HW-Filter erfolgen. Die zeitsynchronen Stromerfassungssysteme weisen ferner bei Störungen ein schlechtes Regelverhalten auf, weil der Ist-Wert durch die langsame HW-Filterung verzögert den Regler erreicht.Time-synchronous current detection systems, in which a HW filter with a low cutoff frequency is used to smooth the PWM oscillation on the current signal, have the following disadvantages: Due to the low cutoff frequency and high filter time constant, these HW filters have a high phase shift. The controller must be adapted to a relatively slow HW filter. The time-synchronous current detection systems also have poor control behavior in the event of faults because the actual value reaches the controller with a delay due to the slow HW filtering.

Generell wird bei den Stromerfassungssystemen mithilfe eines Messwiderstands der Spannungsabfall über dem Messwiderstand benutzt um den Strom in dem Stellglied zu bestimmen. Dieser Wert wird mittels eines AD-Umsetzers zyklisch erfasst und der Stromregelung als Ist-Wert bereitgestellt. In einer geschlossenen Regelschleife wird auf diesen Strommesswert geregelt. Für die Abtastung muss dieser Messwert vor dem Analog/Digital Umsetzer mittels analogem Hardware (HW)-Tiefpass-Filter mit einer entsprechend festzulegenden Grenzfrequenz (üblicherweise zwischen 10Hz und 50Hz bei zeitsynchroner Stromerfassung) gefiltert werden. Üblicherweise ist dieser Filter, zumeist ein RC-Glied. Dadurch werden, eine Signalverzögerung und ein Phasengang erzeugt, der für die Regelschleife von großem Nachteil ist, weshalb die (inneren) Stromregelungen verhältnismäßig langsam ausgelegt werden.In general, current detection systems use a measuring resistor to use the voltage drop across the measuring resistor to determine the current in the actuator. This value is recorded cyclically using an AD converter and provided to the current control as an actual value. This current measurement value is regulated in a closed control loop. For sampling, this measured value must be filtered in front of the analog/digital converter using an analog hardware (HW) low-pass filter with a correspondingly defined cutoff frequency (usually between 10Hz and 50Hz for time-synchronous current measurement). This filter is usually an RC element. This creates a signal delay and a phase response that is a major disadvantage for the control loop, which is why the (internal) current controls are designed to be relatively slow.

Dabei wird wie bisher bereits beachtet, dass in der hier vorliegenden spezifischen Anwendung "Raildruckregelung" in einer Reglerkaskade der Raildruckregelung die inneren Regelkreise (Regelkreise der Steller Stromregler) grundsätzlich schneller auszulegen sind, als die äußeren Regelkreise (Regelkreise basierend auf Raildruck) um eine zeitliche Entkopplung zu erreichen.As before, it should be noted that in the specific “rail pressure control” application here, the inner control loops in a rail pressure control controller cascade (control circuits of the current controllers) must generally be designed faster than the external control circuits (control circuits based on rail pressure) in order to achieve temporal decoupling.

Die Stellglieder für die Stellgliedausgabe E1, E8 der Hochdruckpumpe 1 und des Druckregelventils 8 der Hochdruckregelung sind dabei die inneren Regelkreise, wobei die eigentliche bereits erläuterte hydraulische Druckregelung (vergleiche die Bausteine der hydraulischen Druckregelung in den Figuren 2A und 2B und die zugehörige Beschreibung) die äußeren Regelkreise darstellen.The actuators for the actuator output E1, E8 of the high-pressure pump 1 and the pressure control valve 8 of the high-pressure control are the inner control circuits, with the actual hydraulic pressure control already explained (compare the components of the hydraulic pressure control in the Figures 2A and 2 B and the associated description) represent the external control loops.

Nach alledem wird deutlich, dass bei der Stromerfassung und der darauf basierenden Stromregelung des Druckregelventils 8 und der Hochdruckpumpe 1 Verbesserungspotential vorliegt, wobei nachfolgend eine verbesserte Vorgehensweise erläutert wird.After all this, it becomes clear that there is potential for improvement in the current detection and the current control of the pressure control valve 8 and the high-pressure pump 1 based thereon, with an improved procedure being explained below.

Die erfindungsgemäße Lösung besteht in einer geänderten Signalverarbeitung beziehungsweise Signalverarbeitungskette, die erfindungsgemäß ein in Figur 3 dargestelltes Beobachter-Modell umfasst.The solution according to the invention consists in a modified signal processing or signal processing chain, which according to the invention is an in Figure 3 Observer model shown includes.

Mit anderen Worten, in die Signalverarbeitungskette ist ein Beobachter-Baustein W, kurz Beobachter genannt, integriert angeordnet, der in vorteilhafter Weise in der Signalverarbeitungskette zur Ansteuerung der Komponenten 1 und 8 zum Einsatz kommt.In other words, an observer component W, called observer for short, is integrated into the signal processing chain and is advantageously used in the signal processing chain to control components 1 and 8.

Dieser in die Signalverarbeitungskette integrierte Beobachter W verbessert die Stromerfassung des Hochdruckpumpe 1 und des Druckregelventils 8 und deren Stromregelung in der beschriebenen nichtzylinderselektiven Raildruckregelung und in der zylinderselektive Raildruckregelung gleichermaßen.This observer W, integrated into the signal processing chain, improves the current detection of the high-pressure pump 1 and the pressure control valve 8 and their current control in the described non-cylinder-selective rail pressure control and in the cylinder-selective rail pressure control equally.

Die Stromerfassung wird mittels des Beobachter-Modells dahingehend verbessert, dass die Verzögerungszeiten und Phasenverschiebungen der Stromerfassung, die durch die analoge Filterung (HW-Filter) des Signals entstehen, umgangen werden, wobei in dem Modell sichergestellt ist, das der Beobachter W ständig nachgeführt wird, indem ein sogenannter Beobachtungsfehler gegen Null konvergiert, wobei der Beobachtungsfehler als Differenz zwischen dem gemessenen Wert und dem beobachten Wert definiert ist.The current detection is improved using the observer model in such a way that the delay times and phase shifts in the current detection, which arise from the analog filtering (HW filter) of the signal, are avoided, with the model ensuring that the observer W is constantly tracked , in which a so-called observation error converges to zero, where the observation error is defined as the difference between the measured value and the observed value.

Das erfindungsgemäße System zur Stromerfassung ist in Figur 3 in dem Ausgabemodul-Baustein E angeordnet und in Figur 3 in einem schematisch dargestellten aus dem Ausgabemodul-Baustein E herausgezogenen Systemschaubild verdeutlicht.The system according to the invention for current detection is in Figure 3 arranged in the output module component E and in Figure 3 illustrated in a schematically illustrated system diagram extracted from the output module component E.

Das erfindungsgemäße System zur Stromerfassung basiert auf einer zeitsynchronen Stromerfassung und einer sogenannten Zustandsrekonstruktion beziehungsweise Zustandsvektorkonstruktion.The current detection system according to the invention is based on a time-synchronous current detection and a so-called state reconstruction or state vector construction.

Das aus Ausgabemodul-Baustein E herausgezogenen Systemschaubild verdeutlicht einen Spannungswert u (die einem pulsierenden Spulenstrom beziehungsweise einer pulsierenden Spulenspannung einer herkömmlichen PWM-synchronen Stromerfassung entspricht), welche die Eingangsgröße des System zur Stromerfassung darstellt.The system diagram extracted from output module component E illustrates a voltage value u (which corresponds to a pulsating coil current or a pulsating coil voltage of a conventional PWM-synchronous current detection), which represents the input variable of the system for current detection.

Die Spannung u stellt die Eingangsgröße dar, die der Spule 1 Ls + R

Figure imgb0003
der Steuereinheit der anzusteuernden Komponenten 1, 8 zugeführt wird.The voltage u represents the input variable of the coil 1 Ls + R
Figure imgb0003
the control unit of the components 1, 8 to be controlled is supplied.

Das Ausgangssignal der Spule 1 Ls + R

Figure imgb0004
ist ein Stromwert i1, der als sogenannter Effektivwert der Spule 1 Ls + R
Figure imgb0005
als Regelstrom zur Ansteuerung der Komponente 1, 8 gesucht wird, der messtechnisch nicht ohne entsprechende Aufbereitung des Signales erfasst werden kann.The output signal of the coil 1 Ls + R
Figure imgb0004
is a current value i 1 , which is called the effective value of the coil 1 Ls + R
Figure imgb0005
is sought as a control current for controlling components 1, 8, which cannot be measured without appropriate processing of the signal.

Der Stromwert i1 beziehungsweise Effektivwert der Spule 1 Ls + R

Figure imgb0006
stellt die Eingangsgröße für einen Hardware-Filter HW zur Filterung des Stromwertes i1 darstellt, der wiederum den Stromwert i2 ausgibt, der schließlich die Eingangsgröße für einen Software-Filter SW zur Dämpfung des Signals des Stromwertes i2 im Steuergerät darstellt, sodass nach dieser Signalverarbeitungskette ein Signal eines Stromwertes is zur Verfügung steht.The current value i 1 or effective value of the coil 1 Ls + R
Figure imgb0006
represents the input variable for a hardware filter HW for filtering the current value i 1 , which in turn outputs the current value i 2 , which ultimately represents the input variable for a software filter SW for attenuating the signal of the current value i 2 in the control unit, so that according to this Signal processing chain a signal of a current value is available.

Der Spannungswert u stellt somit den Eingangswert in den Beobachter-Baustein W dar, wobei der Stromwert i3 den Ausgangswert der Signalverarbeitungskette darstellt, der ebenfalls dem Beobachter-Baustein W zur Verfügung gestellt wird, wobei der Beobachter-Baustein W über das zugrunde liegende Beobachter-Modell parallel zu der zuvor erläuterten Signalverarbeitungskette ein neuen Spannungswert u berechnet.The voltage value u thus represents the input value into the observer module W, whereby the current value i 3 represents the output value of the signal processing chain, which is also made available to the observer module W, whereby the observer module W has the underlying observer module. Model calculates a new voltage value u in parallel to the previously explained signal processing chain.

Das heißt, der Beobachter W wird ständig nachgeführt, indem der sogenannte Beobachtungsfehler gegen Null konvergiert, wobei der Beobachtungsfehler als Differenz zwischen dem gemessenen Wert i1 und dem beobachten Wert i3 definiert ist.This means that the observer W is constantly tracked by the so-called observation error converging to zero, where the observation error is defined as the difference between the measured value i1 and the observed value i3.

Durch diese erfindungsgemäße Lösung ist eine den Anforderungen entsprechend hohe Performance und Stabilität der Stromerfassung möglich wodurch die inneren Stromregelkreise mit hoher Performance im Detail folgende vorteilhafte Eigenschaften der erfindungsgemäßen Stromerfassung mittels Beobachter W zu verstehen sind: Diese Art der Stromerfassung weist nur eine geringe Phasenverschiebung da auf den Modellwert des Beobachters geregelt wird welche dem realen Stromwert entspricht der jedoch durch die Nachteile des Phasengangs der Filterung erst nach der Filterlaufzeit erfasst werden würde. Die Erfassung mit Beobachter ist schneller, sodass schließlich auch die darauf basierende Regelung schneller ist. Die erfindungsgemäße Stromerfassung benötigt keine Mittelwertbildung, das heißt sie ist insbesondere im Gegensatz zu der allseits verwendeten PWM-synchronen Stromerfassung (mit Mittelwertbildung) genauer. Bei der erfindungsgemäßen Stromerfassung treten keine Aliasing-Effekte auf, das heißt eine falsche Signalermittlung mit Unterabtastung, wie es bei anderen Stromerfassungsverfahren der Fall ist, tritt nicht auf.This solution according to the invention makes it possible to achieve a high performance and stability of the current detection that meets the requirements, thereby improving the internal current control loops With high performance, the following advantageous properties of the current detection according to the invention by means of observer W can be understood in detail: This type of current detection has only a small phase shift because it is controlled based on the model value of the observer, which corresponds to the real current value, which, however, is only due to the disadvantages of the phase response of the filtering would be recorded after the filter runtime. The detection with an observer is faster, so that the control based on it is also faster. The current detection according to the invention does not require averaging, which means that it is more precise, in particular in contrast to the commonly used PWM-synchronous current detection (with averaging). With the current detection according to the invention, no aliasing effects occur, that is, incorrect signal determination with undersampling, as is the case with other current detection methods, does not occur.

BezugszeichenlisteReference symbol list

100
Kraftstoffversorgungssystem
1
Hochdruckpumpe
2
Vorförderpumpe
3
Kraftstofftank
4
Kraftstoffspeicher, Rail
ΔVRail
Volumen-Regeldifferenz, diskrete Regelabweichung
5
Filtereinheit
6
Duo-Sensor (p, T)
T6
Kraftstofftemperatur
7
Raildruck-Sensor
p7
Raildruck
p7Ist
Ist-Raildruck
p7Ist-max
Ist-Raildruck (diskretisiert Max)
p7Ist-min
Ist-Raildruck (diskretisiert Min)
p7Ist-50%
Ist-Raildruck (diskretisiert Mittelwert)
p7Soll
Soll-Raildruck (diskretisiert)
Δp7 = ΔpRail
diskrete Regelabweichung (druckbezogen)
E
Elastizitätsmodul
8
Druckregelventil
V8
abgesteuerter Volumenstrom über Rücklaufleitung 8.2.1
9n
Injektoren (n-ter Injektor)
91
erster Injektor
92
zweiter Injektor
93
dritter Injektor
94
vierter Injektor
1.4
Hochdruckleitung zwischen 1 und 4
2.1
Niederdruckleitung zwischen 2 und 1
4.9
Injektorleitungen zwischen 4 und 9n
8.2.1
Rücklaufleitung zwischen 8 und 2.1
9.3
Leckagerücklaufleitung zwischen 9n und 3
1.3
HDP-Rücklaufleitung zwischen 1 und 3
S1
erstes Steuergerät
S2
zweites Steuergerät

VGes  Gesamt-Volumen (V9n + VDLeck + VSLeck + VΔp-Rail-Vorgabe)
V9n  Einspritzvolumen des jeweiligen n-ten Injektors 9n
VDLeck  Dauerleckagevolumenstrom des Hochdruck-Kraftstoffversorgungssystems
VSLeck  Schaltleckagevolumenstrom der Injektoren 9n
VΔp-Rail-Vorgabe  Druckänderungswunsch systembedingt
VZU  zugeführtes Volumen in Abhängigkeit des Druckänderungswunsches Druckerhöhung
VGes-Ab  abgeführtes Volumen in Abhängigkeit des Druckänderungswunsches Druckabsenkung
VH  konstantes Raumvolumen des Hochdruck-Kraftstoffversorgungssystems
nsync  Startzeitpunkt der Berechnung
A1  Sollwertvorgabe-Baustein des Raildrucks p7Soll
A2  Sollwert-Diskretisierungs-Baustein
B1  Istwert-Signalerfassungs-Baustein Raildruck p7Ist
B2  Istwert-Diskretisierungs-Baustein
A2/B2  Regelfehler-Berechnungs-Baustein
A2`/B2`  Umrechnungs-Baustein
C  Regler-Zustandsmaschine
C1  Regel-Baustein der Hochdruckpumpe
C8  Regel-Baustein des Druckregelventils
C1n  Regel-Baustein der Hochdruckpumpe (n-ter Regel-Baustein)
C8n  Regel-Baustein des Druckregelventils (n-ter Regel-Baustein
D  Vorsteuer-Baustein
E  Ausgabe-Baustein
E1  Stellgliedausgabe Hochdruckpumpe
E8  Stellgliedausgabe Druckregelventil
1 Ls + R
Figure imgb0007
  Spule
u  Spulenspannung
i1  Spulenstrom hinter der Spule
HW  Hardware-Filter
i2  Spulenstrom nach Hardware-Filter
SW  Software-Filter
i3  Spulenstrom nach Software-Filter
W  Beobachter-Baustein
100
Fuel supply system
1
high pressure pump
2
prefeed pump
3
Fuel tank
4
Fuel storage, rail
ΔVRail
Volume control difference, discrete control deviation
5
Filter unit
6
Duo sensor (p, T)
T6
Fuel temperature
7
Rail pressure sensor
p7
Rail pressure
p7Is
Actual rail pressure
p7Actual-max
Actual rail pressure (discretized Max)
p7Actual-min
Actual rail pressure (discretized Min)
p7Is-50%
Actual rail pressure (discretized average)
p7target
Target rail pressure (discretized)
Δp7 = ΔpRail
discrete control deviation (pressure-related)
E
modulus of elasticity
8th
Pressure control valve
V8
controlled volume flow via return line 8.2.1
9n
Injectors (nth injector)
91
first injector
92
second injector
93
third injector
94
fourth injector
1.4
High pressure line between 1 and 4
2.1
Low pressure line between 2 and 1
4.9
Injector lines between 4 and 9n
8.2.1
Return line between 8 and 2.1
9.3
Leakage return line between 9n and 3
1.3
HDP return line between 1 and 3
S1
first control unit
S2
second control unit

V Total total volume (V 9n + V DLeck + V SLeck + V Δp rail specification )
V 9n injection volume of the respective nth injector 9n
V DLeak Continuous leakage volume flow of the high-pressure fuel supply system
V SLeck Switching leakage volume flow of the injectors 9n
V Δp rail specification Pressure change request is system-dependent
V TO supplied volume depending on the desired pressure change pressure increase
V Ges-Ab Dissipated volume depending on the desired pressure change pressure reduction
V H constant volume of space of the high pressure fuel supply system
nsync Start time of the calculation
A1 Setpoint specification module for rail pressure p7 setpoint
A2 setpoint discretization block
B1 actual value signal acquisition module rail pressure p7 actual
B2 actual value discretization block
A2/B2 control error calculation block
A2`/B2` conversion module
C controller state machine
C1 control module of the high-pressure pump
C8 control module of the pressure control valve
C1n control block of the high-pressure pump (nth control block)
C8n control block of the pressure control valve (nth control block
D input control module
E Output block
E1 actuator output high pressure pump
E8 Actuator output pressure control valve
1 Ls + R
Figure imgb0007
Kitchen sink
u Coil voltage
i1 coil current behind the coil
HW hardware filter
i2 coil current after hardware filter
SW software filter
i3 coil current after software filter
W observer module

Claims (16)

  1. Method for controlling a rail pressure (p7Soll) caused by a high-pressure pump (1) in a fuel accumulator (4) for a fuel supply system (100) of an internal combustion engine, wherein a crank angle-related or cam angle-related fixed angle difference of the internal combustion engine, between an upper dead-center position of a cylinder piston of a cylinder of the internal combustion engine and an upper dead-center position of the pump piston of the high-pressure pump (1) of the fuel supply system (100), is taken into account in the metering of the delivery volume of the high-pressure pump (1), wherein for each segment, which corresponds to a revolution of a crankshaft and thus the movement of the pump piston of the high-pressure pump (1) from the upper dead-center position of the pump piston to the next upper dead-center position, a discretization of a control deviation (Δp7) of the rail pressure (p7) in the fuel accumulator (4) is carried out repeatedly in a pump-synchronous manner, and a volume-related discrete volume control difference (ΔVRail) is calculated from the discrete control deviation (Δp7), wherein
    the discrete control deviation (Δp7) is calculated as a difference from the discretized actual rail pressure (p7Ist) and the discretized setpoint rail pressure (p7Soll),
    characterized in that
    discretized pressure information (p7Ist) of a rail pressure sensor (7) of the actively detected pump-synchronous segment is compared with the discretized setpoint rail pressure (p7Soll) of the pump-synchronous segment that precedes the actively detected segment by a working cycle in order to determine the discrete control deviation (Δp7), wherein
    the volume-related discrete volume control difference (ΔVRail) is supplied as an input variable to a control module (C1n) for the high-pressure pump (1) and a control module (C8n) for a pressure control valve (8) assigned to the fuel accumulator (4), wherein the discrete volume control difference (ΔVRail) is linked to a pilot control module (D), as a result of which the control variables for the high-pressure pump (1) and the pressure control valve (8) are calculated in an output module (E8) in a pump-synchronous manner for each segment and are supplied to the control elements (E1, E8) of the high-pressure pump (1) and of the pressure control valve (8) for volume-based adjustment of the rail pressure (p7Soll).
  2. Method according to claim 1, characterized in that the discrete control deviation (Δp7) is calculated as the difference from the discretized actual rail pressure (p7Ist) and the discretized setpoint rail pressure (p7Soll) in a cylinder-selective manner by discretized pressure information (p7Ist) of a rail pressure sensor (7) of the actively detected pump-synchronous segment being compared with the discretized setpoint rail pressure (p7Soll) of the pump synchronous segment that precedes the actively detected segment by a working cycle, in order to determine the discrete cylinder-selective control deviation (Δp7).
  3. Method according to either claim 1 or claim 2, characterized in that the setpoint rail pressure (p7Soll) is discretized at a time that is determined by a trigger start signal (nsync) which is repeatedly output at the start of a pump-synchronous segment.
  4. Method according to claims 1 or 2 and 3, characterized in that the actual rail pressure (p7Ist) is repeatedly detected and discretized within the segment started by the trigger start signal (nsync).
  5. Method according to claim 4, characterized in that the actual rail pressure (p7Ist), which is repeatedly detected within the pump-synchronous segment, is discretized as
    • the maximum actual rail pressure (p7Ist-max) in the segment and
    • the minimum actual rail pressure (p7Ist-min) in the segment and
    • a mean value calculated in the segment (p7Ist-50%),
    and is optionally compared with the discretized setpoint rail pressure (p7Soll) in order to determine the discrete control deviation (Δp7), in particular the discrete cylinder-selective control deviation (Δp7).
  6. Method according to claim 5, characterized in that, for the control, the detected minimum discrete pressure (p7Ist-min) or the detected maximum discrete pressure (p7Ist-max) or the discrete mean value (p7Ist-50%) is used as the actual value (p7Ist) for comparison with the discrete setpoint rail pressure (p7Soll), wherein, depending on the system requirement, the maximum discrete pressure (p7Ist-max) is used in the case of a pressure increase and the minimum discrete pressure (p7Ist-min) is used in the case of a pressure reduction, in order to reduce control oscillations, in particular to reduce the control oscillations in a cylinder-selective manner, or to prevent overshoots or undershoots, in particular to prevent overshoots or undershoots in a cylinder-selective manner.
  7. Method according to either claim 5 or claim 6, characterized in that the discrete control deviation (Δp7), in particular the discrete cylinder-selective control deviation (Δp7), is converted into the volume flow-based discrete volume control difference (ΔV7 = ΔVRail), in particular the volume flow-based discrete cylinder-selective volume control difference (ΔVRail), wherein, in addition, a permanent fuel leakage (VDLeck) of the high-pressure system of the fuel supply system is taken into account by addition.
  8. Method according to either claim 1 or claim 2, characterized in that the pressure-based discretized control deviation (Δp7 = ΔpRail) is converted into a volume flow-based volume control difference (ΔVRail), wherein the pressure-dependent and temperature-dependent specific modulus of elasticity (E) of the relevant fuel and the spatial volume (VH) of the high-pressure fuel system of the fuel supply system (100) are taken into account in the conversion in accordance with the conversion formula Δ V Rail = V H E p T * Δ p Rail
    Figure imgb0010
    , in particular in a cylinder-selective manner.
  9. Method according to claims 1 and 8, characterized in that in the pump-synchronous segmental repeated conversion of the pressure-based discrete control deviation (Δp7) into the volume-related discrete volume control difference (ΔVRail),
    a) the fuel injection quantities (V9n) of the injectors (9n), and
    b) the fuel switching leakages (VSLeck) of the injectors (9n), and
    c) a pressure change request (VΔp-Rail-Vorgabe) with respect to the setpoint rail pressure (p7Soll) of the fuel accumulator (4) are taken into account, wherein
    d) the permanent fuel leakage (VDLeck) of the high-pressure system of the fuel supply system (100) is determined by a separate pump-synchronous segmental repeated conversion using a Z transformation, and the volume-related discrete volume control difference (ΔV7 = ΔVRail) is added.
  10. Method according to claims 2 and 8, characterized in that in the pump-synchronous segmental repeated conversion of the pressure-based discrete cylinder-selective control deviation (Δp7) into the volume-related discrete volume control difference (ΔVRail),
    a) the fuel injection quantities (V9n) of the injectors (93), and
    b) the fuel switching leakages (VSLeck) of the injectors (93), and
    c) a pressure change request (VΔp-Rail-Vorgabe) with respect to the setpoint rail pressure (p7Soll) of the fuel accumulator (4) are taken into account in a cylinder-selective manner, wherein
    d) the permanent fuel leakage (VDLeck) of the high-pressure system of the fuel supply system (100) is determined by a separate pump-synchronous segmental repeated conversion using a Z transformation, and the volume-related discrete volume control difference (ΔV7 = ΔVRail) is added.
  11. Method according to claim 10, characterized in that during steady-state operation, the injectors (9n) receive the same quantity setpoint values from cylinder to cylinder, which values are compared with the quantity decreases (V9n) from the rail (4) in a cylinder-selective manner, wherein injection quantity errors are determined in a cylinder-selective manner, which errors are assigned to the injectors (9n), wherein a type of the quantity deviations is assigned to certain error groups.
  12. Method according to claim 11, characterized in that the injection quantity errors are grouped according to the cause, in particular the level, of the injection quantity error resulting from the setpoint/actual comparison of the injection quantity error, wherein, during operation, the injectors (9n) are assigned to an error group with an injector defect, an error group with an aging-related injector drift, or an error group with a changing switching leakage quantity (VSLeck), wherein the injection quantity errors are determined within the cylinder-selective control in the controller (C1n, C8n) and corrected in the injection system and/or lead to an exchange of the relevant injector/injectors (9n).
  13. Method according to either claim 1 or claim 2, characterized in that the control variables of the control elements of the components (1, 8) for controlling the rail pressure (p7Soll) in the fuel accumulator (4) are supplied to an output module (E1, E8) and are calculated in the output module (E1, E8) for volume-based adjustment of the rail pressure (p7Soll), wherein current detection and current control of the control elements (1, 8) are carried out on the basis of an observer model.
  14. Fuel supply system (100) designed to carry out the method according to at least one of claims 1 and 3 to 9, characterized in that, in order to determine
    • a discrete input variable for a controller module (C1) for the high-pressure pump (1) and to determine a discrete input variable for a controller module (C8) for a pressure control valve (8) assigned to the fuel accumulator (4), the fuel supply system (100) comprises the following further modules,
    • a setpoint value specification module (A1) of the rail pressure (p7Soll) and an associated setpoint value discretization module (A2), and
    • an actual value signal detection module (B1) of the rail pressure (p7Ist) and an actual value discretization module (B2),
    • and a control error calculation module (A2/B2), and
    • comprises a conversion module (A2'/B2') which carries out a conversion into a volume flow-based control difference (ΔVRail) from a pressure-based discretization control deviation (Δp7 = ΔpRail), wherein
    • the conversion module (A2'/B2') is linked to a controller state machine (C) which outputs the discrete input variable for the controller module (C1) of the high-pressure pump (1) and the discrete input variable for the controller module (C8) of the pressure control valve (8),
    • wherein the controller modules (C1, C8) are linked to a pilot control module (D), as a result of which, by means of the pilot control module (D) and the connected controller modules (C1, C8), the control variables for the high-pressure pump (1) and the pressure control valve (8) are supplied to an output module (E8) and calculated for each segment in a pump-synchronous manner, and are supplied to the control elements (E1, E8) of the high-pressure pump (1) and the pressure control valve (8) for volume-based adjustment of the rail pressure (p7Soll).
  15. Fuel supply system (100) designed to carry out the cylinder-selective method according to at least one of claims 1 to 13, characterized in that the fuel supply system (100) comprises
    • in a cylinder-selective manner, a plurality (n) of controller modules (C1n) for the high-pressure pump (1) for determining the relevant discrete input variable of the relevant cylinder, and a plurality (n) of controller modules (C8n) for a pressure control valve (8) assigned to the fuel accumulator (4) for determining the relevant discrete input variable of the relevant cylinder, and
    • a setpoint value specification module (A1) of the rail pressure (p7Soll) and an associated setpoint value discretization module (A2), and
    • an actual value signal detection module (B1) of the rail pressure (p7Ist) and an actual value discretization module (B2),
    • and a control error calculation module (A2/B2), and
    • a conversion module (A2'/B2') which carries out a conversion into a volume flow-based control difference (ΔVRail) from a pressure-based discretization control deviation (Δp7 = ΔpRail), wherein
    • the conversion module (A2'/B2') is linked to a controller state machine (C) which outputs the discrete input variable to the relevant controller module (C1n) of the high-pressure pump (1) in a cylinder-selective manner, and outputs the discrete input variable to the relevant controller module (C8n) of the pressure control valve (8) in a cylinder-selective manner,
    • wherein the controller modules (C1n, C8n) are each linked to a pilot control module (D) in a cylinder-selective manner, as a result of which, by means of the pilot control module (D) and the connected cylinder-selective controller modules (C1, C8), the control variables for the high-pressure pump (1) and the pressure control valve (8) are supplied to an output module (E8) and calculated for each segment in a pump-synchronous manner, and are supplied to the control elements (E1, E8) of the high-pressure pump (1) and the pressure control valve (8) for volume-based cylinder-selective adjustment of the rail pressure (p7Soll).
  16. Fuel supply system (100) according to either claim 14 or claim 15, characterized in that the fuel supply system (100) comprises an observer module (W), which monitors a signal processing chain ( 1 LS + R
    Figure imgb0011
    , HW, SW) for current detection and current control of the control elements (1, 8) of the fuel supply system (100).
EP20184711.8A 2019-07-12 2020-07-08 Method for volumetric flow based pump-synchronous, in particular cylinder-selective rail pressure control for a fuel supply system of a combustion engine with current detection and current regulation of the actuators of the rail pressure control Active EP3763933B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102019118923 2019-07-12
DE102019118932 2019-07-12
DE102019118914 2019-07-12
DE102019129323.5A DE102019129323A1 (en) 2019-07-12 2019-10-30 Method for volume flow-based, pump-synchronous and cylinder-selective rail pressure control for a fuel supply system of an internal combustion engine
DE102019129306.5A DE102019129306A1 (en) 2019-07-12 2019-10-30 Method for current detection and current control of the actuators of a volume flow-based, pump-synchronous, non-cylinder-selective or cylinder-selective rail pressure control for a fuel supply system of an internal combustion engine
DE102019129320.0A DE102019129320A1 (en) 2019-07-12 2019-10-30 Method for volume flow-based, pump-synchronous rail pressure control for a fuel supply system of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP3763933A1 EP3763933A1 (en) 2021-01-13
EP3763933B1 true EP3763933B1 (en) 2023-11-15

Family

ID=71527664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20184711.8A Active EP3763933B1 (en) 2019-07-12 2020-07-08 Method for volumetric flow based pump-synchronous, in particular cylinder-selective rail pressure control for a fuel supply system of a combustion engine with current detection and current regulation of the actuators of the rail pressure control

Country Status (1)

Country Link
EP (1) EP3763933B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113153556B (en) * 2021-05-13 2022-11-29 潍柴动力股份有限公司 Rail pressure control method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710638B1 (en) * 2005-04-07 2007-09-26 HONDA MOTOR CO., Ltd. Controller
DE102008041577B4 (en) * 2007-08-31 2012-11-22 Denso Corporation Fuel pressure control device for an internal combustion engine
DE102011004031B4 (en) * 2011-02-14 2014-03-13 Continental Automotive Gmbh An injection system and method for limiting a pressure in the injection system for an internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016204386A1 (en) 2016-03-16 2017-09-21 Robert Bosch Gmbh A method of controlling a fuel rail pressure caused by a high pressure pump
DE102016211128A1 (en) * 2016-06-22 2017-12-28 Robert Bosch Gmbh A method of volume flow based control of fuel rail pressure caused by a high pressure pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710638B1 (en) * 2005-04-07 2007-09-26 HONDA MOTOR CO., Ltd. Controller
DE102008041577B4 (en) * 2007-08-31 2012-11-22 Denso Corporation Fuel pressure control device for an internal combustion engine
DE102011004031B4 (en) * 2011-02-14 2014-03-13 Continental Automotive Gmbh An injection system and method for limiting a pressure in the injection system for an internal combustion engine

Also Published As

Publication number Publication date
EP3763933A1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
DE102006034514B4 (en) Method for controlling an internal combustion engine
DE102012102336B4 (en) Apparatus for estimating a fuel injection condition
EP3698032B1 (en) Method for the model-based control and regulation of an internal combustion engine
EP2148070A2 (en) Method for determining the injected fuel mass of a single injection and device for carrying out the method
DE102010042736B4 (en) Method for quantity compensation control in an internal combustion engine
DE112015002823T5 (en) System and method for injector control for multi-pulse fuel injection
DE102013220589B3 (en) Method for operating an internal combustion engine and device for controlling and regulating an internal combustion engine, injection system and internal combustion engine
EP1716331A1 (en) Method for synchronizing cylinders in terms of quantities of fuel injection in a heat engine
DE102012218176A1 (en) Method for operating a fuel injection system
DE102014217582A1 (en) Method of controlling fuel injection and common rail injection and control systems
WO2020030351A1 (en) Method and device for operating an internal combustion engine with a common-rail injection system
DE10303765B4 (en) collectors injection
WO2008132005A1 (en) Method and device for controlling injection in an internal combustion engine
WO2008092779A1 (en) Method and device for correcting fuel injection
EP3763933B1 (en) Method for volumetric flow based pump-synchronous, in particular cylinder-selective rail pressure control for a fuel supply system of a combustion engine with current detection and current regulation of the actuators of the rail pressure control
DE102018115208B4 (en) System and method for evaluating the vehicle fuel injection system
DE102013211731B4 (en) Method for correcting the injection duration of injectors of an internal combustion engine and control device
EP3814619B1 (en) Method for adjusting the injection behavior of injectors of a combustion engine, engine control unit and internal combustion engine
DE102019129306A1 (en) Method for current detection and current control of the actuators of a volume flow-based, pump-synchronous, non-cylinder-selective or cylinder-selective rail pressure control for a fuel supply system of an internal combustion engine
EP3371442A1 (en) Internal combustion engine having fuel injector diagnosis
WO2007141099A1 (en) Method and device for controlling the fuel metering into at least one combustion chamber of an internal combustion engine
WO2014202201A1 (en) Method and control device for correcting the start of injection of injectors of an internal combustion engine
DE102013105355B4 (en) Fuel injection control device optimized for multiple injection
DE10305525B4 (en) Method and device for adapting the pressure wave correction in a high-pressure injection system of a motor vehicle while driving
DE102008005154A1 (en) Method and device for monitoring a motor control unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210713

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 63/02 20060101ALN20230525BHEP

Ipc: F02M 59/36 20060101ALN20230525BHEP

Ipc: F02D 41/14 20060101ALN20230525BHEP

Ipc: F02D 41/00 20060101ALI20230525BHEP

Ipc: F02D 41/38 20060101AFI20230525BHEP

INTG Intention to grant announced

Effective date: 20230619

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230710

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006008

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240215

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115