WO2004062078A1 - 空気調和装置用モータ駆動装置 - Google Patents

空気調和装置用モータ駆動装置 Download PDF

Info

Publication number
WO2004062078A1
WO2004062078A1 PCT/JP2003/016486 JP0316486W WO2004062078A1 WO 2004062078 A1 WO2004062078 A1 WO 2004062078A1 JP 0316486 W JP0316486 W JP 0316486W WO 2004062078 A1 WO2004062078 A1 WO 2004062078A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
converter
phase
drive device
motor drive
Prior art date
Application number
PCT/JP2003/016486
Other languages
English (en)
French (fr)
Inventor
Abdallah Mechi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP03781004A priority Critical patent/EP1585214A4/en
Priority to US10/540,981 priority patent/US20060103342A1/en
Priority to AU2003289496A priority patent/AU2003289496A1/en
Publication of WO2004062078A1 publication Critical patent/WO2004062078A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present invention relates to a device for driving an air conditioner motor with high input power factor and high efficiency.
  • inverter technology The attractive features of inverter technology are the ability to vary output frequency and output voltage for flux optimization to increase the overall efficiency of the drive, and to drive the motor at the desired speed for energy efficiency.
  • inverter technology can be broadly divided into low-cost / low-performance technology and high-cost / high-performance technology.
  • Low cost / low performance technologies consist of diode bridges, electrolytic capacitors, and inverters.
  • the input of the diode bridge is connected to the grid and the output is connected to an electrolytic capacitor, which itself supplies power to the inverter, which is used for load energy control according to the user's requirements.
  • an electrolytic capacitor which itself supplies power to the inverter, which is used for load energy control according to the user's requirements.
  • This technique is widely used for two reasons: The first is the low cost due to the reduction in the number of switches used, and the second is the successful application of harmonic regulations.
  • High-cost / high-performance technology consists of a power factor correction circuit sandwiched between the grid and the inverter.
  • This technique is not yet widely used for two reasons: The first is high cost due to the large number of switches used, and the second is low efficiency due to loss of power equipment used to generate the PWM. .
  • the present invention has been made in view of the above problems, and has as its object to provide a motor drive device for an air conditioner having a high power factor that conforms to the IEC standard. Another object is to provide a motor drive device for an air conditioner applicable to a wide range of input power.
  • the air conditioner motor drive device according to claim 1 is a converter having an AC power supply as an input, a three-phase inverter having an output voltage from the converter as an input and outputting an AC voltage to be supplied to the air conditioner motor, And control means for controlling the converter to maximize efficiency.
  • the motor drive device for an air conditioner according to claim 2 employs a three-phase converter as a converter.
  • the motor drive device for an air conditioner according to claim 3 employs a single-phase converter as a converter.
  • the motor drive device for an air conditioner further includes a reactor 1 connected in series to the input side of the converter, and a capacitor connected in parallel with the loop.
  • the motor drive device for an air conditioner according to claim 5 is configured such that a series circuit of a pair of switching elements is connected in parallel as many as the number of phases as a converter, and a diode is connected in parallel with each switching element. It adopts something.
  • a motor drive device for an air conditioner according to claim 6 as a converter, one switching element and a pair of diodes connected in order to sandwich the switching element are provided.
  • the number of series circuits connected in parallel is equal to the number of phases, and a pair of reverse-connected diodes is connected in parallel with each switching element.
  • a motor drive device for an air conditioner according to claim 1 a converter having an AC power supply as an input, a three-phase inverter having an output voltage from the converter as an input, and outputting an AC voltage to be supplied to the air conditioner motor, Includes control means for controlling the converter to maximize efficiency, so that IEC regulations can be cleared in the entire range, and efficiency can be improved and cost can be reduced.
  • a single-phase converter is adopted as the converter, so that a single-phase AC power supply can be supported and the same operation as the first aspect can be achieved.
  • the motor drive device for an air conditioner according to claim 4 further includes a reactor connected in series to the input side of the converter and a capacitor connected in parallel, so that the switching element of the converter is used. In addition to removing the current ripple caused by the switching, it is possible to achieve the same effect as any one of claims 1 to 3.
  • a series circuit of a pair of switching elements is connected in parallel in a number corresponding to the number of phases, or a diode is connected in parallel with each switching element. Since the configuration described above is adopted, the same operation as any one of claims 1 to 4 can be achieved.
  • FIG. 1 is an electric circuit diagram showing a conventional motor drive device using a diode bridge and an inverter.
  • FIG. 2 is an electric circuit diagram showing a conventional motor driving device using back-to-back inverter technology.
  • FIG. 3 is a diagram showing a relationship between a DC voltage and a load.
  • FIG. 4 is a diagram showing a simulation result of the efficiency of a motor and a driving device for an air conditioner.
  • FIG. 5 is a schematic diagram showing one embodiment of a motor drive device for an air conditioner of the present invention.
  • FIG. 6 is a schematic view showing another embodiment of the motor drive device for an air conditioner of the present invention.
  • FIG. 7 is a schematic view showing still another embodiment of the motor drive device for an air conditioner of the present invention.
  • FIG. 8 is a schematic diagram showing still another embodiment of the motor drive device for an air conditioner of the present invention.
  • FIG. 9 is a schematic view showing still another embodiment of the motor drive device for an air conditioner of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION an embodiment of a motor drive device for an air conditioner of the present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 5 is a schematic view showing an embodiment of a motor drive device for an air conditioner of the present invention.
  • This motor drive device for an air conditioner includes a three-phase converter 200 connected to a three-phase AC power supply 100 via a reactor 101, and a three-phase converter 200. It has a DC capacitor 300 connected between the output terminals, and a three-phase inverter 400 that uses the voltage between the terminals of the DC capacitor 300 as an operating voltage, and outputs the output of the three-phase inverter 400.
  • 3 phase load for example, air conditioner motor
  • a capacitor 102 is connected between the input terminals of the rear rotor 101. However, the capacitor 102 can be omitted.
  • a control unit 800 for controlling the switching elements of the three-phase converter 200 and the three-phase inverter 400 is provided.
  • the switching elements of the three-phase converter 200 and the three-phase inverter 400 are, for example, similar to the integrated IGBT standard module, and are adapted to the input / output state of the three-phase AC power supply 100 and the three-phase load 500. Designed.
  • the control unit 800 includes a first voltage detecting unit 801 that detects a voltage Vdc between terminals of a DC capacitor, and a first current detecting unit 802 that detects an input current Id of a three-phase inverter. , A second current detector 803, 804 that detects the output currents Iv, Iw for two phases from the three-phase inverter, and the phase voltages Va, Vb, Vc of the three-phase AC power supply The second voltage detectors 805, 806, 807 that detect the DC voltage, the DC capacitor terminal voltage Vdc, the terminal voltage command value Vdc *, and the three-phase inverter input current Id A power command calculator 808 that calculates (Vdc *) 2 / (2Vdc / Id) as input and calculates the power command value PR * of the three-phase impeller, and a terminal voltage command value Calculate the difference between V dc * and terminal voltage V dc A difference calculation unit 809 that performs a proportional / integral calculation using the calculated difference as
  • Converter command value control section 812 that outputs each phase voltage command value Va *, Vb *, Vc *, triangular wave generator section 813 that outputs a triangular wave signal, and each phase voltage command value Va * , Vb *, Vc * and a triangular wave signal as inputs, and outputs a gate drive signal S (con) to be supplied to the switching element of each phase of the three-phase converter 200; and a torque command value TM *, The efficiency command *, and the rotational angular velocity ⁇ of the rotor of the air conditioner motor 500 And outputs the d-axis current command value id * and the q-axis current command value iq * .
  • each phase voltage command value and triangular wave signal are input and each phase of 3-phase inverter is switched.
  • the gate drive signal generator 818 that outputs the gate drive signal S (inv) to be supplied to the child 601 and the rotational angular velocity ⁇ of the rotor of the air conditioner motor 500 are input and the output frequency ⁇ 0 ut is output.
  • the output frequency calculator 8 19 and the output voltage calculator that calculates the V / f using the output frequency f 0 ut as input and outputs the output voltage V out It has an output section 820 and an inter-terminal voltage command value calculation section 821 that multiplies the output voltage V out by a predetermined coefficient k to calculate an inter-terminal voltage command value V dc *. If the motor drive device for an air conditioner having the above configuration is adopted, the constant-voltage, constant-frequency three-phase AC power supply 100 can be converted into a variable voltage, variable-frequency three-phase AC output power.
  • the DC voltage between the three-phase converter 200 and the three-phase inverter 400 is supplied to the three-phase inverter 400 that supplies power to the air conditioner motor 500.
  • the converter / inverter is controlled so as to maximize the total efficiency at the main operating points (rated cooling load point, rated heating load point, and maximum load point).
  • This control method can be achieved by using a PWM converter on the grid side and a high-voltage motor on the load side, which must be connected to the DC link to provide the AC voltage necessary for the motor's optimal performance. It involves controlling the DC voltage to the value required by the inverter on the load side.
  • the three-phase converter 200 is for a power factor correction and a sample control strategy based on instantaneous information of DC current, DC voltage and input voltage. Therefore, bidirectional power control is possible.
  • the three-phase converter 200 operates to absorb the sinusoidal current of each phase together with the line voltage, and controls the DC link voltage so that the value corresponds to the maximum efficiency at each operating point.
  • the change in DC voltage is unavoidable, but the command value is set to the maximum allowable value depending on the maximum voltage of the power equipment so as not to affect the output efficiency. Therefore, the current rating of the load-side power device can be reduced, and the efficiency can be increased.
  • FIG. 4 is a diagram showing a result of simulating the total efficiency at a heating low tone point, a heating rated point, and a cooling rated point.
  • the simulation results show, in order from the left, the combination of a diode bridge and an inverter.
  • FIG. 6 is a schematic view showing another embodiment of the motor drive device for an air conditioner of the present invention.
  • FIG. 7 is a schematic diagram showing still another embodiment of the motor drive device for an air conditioner of the present invention.
  • the difference between this air conditioner motor drive device and the air conditioner motor drive device shown in Fig. 6 is that one of a pair of switching elements of the single-phase converter 210 connected in series is connected with a diode. Only the replaced point.
  • the configuration of the single-phase converter 210 can be simplified, the loss can be reduced as the number of switching elements decreases, and the same as the motor drive device for the air conditioner shown in FIG. Action can be achieved.
  • FIG. 8 is a schematic diagram showing still another embodiment of the motor drive device for an air conditioner of the present invention.
  • the difference between this air conditioner motor drive device and the air conditioner motor drive device in Fig. 5 is that instead of the three-phase converter 200, a differently configured three-phase converter (three-phase current source converter) 2
  • the point of adopting 20 is that the rear turtle 301 is connected between the output terminals of the three-phase converter 220, and one output terminal of the three-phase converter 220 corresponds to the three-phase converter 400.
  • a switching element is connected between a pair of diodes for each phase, and a series circuit of a pair of input diodes is connected in parallel with the switching element in reverse polarity.
  • the connection point between the input diodes is connected to the three-phase AC power supply 100 via the reactor 101.
  • the reactor 301 and the diode 302 are interchangeable with each other.
  • the corresponding part of the control unit 800 is replaced with a three-phase AC instead of the power command calculation unit 808, the addition unit 811, the converter command value control unit 812, and the gate drive signal generation unit 814.
  • ⁇ - ⁇ conversion unit 8 2 2 that converts the three-phase voltage of the power supply to ⁇ -Y, and the three-phase AC and DC voltage commands that are converted to ⁇ -Y
  • a three-phase AC voltage command calculator that outputs each AC voltage command, and a calibration signal output that outputs a calibration signal with a triangular wave signal and a DC current as input.
  • a gate drive signal generator 830, 831, 832 that outputs a gate drive signal by performing a NOR operation or the like with the input as an input.
  • FIG. 9 is a schematic diagram showing still another embodiment of the motor drive device for an air conditioner of the present invention.
  • a three-phase AC power source 100 can be used instead of a three-phase AC power source 110.
  • a single-phase converter 230 is used in place of the phase converter 200, and that the configuration of the control unit 800 is simplified in response to the single-phase operation.
  • the adoption of the air conditioner motor drive described above can meet the IEC regulations over the entire range. In addition, higher efficiency than the conventional device can be realized at all operating points.
  • the switching frequency is increased to significantly reduce the size of the AC reactor, reduce the rated power on the load side of the switching element, and use the instantaneous control of the power flow between the power supply side and the load side to use the DC link. Cost reduction can be achieved by reducing the size of the capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

交流電源(100)を入力とするコンバータ(200)と、コンバータ(200)からの出力電圧を入力として空気調和装置用モータ(500)に給電する交流電圧を出力する3相インバータ(400)と、効率が最大になるようにコンバータ(200)を制御する制御手段(800)とを有する空気調和装置用モータ駆動装置を採用することによって、IEC規格に適合し、かつ高力率化を達成する。

Description

明細書 空気調和装置用モータ駆動装置 技術分野
この発明は、 高入力力率で髙効率に空気調和装置用モータを駆動する装 置に関する。 背景技術
今ョでは、 電気供給のネットワークに種々の消費物が接続されている。 一方、 これらの消費物は、 電力品質のための異なる要求を有している。 他 方、 それらは送電設備網への種々の影響を有している。 これらの影響は電 力品質へのインパク トを有する。
送電設備網上で、 ユーザーの高度な環境上の意識に種々の影響を付加す れば、 エネルギー節約装置の要求が増加される。 したがって、 インバータ 技術おょぴ高効率モータを採用することは、 空気調和機のような家庭用電 気器具製品のみならず、 種々の分野において増加している。
ィンバータ技術の魅力的な点は、 ドライブの全体効率を高める磁束最適 化のために出力周波数および出力電圧を変化させる能力、 およびエネルギ 一効率のために所望の速度でモータを駆動する能力である。
認められているように、 インバータ技術は、 低コスト/低性能の技術と高 コスト/高性能の技術との 2つに大別される。
低コスト/低性能の技術は、 ダイオードブリッジ、 電解コンデンサ、 およ びインバータからなる。 ダイオードプリッジの入力は送電設備網に接続さ れ、 出力は電解コンデンサに接続され、 それ自身は、 ユーザーの要求にし たがう負荷エネルギー制御のために使用されるィンバータへの給電のため に使用される。
この技術は、 次の 2つの理由のために広く使用されている。 第 1の理由 は、 使用されるスィッチ数の減少に起因する低コストであり、 第 2の理由 は、 高調波規制の法的適用に成功することである。
高コスト/高性能の技術は、 送電設備網とインバータとの間に挟みこまれ た力率修正回路からなる。
この技術は、 次の 2つの理由のために未だに広くは使用されていない。 第 1の理由は、 使用されるスィツチ数が多いことに起因する高コストであ り、 第 2の理由は、 P WMを生成するために使用されるパワー装置のロス に起因する低効率である。
EM C規制により受け入れ可能な入力電流波形を生成する方法が使用さ れる。 発明の開示 '
従来から、 中間の、 および低い電圧を分配するネットワークにおけるパ ヮー電子装置は、 ユーザーサイドにおける消費電力品質を制御することに よって、 および送電設備網サイドでの影響を除去することによって、 効率 を改善するために使用される。
最もよく知られているのは、 第 2図に示すようなパックトウーバック · インバータタイプのものである。 この技術は、 価格および効率において、 単純なダイオードブリッジ、 および 1つの直流リアク トルまたは 3つの交 流リアタ トルからなる従来のインバータ技術 (第 1図参照) には太刀打ち できない。 そして、 入力電圧の高い値だけから直流電圧を制御することが できる。 したがって、 P AMとして知られているパルス振幅変調制御スト ラテジ一を実現するために、 送電設備網サイ ドの電流源コンバータは解と して考慮されてきた。 しかし、 電流源トポロジーは、 効率性能が低く、 高 コストであると知られている。 パワー装置技術の早い発展で、 状況は変化 しつつあり、 効率は増加しつつある。 しかし、 大量生産技術の限定数に起 因してコストは依然として太刀打ちできない。 この発明は上記の問題点に鑑みてなされたものであり、 I E C規格に適 合する高力率を伴う空気調和装置用モータ駆動装置を提供することを目的 としている。 また、 広範囲にわたる入力電源に適用可能な空気調和装置用 モータ駆動装置を提供することを他の目的としている。 請求項 1の空気調和装置用モータ駆動装置は、 交流電源を入力とするコ ンバータと、 コンバータからの出力電圧を入力として空気調和装置用モー タに給電する交流電圧を出力する 3相インバータと、 効率が最大になるよ うにコンバータを制御する制御手段とを含んでいる。
請求項 2の空気調和装置用モータ駆動装置は、 コンバータとして 3相コ ンバータを採用するものである。
請求項 3の空気調和装置用モータ駆動装置は、 コンバータとして単相コ ンバータを採用するものである。
請求項 4の空気調和装置用モータ駆動装置は、 コンバータの入力側に直 列に接続されたリアク 1、ルぉよび並列に接続されたコンデンサをさらに含 むものである。
請求項 5の空気調和装置用モータ駆動装置は、 コンバータとして、 1対 のスイッチング素子の直列回路を相数に応じた数だけ並列接続し、しかも、 各スィツチング素子と並列にダイォードを接続してなるものを採用するも のである。
請求項 6の空気調和装置用モータ駆動装置は、 コンバータとして、 1つ のスィツチング素子と、 スィッチング素子を挟む順接続の 1対のダイォー ドの直列回路を相数に応じた数だけ並列接続し、 しかも、 各スイッチング 素子と並列に逆接続の 1対のダイォードを接続してなるものである。 請求項 1の空気調和装置用モータ駆動装置であれば、 交流電源を入力と するコンバータと、 コンバータからの出力電圧を入力として空気調和装置 用モータに給電する交流電圧を出力する 3相インバータと、 効率が最大に なるようにコンバータを制御する制御手段とを含んでいるので、 全範囲で I E C規制をクリアすることができ、 しかも効率を高めることができると ともに、 コストダウンを達成することができる。
請求項 2の空気調和装置用モータ駆動装置であれば、 コンバータとして 3相コンバータを採用するので、 3相交流電源に対応できるほか、 請求項 1と同様の作用を達成することができる。
請求項 3の空気調和装置用モータ駆動装置であれば、 コンバータとして 単相コンバータを採用するので、 単相交流電源に対応できるほか、 請求項 1と同様の作用を達成することができる。
請求項 4の空気調和装置用モータ駆動装置であれば、 コンパータの入力 側に直列に接続されたリアク トルぉよぴ並列に接続されたコンデンサをさ らに含むのであるから、 コンバータのスィツチング素子のスィツチングに 起因する電流リプルを除去できるほか、 請求項 1から請求項 3の何れかと 同様の作用を達成することができる。
請求項 5の空気調和装置用モータ駆動装置であれば、コンバータとして、 1対のスィツチング素子の直列回路を相数に応じた数だけ並列接続し、 し かも、 各スィツチング素子と並列にダイォードを接続してなるものを採用 するので、 請求項 1から請求項 4の何れかと同様の作用を達成することが できる。
請求項 6の空気調和装置用モータ駆動装置であれば、コンバータとして、 1つのスィツチング素子と、 スィツチング素子を挟む順接続の 1対のダイ オードの直列回路を相数に応じた数だけ並列接続し、 しかも、 各スィ ッチ ング素子と並列に逆接続の 1対のダイォードを接続してなるので、 スィッ チング損失を低減できるほか、 請求項 1から請求項 4の何れかと同様の作 用を達成することができる。 図面の簡単な説明
第 1図は、 ダイォードブリッジおよぴィンバータを用いる従来のモータ 駆動装置を示す電気回路図である。
第 2図は、 バック トゥーバックインパータ技術を用いる従来のモータ駆 動装置を示す電気回路図である。
第 3図は、 直流電圧と負荷との関係を示す図である。
第 4図は、 空気調和装置用モータ.駆動装置の効率のシミュレーション結 果を示す図である。
第 5図は、 この発明の空気調和装置用モータ駆動装置の一実施形態を示 す概略図である。
第 6図は、 この発明の空気調和装置用モータ駆動装置の他の実施形態を 示す概略図である。
第 7図は、 この発明の空気調和装置用モータ駆動装置のさらに他の実施 形態を示す概略図である。
第 8図は、 この発明の空気調和装置用モータ駆動装置のさらに他の実施 形態を示す概略図である。
第 9図は、 この発明の空気調和装置用モータ駆動装置のさらに他の実施 形態を示す概略図である。 . 発明を実施するための最良の形態 以下、 添付図面を参照して、 この発明の空気調和装置用モータ駆動装置 の実施の形態を詳細に説明する。
第 5図はこの発明の空気調和装置用モータ駆動装置の一実施形態を示す 概略図である。
この空気調和装置用モータ駆動装置は、 3相交流電源 1 0 0に対してリ ァク トル 1 0 1を介して接続された 3相コンバータ 2 0 0と、 3相コンパ ータ 2 0 0の出力端子間に接続された直流コンデンサ 3 0 0と、 直流コン デンサ 3 0 0の端子間電圧を動作電圧とする 3相インバータ 4 0 0とを有 し、 この 3相インバータ 4 0 0の出力を 3相負荷 (例えば、 空気調和装置 用モータ) 5 0 0に供給している。 なお、 リアタ トル 1 0 1の入力側端子 どうしの間にコンデンサ 1 0 2を接続している。 ただし、 このコンデンサ 1 0 2は省略可能である。 また、 3相コンバータ 2 0 0および 3相インバ ータ 4 0 0のスィツチング素子を制御するための制御部 8 0 0が設けられ ている。
3相コンバータ 2 0 0および 3相ィンバータ 4 0 0のスィツチング素子 は、 例えば、 集積 I G B T標準モジュールと同様であり、 3相交流電源 1 0 0および 3相負荷 5 0 0の入出力状態に合わせて設計される。
この制御部 8 0 0は、 直流コンデンサの端子間電圧 V d cを検出する第 1電圧検出部 8 0 1と、 3相ィンパータの入力電流 I dを検出する第 1電 流検出部 8 0 2と、 3相インバータからの 2相分の出力電流 I v、 I wを 検出する第 2電流検出部 8 0 3、 8 0 4と、 3相交流電源の各相電圧 V a、 V b、 V cを検出する第 2電圧検出部 8 0 5、 8 0 6、 8 0 7と、 直流コ ンデンサの端子間電圧 V d c、 端子間電圧指令値 V d c *、 3相ィンバー タの入力電流 I dを入力として (V d c * ) 2/ ( 2 V d c / I d ) の演算を 行って 3相ィンパータ側の電力の指令値 P R *を算出する電力指令算出部 8 0 8と、 端子間電圧指令値 V d c *と端子間電圧 V d cとの差分を算出 する差分算出部 809と、 算出された差分を入力として比例 ·積分演算を 行って 3相コンバータ側の電力の指令値を出力する P I演算部 8 1 0と、 両電力指令値を加算して総電力指令値 P *を出力する加算部 8 1 1と、 総 電力指令値 P *および 3相交流電源 1 05の各相電圧 V a、 Vb、 V cを 入力としてコンバータ指令値制御演算を行って各相電圧指令値 V a *、 V b *、 V c *を出力するコンバータ指令値制御部 8 1 2と、 三角波信号を 出力する三角波発生部 8 1 3と、 各相電圧指令値 V a *、 Vb *、 V c * および三角波信号を入力として 3相コンバータ 200の各相のスィッチン グ素子に供給すべきゲートドライブ信号 S (c o n) を出力するゲートド ライブ信号発生部 814と、 トルク指令値 TM*、 効率指令 *、 および 空気調和装置用モータ 500の回転子の回転角速度 ωを入力として d軸電 流指令値 i d *および q軸電流指令値 i q *を出力する d q電流指令発生 部 8 1 5と、 3相インバークからの出力電流 I V、 I w、 d軸電流指令値 i d *、 q軸電流指令値 i d *、 空気調和装置用モータ 500の回転子の 磁極位置 0、 および空気調和装置用'モータ 500の回転子の回転角速度 ω を入力としてインバータ指令値制御演算を行って各相電圧指令値 V a *、 Vb *、 V c *を出力するインバータ指令値制御部 8 1 6と、 各相電圧指 令値 V a *、 Vb *、 V c *、 1対のコンデンサの一方の端子間電圧 V d c、 および 3相インバータからの出力電流 I v、 I wを入力として過電圧 制御、 過電流制御、 および指令値制御を行って各相電圧指令値を出力する インバータ用制御部 8 1 7と、 各相電圧指令値および三角波信号を入力と して 3相ィンバータの各相のスィツチング素子 601に供給すべきゲート ドライブ信号 S ( i n v) を出力するゲートドライブ信号発生部 81 8と、 空気調和装置用モータ 500の回転子の回転角速度 ωを入力として出力周 波数 ί 0 u tを出力する出力周波数算出部 8 1 9と、 出力周波数 f 0 u t を入力として V/f の演算を行って出力電圧 Vo u tを出力する出力電圧算 出部 8 2 0と、 出力電圧 V o u tに所定の係数 kを乗算.して端子間電圧指 令値 V d c *を算出する端子間電圧指令値算出部 8 2 1とを有している。 上記の構成の空気調和装置用モータ駆動装置を採用すれば、 定電圧、 定 周波数の 3相交流電源 1 0 0を可変電圧、 可変周波数の 3相交流出力電力 に変換することができる。
第 3図に示すように、 3相コンバータ 2 0 0と 3相ィンバータ 4 0 0と の間の直流電圧は、 空気調和装置用モータ 5 0 0に給電する 3相インバー タ 4 0 0の 3つの主要な動作点 (定格冷房負荷点、 定格暖房負荷点、 およ ぴ最大負荷点) におけるコンバータ /ィンバータの総効率が最大になるよう に制御されている。 この制御方法は、 送電設備網側の P WMコンバータお よび負荷側の高電圧モータを使用することにより実現でき、 これは、 モー タの最適能力に必要な交流電圧を与えるために、 D Cリンクの直流電圧を 負荷側のィンバータにより必要とされる値に制御することを含む。
したがって、 前記 3相コンバータ 2 0 0は、 力率修正および直流電流、 直流電圧および入力電圧の瞬時情報に基づくサンプル制御ストラテジ一の ためのものである。 したがって、 双方向電力制御が可能である。
前記 3相コンバータ 2 0 0は、 線電圧と共に、 各相の正弦波電流を吸収 するように動作し、 各動作点における最大効率に対応する値となるように DCリンク電圧を制御する。
直流電圧の変化は避けることができないが、 出力効率に影響を及ぼさな いように、 指令値は、 電力装置の最大電圧により受け入れ可能な最大許容 値に設定される。 したがって、 負荷側の電力装置の電流定格を低減でき、 効率を増加させることができる。
第 4図は、 暖房低音点、 暖房定格点、 および冷房定格点における総効率 をシミュレーションした結果を示す図である。 なお、 シミュレーショ ン結 果としては、 左から順に、 ダイオードブリッジとインバータとの組み合わ せ、 コンバータとインバータとの組み合わせ {送電設備網側電圧が 200 V、 I GB Tの定格電圧が 600 V、 モータの定格電圧が 200 V (以下、 この組み合わせ状態を単に、 200 S/6 S S I /200Mと表す) の場 合 }、 コンバータとインバータとの組み合わせ (200 S/6 S S 1 /30 0M)、 コンバータとインバータとの組み合わせ (200 S/12 S S I/ 300M)、 コンバータとインパータとの組み合わせ (200 SZ1 2 S S I / 400M)、 コンバータとインパータとの組み合わせ (200 S/1 2 S S I / 500M)、 コンバータとインバータとの組み合わせ ( 200 S/ 1 2 S S I/600M) の場合を表している。
第 4図から分かるように、 コンバータとインバータとの組み合わせ (2 00 S/1 2 S S 1/400 M)、 コンバータとインバータとの組み合わせ (200 S/12 S S 1/500 M-), コンバータとインバータとの組み合 わせ (200 S/1 2 S S I/600M) の何れかを採用し、 しかも上記 の制御構成を採用することにより、 ダイォードブリッジとィンバータとの 組み合わせを採用した場合よりも高い効率を実現できることが分かる。 第 6図はこの発明の空気調和装置用モータ駆動装置の他の実施形態を示 す概略図である。
この空気調和装置用モータ駆動装置が第 5図の空気調和装置用モータ駆 動装置と異なる点は、 3相交流電源 100に代えて単相交流電源 1 1 0に 対処できるように、 3相コンバータ 200に代えて単相コンバータ 21 0 を採用した点、 および単相化に対応させて制御部 800の構成を簡単化し た点のみである。
したがって、 単相交流電源 1 1 ひに対処でき、 しかも第 5図の空気調和 装置用モータ駆動装置と同様の作用を達成することができる。
第 7図はこの発明の空気調和装置用モータ駆動装置のさらに他の実施形 態を示す概略図である。 この空気調和装置用モータ駆動装置が第 6図の空気調和装置用モータ駆 動装置と異なる点は、 単相コンバータ 2 1 0の、 互いに直列接続された 1 対づつのスィツチング素子の一方をダイォードで置換した点のみである。 この場合には、 単相コンバータ 2 1 0の構成を簡単化することができる とともに、 スイッチング素子数の減少に伴って損失を低減できるほか、 第 6図の空気調和装置用モータ駆動装置と同様の作用を達成することができ る。
第 8図はこの発明の空気調和装置用モータ駆動装置のさらに他の実施形 態を示す概略図である。
この空気調和装置用モータ駆動装置が第 5図の空気調和装置用モータ駆 動装置と異なる点は、 3相コンバータ 2 0 0に代えて、 異なる構成の 3相 コンバータ (3相電流源コンバータ) 2 2 0を採用した点、 3相コンバー タ 2 2 0の出力端子間にリアタトル 3 0 1を接続するとともに、 3相コン バータ 2 2 0の一方の出力端子と 3相ィンパータ 4 0 0の対応する入力端 子との間にダイオード 3 0 2を逆極性となるように接続した点、 およぴ制 御部 8 0 0の一部の構成を 3相コンバータ 2 2 0に対応させて変更した点 のみである。
3相コンバータ 2 2 0は、 各相毎に、 1対のダイオードの間にスィ ッチ ング素子を接続し、 さらに 1対の入力ダイォードの直列回路をスィッチン グ素子と逆極性で並列接続し、 入力ダイオードどうしの接続点をリアク ト ル 1 0 1を介して 3相交流電源 1 0 0に接続している。
リアクトル 3 0 1とダイォード 3 0 2とは、 互いに置換可能である。 制御部 8 0 0の対応部分は、 電力指令算出部 8 0 8、 加算部 8 1 1、 コ ンバータ指令値制御部 8 1 2、 およびゲートドライブ信号発生部 8 1 4に 代えて、 3相交流電源の 3相電圧を Δ— Y変換する Δ—Υ変換部 8 2 2と、 Δ— Y変換された 3相交流電圧と直流電圧指令とを入力として 3相のそれ ぞれの交流電圧指令を出力する 3相交流電圧指令算出部 8 2 3、 8 2 4、 8 2 5と、 三角波信号と直流電流とを入力としてキヤリブレーション信号 を出力するキヤリブレーション信号出力部 8 2 6と、 3相のそれぞれの交 流電圧指令とキャリブレーション信号とを入力として大小関係を示す信号 を出力する比較部 8 2 7、 8 2 8、 8 2 9と、 2つの比較信号を入力とし て N O R演算などを行ってゲートドライブ信号を出力するゲートドライブ 信号発生部 8 3 0、 8 3 1、 8 3 2とを設けている。
したがって、 3相コンバータ 2 2 0のスィツチング素子の数を減少させ て効率を向上させることができるほか、 第 5図の空気調和装置用モータ駆 動装置と同様の作用を達成することができる。
第 9図はこの発明の空気調和装置用モータ駆動装置のさらに他の実施 形態を示す概略図である。
この空気調和装置用モータ駆動装置が第 8図の空気調和装置用モータ駆 動装置と異なる点は、 3相交流電源 1 0 0に代えて単相交流電源 1 1 0に 対処できるように、 3相コンバータ 2 0 0に代えて単相コンバータ 2 3 0 を採用した点、 および単相化に対応させて制御部 8 0 0の構成を簡単化し た点のみである。 '
したがって、 単相交流電源 1 1 0に対処でき、 しかも第 8図の空気調和 装置用モータ駆動装置と同様の作用を達成することができる。
上記の空気調和装置用モータ駆動装置を採用すれば、 全範囲にわたって I E C規制をクリアできる。 また、 全ての動作点において従来装置よりも 高い効率を実現することができる。 スィツチング周波数を高めて交流リア ク トルのサイズを大幅に小さくし、 スイッチング素子の負荷側定格電力を 低減し、 電源側と負荷側との間の電力の流れの瞬時制御を採用して D Cリ ンクのコンデンサを小型化することによりコストダウンを達成することが できる。

Claims

請求の範囲
1. 交流電源 (100) (1 10) を入力とするコンバータ (200) (2 10) (220) (230) と、コンバータ(200) (21 0) (220) (2 30) からの出力電圧を入力として空気調和装置用モータ (500) に給 電する交流電圧を出力する 3相インバータ (400) と、 効率が最大にな るようにコンバータ (200) (210) (220) (230) を制御する制 御手段 (800) とを含むことを特徴とする空気調和装置用モータ駆動装 置。
2. 交流電源 (100) は 3相交流電源 (100) であり、 コンバータ (200) (220) は 3相コンバータ (200) (220) である請求項
1に記載の空気調和装置用モータ駆動装置。
3. 交流電源 (1 1 0) は単相交流電源 (1 1 0) であり、 コンバータ (21 0) (230) は単相コンバータ ( 2 1 0) ( 230) である請求項
1に記載の空気調和装置用モータ駆動装置。
4. コンバータ (200) (210) (220) (230) の入力側に直列 に接続されたリアクトノレ (101) および並列に接続されたコンデンサ (1 02) をさらに含む請求項 1から請求項 3の何れかに記載の空気調和装置 用モータ駆動装置。
5. コンバータ (200) (210) (220) (230) は、 1対のスィ ツチング素子の直列回路を相数に応じた数だけ並列接続し、 しかも、 各ス ィツチング素子と並列にダイォードを接続してなる請求項 1から請求項 4 の何れかに記載の空気調和装置用モータ駆動装置。
6. コンバータ ( 200) (2 1 0) ( 220) ( 230) は、 1つのス ィツチング素子と、 スィツチング素子を挟む順接続の 1対のダイォードの 直列回路を相数に応じた数だけ並列接続し、 しかも、 各スイッチング素子 と並列に逆接続の 1対のダイォードを接続してなる請求項 1から請求項 4 の何れかに記載の空気調和装置用モータ駆動装置。
PCT/JP2003/016486 2002-12-28 2003-12-22 空気調和装置用モータ駆動装置 WO2004062078A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03781004A EP1585214A4 (en) 2002-12-28 2003-12-22 ENGINE DRIVING DEVICE FOR AIR CONDITIONER
US10/540,981 US20060103342A1 (en) 2002-12-28 2003-12-22 Motor drive device for air conditioner
AU2003289496A AU2003289496A1 (en) 2002-12-28 2003-12-22 Motor drive device for air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-383734 2002-12-28
JP2002383734A JP2004215406A (ja) 2002-12-28 2002-12-28 空気調和装置用モータ駆動装置

Publications (1)

Publication Number Publication Date
WO2004062078A1 true WO2004062078A1 (ja) 2004-07-22

Family

ID=32708747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016486 WO2004062078A1 (ja) 2002-12-28 2003-12-22 空気調和装置用モータ駆動装置

Country Status (6)

Country Link
US (1) US20060103342A1 (ja)
EP (1) EP1585214A4 (ja)
JP (1) JP2004215406A (ja)
CN (1) CN1732618A (ja)
AU (1) AU2003289496A1 (ja)
WO (1) WO2004062078A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618121B2 (ja) 2005-12-26 2011-01-26 ダイキン工業株式会社 電力変換装置及び電力変換システム
JP4742989B2 (ja) * 2006-05-26 2011-08-10 株式会社日立製作所 モータ駆動用半導体装置とそれを有するモータ及びモータ駆動装置並びに空調機
JP4457124B2 (ja) * 2007-04-06 2010-04-28 日立アプライアンス株式会社 コンバータ・インバータ装置
FI121834B (fi) * 2008-02-29 2011-04-29 Kone Corp Tehonsyöttöjärjestely
US8302416B2 (en) * 2009-03-02 2012-11-06 Rocky Research Liquid refrigerant composite cooling system
US20110018474A1 (en) * 2009-07-27 2011-01-27 Rocky Research Electromechanical system having a variable frequency drive power supply for 3-phase and 1-phase motors
US20110016915A1 (en) * 2009-07-27 2011-01-27 Rocky Research High efficiency dc compressor and hvac/r system using the compressor
US9160258B2 (en) 2009-07-27 2015-10-13 Rocky Research Cooling system with increased efficiency
US8299646B2 (en) * 2009-07-27 2012-10-30 Rocky Research HVAC/R system with variable frequency drive (VFD) power supply for multiple motors
US8193660B2 (en) * 2009-07-27 2012-06-05 Rocky Research HVAC/R system having power back-up system with a DC-DC converter
US8299653B2 (en) * 2009-07-27 2012-10-30 Rocky Research HVAC/R system with variable frequency drive power supply for three-phase and single-phase motors
US20110018350A1 (en) * 2009-07-27 2011-01-27 Rocky Research Power back-up system with a dc-dc converter
US8278778B2 (en) * 2009-07-27 2012-10-02 Rocky Research HVAC/R battery back-up power supply system having a variable frequency drive (VFD) power supply
US9228750B2 (en) 2011-01-24 2016-01-05 Rocky Research HVAC/R system with multiple power sources and time-based selection logic
US9071078B2 (en) 2011-01-24 2015-06-30 Rocky Research Enclosure housing electronic components having hybrid HVAC/R system with power back-up
DE102012106033A1 (de) 2012-07-05 2014-01-09 Halla Visteon Climate Control Corporation 95 Verfahren zum Betreiben eines Inverters eines elektrischen Kältemittelverdichters unter Verwendung von elektrolytischen Zwischenkreis-Kondensatoren
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
CN111479910A (zh) 2017-12-18 2020-07-31 大金工业株式会社 制冷剂用或制冷剂组合物用的制冷机油、制冷机油的使用方法、以及作为制冷机油的用途
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
EP3730574B1 (en) 2017-12-18 2023-08-30 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450792A (en) * 1987-08-19 1989-02-27 Mitsubishi Electric Corp Inverter
JPH02231965A (ja) * 1989-03-01 1990-09-13 Isao Takahashi 定電圧・定周波数電源装置
JPH03265495A (ja) * 1990-03-14 1991-11-26 Hitachi Ltd 電力変換装置の制御装置
JPH0522985A (ja) * 1991-07-11 1993-01-29 Mitsubishi Electric Corp ノイズ防止装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840799A (en) * 1973-09-11 1974-10-08 Westinghouse Electric Corp Commutatorless dc motor drive arrangement
JP2760666B2 (ja) * 1991-03-15 1998-06-04 株式会社東芝 Pwmコンバ―タの制御方法及び装置
EP0657992B1 (en) * 1993-12-07 1998-04-15 Denso Corporation Alternating current generator for motor vehicles
JPH08196077A (ja) * 1994-11-18 1996-07-30 Toshiba Corp 電力変換装置及びこれを利用した空気調和装置
JP3296695B2 (ja) * 1995-08-29 2002-07-02 株式会社日立製作所 インバータ付き空気調和機
KR100456382B1 (ko) * 1995-10-06 2005-01-15 가부시끼가이샤 히다치 세이사꾸쇼 모터제어장치
JP3298450B2 (ja) * 1997-03-19 2002-07-02 株式会社日立製作所 空気調和機及び電力変換装置
JP3771681B2 (ja) * 1997-08-07 2006-04-26 東芝キヤリア株式会社 冷凍サイクル駆動装置用電動機の制御装置
JP4157619B2 (ja) * 1997-09-24 2008-10-01 東芝キヤリア株式会社 空気調和機
US5910892A (en) * 1997-10-23 1999-06-08 General Electric Company High power motor drive converter system and modulation control
JP2000041397A (ja) * 1998-07-22 2000-02-08 Matsushita Refrig Co Ltd 空気調和装置における振動軽減装置
JP3341826B2 (ja) * 1998-08-31 2002-11-05 株式会社日立製作所 Pwm/pam制御形モータ制御装置及びそれを用いた空調機及びモータの制御方法
JP2001037231A (ja) * 1999-07-15 2001-02-09 Toshiba Kyaria Kk 電源装置およびインバータ装置用リアクタ
WO2001041291A1 (en) * 1999-11-29 2001-06-07 Mitsubishi Denki Kabushiki Kaisha Inverter controller
US6995992B2 (en) * 2003-06-20 2006-02-07 Wisconsin Alumni Research Foundation Dual bridge matrix converter
JP4601044B2 (ja) * 2004-08-30 2010-12-22 日立アプライアンス株式会社 電力変換装置およびその電力変換装置を備えた空気調和機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450792A (en) * 1987-08-19 1989-02-27 Mitsubishi Electric Corp Inverter
JPH02231965A (ja) * 1989-03-01 1990-09-13 Isao Takahashi 定電圧・定周波数電源装置
JPH03265495A (ja) * 1990-03-14 1991-11-26 Hitachi Ltd 電力変換装置の制御装置
JPH0522985A (ja) * 1991-07-11 1993-01-29 Mitsubishi Electric Corp ノイズ防止装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1585214A4 *

Also Published As

Publication number Publication date
EP1585214A4 (en) 2006-03-22
US20060103342A1 (en) 2006-05-18
CN1732618A (zh) 2006-02-08
EP1585214A1 (en) 2005-10-12
AU2003289496A1 (en) 2004-07-29
JP2004215406A (ja) 2004-07-29

Similar Documents

Publication Publication Date Title
WO2004062078A1 (ja) 空気調和装置用モータ駆動装置
Siami et al. An experimental evaluation of predictive current control and predictive torque control for a PMSM fed by a matrix converter
Lee et al. Control of single-phase-to-three-phase AC/DC/AC PWM converters for induction motor drives
Pena et al. Control of a doubly fed induction generator via an indirect matrix converter with changing DC voltage
Liserre et al. An overview of three-phase voltage source active rectifiers interfacing the utility
KR101621994B1 (ko) 회생형 고압 인버터의 제어장치
Taib et al. Performance and efficiency control enhancement of wind power generation system based on DFIG using three-level sparse matrix converter
JP2004297999A (ja) 電力変換装置および電源装置
KR20160122922A (ko) 3상 인버터의 옵셋 전압 생성 장치 및 방법
WO2020166065A1 (ja) 電力変換装置、電動機駆動システム及び制御方法
Taïb et al. A fixed switching frequency direct torque control strategy for induction motor drives using indirect matrix converter
Un et al. Performance analysis and comparison of reduced common mode voltage PWM and standard PWM techniques for three-phase voltage source inverters
Kumar et al. Asymmetrical Three-Phase Multilevel Inverter for Grid-Integrated PLL-Less System
Nori et al. Modeling and simulation of quasi-Z-source indirect matrix converter for permanent magnet synchronous motor drive
Purwanto et al. Three-phase direct matrix converter with space vector modulation for induction motor drive
Lin et al. Half-bridge neutral point diode clamped rectifier for power factor correction
JP3666557B2 (ja) 電力変換回路
Estima et al. Efficiency evaluation of fault-tolerant operating strategies applied to three-phase permanent magnet synchronous motor drives
dos Santos et al. Grid-connected variable speed driven squirrel-cage induction motor through a nine-switch ac/ac converter with leading power factor
Chen An overview of power electronic converter technology for renewable energy systems
Liu et al. Vector control system of induction machine supplied by three-level inverter based on a fast svpwm algorithm
Takahashi et al. High power factor control for current-source type single-phase to three-phase matrix converter
Jang et al. Indirect matrix converter for permanent-magnet-synchronous-motor drives by improved torque predictive control
CN210468817U (zh) 九开关型双馈风机系统
JP4378952B2 (ja) 3相pam負荷駆動システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A76027

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006103342

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540981

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003781004

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003781004

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10540981

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003781004

Country of ref document: EP