WO2004062002A1 - 非水電解液電池用セパレータ - Google Patents

非水電解液電池用セパレータ Download PDF

Info

Publication number
WO2004062002A1
WO2004062002A1 PCT/JP2003/016360 JP0316360W WO2004062002A1 WO 2004062002 A1 WO2004062002 A1 WO 2004062002A1 JP 0316360 W JP0316360 W JP 0316360W WO 2004062002 A1 WO2004062002 A1 WO 2004062002A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
phosphazene derivative
separator
formula
aqueous electrolyte
Prior art date
Application number
PCT/JP2003/016360
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kanno
Masashi Otsuki
Shinichi Eguchi
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to JP2004564501A priority Critical patent/JPWO2004062002A1/ja
Priority to AU2003289453A priority patent/AU2003289453A1/en
Priority to DE60330061T priority patent/DE60330061D1/de
Priority to EP03780936A priority patent/EP1603175B1/en
Priority to US10/540,837 priority patent/US7585587B2/en
Publication of WO2004062002A1 publication Critical patent/WO2004062002A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a light separator for a non-aqueous electrolyte battery, particularly to a non-flammable non-aqueous electrolyte battery separator.
  • Non-aqueous electrolyte batteries using lithium as the negative electrode active material are known as one of the batteries with a high energy density because the electrode potential of lithium is the lowest among metals and the electric capacity per unit volume is large.
  • Many types of primary batteries and secondary batteries are actively researched, and some are put to practical use and supplied to the market.
  • non-aqueous electrolyte primary batteries are power cells, electronic watches, It is used as a power source for various types of memory backup, and the non-aqueous electrolyte secondary battery is used as a drive power source for notebook type portable computers and mobile phones.
  • a porous film of polyolefin such as polyethylene-polypropylene is used as a separator provided between the positive and negative electrodes of these nonaqueous electrolyte batteries to prevent a short circuit between the positive and negative electrodes.
  • the separator is provided with a large number of holes for allowing ions to pass during charging and discharging of the battery, and does not hinder the passage of ions under a normal use environment.
  • the separator itself may burn, and in this case, the temperature rise of the non-aqueous electrolyte battery is promoted, and There is a risk that the non-aqueous electrolyte battery may run away from heat.
  • an object of the present invention is to provide a nonflammable nonaqueous electrolyte battery separator that does not burn itself even when the temperature inside the battery becomes high.
  • the separator for a non-aqueous electrolyte battery of the present invention is characterized by comprising a microporous membrane formed by adding a phosphazene derivative and an isomer of Z or a phosphazene derivative to a polymer.
  • the polymer 10 In a preferred example of the non-aqueous electrolyte battery separator of the present invention, the polymer 10
  • the total amount of the phosphazene derivative and the isomer of the phosphazene derivative is 0.5 to 10 parts by mass relative to 0 parts by mass.
  • phosphazene derivative As the phosphazene derivative, a phosphazene derivative having a viscosity of 30 OmPas (300 cP) or less at 25 ° C and represented by the following formula (I) or the following formula (II): Body preferred,
  • RR 2 and R 3 each independently represent a monovalent substituent or a halogen element
  • X 1 represents carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen , Sulfur, selenium, tellurium and polonium represent a substituent containing at least one element selected from the group consisting of: ⁇ ⁇ 2 and ⁇ 3 each independently represent a divalent linking group, a divalent element or a single bond Represents.
  • R 4 independently represents a monovalent substituent or a halogen element; n represents 3 to 15.
  • phosphazene derivatives represented by the above formula (II) a phosphazene derivative represented by the following formula (III) or (IV) is particularly preferable.
  • n 3 to 13.
  • each R 5 independently represents a monovalent substituent or fluorine, at least one of all R 5 is a monovalent substituent containing fluorine or fluorine, and ⁇ represents 3 to 8. However, not all R 5 is fluorine.
  • a phosphazene derivative which is solid at 25 ° C. and represented by the following formula (V) is also preferable.
  • R 6 independently represents a monovalent substituent or a halogen element; n represents 3 to 6.
  • an isomer of a phosphazene derivative represented by the following formula (VI) and represented by the following formula (VII) is preferable.
  • R 7 , R 8 and R 9 each independently represent a monovalent substituent or a halogen element
  • X 2 represents carbon, silicon, genolemanium, tin, nitrogen, Represents a substituent containing at least one element selected from the group consisting of phosphorus, arsenic, antimony, bismuth, oxygen, sulfur, selenium, tenorel, and polonium
  • Y 7 and Y 8 each independently represent a divalent Represents a linking group, a divalent element or a single bond.
  • the polymer is polyolefin.
  • the polyolefin is polyethylene or Is particularly preferably polypropylene.
  • the non-aqueous electrolyte battery separator of the present invention comprises a microporous membrane formed by adding a phosphazene derivative and / or an isomer of a phosphazene derivative to a polymer.
  • the reason why the separator for a non-aqueous electrolyte battery of the present invention is formed from a polymer to which a phosphazene derivative and / or an isomer of a phosphazene derivative is added is as follows.
  • halogen for example, fluorine
  • carbides are formed on the pole material and the separator in the event of combustion, which has the effect of blocking oxygen, and phosphorus has the effect of suppressing chain decomposition of the polymer that is the raw material of the separator. Therefore, the danger of burning the separator can be effectively reduced.
  • the phosphazene derivative and its isomer preferably have a substituent containing a halogen element in the molecular structure.
  • a halogen element fluorine, chlorine, bromine and the like are preferable, and fluorine is particularly preferable.
  • the separator can more effectively exhibit nonflammability by the induced halogen gas even if the total amount of the phosphazene derivative and its isomer is small. Becomes possible.
  • the content of the halogen element in the phosphazene derivative and its isomer is preferably 2% by mass or more, more preferably 2 to 80% by mass, still more preferably 2 to 60% by mass, and preferably 2 to 50% by mass. Particularly preferred. If the content is less than 2% by mass, the effect of including a halogen element may not be sufficiently exhibited.
  • the halogen element fluorine, chlorine, bromine and the like are preferable, and fluorine is particularly preferable.
  • the 2 5 ° C 3 0 O m P a ⁇ s (3 0 0 c P) or less preferably has a 5 m P a 'S (5 c P) following viscosity, the equation
  • the phosphazene derivative represented by (I) or (II) is preferred.
  • R 1 R 2 and R 3 are not particularly limited as long as they are monovalent substituents or halogen elements.
  • the monovalent substituent include an anorecoxy group, a phenoxy group, an alkyl group, a carboxyl group, an acyl group, an aryl group, an alkylthio group and the like.
  • an alkoxy group is preferred because it has a particularly low viscosity.
  • the halogen element fluorine, chlorine, bromine and the like are preferably mentioned.
  • R 1 to R 3 may all be the same type of substituent, and some of them may be different types of substituents.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyshethoxy group.
  • alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyshethoxy group.
  • the ⁇ to 1 3 a total hand methoxy group, an ethoxy group, a preferred Metokishetokishi group or main butoxy ethoxy ethoxy carboxylate group, a point especially low viscosity, in all the main butoxy group or an ethoxy group It is particularly preferred that there is.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
  • Examples of the acetyl group include a formyl group, an acetyl group, a propionyl group, a butyryl group, an isoptyryl group, and a valeryl group.
  • Examples of the aryl group include a phenyl group, a tolyl group and a naphthyl group.
  • Said a Examples of the alkylthio group include a methylthio group, an ethylthio group, and a phenylthio group.
  • examples of the divalent linking group represented by Y 2 and 3 include, for example, CH 2 group, oxygen, sulfur, selenium, nitrogen, boron, aluminum, scandium, gallium, yttrium , Indium, lanthanum, thallium, carbon, silicon, titanium, tin, germanium, zirconium, lead, phosphorus, vanadium, arsenic, copper, antimony, tantanore, bismuth, chromium, molybdenum, tesolenole, porodium, tungsten, iron, cobalt, include divalent linking group containing a least one element selected from the group consisting of nickel, among these, CH 2 group and an oxygen, sulfur, selenium, a group consisting of nitrogen And a divalent linking group containing at least one element selected from the
  • a divalent linking group containing sulfur and / or selenium, a sulfur element, and a selenium element are particularly preferable. All yi Y 3 may be of the same type or some may be of different types.
  • R 1Q to R 14 represent a monovalent substituent or a halogen element.
  • Y W to Y 14 represent a divalent linking group, a divalent element, or a single bond, and Z represents a divalent group or a divalent element.
  • R 1Q to R 14 are preferably the same monovalent substituents or halogen elements as described for R ⁇ R 3 in the formula (I). It is listed. Further, these may be of the same type in the same organic group, or may be of different types. R 10 and R 11 in the formula (VIII), and R 13 and R 14 in the formula (X) may be bonded to each other to form a ring.
  • the groups represented by Y 1Q to Y 14 are the same divalent linking groups as described for ⁇ to ⁇ 3 in the formula (I). Or a divalent element, etc. Particularly, a group containing an element of sulfur and / or selenium is particularly preferable because the risk of burning the separator is reduced. These may be of the same type within the same organic group, or some may be of different types.
  • Z represents, for example, a CH 2 group, CHR (R represents an alkyl group, an alkoxyl group, a phenyl group, etc .; the same applies hereinafter), a NR group, oxygen, sulfur, and the like.
  • Z may be a divalent element such as oxygen, sulfur, and selenium.
  • an organic group containing phosphorus as represented by the formula (VIII) is particularly preferable in that the danger of burning the separator can be particularly effectively reduced.
  • R 4 is not particularly limited as long as it is a monovalent substituent or a halogen element.
  • the monovalent substituent include an alkoxy group, a phenoxy group, an alkyl group, a carboxyl group, an acyl group, an aryl group, an alkylthio group and the like, and among these, an alkoxy group and a phenoxy group are particularly preferred.
  • preferred examples of the halogen element include fluorine, chlorine, and bromine.
  • alkoxy group include a methoxy group, an ethoxy group, a methoxetoxy group, and a propoxy group.
  • a methoxy group, an ethoxy group, and a methoxyethoxy group are particularly preferable.
  • the hydrogen element in these substituents is preferably substituted with a halogen element.
  • a halogen element fluorine, chlorine, bromine and the like are preferred.
  • equations (1), (11), (VIII)-(X)! ⁇ ⁇ , R 10 ⁇ R 14, Y ⁇ Y 3, ⁇ 10 ⁇ 14, by appropriately selecting the zeta, more suitable viscosity, can be synthesized phosphazene derivative having a solubility such suitable for adding and mixing with Become.
  • the above phosphazene derivatives may be used alone or in combination of two or more.
  • the phosphazene derivative represented by the formula (III) is particularly preferable.
  • is preferably 3 to 4, and more preferably 3.
  • the value of ⁇ is small, the boiling point is low, and the ignition prevention characteristics at the time of flame contact can be improved.
  • the value of ⁇ increases, so that it can be used stably even at high temperatures. It is also possible to select and use a plurality of phosphazene derivatives at appropriate times in order to obtain the desired performance by utilizing the above properties.
  • the phosphazene derivative represented by the formula (IV) is particularly preferable.
  • the monovalent substituent in the formula (IV) include an alkoxy group, an alkyl group, an acyl group, an aryl group, a carboxyl group, an alkylthio group, etc., which effectively reduce the risk of burning the separator.
  • Alkoxy groups are preferred in that they can.
  • the alkoxy group include a methoxy group, an ethoxy group, an n -propoxy group, an i-propoxy group, a butoxy group and the like, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group.
  • a methoxy group, an ethoxy group, and an n-propoxy group are particularly preferred in that they can be reliably reduced.
  • n is preferably 3 or 4 from the viewpoint that the danger of burning of the separator can be effectively reduced.
  • the monovalent substituent is preferably substituted with fluorine. When none of R 5 in the formula (IV) is fluorine, at least one monovalent substituent contains fluorine.
  • the content of fluorine in the phosphazene derivative represented by the formula (IV) is preferably 3 to 70% by mass, more preferably 7 to 45% by mass.
  • the phosphazene derivative is preferably a solid at 25 ° C.
  • R 6 there is no particular limitation as long as it is a monovalent substituent or a halogen element.
  • the monovalent substituent include an alkoxy group, an alkyl group, a carboxyl group, an acyl group, an aryl group and the like. preferable.
  • the halogen element for example, a halogen element such as fluorine, chlorine, bromine, and iodine is preferably exemplified.
  • the alkoxy group is preferably a methoxy group, an ethoxy group, a methoxetoxy group, a propoxy group (y-propoxy group, n-propoxy group), a phenoxy group, a trif-n-ethoxy group, and the like.
  • Groups (isopropoxy group, n-propoxy group), phenoxy group, trifluoroethoxy group and the like are more preferable.
  • the monovalent substituent preferably contains the halogen element described above. In the formula (V), n is particularly preferably 3 or 4.
  • a structure of 4 a structure in which R 6 is an ⁇ -propoxy group and ⁇ is 4 in the formula (V), and a structure in which R 6 is a trifluoroethoxy group and ⁇ is 3 or 4 in the formula (V).
  • the isomer of the phosphazene derivative is preferably an isomer of the phosphazene derivative represented by the above formula (VI) and represented by the above formula (VII).
  • R 7 , R 8 and R 9 in the formula (VI) are not particularly limited as long as they are monovalent substituents or halogen elements, and are the same as those described in 1 to R 3 in the above formula (I). Both monovalent substituents and halogen elements are preferred.
  • the divalent linking group or divalent element represented by Y 7 and Y 8 is the same as the divalent linking group described for Y ⁇ Y 3 in the formula (I).
  • a linking group, a divalent element, and the like are all preferably exemplified.
  • the substituent represented by X 2 is the same as that described for X 1 in the formula (I). All of the substituents are preferably exemplified.
  • the isomer represented by the formula (VI) is an isomer of the phosphazene derivative represented by the formula (VII), and includes, for example, the degree of vacuum when the phosphazene derivative represented by the formula (VII) is produced.
  • the isomer can be produced by adjusting the temperature, and the content (% by volume) of the isomer can be measured by the following measurement method.
  • the peak area of the sample is determined by gel / repermeation chromatography (GPC) or high-speed solid chromatography, and the peak area is determined in advance per mole of the isomer.
  • the molar ratio can be obtained by comparing with the area, and can be measured by taking into account the specific gravity and converting the volume.
  • R 7 to R 9 , ⁇ 7 to ⁇ 8 and 2 in the formula (VII) are the same as those described in the description of R 7 to R 9 , Y 7 to Y 8 and X 2 in the formula (VI). Those are all suitably mentioned.
  • the flash point of the phosphazene derivative and its isomer is not particularly limited, but is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, from the viewpoint of suppressing the combustion of the separator, and 23
  • the temperature is more preferably 0 ° C or higher, and most preferably one that does not ignite.
  • the flash point is, specifically, a temperature at which a flame spreads on the surface of a substance and covers at least 75% of the surface of the substance. The flash point tends to form a combustible mixture with air. It is a measure of seeing.
  • the phosphazene derivative and its isomer have a flash point of 100 ° C. or more, the risk of burning the separator can be effectively reduced.
  • polystyrene resins such as polystyrene and ABS resins
  • Polyether such as butyl chloride resin, polyacetal, polyphenylene ether; polyphenylene Sulfur-containing polymers such as lensulphide, polyethersulfone, and polysulfone
  • polyimide polymers such as polyimide, polyamideimide, and polyetherimide
  • ketone polymers such as polyetheretherketone
  • polyamides and polytetrafluoroethylene And a cellulose-based material.
  • polyolefin is preferable in terms of chemical stability such as solvent resistance and mechanical strength such as tensile strength and bending strength.
  • the shape of the separator may be a sheet shape
  • the total amount of the phosphazene derivative and the isomers of the phosphazene derivative relative to the polymer is from 0.5 to 10 parts by mass with respect to 100 parts by mass of the polymer from the viewpoint of effectively reducing the danger of burning the separator. And preferably 1 to 5 parts by mass.
  • the total amount of the phosphazene derivative and the isomer of the phosphazene derivative is less than 0.5 part by mass, the effect of reducing the danger of burning of the separator is small, and when the amount exceeds 10 parts by mass, the separator is produced when the separator is produced.
  • the separator for a non-aqueous electrolyte battery of the present invention is a microporous membrane, and hardly hinders the passage of ions during charging and discharging of the battery, as in the conventional separator for a non-aqueous electrolyte battery.
  • the pore diameter of the separator for a non-aqueous electrolyte battery of the present invention is 0.05 to 5 m, preferably 0.1 to 1 ⁇ .
  • the thickness of the separator for a non-aqueous electrolyte battery of the present invention is appropriately selected depending on the mechanical strength required for the separator, and is 5 to 100 / m, preferably 7 to 40 m.
  • the porosity of the separator for a non-aqueous electrolyte battery of the present invention is appropriately selected depending on the desired permeability and liquid retention of the non-aqueous electrolyte, and is preferably 25 to 60%, preferably 3 to 50%. 5 to 50%.
  • the separator for a non-aqueous electrolyte battery of the present invention can be manufactured by a conventional method for manufacturing a separator for a non-aqueous electrolyte battery, and examples thereof include a dry process and a wet process as described below. .
  • a dry process first, the polymer is heated and melted in the first step, and the phosphazene derivative and / or the isomer of the phosphazene derivative are added to the melted polymer and mixed until uniform. I do.
  • the heating temperature is appropriately selected according to the melting point of the polymer used.
  • the mixture is extruded into a film by an extruder, and the annealed mixture is stretched by a stretching machine at a low temperature to form an initial stage of pores.
  • the film having pores in the initial stage is stretched by a stretching machine under a high temperature to form a microporous film.
  • the solvent, the polymer, and the phosphazene derivative and the isomer of Z or the phosphazene derivative are mixed and heated and melted.
  • the mixture is extruded into a film by an extruder, and further stretched in a uniaxial or biaxial direction by a stretcher.
  • the solvent used in the first step is extracted from the stretched film in the third step with a volatile solvent, and further air-dried to form a microporous membrane.
  • the melting temperature of the ultra-high molecular weight polyethylene Various known compounds having a higher boiling point can be used. Specifically, for example, paraffin wax which is solid at room temperature, or higher aliphatic alcohols such as stearyl alcohol and ceryl alcohol, n-alkane such as n-decane and n-dodecane which are liquid at room temperature. There can be mentioned paraffin, kerosene and the like.
  • the usage ratio of the base polymer and the plasticizer is usually 5 to 60% by mass of ultrahigh molecular weight polyethylene, preferably 10 to 50% by mass. / 0 , the plasticizer is selected from the range of 40 to 95% by mass, preferably 50 to 90% by mass. Further, the resin composition, known antioxidant, etc. in the resin composition, 0. 0 1-5 mass 0/0 approximately may be used in combination.
  • a non-aqueous electrolyte battery using the non-aqueous electrolyte battery separator of the present invention includes the above-described separator of the present invention, a positive electrode, a negative electrode, and an electrolytic solution. It may be a battery.
  • black tin fluoride [(CF x ) n ], Mn O 2 (even electrochemical synthesis may be chemical synthesis), V 2 0 5, Mo0 3, Ag 2 C R_ ⁇ 4, CuO, CuS, F e S 2, S_ ⁇ 2, SOC 1 2, T i S 2 and the like suitably include et al is, among these, safety high capacity, more from the viewpoint of excellent wettability discharge potential is high electrolyte Mn_ ⁇ 2, V 2 0 5, graphite fluoride are preferred in terms of cost Mn 0 2, V 2 0 5 is more preferable.
  • V 2 0 5, V 6 0 13, Mn 0 2, metal oxides such as MnO s, L i C o 0 2, L i N i 0 2, L i Mn 2 0 4, L i F e 0 2 and L i F e P 0 lithium-containing composite oxides such as 4, T i S 2, Mo S metal sulfides such as 2, a conductive polymer such Poriaerin such are preferred.
  • the lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni.
  • the oxide is L i F e x C o y N i (1 — x — y ) 0 2 (where 0 ⁇ ⁇ ⁇ 1, 0 ⁇ y ⁇ 1 0 x + y ⁇ 1), or L i Mn x F e y 0 2 - represented by x _ y like.
  • L i C o0 2, L i N i 0 2, L iMn 2 ⁇ 4 is particularly preferred. These materials may be used alone or in combination of two or more.
  • the above positive electrode can be mixed with a conductive agent and a binder as needed.
  • the conductive agent examples include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluorocarbon. Ethylene (PT FE) and the like.
  • the shape of the positive electrode is not particularly limited, and can be appropriately selected from known shapes of electrodes. For example, a sheet shape, a column shape, a plate shape, a spiral shape, and the like can be given.
  • examples of the negative electrode of the nonaqueous electrolyte primary battery include lithium alloys in addition to lithium metal itself.
  • examples of the metal that forms an alloy with lithium include Sn, Pb, Al, Au, Pt, In, Zn, Cd, Ag, and Mg. Among them, A1, Zn, and Mg are preferable from the viewpoint of large reserves and toxicity.
  • the negative electrode of the nonaqueous electrolyte secondary battery lithium metal itself, alloys of lithium with A1, In, Pb, Zn, or the like, and carbon materials such as lithium-doped graphite are preferable. Carbon materials such as graphite are preferred because of their higher safety. These materials may be used alone or in combination of two or more.
  • the shape of the negative electrode is not particularly limited, and may be appropriately selected from known shapes similar to the shape of the positive electrode.
  • the electrolytic solution contains a supporting salt and an aprotic organic solvent as main components.
  • the supporting Jishio may be those normally used in 'the source' ions of lithium ions, for example, L i C 1_Rei 4, L i BF 4, L i PF 6, L i CF 3 S_ ⁇ 3, L i a s F 6 , L i C 4 F 9 S0 3, L i (CF 3 S_ ⁇ 2) 2 N, and L i (C 2 F 5 S 0 2) lithium salts such as 2 N Are preferred. These may be used alone or in combination of two or more.
  • the aprotic organic solvent is not particularly limited, but includes an ether compound and an ester compound from the viewpoint of suppressing the viscosity of the electrolytic solution to be low.
  • an ether compound and an ester compound from the viewpoint of suppressing the viscosity of the electrolytic solution to be low.
  • 1,2-dimethoxetane, tetrahydrofuran, dimethyl carbonate, jeti / recarbonate, diphenolecarbonate, ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, ⁇ -valerolataton, methinoleetinore carbonate Preferable examples include ethyl methyl carbonate.
  • cyclic ester compounds such as propylene carbonate and ⁇ -petit mouth lactone
  • chain ester compounds such as dimethyl carbonate and methyl ethyl carbonate
  • 1,2-dimethoxetane When used for a non-aqueous electrolyte secondary battery, a cyclic ester compound such as ethylene carbonate, propylene carbonate, ⁇ -petit mouth rataton, dimethinolecarbonate, and ethyl methyl carbonate are preferred.
  • chain ester compounds such as dimethyl carbonate, and chain ether compounds such as 1,2-dimethoxetane.
  • Cyclic ester compounds are preferred in that they have a high relative dielectric constant and are excellent in the solubility of the supporting salt.
  • chain ester compounds and ether compounds have low viscosities. It is suitable in terms of. These may be used alone or in combination of two or more. May be used.
  • the content of the supporting salt in the electrolytic solution is preferably from 0.1 to 1 mol 1 force per 1 L of the aprotic organic solvent, and more preferably from 0.2 to: Lmo 1 force S. If the content force is less than S 0.1 lm o 1, sufficient conductivity of the electrolyte cannot be secured, which may affect the discharge characteristics of the battery. As described above, since the viscosity of the non-aqueous electrolyte increases and sufficient mobility of lithium ions cannot be secured, sufficient conductivity of the electrolyte cannot be secured as described above, and as a result, the solution resistance increases. In the case of a primary battery, the discharge characteristics may be affected, and in the case of a secondary battery, the charge / discharge characteristics may be affected.
  • a phosphazene derivative ⁇ an isomer of a phosphazene derivative is added as described in JP-A-6-1310 / 200-83636 / 1990. Is also good. In this case, in addition to the fact that the separator is nonflammable, the risk of ignition or ignition of the electrolyte is reduced, so that the risk of ignition of the nonaqueous electrolyte battery can be reliably reduced.
  • a separator for a non-aqueous electrolyte battery was manufactured by the above wet process.
  • Step 1 25 parts by weight of ultra-high molecular weight polyethylene powder having a weight average molecular weight of 200,000
  • phosphazene derivative A and stearyl alcohol 75 5 parts by mass are supplied to a 50 ⁇ twin-screw extruder, and are continuously extruded from an inflation die with a die diameter of 40 mm while kneading at 200 ° C. It was picked up at 1 Omm / min (die temperature: 170 ° C, draft rate: Dr 17.6) and melt-deformed at a professional ratio (BUR) of 5.5 to obtain a sheet with a thickness of 52 m. . This sheet was immersed in isopropyl alcohol at 60 ° C to extract stearyl alcohol, and a heating pin with a surface temperature of 125 ° C was used. Heat treatment was carried out using Tyrol to obtain a 38 / im polyethylene microporous membrane.
  • the phosphazene derivative A was synthesized by the following method.
  • X 1 in the formula (I) is represented by formula (VIII), in R ⁇ R 3 and R 1Q to R U are all C 1, 1 ⁇ 3 and ⁇ 1 ⁇ ⁇ 11 are all single bonds, A compound in which Z is oxygen was reacted with sodium ethoxide at a temperature of 140 ° C. in a toluene solvent, followed by molecular distillation to obtain a purified phosphazene derivative A.
  • the chemical formula of the phosphazene derivative A is shown below.
  • the self-extinguishing property was evaluated as the case where the ignited flame extinguished between the lines of 25 to 10 ° mm and no ignition was found on the falling object from the net drop.
  • JIS C85 13 (Safety of lithium primary battery) 6.
  • the thermal misuse test was arranged according to a modified method. That is, the test battery was placed in a thermostat and the temperature of the thermostat was raised at a rate of 5 ° CZ until it reached 150 ° C and 2 ° C. When the battery was stored at this temperature for 10 minutes and when stored for 30 minutes, the battery was ruptured or ignited under each condition, and X was determined when no rupture or ignition occurred.
  • a CR2016 type lithium primary battery was produced.
  • manganese dioxide EMD manufactured by Mitsui Mining
  • acetylene black acetylene black
  • polytetrafluoroethylene PTFE
  • the mass of the positive electrode is 2 Omg.
  • a lithium foil Thickness: 5 mm
  • punched out to a diameter of 16 mm was used, and for the current collector, an Eckel foil was used.
  • the electrolytic solution was prepared by dissolving at a concentration of 0. 75 mo 1 / L a L i BF 4 in y- butyrolactone (GBL).
  • the above battery was discharged to 1.5 V (lower limit voltage) at a constant current of 1 mA (0.2 C) in an atmosphere of 25 ° C, and the room temperature discharge capacity was measured.
  • an AA lithium secondary battery was produced as follows. First, with respect to L i CO0 (manufactured by Nippon Chemical Industrial Co., Ltd.) 2 10 parts by mass of Asechire Npurakku, polytetramethylene full O B Ethylene (PTFE) was added 10 parts by weight, an organic solvent (acetic Echiru and ethanol Then, the mixture was kneaded with a 50/50 volume% mixed solvent) and roll-rolled to produce a thin positive electrode sheet having a thickness of 1 ⁇ 0 / im and a width of 4 Omm. After that, using the two obtained positive electrode sheets, a 25 ⁇ -thick aluminum foil (current collector) with a conductive adhesive applied to the surface was sandwiched.
  • L i CO0 manufactured by Nippon Chemical Industrial Co., Ltd.
  • PTFE polytetramethylene full O B Ethylene
  • Aim's lithium metal foil was overlaid and rolled up to produce a cylindrical electrode.
  • the length of the positive electrode of the cylindrical electrode was about 26 Omm.
  • Electrolyte a mixed solution of Jefferies chill carbonate (DEC) 50 volume 0/0 of ethylene carbonate (EC) 50 volume 0/0, dissolving L i BF 4 a (supporting salt) at a concentration of 0.75mo 1 / L Prepared.
  • the electrolytic solution was injected into the cylindrical electrode and sealed to prepare an AA lithium secondary battery.
  • the above battery is charged and discharged repeatedly up to 50 cycles under the conditions of 25 ° C, upper limit voltage of 4.2 V, lower limit voltage of 3.0 V, discharge current of 10 OmA, and charging current of 5 OmA.
  • the initial charge / discharge capacity and the charge / discharge capacity after 50 cycles were measured.
  • Table 2 shows the ratio of each discharge capacity when the initial discharge capacity of Conventional Example 1 is 1.
  • a separator was produced in the same manner as in Example 1 from a polymer to which the phosphazene derivative was added in the amount shown in Table 1.
  • the phosphazene derivative B, the phosphazene derivative C, and the phosphazene derivative D were synthesized by the following method. (Method of synthesizing phosphazene derivative B)
  • Trifluoroacetic crab phosphorus trichloride (PC 1 2 F 3) room temperature conditions, is reacted with a GETS chill phosphoryl amide without solvent, by performing the molecular distillation to obtain purified phosphazene induced body B.
  • the chemical formula of the phosphazene derivative B is shown below.
  • Trifluoride crab chloride phosphate (PC 1 2 F 3) at room temperature conditions, by reaction with methanesulfonic ⁇ Mi de without solvent, X 1 in the formula (I) is represented by the formula (IX), R 1 Are compounds wherein all are fluorine, R 12 is a methyl group, and Y ⁇ Y 3 and Y 12 are all single bonds.
  • this compound was reacted with pyrrolidine in a toluene solvent at room temperature, followed by molecular distillation to obtain a purified phosphazene derivative C.
  • the chemical formula of the phos derivative C is shown below.
  • Trifluoride diphosphate chloride (PC 1 2 F 3) at room temperature conditions, by reaction with Asetoami de without solvent, the formula (I) in which X 1 Asechiru group - by (COCH 3), R 1 ⁇ R A compound was obtained in which 3 was all fluorine and YL Y 3 was all single bonds.
  • sodium phenoxide was added to the compound in an acetonitrile solvent at a temperature of ⁇ 40 ° C., and molecular distillation was performed to obtain a purified phosphazene derivative D.
  • the chemical formula of the phosphazene derivative D is shown below.
  • the phosphazene derivative E is a cyclic phosphazene derivative in which n is 3 and one of the six R 4 is a phenoxy group and the other five are fluorine in the formula (II);
  • ⁇ ⁇ a cyclic phosphazene derivative in which ⁇ is 3 and all R 4 is a methoxy group
  • the phosphazene derivative G is represented by the formula (II) in which ⁇ is 3 and all R 4 Is a cyclic phosphazene derivative in which is a phenoxy group
  • the phosphazene derivative ⁇ is represented by the following formula ( ⁇ ).
  • a separator was prepared in the same manner as in Example 1 except that the phosphacene derivative was not added, and used as a conventional example. The obtained separator was evaluated for thermal stability and thermal runaway in the same manner as in Example 1, and the porosity was measured and calculated.
  • a lithium primary battery provided with the above separator was produced in the same manner as in Example 1, and the initial battery characteristics (voltage, internal resistance), average discharge potential, and room temperature discharge capacity were measured. Table 1 shows the results.
  • a lithium secondary battery provided with the above separator was fabricated in the same manner as in Example 1, and the open circuit potential, average discharge potential, and charge / discharge cycle performance were measured and evaluated. Table 2 shows the results.
  • a nonflammable nonaqueous electrolyte battery separator comprising a microporous film formed by adding a phosphazene derivative and / or an isomer of a phosphazene derivative to a polymer. . Since the separator is nonflammable, the risk of the separator itself burning when the nonaqueous electrolyte battery becomes hot is significantly reduced. Further, the nonaqueous electrolyte battery provided with the separator does not impair the battery characteristics as compared with the conventional nonaqueous electrolyte battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

 本発明は、電池内の温度が高温になった際にも、セパレータ自身が燃焼することのない不燃性の非水電解液電池用セパレータに関し、特に、ポリマーにホスファゼン誘導体及び/又はホスファゼン誘導体の異性体を添加して形成した微多孔膜よりなる非水電解液電池用セパレータに関する。

Description

非水電解液電池用セパレータ 技術分野 '
本発明は、 非水電解液電池用明セパレータ、 特に不燃性の非水電解液電池用セパ レータに関するものである。 田
背景技術
近年、エレクトロ-タスの急速な進歩に伴い、特に小型電子機器の電源として、 小型、 軽量で、 かつ長寿命、 高エネルギー密度の電池が求められている。 リチウ ムを負極活物質とする非水電解液電池は、 リチウムの電極電位が金属中で最も低 く、 単位体積当りの電気容量が大きいために、 高エネルギー密度を有する電池の 一つとして知られており、 1次電池' 2次電池を問わず多くの種類のものが活発 に研究され、 一部が実用化し市場に供給され、 例えば、 非水電解液 1次電池は力 メラ、 電子ウォッチや各種メモリーバックアップ用電源として用いられており、 非水電解液 2次電池はノート型バソコンゃ携帯電話等の駆動電源として用いられ ている。
現在、 これら非水電解液電池の正極と負極との間に正負極間の短絡を防止する ために設けられるセパレータには、 ポリエチレンゃポリプロピレン等のポリオレ フィンを多孔質化したフィルムが用いられている。 該セパレータには、 電池の充 放電中にイオンを通過させるための多数の穴が設けられており、 通常の使用環境 下ではイオンの通過を阻害することはない。
上記非水電解液電池においては、 負極活物質のリチウムが水あるいはアルコー ルなど活性プロトンを有する化合物と激しく反応するため、該電池の電解液には、 燃焼性の非プロトン性有機溶媒が用いられているが、 該非プロトン性有機溶媒に は発火 '引火の危険性が高いという欠点がある。 そのため、 非水電解液電池用の セパレータは、 万が一短絡等により異常電流が流れる等して、 電池内の温度が 1 3 0〜1 5 0 °Cに上昇した際には、 セパレータ自身が溶融してセパレータの穴が 閉塞することで、 正負極間のイオンの透過を阻止、 即ち電流を遮断して、 温度上 昇をストップする機能 (シャットダウン効果) を備え、 電解液中の非プロ トン性 有機溶媒が発火■弓 I火する危険性を低減している (特開平 8— 1 3 8 6 4 4号公 報参照)。 発明の開示
しかしながら、 電池内の温度が 1 5 0 °Cを超えて更に高温になった場合は、 セ パレータ自体が燃焼する可能性があり、 この場合、 非水電解液電池の温度上昇が 促進され、 '非水電解液電池が熱暴走する危険性がある。
そこで、 本発明の目的は、 電池内の温度が高温になった際にも、 セパレータ自 身が燃焼することのない不燃性の非水電解液電池用セパレータを提供することに ある。
本発明者らは、 上記目的を達成するために鋭意検討した結果、 ホスファゼン誘 導体及び Z又はホスファゼン誘導体の異性体を添加したポリマーから形成したセ パレータカ 高温でも燃焼しないことを見出し、 本発明を完成させるに至った。 即ち、 本発明の非水電解液電池用セパレータは、 ポリマーにホスファゼン誘導 体及び Z又はホスファゼン誘導体の異性体を添加して形成した微多孔膜よりなる ことを特 ί敷とする。
本発明の非水電解液電池用セパレータの好適例においては、 前記ポリマー 1 0
0質量部に対する前記ホスファゼン誘導体及び前記ホスファゼン誘導体の異性体 の総添加量が 0. 5〜1 0質量部である。
前記ホスファゼン誘導体としては、 2 5 °Cにおいて 3 0 O m P a . s ( 3 0 0 c P)以下の粘度を有し、下記式 (I)又は下記式 (II)で表わされるホスファゼン誘導 体が好ましい ,
Figure imgf000004_0001
(式中、 R R2及び R3は、 それぞれ独立に一価の置換基又はハロゲン元素を表 し; X1は、炭素、ケィ素、 ゲルマニウム、スズ、窒素、 リン、 ヒ素、アンチモン、 ビスマス、 酸素、 硫黄、 セレン、 テルル及びポロニウムからなる群より選ばれる 元素の少なくとも 1種を含む置換基を表し; Υ Υ2及び Υ3は、 それぞれ独立に 2価の連結基、 2価の元素又は単結合を表す。)
(N P R4 2) „ · ■ · (II)
(式中、 R4はそれぞれ独立に一価の置換基又はハロゲン元素を表し; nは 3〜1 5を表す。)
また、上記式 (II)で表わされるホスファゼン誘導体の中でも、下記式 (III)又は 式 (IV)で表されるホスファゼン誘導体が特に好ましい。
(N P F2) „ ■ ■ ■ (III)
(式中、 nは 3〜 1 3を表す。)
(N P R5 2) η · ■ ■ (IV)
(式中、 R5はそれぞれ独立に一価の置換基又はフッ素を表し、 全 R5のうち少な くとも 1っはフッ素を含む一価の置換基又はフッ素であり、 ηは 3〜 8を表す。 但し、 総ての R5がフッ素であることはない。) また、 前記ホスファゼン誘導体としては、 2 5 °Cにおいて固体であって、 下記 式 (V)で表されるホスファゼン誘導体も好ましい。
(N P R6 2) n ■ · · (V)
(式中、 R6はそれぞれ独 R立に一価の置換基又はハロゲン元素を表し; nは 3〜6 を表す。)
前記ホスファゼン誘導体の異性体としては、 下記式 (VI)で表され、 且つ下記式 (VII)で表わされるホスファゼン誘導体の異性体が好ましい。
Figure imgf000005_0001
Y8R!
O R9
R7 Υ '— Ρ = Ν— X2 · · · · (
I
Y8R8
[式 (VI)及び (VII)において、 R7、 R8及び R9は、 それぞれ独立に一価の置換基 又はハロゲン元素を表し; X2は、 炭素、 ケィ素、 ゲノレマニウム、 スズ、 窒素、 リ ン、 ヒ素、 アンチモン、 ビスマス、 酸素、 硫黄、 セレン、 テノレル及ぴポロニウム からなる群より選ばれる元素の少なくとも 1種を含む置換基を表し; Y7及び Y8 は、 それぞれ独立に 2価の連結基、 2価の元素又は単結合を表す。]
また、 本発明の非水電解液電池用セパレータの他の好適例においては、 前記ポ リマーはポリオレフインである。 ここで、 該ポリオレフインは、 ポリエチレン又 はポリプロピレンであるのが特に好ましい。 発明を実施するための最良の態様
以下に、 本発明を詳細に説明する。 本発明の非水電解液電池用セパレータは、 ポリマーにホスファゼン誘導体及び/又はホスファゼン誘導体の異性体を添加し て形成した微多孔膜よりなる。 本発明の非水電解液電池用セパレータが、 ホスフ ァゼン誘導体及び/又はホスファゼン誘導体の異性体が添加されたポリマーから 形成される理由としては、 以下の通りである。 即ち、 セパレータ中にホスファゼ ン誘導体又はホスファゼン誘導体の異性体が存在する場合、 該ホスファゼン誘導 体及びその異性体から誘導される窒素ガス及びリン酸エステル等の作用によって セパレータが不燃性になり、 セパレータ自体が燃焼する危険性が低減される。 ま た、 ハロゲン (例えばフッ素) を含むホスファゼン誘導体及びその異 1"生体は、 万 がーの燃焼時には活性ラジカルの捕捉剤としても機能するし、 有機置換基を有す るホスファゼン誘導体及びその異性体は、 万が一の燃焼時には極材及ぴセパレー タ上に炭化物(チヤ一)を生成するため酸素の遮断効果もある。更に、 リンには、 セパレータの原料であるポリマーの連鎖分解を抑制する作用があるため、 効果的 にセパレータの燃焼の危険性を低減することができる。
上記ホスファゼン誘導体及びその異性体としては、 分子構造中にハロゲン元素 を含む置換基を有するのが好ましい。 ここで、 ハロゲン元素としては、 フッ素、 塩素、 臭素等が好ましく、 フッ素が特に好ましい。 分子構造中に、 ハロゲン元素 を含む置換基を有すると、 誘導されるハロゲンガスによって、 ホスファゼン誘導 体及びその異性体の総添加量が少なくても、 より効果的に不燃性をセパレータに 発現させることが可能となる。 なお、 ハロゲン元素を含む置換基を有する化合物 においては、 ハロゲンラジカルの発生が問題となることがあるが、 前記ホスファ ゼン誘導体及びその異性体においては、 分子構造中のリン元素がハロゲンラジカ ルを捕捉し、 安定なハロゲン化リンを形成するため、 このような問題は発生しな い。
上記ホスファゼン誘導体及びその異性体におけるハロゲン元素の含有量として は、 2質量%以上が好ましく、 2〜 8 0質量%がより好ましく、 2〜6 0質量% が更に好ましく、 2〜 5 0質量%が特に好ましい。 含有量が 2質量%未満では、 ハロゲン元素を含ませる効果が充分に現れないことがある。 該ハロゲン元素とし ては、 フッ素、 塩素、 臭素等が好ましく、 フッ素が特に好ましい。
上記ホスファゼン誘導体としては、 2 5 °Cにおいて 3 0 O m P a · s ( 3 0 0 c P ) 以下、 好ましくは 5 m P a ' S ( 5 c P ) 以下の粘度を有し、 前記式 (I)又は 式 (II)で表わされるホスファゼン誘導体が好ましい。
上記式 (I)において、 R1 R2及び R3としては、 一価の置換基又はハロゲン元 素であれば特に制限はない。 一価の置換基としては、 ァノレコキシ基、 フエノキシ 基、 アルキル基、 カルボキシル基、 ァシル基、 ァリール基、 アルキルチォ基等が 挙げられる。これらの中でも、特に低粘度である点で、アルコキシ基が好ましい。 —方、 ハロゲン元素としては、 フッ素、 塩素、 臭素等が好適に挙げられる。 R 1 〜R 3は、 総て同一の種類の置換基でもよく、 それらの内のいくつかが異なる種 類の置換基でもよい。
前記アルコキシ基としては、 例えばメトキシ基、 エトキシ基、 プロポキシ基、 ブトキシ基等や、 メトキシェトキシ基、 メ トキシエトキシェトキシ基等のアルコ キシ置換アルコキシ基等が挙げられる。 これらの中でも、 !^〜1 3としては、 総 てがメトキシ基、 エトキシ基、 メトキシェトキシ基、 又はメ トキシエトキシエト キシ基が好適であり、 特に低粘度である点、 総てがメ トキシ基又はエトキシ基で あるのが特に好適である。
前記アルキル基としては、 メチル基、 ェチル基、 プロピル基、 プチル基、 ペン チル基等が挙げられる。 前記ァシル基としては、 ホルミル基、 ァセチル基、 プロ ピオニル基、 ブチリル基、 イソプチリル基、 バレリル基等が挙げられる。 前記ァ リール基としては、 フエニル基、 トリル基、 ナフチル基等が挙げられる。 前記ァ ルキルチオ基としては、 メチルチオ基、 ェチルチオ基、 フエ二ルチオ基等が挙げ られる。
これらの一価の置換基中の水素元素は、 ハ口ゲン元素で置換されているのが好 ましく、 ハロゲン元素としては、 フッ素、 塩素、 臭素等が好適に挙げられる。 式 (I)において、 Y Υ2及ぴ Υ3で表される 2価の連結基としては、 例えば、 C H2基の他、酸素、硫黄、セレン、窒素、ホウ素、アルミニウム、スカンジウム、 ガリウム、 イットリウム、 インジウム、 ランタン、 タリウム、 炭素、 ケィ素、 チ タン、 スズ、 ゲルマニウム、 ジルコニウム、 鉛、 リン、 バナジウム、 ヒ素、 ュォ プ、 アンチモン、 タンタノレ、 ビスマス、 クロム、 モリブデン、 テゾレノレ、 ポロ-ゥ ム、 タングステン、 鉄、 コバルト、 ニッケルからなる群から選ばれる元素の少な くとも 1種を含む 2価の連結基が挙げられ、これらの中でも、 C H2基及び、酸素、 硫黄、 セレン、 窒素からなる群から選ばれる元素の少なくとも 1種を含む 2価の 連結基が好ましい。 また、 Y1 Y2及び Y3は、 酸素、 硫黄、 セレン等の 2価の元 素、 又は単結合であってもよい。 セパレータの安全性が格段に向上する点では、 硫黄及び/又はセレンの元素を含む 2価の連結基、 硫黄元素、 並びにセレン元素 が特に好ましい。 yi Y3は、 総て同一種類でもよく、 いくつかが互いに異なる 種類でもよい。
式 (I)において、 X1としては、 有害性、 環境等への配慮の観点からは、 炭素、 ケィ素、 窒素、 リン、 酸素及び硫黄からなる群から選ばれる元素の少なくとも 1 種を含む有機基が好ましい。 これらの有機基の内、次式 (VIII)、 (IX)又は (X)で表 される構造を有する有機基がより好ましい。 o o s ==
Figure imgf000009_0001
Ρ Ζ
Yn R
γ12 12
/
-
Figure imgf000009_0002
伹し、 式 (VIII)、 (IX) , (X)において、 R1Q〜R14は、 一価の置換基又はハロゲ ン元素を表す。 YW〜Y14は、 2価の連結基、 2価の元素、 又は単結合を表し、 Z は 2価の基又は 2価の元素を表す。
式 (VIII)、 (IX) , (X)において、 R1Q〜R14としては、 式 (I)における R^R3で 述べたのと同様の一価の置換基又はハロゲン元素がいずれも好適に挙げられる。 また、 これらは、 同一有機基内において、 それぞれ同一の種類でもよく、 いくつ かが互いに異なる種類でもよい。 式 (VIII)の R10と R11とは、 及び式 (X)の R13と R14とは、 互いに結合して環を形成していてもよい。
式 (VIII)、 (IX) N (X)において、 Y1Q〜Y14で表される基としては、 式 (I)におけ る γΐ〜γ3で述べたのと同様の 2価の連結基又は 2価の元素等が挙げられ、 同様 に、 硫黄及び/又はセレンの元素を含む基である場合には、 セパレータの燃焼の 危険性が低減するため特に好ましい。 これらは、 同一有機基内において、 それぞ れ同一の種類でもよく、 幾つかが互いに異なる種類でもよい。
式 (VIII)において、 Zとしては、例えば、 C H2基、 C H R (Rは、アルキル基、 アルコキシル基、 フエ二ル基等を表す。 以下同様。) 基、 N R基のほ力、 酸素、 硫 黄、 セレン、 ホウ素、 アルミニウム、 スカンジウム、 ガリウム、 イツトリゥム、 インジウム、 ランタン、 タリウム、炭素、 ケィ素、 チタン、 スズ、 ゲルマエゥム、 ジルコニウム、 鉛、 リン、 バナジウム、 ヒ素、 ニオブ、 アンチモン、 タンタル、 ビスマス、 クロム、 モリブデン、 テノレル、 ポロニウム、 タングステン、 鉄、 コノ ルト、 ニッケルからなる群から選ばれる元素の少なくとも 1種を含む 2価の基等 が挙げられ、 これらの中でも、 C H2基、 C H R基、 N R基のほか、 酸素、 硫黄、 セレンからなる群から選ばれる元素の少なくとも 1種を含む 2価の基が好ましい。 特に、 硫黄及び/又はセレンの元素を含む 2価の基の場合には、 セパレータの燃 焼の危険性が低減するため好ましい。 また、 Zは、 酸素、 硫黄、 セレン等の 2価 の元素であってもよい。
これら有機基としては、 特に効果的にセパレータの燃焼の危険性を低減し得る 点で、 式 (VIII)で表されるようなリンを含む有機基が特に好ましい。
上記式 (II)において、 R4としては、一価の置換基又はハロゲン元素であれば特 に制限はない。 一価の置換基としては、 アルコキシ基、 フエノキシ基、 アルキル 基、 カルボキシル基、 ァシル基、 ァリール基、 アルキルチオ基等が挙げられ、 こ れらの中でも、 特にアルコキシ基、 フエノキシ基等が好ましい。 一方、 ハロゲン 元素としては、 フッ素、 塩素、 臭素等が好適に挙げられる。 アルコキシ基として は、 例えば、 メ トキシ基、 エトキシ基、 メ トキシェトキシ基、 プロポキシ基等が 挙げられ、 これらの中でも、 メトキシ基、 エトキシ基、 メ トキシエトキシ基が特 に好ましい。 これらの置換基中の水素元素は、 ハロゲン元素で置換されているの が好ましく、ハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられる。 式 (1)、 (11)、 (VIII)〜(X)における!^〜 、 R10〜R14、 Y^Y3, Υ10〜Υ14、 ζを適宜選択することにより、 より好適な粘度、 添加 ·混合に適する溶解性等を 有するホスファゼン誘導体の合成が可能となる。 上記ホスファゼン誘導体は、 1 種単独で使用してもよく、 2種以上を併用してもよい。
前記式 (Π)のホスファゼン誘導体の中でも、前記式 (III)で表されるホスファゼ ン誘導体が特に好ましい。 式 (III)において、 ηとしては、 3〜4が好ましく、 3 がより好ましい。 ηの値が小さい場合には沸点が低く、 接炎時の着火防止特性を 向上させることができる。 一方、 ηの が大きくなるにつれて、 沸点が高くなる ため、 高温でも安定に使用することができる。 上記性質を利用して目的とする性 能を得るために、 複数のホスファゼン誘導体を適時選択し、 使用することも可能 である。
また、 前記式(II)のホスファゼン誘導体の中でも、 前記式 (IV)で表されるホス ファゼン誘導体も特に好ましい。 式 (IV)における一価の置換基としては、 アルコ キシ基のほか、 アルキル基、 ァシル基、 ァリール基、 カルボキシル基、 アルキル チォ基等が挙げられ、 セパレータが燃焼する危険性を効果的に低減できる点で、 アルコキシ基が好適である。該アルコキシ基としては、メトキシ基、エトキシ基、 n -プロポキシ基、 i -プロポキシ基、 ブトキシ基等のほか、 メトキシエトキシ基 等のアルコキシ基置換アルコキシ基等が挙げられ、 セパレータが燃焼する危険性 を確実に低減できる点で、 メトキシ基、エトキシ基、 n-プロポキシ基が特に好ま しい。 式 (IV)において、 nとしては、 セパレータの燃焼の危険性を効果的に低減 できる点で、 3〜4が好ましい。 前記一価の置換基は、 フッ素で置換されている のが好ましく、式(IV)の R5がーつもフッ素でない場合は、少なくとも一つの一価 の置換基はフッ素含む。 フッ素の式 (IV)で表されるホスファゼン誘導体における 含有量としては、 3〜7 0質量%が好ましく、 7〜4 5質量%がより好ましい。 上記ホスファゼン誘導体としては、 2 5 °C (常温) において固体であって、 上 記式 (V)で表されるホスファゼン誘導体も好ましレ、。式 (V)において、 R6としては、 一価の置換基又はハロゲン元素であれば特に制限はなく、一価の置換基としては、 アルコキシ基、 アルキル基、 カルボキシル基、 ァシル基、 ァリール基等が挙げら れ、 これらの中でもアルコキシ基が好ましい。 また、 ハロゲン元素としては、 例 えば、 フッ素、 塩素、 臭素、 ヨウ素等のハロゲン元素が好適に挙げられる。 前記 アルコキシ基としては、 メ トキシ基、 エトキシ基、 メ トキシェトキシ基、 プロボ キシ基 (ィ yプロポキシ基、 n-プロポキシ基)、 フエノキシ基、 トリフノレォロェ トキシ基等が好ましく、 メ トキシ基、 エトキシ基、 プロポキシ基 (イソプロポキ シ基、 n -プロポキシ基)、 フエノキシ基、 トリフルォロエトキシ基等がより好ま しい。 前記一価の置換基は、前述のハロゲン元素を含むのが好ましレ、。 式 (V)にお いて、 nとしては、 3又は 4が特に好ましい。
式 (V)で表されるホスファゼン誘導体としては、例えば、前記式 (V)において R6 がメ トキシ基であって nが 3である構造、 式 (V)において R6がメ トキシ基及びフ エノキシ基の少なくとも何れかであって nが 4である構造、 式 (V)において が ェトキシ基であつて nが 4である構造、 式 (V)において R6がィソプロポキシ基で あって ηが 3又は 4である構造、式 (V)において R 6が η -プロポキシ基であって η が 4である構造、 式 (V)において R6がトリフルォロエトキシ基であって ηが 3又 は 4である構造、 式 (V)において R6がフエノキシ基であって ηが 3又は 4である 構造が、 特に好ましい。
上記ホスファゼン誘導体の異性体としては、 上記式 (VI)で表され、 且つ上記式 (VII)で表されるホスファゼン誘導体の異性体が好ましい。 式 (VI)における R7、 R8及び R9としては、 一価の置換基又はハロゲン元素であれば特に制限はなく、 上述した式(I)における 1〜 R3で述べたのと同様の一価の置換基又はハロゲン 元素がいずれも好適に挙げられる。 また、 式 (VI)において、 Y7及び Y8で表され る 2価の連結基又は 2価の元素としては、式 (I)における Y^Y3で述べたのと同 様の 2価の連結基又は 2価の元素等がいずれも好適に挙げられる。 更に、 式 (VI) において、 X2で表される置換基としては、式 (I)における X1で述べたのと同様の 置換基がいずれも好適に挙げられる。
式 (VI)で表される異性体は、式 (VII)で表されるホスファゼン誘導体の異性体で あり、例えば、式 (VII)で表されるホスファゼン誘導体を生成する際の真空度及び
/又は温度を調節することで製造でき、 該異性体の含有量 (体積%) は、 下記測 定方法により測定することができる。
く測定方法 >
ゲ /レパーミエーシヨンクロマトグラフィー(G P C)又は高速^^夜体ク口マトダラ フィ一によつて試料のピーク面積を求め、 該ピーク面積を、 予め求めておいた前 記異性体のモルあたりの面積と比較することでモル比を得、 更に比重を考慮して 体積換算することで測定できる。
式 (VII)で表されるホスファゼン誘導体としては、粘度が比較的低レヽものが好ま しい。 式 (VII)の R7〜R9、 ¥7〜¥8及ぴ 2としては、 式 (VI)の R7〜R9、 Y7〜Y 8及び X2の説明で述べたのと同様のものが総て好適に挙げられる。
上記ホスファゼン誘導体及びその異性体の引火点としては、特に制限はないが、 セパレータの燃焼の抑制の点から、 1 0 0 °C以上が好ましく、 1 5 0 °C以上がよ り好ましく、 2 3 0 °C以上が更に好ましく、 引火しないものが最も好ましい。 こ こで、 引火点とは、 具体的には、 物質表面に炎が燃え広がり、 少なくとも該物質 表面の 7 5 %を覆う温度をいい、 該引火点は、 空気と燃焼性混合物を形成する傾 向を見る尺度となるものである。 ホスファゼン誘導体及びその異性体が 1 0 0 °C 以上に引火点を有していると、 セパレータが燃焼する危険性を効果的に低減する ことが可能となる。
上記ホスファゼン誘導体及び Z又はホスファゼン誘導体の異性体が添加される ポリマーとしては、 ポリエチレン、 ポリプロピレン等のポリオレフイン;ポリブ チレンテレフタレート、 ポリエチレンテレフタレート、 ポリカーボネート等のポ リエステル、 ポリスチレン、 A B S樹脂等のスチレン系樹脂;ポリ塩化ビュル系 樹脂、 ポリアセタール、 ポリフエ二レンエーテル等のポリエーテル;ポリフエェ レンスルフィ ド、 ポリエーテルスルホン、 ポリスルホン等の含硫黄ポリマー;ポ リイミド、 ポリアミドイミド、 ポリエーテルィミド等のポリイミド系ポリマー; ポリエーテルエーテルケトン等のケトン系ポリマーの他、 ポリアミド、 ポリテト ラフルォロエチレン等のフッ素樹脂、 セルロース系材料等が挙げられる。 これら の中でも、 耐溶剤性などの化学的安定性及び引っ張り強度や折り曲げ強度等の機 械的強度の点で、 ポリオレフインが好ましい。 また、 セパレータの形状は、 シー ト状、 フィルム状の他、 不織布状であってもよい。
上記ポリマーに対する前記ホスファゼン誘導体及びホスファゼン誘導体の異性 体の総添加量は、 セパレータの燃焼の危険性を効果的に低減する観点から、 ポリ マー 1 0 0質量部に対して 0. 5〜1 0質量部であり、 1〜 5質量部が好ましい。 ホスファゼン誘導体及びホスファゼン誘導体の異性体の総添加量が 0 . 5質量部 未満では、 セパレータの燃焼の危険性を低減する効果が小さく、 1 0質量部を超 えると、 セパレータを作製した際にセパレータの機械的強度が低下する。
本発明の非水電解液電池用セパレータは微多孔膜であり、 従来の非水電解液電 池用セパレータと同様に、 電池の充放電時にイオンの通過を殆ど阻害しない。 こ こで、本発明の非水電解液電池用セパレータの空孔の直径は、 0 . 0 0 5〜5 m、 好ましくは 0 .◦ 1〜 1 μ πιである。また、本発明の非水電解液電池用セパレータ の厚さは、 セパレータに要求される機械的強度に応じて適宜選択され、 5〜1 0 0 / m、 好ましくは 7〜 4 0 mである。 更に、 本発明の非水電解液電池用セパ レータ空孔率は、 目的とする非水電解液の浸透性及び保液性に応じて適宜選択さ れ、 2 5〜 6 0 %、 好ましくは 3 5〜 5 0 %である。
本発明の非水電解液電池用セパレータは、 従来の非水電解液電池用セパレータ の製造方法で製造することができ、 例えば、 以下に示すような乾式プロセスと湿 式プロセスを例示することができる。 例えば、 乾式プロセスにおいては、 まず第 1工程で上記ポリマーを加熱して溶融し、 溶融したポリマー中に前記ホスファゼ ン誘導体及び/又はホスファゼン誘導体の異性体を添加し、 均一になるまで混合 する。 ここで、 加熱温度は、 使用するポリマーの融点に応じ適宜選択される。 次 に第 2工程で、 前記混合物を押出機でフィルム状に押出し、 更にアニーリングし たものを低温下延伸機で延伸することにより空孔の初期段階を形成させる。 更に 第 3工程で、 前記初期段階の空孔を有するフィルムを高温下延伸機により延伸し て、 微多孔膜を形成する。
一方、 湿式プロセスにおいては、 まず第 1工程で溶媒と、 上記ポリマーと、 前 記ホスファゼン誘導体及び Z又はホスファゼン誘導体の異性体とを混合し、 加熱 溶融する。 次に第 2工程で、 前記混合物を押出機でフィルム状に押出し、 更に延 伸機で一軸方向又は二軸方向に延伸する。 更に第 3工程で前記延伸されたフィル ムから第 1工程で用いた溶媒を揮発性溶媒で抽出し、 更に風乾して微多孔膜を形 成する。
ポリマーへの可塑剤としては、 ポリマーとの相性がよく、 溶融混練や成形時に 蒸発しないようなもの、 例えば、 基材ポリマーに超高分子量ポリエチレンを用い た場合には、 超高分子量ポリエチレンの溶融温度より高い沸点を有するものであ れば公知の種々のものが使用できる。 具体的には、 例えば、 常温で固体であるパ ラフィンワックス、 或いは、 ステアリルアルコール、 セリルアルコールなどの高 級脂肪族アルコール、常温で液体の n -デカン、 n -ドデカン等の n -アルカン、.流 動パラフィン、 灯油などを挙げることができる。 基材ポリマーと可塑剤の使用割 合は、 通常、 超高分子量ポリエチレンが 5〜6 0質量%、 好ましくは 1 0〜5 0 質量。 /0で、 可塑剤が 4 0〜 9 5質量%、 好ましくは 5 0〜 9 0質量%の範囲から 選ばれる。 また、 樹脂組成物には、 公知の酸化防止剤などを樹脂組成物中、 0 . 0 1〜 5質量0 /0程度併用してもよい。
本発明の非水電解液電池用セパレータが用いられる非水電解液電池は、 上述し た本発明のセパレータと、 正極と、 負極と、 電解液とを備え、 1次電池であって も 2次電池であってもよい。
例えば、 非水電解液 1次電池の正極としては、 フッ化黒鈴 [ (C Fx)n]、 Mn O 2 (電気化学合成であっても化学合成であってもよい)、 V205、 Mo03、 Ag2C r〇4、 CuO、 CuS、 F e S2、 S〇2、 S O C 12、 T i S2等が好適に挙げら れ、 これらの中でも、 高容量で安全性、 さらには放電電位が高く電解液の濡れ性 に優れる点で、 Mn〇2、 V205、フッ化黒鉛が好ましく、コストの点では Mn 02、 V205がより好ましい。 一方、 非水電解液 2次電池の正極としては、 V205、 V6 013、 Mn 02、 MnOs等の金属酸化物、 L i C o 02、 L i N i 02、 L i Mn2 04、 L i F e 02及び L i F e P 04等のリチウム含有複合酸化物、 T i S2、 Mo S2等の金属硫化物、ポリアエリン等の導電性ポリマー等が好適に挙げられる。上 記リチウム含有複合酸化物は、 F e、 Mn、 C o及び N iからなる群から選択さ れる 2種又は 3種の遷移金属を含む複合酸化物であってもよく、 この場合、 該複 合酸化物は、 L i F exC oyN i (1xy)02 (式中、 0≤ χ< 1、 0≤y < 1 0く x + y≤ 1), あるいは L i MnxF ey02-x_y等で表される。 これらの中でも、 高 容量で安全性が高く、 更には電解液の濡れ性に優れる点で、 L i C o02、 L i N i 02、 L iMn24が特に好適である。 これらの材料は、 1種単独で使用しても よく、 2種以上を併用してもよい。 上記正極には、 必要に応じて導電剤、 結着剤 を混合することができ、 導電剤としてはアセチレンブラック等が挙げられ、 結着 剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルォロエチレン(PT FE)等が挙げられる。 上記正極の形状としては、特に制限はなく、電極として公 知の形状の中から適宜選択することができる。 例えば、 シート状、 円柱形状、 板 状形状、 スパイラル形状等が挙げられる。
また、 非水電解液 1次電池の負極としては、 例えば、 リチウム金属自体の他、 リチウム合金等が挙げられる。 ここで、 リチウムと合金をつくる金属としては、 Sn、 Pb、 A l、 Au、 P t、 I n、 Zn、 Cd、 Ag、 Mg等が挙げられる。 これらの中でも、 埋蔵量の多さ、 毒性の観点から A 1、 Zn、 Mgが好ましい。 一方、非水電解液 2次電池の負極としては、 リチウム金属自体、リチウムと A 1、 I n、 Pb又は Zn等との合金、 リチウムをドープした黒鉛等の炭素材料等が好 適に挙げられ、 これらの中でも安全性がより高い点で黒鉛等の炭素材料が好まし い。 これらの材料は、 1種単独で使用してもよく、 2種以上を併用してもよい。 負極の形状としては、 特に制限はなく、 前記正極の形状と同様の公知の形状から 適宜選択することができる。
上記電解液は、 支持塩及び非プロトン性有機溶媒を主成分とする。 ここで、 支 持塩としては、 リチウムイオンのイオン'源と'して通常用いるものであればよく、 例えば、 L i C 1〇4、 L i BF4、 L i PF6、 L i CF3S〇3、 L i A s F6、 L i C4F9S03、 L i (CF3S〇2)2N、 及び L i (C2F5S 02)2N等のリチウム塩が 好適に挙げられる。 これらは、 1種単独で使用してもよく、 2種以上を併用して あよい。
上記非プロトン性有機溶媒としては、 特に制限はないが、 電解液の粘度を低く 抑える観点から、エーテル化合物やエステル化合物等が挙げられる。具体的には、 1, 2-ジメ トキシェタン、 テトラヒドロフラン、 ジメチルカーボネート、 ジェチ /レカーボネート、 ジフエエノレカーボネート、 エチレンカーボネート、 プロピレン カーボネート、 γ -プチロラクトン、 γ-バレロラタトン、 メチノレエチノレカーボネ ート、 ェチルメチルカーボネート等が好適に挙げられる。 これらの中でも非水電 解液 1次電池に使用する場合は、プロピレンカーボネート、 γ -プチ口ラクトン等 の環状エステル化合物、 ジメチルカーボネート、 メチルェチルカーボネート等の 鎖状エステル化合物、 1, 2-ジメ トキシェタン等の鎖状エーテル化合物等が好適 であり、 非水電解液 2次電池に使用する場合は、 エチレンカーボネート、 プロピ レンカーボネート、 γ -プチ口ラタトン等の環状エステル化合物、ジメチノレカーボ ネート、 ェチルメチルカーボネート、 ジェチルカーボネート等の鎖状エステル化 合物、 1, 2-ジメ トキシェタン等の鎖状エーテル化合物等が好適である。 環状の エステル化合物は、 比誘電率が高く支持塩の溶解性に優れる点で好適であり、 一 方、 鎖状のエステル化合物及びエーテル化合物は、 低粘度であるため、 電解液の 低粘度ィ匕の点で好適である。 これらは 1種単独で使用してもよく、 2種以上を併 用してもよい。
電解液中の上記支持塩の含有量としては、 非プロトン性有機溶媒 1 Lに対し、 0. l〜lmo 1力好ましく、 0. 2〜: L mo 1力 Sより好ましい。含有量力 S 0. lm o 1未満の場合には、 電解液の充分な導電性を確保することができず、 電池の放 電特性に支障をきたすことがある一方、 1 mo 1を超える場合には、 非水電解液 の粘度が上昇し、 リチウムイオンの十分な移動度が確保できないため、 前述と同 様に電解液の十分な導電性が確保できず、 結果として溶液抵抗が上昇するため、 1次電池の場合は放電特性、 2次電池の場合は充放電特性に支障をきたすことが ある。
前記非水電角 夜には、 特開平 6— 1 3 1 08号公報ゃ特開 200 2— 8 3 6 2 8号公報に記載のようにホスファゼン誘導体ゃホスファゼン誘導体の異性体が添 加されていてもよい。 この場合、 セパレータが不燃性であることに加え、 電解液 の発火■引火の危険性が低減されるため、 非水電解液電池の発火等の危険性を確 実に低減することができる。
以下に、 実施例を挙げて本発明を更に詳しく説明するが、 本発明は下記の実施 例に何ら限定されるものではない。
(実施例 1 )
ーセパレータの作製一
上記湿式プロセスにより非水電解液電池用セパレータを作製した。 まず第 1ェ 程で重量平均分子量が 20 0万の超高分子量ポリエチレン粉末 2 5質量部に対し
0. 3質量部のホスファゼン誘導体 Aとステアリルアルコール 7 5質量部を 5 0 ταχηφ二軸押出機に供給し、 200°Cで混練しながら連続的にダイ直径 40 mm のインフレダイより押し出し、引き取り速度 1 Omm/m i n (ダイ温度 1 70°C, ドラフト率 D r 1 7. 6) で引き取り、 プロ一比 (BUR) 5. 5にて溶融変形を 加え、 膜厚 5 2 mのシートを得た。 このシートを 6 0°Cのイソプロピルアルコ ール中に浸漬し、 ステアリルアルコールを抽出し、 表面温度 1 2 5°Cの加熱ピン チロールにて熱処理して、 3 8 /i mのポリエチレン製微多孔膜を得た。 なお、 ホ スファゼン誘導体 Aは、 下記の方法で合成した。
(ホスファゼン誘導体 Aの合成方法)
前記式 (I)において X1が式 (VIII)で表され、 R^R3及び R1Q〜RUが総て C 1 で、 1〜丫3及び¥1〜¥11が総て単結合、 Zが酸素である化合物を、 トルエン溶 媒下、 一 4 0 °Cの温度条件でナトリウムエトキシドと反応させた後、 分子蒸留を 行うことにより、 精製したホスファゼン誘導体 Aを得た。 ホスファゼン誘導体 A の化学式を下記に示す。
CH3 … (A)
Figure imgf000019_0001
得られたセパレータを 1 5 0 °Cで 3時間保持し、その際の熱安定性を評価した。 また、 以下の方法でセパレータの熱暴走評価を行った。 更に、 セパレータの骨格 密度、 目付質量及び厚さから空孔率を算出した。 結果を表 1に示す。
(熱安定性の評価)
U L (アンダーライティングラボラトリー) 規格の U L 9 4 H B法をアレンジ した方法を用い、 大気環境下において着火した炎の燃焼長及び燃焼時間を測定 - 評価した。 その際、 着火性、 燃焼性、 炭化物の生成、 二次着火時の現象について も観察した。 具体的には、 U L試験基準に基づき、 セパレータを 1 2 7 mm X 1 2 . 7 mmの試験片を作製して行った。 以下に、不燃性'難燃性'自己消火性'燃 焼性の評価基準を示す。
く不燃性の評価〉
試験炎を添加しても全く着火しなかった場合 (燃焼長: O mm) を不燃性あり と評価した。 ぐ難燃性の評価 > '
着火した炎が、 装置の 25 mmラインまで到達せず、 かつ網からの落下物にも 着火が認められなかった場合を難燃性ありと評価した。
<自己消火性の評価 >
着火した炎が、 25から 10◦ mmラインの間で消火し、 かつ、 網落下からの 落下物にも着火が認められなかった場合を自己消火性ありと評価した。
<燃焼性の評価 >
着火した炎が、 1 0 Ommラインを超えた場合を燃焼性ありと評価した。 (熱暴走評価)
J I S C85 1 3 (リチウム一次電池の安全性) 6. 2. 2. 1 1 環境に関 する試験 F-1 熱的誤用試験をアレンジした方法により試験した。 すなわち、 試験電池を恒温槽中に入れて恒温槽の温度を 1 5 0土 2°Cになるまで 5°CZ分 の割合で上昇させた。 そして、 この温度で 10分間保存した場合と 30分保存し た場合において、 各々の条件において電池が破裂或いは発火した場合を X、 破裂 或いは発火が無かった場合を〇とした。
一リチウム 1次電池の作製一
また、上記セパレータを用レ、、 CR 20 1 6型のリチウム 1次電池を作製した。 正極は、 二酸化マンガン (三井鉱山製 EMD) と、 アセチレンブラックと、 ポリ テトラフルォロエチレン(PTFE)とを 8 : 1 : 1の割合 (質量比) で混合 '混 鍊し、該混練物をドクターブレードで塗工した後、熱風乾燥(1 00〜1 20°C) して得たものを、 φ 1 6mm打ち抜き機で切り出すことにより作製した。 なお、 正極の質量は 2 Omgである。 また、負極には、 リチウム箔 (厚み 5 mm) を Φ 1 6mmに打ち抜いたものを使用し、集電体にはエッケル箔を使用した。また、 電解液は、 L i BF4を y-ブチロラクトン(GBL)に 0. 75 m o 1 /Lの濃度で 溶解させて調製した。
上記のようにして得られたリチウム 1次電池について、 2 5 °Cにおいて初期の 電池特性 (電圧、 内部抵抗) を測定した後、 下記の評価方法により平均放電電位 及び常温放電容量を測定した。 結果を表 1に示す。
<平均放電電位の評価 >
正極材に対して 0. 2 Cの条件で放電した時に得られる放電曲線において、曲線 が平坦を持続している時の電位を平均放電電位として評価した。
<常温放電容量の評価 >
上記電池を、 25 °Cの大気下、 1mA (0.2C) の定電流で 1. 5 V (下限電 圧) まで放電させ、 常温放電容量を測定した。
一リチウム 2次電池の作製一
また、 上記セパレータを用い、 次のようにして単三型リチウム 2次電池を作製 した。 まず、 L i Co02 (日本化学工業社製) 100質量部に対して、ァセチレ ンプラックを 10質量部、ポリテトラフルォロエチレン(PTFE)を 10質量部 添加し、有機溶媒(酢酸ェチルとエタノールとの 50/50体積%混合溶媒)で混 練した後、 ロール圧延により厚さ 1◦ 0 /im、 幅 4 Ommの薄層状の正極シート を作製した。 その後、 得られた正極シート 2枚を用いて、 表面に導電性接着剤を 塗布した、 厚さ 25 μιηのアルミニウム箔 (集電体) を挟み込み、 これに上記セ パレータを介在させ、厚さ 150 Aimのリチウム金属箔を重ね合わせて巻き上げ、 円筒型電極を作製した。 該円筒型電極の正極長さは約 26 Ommであった。 電解 液は、ジェチルカーボネート(D E C) 50体積0 /0とエチレンカーボネート(E C) 50体積0 /0との混合溶液に、 L i B F 4 (支持塩)を 0.75mo 1/Lの濃度で溶解 させることにより調製した。 該電解液を前記円筒型電極に注入して封口し、 単三 型リチウム 2次電池を作製した。
上記のようにして得られたリチウム 2次電池について、 4.2V充電後、 25°C において 10日間開回路で保存した場合の開回路電位 (自己放電特性) 及び平均 放電電位を測定し、 更に下記の評価方法により充放電サイクル性能を測定■評価 した。 結果を表 2に示す。 く充放電サイクル性能の評価 >
上記電池を、 2 5 °Cの大気下、 上限電圧 4 . 2 V、 下限電圧 3 . 0 V、 放電電流 1 0 O mA, 充電電流 5 O mAの条件で、 5 0サイクルまで充放電を繰り返し、 初期の充放電容量と 5 0サイクル後充放電容量を測定した。 従来例 1の初期の放 電容量を 1とした場合の各放電容量の割合を表 2に示す。
(実施例 2〜 8及び従来例)
ホスファゼン誘導体が表 1に示す添加量で添加されたポリマーから上記実施例 1と同様にしてセパレータを作製した。 ここで、 ホスファゼン誘導体 B、 ホスフ ァゼン誘導体 C、 ホスファゼン誘導体 Dは下記の方法で合成したものである。 (ホスファゼン誘導体 Bの合成方法)
三フッ化ニ塩化リン ( P C 1 2 F3) を室温条件、 無溶媒でジェチルホスホリル アミドと反応させた後、 分子蒸留を行うことにより、 精製したホスファゼン誘導 体 Bを得た。 ホスファゼン誘導体 Bの化学式を下記に示す。
F 0CH2CH3
F— P=N— P=0 … (B)
F 0CH2CH3
(ホスファゼン誘導体 cの合成方法)
三フッ化ニ塩化リン (P C 1 2 F3) を室温条件、 無溶媒でメタンスルホンァミ ドと反応させることにより、 前記式 (I)において X1が式 (IX)で表され、 R1〜 が総てフッ素で、 R12がメチル基で、 Y^Y3及び Y12が総て単結合である化合物 を得た。 次に、 この化合物をトルエン溶媒下、 室温条件でピロリジンと反応させ た後、 分子蒸留を行うことにより、 精製したホスファゼン誘導体 Cを得た。 ホス 誘導体 Cの化学式を下記に示す。
Figure imgf000023_0001
(ホスファゼン誘導体 Dの合成方法)
三フッ化二塩化リン (P C 1 2F3) を室温条件、 無溶媒でァセトアミ ドと反応 させることにより、 前記式 (I)において X1がァセチル基 (- C O C H3) で、 R1 〜R 3が総てフッ素で、 YL Y3が総て単結合ある化合物を得た。 次に、 この化合 物に、 ァセトニトリル溶媒下、 ー4 0 °Cの温度条件でナトリゥムフエノキシドを 添加し、 分子蒸留を行うことにより、 精製したホスファゼン誘導体 Dを得た。 ホ スファゼン誘導体 Dの化学式を下記に示す。
Figure imgf000023_0002
また、 ホスファゼン誘導体 Eは、前記式(II)において、 nが 3で 6つの R4のう ちの一つがフエノキシ基であり、 他の 5つがフッ素である環状ホスファゼン誘導 体であり ;ホスファゼン誘導体 Fは、 前記式 (Π)において、 ηが 3ですベての R4 がメ トキシ基である環状ホスファゼン誘導体であり ;ホスファゼン誘導体 Gは、 前記式(II)において、 ηが 3ですベての R 4がフエノキシ基である環状ホスファゼ ン誘導体であり ;ホスファゼン誘導体 Ηは、 下記式 (Η)で表される。
Figure imgf000024_0001
F P P F
F F また、 ホスファセン誘導体を添加しない以外は実施例 1と同様にしてセパレー タを作製し、 従来例とした。 得られたセパレータについて、 実施例 1と同様にし て熱安定性及び熱暴走性を評価し、 空孔率を測定 ·算出した。
更に上記セパレータを備えたリチウム 1次電池を実施例 1と同様に作製し、 初 期の電池特性(電圧、 内部抵抗)、平均放電電位、 常温放電容量を測定した。結果 を表 1に示す。 また、 上記セパレータを備えたリチウム 2次電池を実施例 1と同 様に作製し、開回路電位、平均放電電位、充放電サイクル性能を測定 '評価した。 結果を表 2に示す。
熱暴走評価 1次電池の電池特性
セハ °レータ
ホ°リマ- ホスファセ "ン 熱安定 空孔率 平均
10分 30分 の厚さ m?nn. (質量部) (質量部) 性評価 初期電位 内部抵抗
保持 保持 ( m) (%)
(V) 放電電位放電容量
(Ω) (V) (mAh/g) ホ。リエチレン
従来例 1 ― 燃焼性 X X 38 40 3.55 13.2 2.65 238
25
ホ°リエチレン ホスファセ "ン A
実施例 1 不燃性 〇 〇 38 40 3.65 12.6 2.63 234
25 0.3
ホ。リエチレン ホスファセン B
実施例 2 不燃性 〇 〇 38 40 3.63 13.0 2.66 240
25 0.3
ホ°リエチレン ホスファセ 'ン C
実施例 3 不燃性 〇 〇 38 40 3.62 10.8 2.65 245
25 0.3
ホ。リエチレン ホスファセ -ン D
実施例 4 不燃性 〇 〇 38 40 3.66 11.2 2.63 248
25 0.3
ホ°リエチレン ホスファセ "ン E
実施例 5 不燃性 o O 38 40 3.64 13.2 2.64 246
25 0.3
ホ。リエチレン ホスファセ-ン F
実施例 6 不燃性 〇 〇 38 40 3.61 13.9 2.65 243
25 0.3
ホ°リエチレン ホスファセン G
実施例 7 不燃性 〇 〇 38 40 3.62 13.0 2.65 241
25 0.3
ホ。リエチレン ホスフアセ^ H
実施例 8 不燃性 〇 〇 38 40 3.65 11.6 2.64 240
2次電池の電池特性
サイクル特性
ホ。リマ— ホスファセ、'ン 開回路 平均
(質量部) (質量部) 放電電位 50サイクル
初期の
(V) (V) 後の
放電容量
放電容量 ホ。リエチレン
従来例 1 一 4.02 3.45 1 .00 0.85
25
ホ。リエチレン ホスファセ 'ン A
実施例 1 4.05 3.46 1 .03 0.89
25 0.3
ホ。リエチレン ホスファセン B
実施例 2 4.10 3.48 1 .05 0.92
25 0.3
ホ。リエチレン ホスフアセ^ G
実施例 3 4.12 3.46 1 .03 0.88
25 0.3
ホ。リエチレン ホスファセン D
実施例 4 4.08 3.45 1 .01 0.89
25 0.3
ホ。リエチレン ホスファセ E
実施例 5 4.05 3.45 1 .03 0.90
25 0.3
ホ。リエチレン ホスファセ "ン F
実施例 6 4.08 3.48 1 .03 0.94
25 0.3
ホ。リエチレン ホスフアセ^ G
実施例 7 4.12 3.50 1 .05 0.95
25 0.3
ホ。リエチレン ホスファセ "ン H
実施例 8 4.10 3.50 1 .00 0.92
25 0.3
表 1から、 実施例 1〜8のセパレータは、 熱安定性が良好で、 且つ熱暴走する こともなく、 燃焼の危険性が著しく低減されていることが分かる。 一方、 従来例 のセパレータは、 熱安定性が実施例のセパレータに比べ劣り、 更に熱暴走も起こ り、 燃焼の危険性が高いことが分かる。 また、 表 1及び2から、 実施例 1〜8の セパレータを備えたリチウム 1次電池 (非水電解液 1次電池) 及びリチウム2次 電池 (非水電解液 2次電池) は、 従来例の電池と比べ電池特性が夫々低下するこ とがなく、 実用に供し得ることが確認された。 産業上の利用可能性
本 ¾明によれば、 ポリマーにホスファゼン誘導体及び/又はホスファゼン誘導 体の異性体を添カ卩して形成した微多孔膜よりなる不燃性の非水電解液電池用セパ レータを提供することができる。 該セパレータは不燃性であるので、 非水電解液 電池が高温になった際にセパレータ自体が燃焼する危険性が著しく低減されてい る。 また、 該セパレータを備えた非水電解液電池は、 従来の非水電解液電池と比 ベ電池特性を損なうことない。

Claims

請 求 の 範 囲
1 . ポリマーにホスファゼン誘導体及び/又はホスファゼン誘導体の異性体を 添加して形成した微多孔膜よりなる非水電解液電池用セパレータ。
2. 前記ポリマー 1 0 0質量部に対する前記ホスファゼン誘導体及び前記ホス ファゼン誘導体の異性体の総添加量が 0 . 5〜 1 0質量部であることを特徴 とする請求項 1に記載の非水電解液電池用セパレータ。
3 . 前記ホスファゼン誘導体が、 2 5。Cにおいて 3 0 O m P a · s ( 3 0 0 c P ) 以下の粘度を有し、下記式 (I)又は下記式 (I I)で表わされることを特徴とする 請求項 1に記載の非水電解液電池用セパレータ。
R2 Υ2— Ρ = Ν— X1 · · · · ( I )
I
Y3 R3
(式中、 R R2及び R3は、 それぞれ独立に一価の置換基又はハロゲン元素 を表し; X1は、 炭素、 ケィ素、 ゲノレマユゥム、 スズ、 窒素、 リン、 ヒ素、 了 ンチモン、 ビスマス、 酸素、 硫黄、 セレン、 テノレル及びポロニウムからなる 群より選ばれる元素の少なくとも 1種を含む置換基を表し; Υ Υ2及び Υ3 は、 それぞれ独立に 2価の連結基、 2価の元素又は単結合を表す。)
(N P R4 2) η · ■ ■ (II)
(式中、 R4はそれぞれ独立に一価の置換基又はハロゲン元素を表し; 11は 3 〜 1 5を表す。 )
. 上記式 (II)で表わされるホスファゼン誘導体力 下記式 (III)で表されるこ とを特徴とする請求項 3に記載の非水電解液電池用セパレータ
(N P F2) (III)
(式中、 nは 3〜1 3を表す。)
上記式 (II)で表わされるホスファゼン誘導体が、 下記式 (IV)で表されるこ とを特徴とする請求項 3に記載の非水電解液電池用セパレータ。
(N P R5 2) n · ■ ■ (IV)
(式中、 R5はそれぞれ独立に一価の置換基又はフッ素を表し、 全 R5のうち 少なくとも 1っはフッ素を含む一価の置換基又はフッ素であり、 nは 3〜 8 を表す。 伹し、 総ての R5がフッ素であることはない。)
前記ホスファゼン誘導体が、 2 5 °Cにおいて固体であって、下記式 (V)で表 されることを特徴とする請求項 1に記載の非水電解液電池用セパレータ。
(N P R6 2) η · · ■ (V)
(式中、 R6はそれぞれ独立に一価の置換基又はハロゲン元素を表し; nは 3 〜6を表す。)
前記ホスファゼン誘導体の異性体力 下記式 (VI)で表され、且つ下記式 (VI I) で表わされるホスファゼン誘導体の異性体であることを特徴とする請求項 1 に記載の非水電 液電池用セパレータ。
Figure imgf000029_0001
Y8R' O Ra
R7 Y7— P = N— X2
Y8R8
[式 (VI)及び (VII)において、 R7、 R8及び R9は、 それぞれ独立に一価の置 換基又はハロゲン元素を表し; X2は、 炭素、 ケィ素、 ゲルマニウム、 スズ、 窒素、 リン、 ヒ素、 アンチモン、 ビスマス、 酸素、 硫黄、 セレン、 テルル及 びポロニウムからなる群より選ばれる元素の少なくとも 1種を含む置換基を 表し; Y7及び Y8は、 それぞれ独立に 2価の連結基、 2価の元素又は単結合 を表す。]
前記ポリマーがポリオレフィンである請求項 1に記載の非水電解液電池用 セパレータ。
前記ポリオレフィンがポリエチレン又はポリプロピレンである請求項 8に 記載の非水電解液電池用セパレータ。
PCT/JP2003/016360 2002-12-27 2003-12-19 非水電解液電池用セパレータ WO2004062002A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004564501A JPWO2004062002A1 (ja) 2002-12-27 2003-12-19 非水電解液電池用セパレータ
AU2003289453A AU2003289453A1 (en) 2002-12-27 2003-12-19 Separator for nonaqueous electrolyte cell
DE60330061T DE60330061D1 (de) 2002-12-27 2003-12-19 Separator für eine nicht wässrige elektrolytzelle
EP03780936A EP1603175B1 (en) 2002-12-27 2003-12-19 Separator for nonaqueous electrolyte cell
US10/540,837 US7585587B2 (en) 2002-12-27 2003-12-19 Separator for non-aqueous electrolyte cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002380683 2002-12-27
JP2002-380683 2002-12-27

Publications (1)

Publication Number Publication Date
WO2004062002A1 true WO2004062002A1 (ja) 2004-07-22

Family

ID=32708448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016360 WO2004062002A1 (ja) 2002-12-27 2003-12-19 非水電解液電池用セパレータ

Country Status (7)

Country Link
US (1) US7585587B2 (ja)
EP (1) EP1603175B1 (ja)
JP (1) JPWO2004062002A1 (ja)
CN (1) CN1732580A (ja)
AU (1) AU2003289453A1 (ja)
DE (1) DE60330061D1 (ja)
WO (1) WO2004062002A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127839A (ja) * 2004-10-27 2006-05-18 Bridgestone Corp 電池用セパレータ及びそれを備えた非水電解質電池
JP2009301746A (ja) * 2008-06-10 2009-12-24 Ntt Facilities Inc 二次電池用セパレータ、及び二次電池
WO2012033090A1 (ja) * 2010-09-06 2012-03-15 新神戸電機株式会社 非水電解液電池
JP2012059393A (ja) * 2010-09-06 2012-03-22 Ntt Facilities Inc 非水電解液電池
WO2013032006A1 (ja) * 2011-09-02 2013-03-07 株式会社Nttファシリティーズ 非水電解液電池
JP2015534595A (ja) * 2012-09-21 2015-12-03 ディレクター ジェネラル ディフェンス リサーチ アンド ディヴェロップメント オーガナイゼーション 難燃性組成物、その繊維、製造方法及び用途

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160229A (zh) * 2009-03-03 2011-08-17 株式会社Ntt设施 非水电解液电池
JP5753671B2 (ja) * 2010-09-06 2015-07-22 株式会社Nttファシリティーズ 非水電解液二次電池
JP5738010B2 (ja) 2011-03-04 2015-06-17 株式会社ブリヂストン 二次電池用非水電解液及び非水電解液二次電池
US9023922B2 (en) 2012-05-24 2015-05-05 Sabic Global Technologies B.V. Flame retardant compositions, articles comprising the same and methods of manufacture thereof
US9394483B2 (en) 2012-05-24 2016-07-19 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
US11050284B2 (en) * 2015-05-11 2021-06-29 Eaglepicher Technologies, Llc Electrolyte, a battery including the same, and methods of reducing electrolyte flammability
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194134A (ja) * 2000-12-27 2002-07-10 Nitto Denko Corp 多孔質フィルムとその製造方法とその利用
JP2002256093A (ja) * 2001-02-28 2002-09-11 Nitto Denko Corp 多孔質フィルムとその製造方法とその利用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612769A1 (de) * 1996-03-29 1997-10-02 Basf Ag Als Trägermaterial für Festelektrolyten oder Separatoren für elektrochemische Zellen geeignete Gemische
US7229719B2 (en) * 2000-05-08 2007-06-12 Bridgestone Corporation Non-aqueous electrolyte secondary battery
WO2001091219A1 (en) * 2000-05-22 2001-11-29 Korea Institute Of Science And Technology A lithium secondary battery comprising a porous polymer separator film fabricated by a spray method and its fabrication method
KR100767741B1 (ko) * 2000-09-07 2007-10-17 가부시키가이샤 브리지스톤 비수전해액 첨가제, 비수전해액 이차전지 및 비수전해액전기 이중층 캐패시터
JP4612182B2 (ja) 2000-12-27 2011-01-12 日東電工株式会社 多孔質フィルムとその製造方法とその利用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194134A (ja) * 2000-12-27 2002-07-10 Nitto Denko Corp 多孔質フィルムとその製造方法とその利用
JP2002256093A (ja) * 2001-02-28 2002-09-11 Nitto Denko Corp 多孔質フィルムとその製造方法とその利用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1603175A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127839A (ja) * 2004-10-27 2006-05-18 Bridgestone Corp 電池用セパレータ及びそれを備えた非水電解質電池
JP2009301746A (ja) * 2008-06-10 2009-12-24 Ntt Facilities Inc 二次電池用セパレータ、及び二次電池
WO2012033090A1 (ja) * 2010-09-06 2012-03-15 新神戸電機株式会社 非水電解液電池
JP2012059393A (ja) * 2010-09-06 2012-03-22 Ntt Facilities Inc 非水電解液電池
US9246150B2 (en) 2010-09-06 2016-01-26 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolyte battery
WO2013032006A1 (ja) * 2011-09-02 2013-03-07 株式会社Nttファシリティーズ 非水電解液電池
JP2013054891A (ja) * 2011-09-02 2013-03-21 Ntt Facilities Inc 非水電解液電池
JP2015534595A (ja) * 2012-09-21 2015-12-03 ディレクター ジェネラル ディフェンス リサーチ アンド ディヴェロップメント オーガナイゼーション 難燃性組成物、その繊維、製造方法及び用途

Also Published As

Publication number Publication date
AU2003289453A1 (en) 2004-07-29
EP1603175A1 (en) 2005-12-07
DE60330061D1 (de) 2009-12-24
EP1603175A4 (en) 2007-02-14
CN1732580A (zh) 2006-02-08
US7585587B2 (en) 2009-09-08
EP1603175B1 (en) 2009-11-11
JPWO2004062002A1 (ja) 2006-05-18
US20060073381A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4588319B2 (ja) 非水電解液電池及び非水電解液電池用電極安定化剤
KR101422311B1 (ko) 전해질의 분리
KR20160143711A (ko) 고용량 중합체 캐소드 및 당해 캐소드를 포함하는 고 에너지 밀도 재충전가능한 전지
JP2009146695A (ja) 非水電解液及びそれを備えた非水電解液二次電源
CN107004806B (zh) 高耐热性和阻燃性隔膜以及电化学电池
JP4450732B2 (ja) 電池用支持塩及びその製造方法、並びに電池
WO2004062002A1 (ja) 非水電解液電池用セパレータ
JPWO2002082575A1 (ja) 電池及び電気二重層キャパシタ用添加剤
WO2001009973A1 (fr) Cellule secondaire a electrolyte non aqueux
JP2010015719A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
KR100647052B1 (ko) 비수전해액 전지용 양극 및 그 제조 방법, 그리고비수전해액 전지
JP2010050021A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP4458841B2 (ja) 電池用非水電解液及びそれを備えた非水電解液電池
WO2005064734A1 (ja) 電池用非水電解液及びそれを備えた非水電解液電池、並びにポリマー電池用電解質及びそれを備えたポリマー電池
WO2003079468A1 (en) Positive electrode for lithium primary cell and its production method, and lithium primary cell
JP2004006301A (ja) 非水電解液2次電池用の正極及びその製造方法、並びに該正極を備えた非水電解液2次電池
JP5095883B2 (ja) 非水電解液二次電池用添加剤及び非水電解液二次電池
JPWO2003041197A1 (ja) 非水電解液一次電池及び該電池の非水電解液用添加剤
JP2010015717A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2001217001A (ja) 非水電解液二次電池用添加剤
JPWO2003005478A1 (ja) ポリマー電池及びポリマー電解質
JP2010050026A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2010015720A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2003272643A (ja) リチウム1次電池
JP2006137789A (ja) ポリオレフィン系微多孔膜、電池用セパレータ及び非水電解液電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003780936

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006073381

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540837

Country of ref document: US

Ref document number: 20038A77388

Country of ref document: CN

Ref document number: 2004564501

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003780936

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10540837

Country of ref document: US