WO2004060844A1 - α,β-不飽和カルボニル化合物の製造方法 - Google Patents

α,β-不飽和カルボニル化合物の製造方法 Download PDF

Info

Publication number
WO2004060844A1
WO2004060844A1 PCT/JP2003/016983 JP0316983W WO2004060844A1 WO 2004060844 A1 WO2004060844 A1 WO 2004060844A1 JP 0316983 W JP0316983 W JP 0316983W WO 2004060844 A1 WO2004060844 A1 WO 2004060844A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
unsaturated
reaction
solution
hydrogen peroxide
Prior art date
Application number
PCT/JP2003/016983
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Sato
Yoko Usui
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2004564553A priority Critical patent/JP4392500B2/ja
Priority to AU2003292698A priority patent/AU2003292698A1/en
Publication of WO2004060844A1 publication Critical patent/WO2004060844A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • C07C45/294Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups with hydrogen peroxide

Definitions

  • the present invention relates to a method for producing an unsaturated carbonyl compound such as ⁇ , / 3-unsaturated aldehyde or a, iS-unsaturated ketone, which is useful as an intermediate of various organic compounds.
  • the present invention relates to a novel method for producing a, jS-unsaturated carbonyl compounds by the reaction of an oily solution of aryl alcohols with an aqueous solution of hydrogen peroxide.
  • Non-Patent Document 1 the primary oxidation of primary allylic alcohols to produce 0-unsaturated aldehydes includes manganese dioxide in a hexane solvent (Non-Patent Document 1), sodium hydroxide aqueous solution and benzene.
  • Nickel peroxide as a solvent (Non-patent Document 2), silver oxide in a phosphoric acid solvent (Non-patent Document 3), chromium trioxide in an HMM solvent (Non-patent Document 4), Ferric acid rim using butyl alcohol as a solvent (Non-patent document 5),-/-butyl peroxide in benzene solvent using a selenium compound as an accelerator (Non-patent document 6), or permanganic acid in a benzene solvent A method using a barrier or the like (Non-Patent Document 7) as an oxidizing agent is known.
  • Oxygen and hydrogen peroxide are inexpensive and non-corrosive, and have little environmental load because they have no or no harmful by-products after the reaction, and are excellent in industrial use. It can be said.
  • Non-Patent Document 8 As a method for producing, -unsaturated aldehydes from primary aryl alcohols using oxygen as an oxidizing agent, a reaction using a cobalt oxide catalyst (Non-Patent Document 8) is known. It is necessary to use benzene as a solvent and to use at least 2 equivalents of catalyst for the substrate. A synthesis method using platinum oxide as a catalyst (23%) has also been reported (Non-Patent Document 9). However, in this report,? -Heptane must be used as a solvent, and the yield is about 47 to 77%. is there. Example of reaction using copper catalyst (Non-Patent Document 10) However, this method requires the use of a toluene solvent.
  • Non-Patent Document 14 the formation reaction of ⁇ , / 3-unsaturated aldehyde from primary aryl alcohols using oxygen as an oxidizing agent without using an organic solvent. Since 30 bar of oxygen is required, the system must be pressurized, and the reaction takes more than 10 hours, which is not an industrially suitable method. On the other hand, a method for producing ⁇ ,) 3-unsaturated aldehydes from primary aryl alcohols using hydrogen peroxide as an oxidizing agent is hardly known, but recently, a molecular sieve catalyst containing vanadium is used. , i3-Unsaturated aldehyde formation reaction (Non-Patent Document 15) has been reported.
  • a method for producing an a, j8-unsaturated ketone by oxidizing a secondary aryl alcohol such as 1,3-diphenyl-2-propen-1-ol includes a method of producing manganese dioxide in benzene solvent.
  • Non-Patent Document 17 Using benzene as an oxidizing agent (Non-Patent Document 17), in a mixed solvent of benzene and hydrochloric acid using periodic acid as a reoxidizing agent in the presence of a 2,3-dichloro-5,6-dicyanobenzoquinone catalyst (10%) (Non-Patent Document 18), a method in which sodium permanganate is used as an oxidizing agent in a hexane solvent (Non-patent Document 19), a method in which copper permanganate is used as an oxidizing agent in a methylene chloride solvent (Non-Patent Document 20) and the like are known, but all reactions have a large load on the environment, and are not considered to be excellent synthesis methods. In response to these, the use of oxygen and hydrogen peroxide, which are oxidizers that are
  • Non-Patent Document 21 As a production method using oxygen as an oxidizing agent, a reaction using a palladium complex catalyst (5%) is known (Non-Patent Document 21), but this reaction must use dimethyl sulfoxide (DMS0) as a solvent. Must.
  • DMS0 dimethyl sulfoxide
  • Non-patent Document 14 a reaction for producing, -unsaturated ketones from secondary aryl alcohols using oxygen as an oxidizing agent without using an organic solvent. Is not an industrially viable method because the system must be pressurized with 30 bar of oxygen.
  • Non-Patent Document 1 J. Org. Chem., 19, 1608-1616 (1954)
  • Non-Patent Document 5 Chem. Lett., 1397-1398 (1978)
  • Non-Patent Document 6 J. Org.Chem., 47, 837-842 (1982)
  • Non-Patent Document 8 J. Chem. Soc, Chem. Com., 19, 634-635 (1970)
  • Non-Patent Document 9 Te trahedron, 9, 67-75 (1960)
  • Non-Patent Document 10 Science, 274, 2044-2046 (1996).]
  • Non-Patent Document 11 J. Chem. Soc., Perkin Trans., 1, 19, 3291-3292 (1997)
  • Non-Patent Document 12 J. Am. Chem. Soc., 119, 12661-12662 (1 997)
  • Non-Patent Document 1 4 Science, 287, 1 636-1639 (2000)
  • the present invention has been made to overcome the above-mentioned problems of the prior art, and is intended to convert ⁇ -unsaturated oily solutions of water-insoluble aryl alcohols under mild reaction conditions.
  • the reaction operation is simple, eliminating the need for solvent removal after the reaction is completed, and has a minimal effect on the environment and the human body.
  • An object of the present invention is to provide a novel method for producing a saturated carbonyl compound.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a conventional reaction method for performing an oxidation reaction in a homogeneous solution of a water-insoluble aryl alcohol oily organic solvent solution and an aqueous hydrogen peroxide solution.
  • a reaction using a heterogeneous solution system of an aqueous hydrogen peroxide solution and an oil solution of a water-insoluble aryl alcohol under a specific catalyst is selected, Contrary to conventional common-sense technical knowledge, the corresponding ⁇ -, 3-unsaturated carbonyl compound can be produced safely and simply in a high yield, and the target product, ⁇ , 3-unsaturated lipoprotein, is obtained after the reaction.
  • the present inventors have found that an oily solution of a metal compound and an aqueous solution of hydrogen peroxide can be easily separated, and have completed the present invention.
  • the process for producing an ⁇ , / 3-unsaturated carbonyl compound by the oxidation reaction of water-insoluble aryl alcohols using hydrogen peroxide comprises the steps of: It is characterized in that it is carried out in a heterogeneous solution of an aqueous solution of hydrogen peroxide and an oily solution of aryl alcohols in the presence of a catalyst containing the above metal compound.
  • a homogeneous solution of the alcoholic oil solution and hydrogen peroxide is prepared in advance to facilitate mixing, and the homogeneous solution is reacted in the presence of a catalyst.
  • a process for producing ⁇ , iS-unsaturated carbonyl compounds has been adopted.
  • the present inventors have conducted various studies, experiments, and theoretical considerations from the viewpoint of protecting the environment and the human body from the oxidation reaction more efficiently, and as a result, have found that this hydrogen peroxide can be used as an oxidizing agent.
  • the oxidation reaction of water-insoluble aryl alcohols is not a homogeneous solution system, and is a heterogeneous solution of an oil-based solution of water-insoluble aryl alcohols and an aqueous hydrogen peroxide solution. It was found that ⁇ ,] 3-unsaturated carbonyl compounds were produced in good yields when used in the system, and also significantly contributed to the reduction of environmental burden. Such knowledge is not at all predictable by conventional technical common knowledge, but is a phenomenon found by the present inventor's continuous experiment and research.
  • allylic alcohol as the raw material in the present invention.
  • a primary allylic alcohol represented by the following general formula (1) and a primary allylic alcohol represented by the following general formula (2) are used.
  • Secondary allylic alcohols are used.
  • primary 3-aryl alcohols give the corresponding 3-unsaturated aldehydes
  • secondary aryl alcohols give the 3-unsaturated ketones
  • RR 2 and R 3 are each independently a hydrogen atom, a propyloxyl group, a cyano group, a nitro group, a sulfonic acid group, an alkyl group, a cycloalkyl group, Group, aralkyl group, heterocyclic group, alkoxy group, alkoxy It represents a carbonyl group, an acyl group, an amide group, a silyl group, a phosphoryl group, a sulfinyl group, a sulfonyl group, or a sulfonate group.
  • any two of R 1 R 2 and R 3 may be bonded to each other at a residue obtained by removing a hydrogen atom from each to form a ring, and further, any two of R 2 and R 3 May be combined with each other via a divalent atom or a divalent functional group to form a ring.
  • R 4 is a carboxyl group, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heterocyclic group, an optionally substituted alkyl group, an alkoxycarbonyl group, an acyl group, an amide
  • R 7 each independently represent a hydrogen atom, a propyloxyl group, a cyano group, a nitro group, a sulfonic acid group, or an optionally substituted alkyl group, a cycloalkyl group, or an aryl group.
  • Any two of R 7 may be combined with each other at a residue from which a hydrogen atom has been removed to form a ring, and further, R 4 , R 5 , R 6 and R 7 And the residue obtained by removing a hydrogen atom from any two of the above may be bonded to each other via a divalent atom or Z and a divalent functional group to form a ring.
  • R 1 R 2 and R 3 are an alkyl group which may have a substituent
  • the alkyl group may have a carbon number of:! To 30, preferably 1 to 20
  • Examples thereof include a linear or branched alkyl group, and specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group.
  • RK R 2 and R 3 are a cycloalkyl group which may have a substituent
  • examples of the cycloalkyl group include a monocyclic, polycyclic or condensed ring having 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms.
  • examples include the cycloalkyl group of the formula, and more specific examples include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • aryl group When RR 2 or R 3 is an aryl group which may have a substituent, examples of the aryl group include a monocyclic, polycyclic or condensed cyclic group having 6 to 20, preferably 6 to 14 carbon atoms. Examples thereof include an aromatic hydrocarbon group, and more specific examples include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a methylnaphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group.
  • the aralkyl group may be, for example, a monocyclic or polycyclic compound having 7 to 20 carbon atoms, preferably 7 to 15 carbon atoms. Examples thereof include a cyclic or condensed aralkyl group, and more specific examples include a benzyl group, a phenethyl group, a naphthylmethyl group, and a naphthylethyl group.
  • the heterocyclic group includes a 3- to 15-membered ring having at least one or more nitrogen, oxygen or sulfur atoms in the ring.
  • a 3- to 10-membered ring which may be condensed with a carbocyclic group such as a cycloalkyl group, a cycloalkenyl group or an aryl group; Examples thereof include condensed cyclic ones, and more specifically, for example, an oxilael group, a pyridyl group, a cyenyl group, a phenylenyl group, a thiazolyl group, a furyl group, a piperidyl group, a piperazyl group, a pyrrolyl group, an imidazolyl group, a quinolyl group And a pyrimidyl group.
  • RK R 2 and R 3 are an alkoxy group which may have a substituent
  • the alkoxy group is a linear or branched alkoxy group having 1 to 20, preferably 1 to 10 carbon atoms. Specific examples include, for example, a methoxy group, an ethoxy group, a _propoxy group, a t-butoxy group and the like.
  • R ⁇ R 2 and R 3 are an alkoxycarbonyl group which may have a substituent
  • the alkoxycarbonyl group may be a linear or branched C 1-30, preferably 1-20 carbon atom.
  • Examples include an alkoxycarbonyl group, and specific examples include, for example, a methoxycarbonyl group, an ethoxycarbonyl group, a monopropoxycarbonyl group, a t-butoxycarbonyl group, a phenoxycarbonyl group, and the like.
  • the acyl group has carbon atoms; To 30, preferably:! To 20 linear or branched acetyl groups, and specific examples include, for example, acetyl, benzoyl, heptanol, and cyclohexyl. And the like.
  • RK R 2 or R 3 is an amide group which may have a substituent
  • examples of the amide group include a linear or branched amide group having 1 to 30, preferably 1 to 20 carbon atoms. Specific examples include, for example, a methylamide group, an ethylamide group, a / -propylamide group, a tetradecylamide group, and the like.
  • RK R 2 and R 3 are a silyl group which may have a substituent
  • specific examples of the silyl group include a trimethylsilyl group, a triethylsilyl group, and a triphenylsilyl group.
  • R 1 , R 2 and R 3 are a phosphoryl group which may have a substituent
  • specific examples of the phosphoryl group include a dihydroxyphosphoryl group and a dimethoxyphosphoryl group.
  • R 1 , R 2 and R 3 are a sulfinyl group which may have a substituent
  • specific examples of the sulfinyl group include a methylsulfiel group and a phenylsulfinyl group.
  • R 1 , R 2 or R 3 is a sulfonyl group which may have a substituent
  • specific examples of the sulfonyl group include a methylsulfonyl group and a phenylsulfonyl group.
  • R ⁇ R 2 and R 3 are sulfonate groups which may have a substituent
  • specific examples of the sulfonate group include a methylsulfonate group and a phenylsulfonate group.
  • any substituent may be used as long as it does not adversely affect the reaction.
  • any substituent may be used as long as it does not adversely affect the reaction.
  • examples include an alkyl group such as a methyl group, an ethyl group, and a propyl group; an aryl group such as a phenyl group and a naphthyl group;
  • a complex ring group such as an oxylanyl group, a pyridyl group, and a furyl group; for example, an alkoxy group such as a methoxy group, an ethoxy group, a phenoxy group, and a naphthyloxy group; for example,
  • any two of RR 2 and R 3 may be bonded to each other at a residue from which a hydrogen atom has been removed to form a ring, and any two of R 1 , R 2 and R 3 may be further formed.
  • the residues from which a hydrogen atom has been removed may be bonded to each other via a divalent atom or Z and a divalent functional group to form a ring.
  • the divalent atom includes an oxygen atom, a nitrogen atom, a sulfur atom, and the like
  • the divalent functional group includes a silylene group, an ethylenedioxy group, an arylenedioxy group, a carboxyl group, and a sulfoxide group. And a sulfone group.
  • Such primary allylic alcohols include, for example, crotyl alcohol, cis-1-penten-l-ol, 3-methyl-2-buten-l-ol, cis-l-hexen-1-ol, trans-2-hexene-1-ol, trans-2-octene-1-ol, trans_2-dodecene-11-ol, cinnamon alcohol, geranol, and the like.
  • R 4 , R 5 , R 6 , and R 7 are an alkyl group which may have a substituent
  • the alkyl group includes:! To 30,
  • a linear or branched alkyl group of 1 to 20 is mentioned, and specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group.
  • R 4 , R 5 , R 6 , and R 7 are a cycloalkyl group which may have a substituent
  • the cycloalkyl group includes, for example, a monocyclic ring having 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms.
  • a polycyclic or condensed cyclic cycloalkyl group and more specifically, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and the like.
  • R 4 , R 5 , R 6 , and R 7 are an aryl group which may have a substituent;
  • examples thereof include a monocyclic, polycyclic or condensed aromatic hydrocarbon group having 6 to 20, preferably 6 to 14 carbon atoms. More specifically, for example, a phenyl group, a tolyl Groups, xylyl group, naphthyl group, methylnaphthyl group, anthryl group, phenanthryl group, biphenyl group and the like.
  • Examples of the aralkyl group in the case where R 4 , R 5 , R 7 are an aralkyl group which may have a substituent include, for example, a monocyclic, polycyclic or polycyclic compound having 7 to 20, preferably 7 to 15 carbon atoms.
  • Examples include a condensed ring aralkyl group, and more specific examples include a benzyl group, a phenyl group, a naphthylmethyl group, and a naphthylethyl group.
  • R 4 , R 5 , and RR 7 are a heterocyclic group which may have a substituent
  • the heterocyclic group has at least one nitrogen atom, oxygen atom or sulfur atom in the ring.
  • a 15-membered ring preferably a 3- to 10-membered ring, a saturated or unsaturated monocyclic ring which may be condensed with a carbocyclic group such as a cycloalkyl group, a cycloalkenyl group or an aryl group; Examples thereof include polycyclic or condensed cyclic ones, and more specifically, for example, oxilael, pyridyl, phenyl, phenylenyl, thiazolyl, furyl, piperidyl, piperazyl, pyrrolyl, imidazolyl Group, quinolyl group, pyrimidyl group and the like.
  • R 4 , R 5 , and RR 7 are an alkoxy group which may have a substituent
  • the alkoxy group may have a carbon number of:! To 20, preferably 1 to 10, linear or branched alkoxy groups, and specific examples include methoxy, ethoxy, i-propoxy, t-butoxy and the like.
  • the alkoxycarbonyl group may be a straight-chain or branched-chain having from! To 30, preferably from 1 to 20 carbon atoms. And specific examples thereof include a methoxycarbonyl group, an ethoxycarbonyl group, a / -propoxycarbonyl group, a t-butoxycarbonyl group, a phenoxycarbonyl group and the like.
  • the acyl group may be a linear or branched C 1-30, preferably 1-20 carbon atom. Examples include an acetyl group, a benzoyl group, a heptanoyl group, and a cyclohexane carbonyl group.
  • R 4 , R 5 , or R 7 is an amide group which may have a substituent, the amide group includes: To 30, preferably 1 to 20, linear or branched amide groups, and specific examples thereof include a methylamide group, an ethylamide group, an i-propylamide group, and a tetradecylamide group.
  • R 4 , R 5 , R 6 , and R 7 are a silyl group which may have a substituent
  • specific examples of the silyl group include a trimethylsilyl group, a triethylsilyl group, and a triphenylsilyl group.
  • R 4 , R 5 , R 6 R 7 is a phosphoryl group which may have a substituent
  • specific examples of the phosphoryl group include a dihydroxyphosphoryl group and a dimethoxyphosphoryl group.
  • R 4 , R 5 , R 6 , and R 7 are a sulfinyl group which may have a substituent
  • examples of the sulfinyl group include a methylsulfinyl group and a phenylsulfinyl group.
  • R 4 , R 5 , or R 7 is a sulfonyl group which may have a substituent
  • specific examples of the sulfonyl group include a methylsulfonyl group and a phenylsulfonyl group.
  • R 4 , R 5 and RR 7 are sulfonate groups which may have a substituent
  • specific examples of the sulfonate group include a methylsulfonate group and a phenylsulfonate group.
  • alkyl, cycloalkyl, aryl, aralkyl, heterocyclic, alkoxy, alkoxycarbonyl, acyl, amide, silyl, phosphoryl, sulfiel, sulfonyl, and sulfonate groups May be any substituent that does not adversely affect the reaction, for example, an alkyl group such as a methyl group, an ethyl group, and a propyl group; an aryl group such as a phenyl group and a naphthyl group; , A cyclyl group such as a pyridyl group or a furyl group; for example, an alkoxy group such as a methoxy group, an ethoxy group, a phenoxy group, or a naphthyloxy group; Alkoxycarbonyl groups such as enoxycarbonyl groups , Sulfonic acid group, cyano group, nitro group such as trimethyl
  • any two of R 5 , R 6 and R 7 may be bonded to each other at a residue from which a hydrogen atom has been removed to form a ring, and furthermore, R 4 , R 5 and R 7 Residues obtained by removing a hydrogen atom from any two of them may be bonded to each other via a divalent atom or Z and a divalent functional group to form a ring.
  • the divalent atom includes an oxygen atom, a nitrogen atom, a sulfur atom, and the like
  • the divalent functional group includes a silylene group, an ethylenedioxy group, an arylene dioxy group, a carbonyl group, a sulfoxide group, and a sulfonate.
  • 'Such secondary allylic alcohols include, for example, 3-octen-2-ol, 4-methyl-4-hepten-13-ol, and the like.
  • a 3,3-unsaturated carbonyl compound can be obtained in high yield from a water-insoluble aryl alcohol, and the reaction operation is simple and easy. Eliminates the need for solvent removal after completion, and has a minimal effect on the environment and the human body. • Safe, simple, and efficient reaction between aryl alcohols and aqueous hydrogen peroxide. • 3-Unsaturated Since the purpose is to provide a method for producing a carbonyl compound, the oily solution of aryl alcohols includes oily solutions of aryl alcohols themselves and hydrocarbons that are not compatible with water.
  • An oily solvent solution of aryl alcohols dissolved in a non-polar solvent can be used, but from the viewpoint of reducing the environmental load and removing the solvent as described above, aryl alcohol is used. It is most preferable to use an oil-based solution of the call class itself.
  • the amount of hydrogen peroxide used is usually in the range of 1.0 to 10 moles, preferably 1.0 to 3.0 moles, per hydroxy group of aryl alcohols.
  • the concentration of hydrogen peroxide is not particularly limited, and is a commercially available 3 to 50% aqueous solution, preferably a 3 to 20% aqueous solution. It is.
  • catalysts include, for example, platinum Z carbon, platinum / silica, platinum alumina, platinum black, bis (dibenzylideneacetone) platinum, bis (1,5-cyclohexene) platinum, palladium carbon, palladium Z silica, Palladium alumina, palladium black, tris (bisdibenzylideneacetone) dipalladium, nickel Z carbon, nickel Z silica, nickel / alumina, niggel powder, nickel black, rhodium Z carbon, rhodium Z silica, rhodium alumina, rhodium black, cobalt Powder, ruthenium Z carbon, ruthenium silica, ruthenium Z alumina, ruthenium black, etc., but platinum
  • the amount used is usually in the range of 0.001 to 20 mol%, preferably 0.05 to 10 mol%, based on the aryl alcohol as the substrate.
  • the reaction conditions of the method of the present invention are not particularly limited, but the reaction is usually carried out at a temperature of 30 to 120 ° C, preferably 50 to 100 ° C.
  • the reaction pressure may be any of normal pressure, increased pressure, and reduced pressure, but it is preferable to perform the reaction at normal pressure.
  • a solution obtained by mixing an oily solution of a water-insoluble aryl alcohol and a catalyst is heated to a reaction temperature, and then an aqueous solution of hydrogen peroxide is gradually added dropwise while stirring. The method of making it take is taken.
  • Examples of the 3,3-unsaturated aldehyde obtained by the method of the present invention include aldehydes corresponding to the general formula (1).
  • aldehydes include, for example, crotonaldehyde, —2-pentenal, 3-methyl-2-butenal, cw — 2—hexenal, trims—2—hexenal, cw — 2-octenal, trans 1-2— Octenal, tr « « s-2-dodecenal, cinnamic aldehyde, citral and the like.
  • the unsaturated ketone obtained by the method of the present invention includes the above-mentioned general formula (2) And ketones corresponding to Examples of such ketones include 3-octene-2-one, 4-methyl-4-hepten-3-one, and the like.
  • the resulting target product, 0!,] 3-unsaturated carbonyl compound can be separated from the aqueous phase after the reaction, taken out, and purified by a usual method such as recrystallization, distillation, or sublimation.
  • Separation of the catalyst can be easily achieved by filtration of the reaction solution or usual separation operation such as decantation, and the recovered catalyst can be repeatedly used as it is by washing with water.
  • Example 2 The reaction was carried out under the same conditions as in Example 1 except that dioxane (10 mL) was added in advance so that the cinnamic alcohol and the aqueous hydrogen peroxide solution formed a homogeneous phase. As a result, the yield of cinnamic aldehyde was 48%. there were.
  • the method of the present invention does not use an organic solvent, an acid or a base, so that the reaction operation is simple and does not require a solvent removal operation after the completion of the reaction, and has a very small effect on the environment and the human body. It also has the effect of reducing the load on, and can safely, simply and efficiently obtain ⁇ -unsaturated carbonyl compounds. Therefore, it can be said that the method of the present invention is an invention which has a great industrial effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 非水溶性の第1級アリルアルコール類や第2級アリルアルコール類の油性溶液と過酸化水素水溶液とを、周期律表第8~10族金属を含む触媒の存在下、不均一溶液系で反応させて、対応するα,β-不飽和アルデヒドやケトンなどのα,β-不飽和カルボニル化合物を製造する。この方法によれば、温和な反応条件下で、非水溶性のアリルアルコール類からα,β-不飽和カルボニル化合物を高収率で得ることができると共に反応操作が簡便で反応終了後の溶媒除去操作を不要とし、安全かつ簡便に得ることができる。

Description

明細書
α , )8 -不飽和カルボニル化合物の製造方法 技術分野
本発明は、 種々の有機化合物の中間体として有用な α , /3 -不飽和アルデヒドや a , iS -不飽和ケトン等の不飽和カルボニル化合物の製造方法に関し、 さらに詳し くは、 非水溶性のァリルアルコール類の油性溶液と過酸化水素水溶液の反応によ る a, jS -不飽和カルポニル化合物の新規な製造方法に関する。 背景技術
従来、 第 1級ァリルアルコール類を酸化して , 0 -不飽和アルデヒドを製造す る方法としては、 へキサン溶媒中での二酸化マンガン(非特許文献 1 )、 水酸化ナ トリゥム水溶液やベンゼンを溶媒とする過酸化ニッケル(非特許文献 2 )、 リン酸 溶媒中での酸化銀(非特許文献 3 )、HMM溶媒中での三酸化クロム(非特許文献 4 )、 水酸化力リゥム水溶液および -ブチルアルコールを溶媒とする鉄酸力リゥム(非 特許文献 5 )、セレン化合物を促進剤とするベンゼン溶媒中の過酸化- /-プチル(非 特許文献 6 )、またはベンゼン溶媒中での過マンガン酸バリゥム等(非特許文献 7 ) を酸化剤として用いる方法が知られている。
しかしながら、 これらの方法は、 毒性の高い副生物の発生、 酸化剤の腐食性等 の点で環境に与える負荷が大きく、 工業的に優れた方法とは言い難い。
これに対して、 酸素や過酸化水素は、 安価で腐食性がなく、 反応後の副生物は 皆無又は無害な水であるために環境負荷が小さく、 工業的に利用するのに優れた 酸化剤ということができる。
酸素を酸化剤として用いた第 1級ァリルアルコール類から , -不飽和アルデ ヒドを製造する方法としては、 酸化コバルト触媒を用いる反応(非特許文献 8 )が 知られているが、 この方法はベンゼンを溶媒として使用し、 また基質に対して 2 当量以上の触媒を用いる必要がある。また、酸化白金を触媒(23%)とする合成法も 報告されている(非特許文献 9 )が、 この報告では?-ヘプタンを溶媒として用いる 必要があり、収率は 47〜77%程度である。銅触媒を用いる反応例(非特許文献 1 0 ) も報告されているが、 この手法ではトルエン溶媒を使用しなければならない。 過 酸化ルテニウムを触媒(10%)とする酸素による酸化反応も短時間で進行すること が報告されているが、塩化メチレン(非特許文献 1 1 )またはトルエン(非特許文献 1 2 )を溶媒として系中に添加する必要がある。さらに、 2, 2, 6, 6-テトラメチル _1 - ピペリジニルォキシフリーラジカル(TEMPO) (4. 5%)存在下、 塩化ルテニウムホス フィン錯体触媒(4. 5%)により酸化反応が進行することも知られている(非特許文 献 1 3 )が、 この反応では塩化ベンゼンを溶媒として用いなければならない。
また、 近年、 有機溶媒を使用しない酸素を酸化剤とする第 1級ァリルアルコー ル類からの α , /3 -不飽和アルデヒドの生成反応(非特許文献 1 4 )が報告されたが、 この手法では 30 barの酸素が必要であり、 系を加圧条件下にしなくてはならなら ず、 また反応が 10時間以上かかるため工業的に適した手法であるとは言い難い。 一方、 過酸化水素を酸化剤として用いる第 1級ァリルアルコール類からの α, )3 -不飽和アルデヒドを製造する方法は殆ど知られていないが、最近、バナジウム を含むモレキュラーシーブ触媒を用いる a , i3 -不飽和アルデヒド生成反応(非特 許文献 1 5 )が報告されている。 しかしながら、 この反応では、 副生成物としてェ ポキシド類が生成する上、極性溶媒としてァセトニトリルを使用する必要があり、 更には目的生成物であるひ, i3 -不飽和アルデヒドの収率の更なる向上が求められ ていた。また、有機溶媒を使用せずに過酸化水素水を酸化剤として 2-ペンテン -1- オールの酸化反応から 2-ペンテナールが生成する反応が報告されている(非特許 文献 1 6 )が、エポキシ化も同時に進行しており、 a , i3 -不飽和アルデヒドが選択 的に得られる手法ではない。
また、 1, 3-ジフエニル- 2-プロペン- 1-オールのような第 2級ァリルアルコール 類を酸化して a , j8 -不飽和ケトンを製造する方法としては、 ベンゼン溶媒中、 二 酸化マンガンを酸化剤として用いる反応(非特許文献 1 7 )、 2, 3-ジクロロ- 5, 6- ジシァノベンゾキノン触媒(10%)存在下、過ヨウ素酸を再酸化剤としてベンゼン - 塩酸混合溶媒中で行う反応(非特許文献 1 8 )、 過マンガン酸ナトリウムを酸化剤 として、 へキサン溶媒中で行う手法(非特許文献 1 9 )、 過マンガン酸銅を酸化剤 として塩化メチレン溶媒中で行う手法(非特許文献 2 0 )等が知られているが、 い ずれの反応も環境に与える負荷が大きく、 優れた合成法とは言い難い。 これらに対して、 環境に調和した酸化剤である酸素や過酸化水素を用いた、 第
2級ァリルアルコール類からの α, β -不飽和ケトンを生成する反応が報告されて いる。
酸素を酸化剤とする製造法としては、パラジウム錯体触媒(5%)を用いる反応(非 特許文献 2 1)が知られているが、 この反応はジメチルスルホキシド (DMS0) を溶 媒として使用しなければならない。
また、 近年、 有機溶媒を使用せず、 酸素を酸化剤とした第 2級ァリルアルコ一 ル類からの , -不飽和ケトンの生成反応(非特許文献 1 4 )が報告されているが、 この反応は 30 barの酸素により系を加圧しなくてはならないため、 工業的に優れ た手法であるとは言い難い。
一方、 過酸化水素を酸化剤として用いる第 2級ァリルアルコール類からの , |3 -不飽和ケトンの選択的な製造方法は殆ど知られていない。 これは、過酸化水素 水によるァリルアルコール類の酸化反応では、 アルコール部分ではなく二重結合 部分が酸化されてエポキシ化反応が進行しやすく、 ひ, i3-不飽和ケトン以外に副 生成物としてエポキシ化反応物が生成し、 所望とする α, jS -不飽和ケトンを収率 よく合成できないことによる(非特許文献 2 2)。
このように、 非水溶性の第 1級及び 2級ァリルアルコール類の酸化反応におい ては、 酸素を酸化剤とする場合は、 酸素を基質に溶解させるために有機溶媒を使 用したり、 酸素加圧条件下で反応を行う必要があり、 また、 過酸化水素水溶液を 酸化剤として用いる場合は、 過酸化水素水溶液にアルコール油性溶液を溶解させ て均一溶液とするために、 有機溶媒の使用が不可欠とされている。 その結果、 目 的生成物である α,)3-不飽和カルポニル化合物を単離する際に極性有機溶媒の除 去手段が必要となり、 反応操作や装置が煩雑となる上、 有機溶媒自身の環境及び 人体への影響 ·毒性も指摘されるに至っている。
[非特許文献 1 ] J. Org. Chem. , 19, 1608 - 1616 (1954)
[非特許文献 2] J. Org. Chem. , 27, 1597 - 1601 (1962)
[非特許文献 3] Tetrahedron Lett. , 4193 - 4198 (1967)
[非特許文献 4] Synthesis, 394 - 396 (1976)
[非特許文献 5] Chem. Lett. , 1397 - 1398 (1978) [非特許文献 6 ] J. Org. Chem. , 47, 837 - 842 (1982)
[非特許文献 7 ] Bul l. Chem. Soc. Jpn. , 56, 914 - 917 (1983)
[非特許文献 8 ] J. Chem. Soc , Chem. Com醒. , 19, 634 - 635 (1970)
[非特許文献 9 ] Te trahedron, 9, 67 - 75 (1960)
[非特許文献 1 0 Science, 274, 2044 - 2046 (1996) . [非特許文献 1 1 J. Chem. Soc. , Perkin Trans. , 1, 19, 3291 - 3292 (1997) [非特許文献 1 2 J. Am. Chem. Soc. , 119, 12661 - 12662 (1 997)
[非特許文献 1 3 J. Chem. Soc. , Chem. Com賺. , 1 591 - 1 592 (1999)
[非特許文献 1 4 Science, 287, 1 636 - 1639 (2000)
[非特許文献 1 5 Synl e t t, 289 - 298 (1995)
[非特許文献 1 6 Chem. Com匪. , 325 - 326 (1998)
[非特許文献 1 7 J. Org. Chem. , 26, 2973 - 2975 (1961)
[非特許文献 1 8 Syn thes is, 848― 849 (1978)
[非特許文献 1 9 Te trahedron L e t t. , 22, 1655 - 1656 (1981)
[非特許文献 2 0 J. Org. Chem. , 47, 2790 - 2792 (1982)
[非特許文献 2 1 J. Org. Chem. , 63, 3185 - 3189 (1998)
[非特許文献 2 2 Bul l. Chem. Soc. Jpn. , 72, 2287 - 2306 (1999) 発明の開示
本発明は、 上記のような従来技術の問題点を克服するためになされたものであ つて、 温和な反応条件下で、 非水溶性のァリルアルコール類の油性溶液からひ, β -不飽和カルポニル化合物を高収率で得ることができると共に、反応操作が簡便 で反応終了後の溶媒除去操作を不要とし、 環境や人体への影響 ·毒性がきわめて 小さい、 簡便で効率的な α, -不飽和カルポニル化合物の新規な製造方法を提供 することを目的とする。
本発明者らは、 前記課題を解決するために鋭意研究した結果、 非水溶性のァリ ルアルコール油性有機溶媒溶液と過酸化水素水溶液との均一溶液で酸化反応を行 う従来の反応方法に代えて、 特定の触媒下による過酸化水素水溶液と非水溶性の ァリルアルコール類の油性溶液との不均一溶液系を用いる反応を選定すると、 従 来の常識的な技術的知見とは異なり、 対応するひ, ;3 -不飽和カルポニル化合物が 高収率で安全かつ簡便に製造でき、 反応後に目的物である α, 3 -不飽和力ルポ二 ル化合物油性溶液と過酸化水素水溶液とが容易に分離できることを見いだし、 本 発明を完成するに至った。
即ち、 本発明によれば、 以下の発明が提供される。
1 . 非水溶性のァリルアルコール類の油性溶液と過酸化水素水溶液とを、 周期律表第 8〜 1 0族の金属化合物を含む触媒の存在下、 不均一溶液で反応させ ることを特徴とする《,)3 -不飽和カルボニルの製造方法。
2 . ァリルアルコール類が第 1級ァリルアルコール類であり、 a, i3 -不飽 和カルポニル化合物が、 α,)3 -不飽和アルデヒドであることを特徴とする上記 1 に記載の , /3 -不飽和カルボニル化合物の製造方法。
3 . ァリルアルコール類が第 2級ァリルアルコール類であり、 《, /3 -不飽 和カルポニル化合物が、 ひ, ]3 -不飽和ケ卜ンであることを特徴とする上記 1に記 載の α, /3 -不飽和カルポニル化合物の製造方法。
4 . 周期律表第 8〜 1 0族の金属化合物を含む触媒が 0価金属触媒であるこ とを特徴とする上記 1乃至 3何れかに記載の α , )3 -不飽和カルポニル化合物の製 造方法。
5 . 0価金属触媒が、 白金/炭素、 白金ブラック、 ビス (ジベンジリデンァ セトン) 白金、 パラジウム/炭素、 ロジウム Ζ炭素、 ルテニウム Ζ炭素である上 記 4に記載の α , 不飽和カルポニル化合物の製造方法。 発明を実施するための最良の形態
本発明に係る過酸化水素を用いる非水溶性のァリルアルコール類の酸化反応に よる α, /3 -不飽和カルポニル化合物の製造方法は、 該酸化反応を、 周期律表第 8 〜 1 0族の金属化合物を含む触媒の存在下、 過酸化水素水溶液とァリルアルコー ル類の油性溶液との不均一溶液中で行うことを特 としている。
従来、 液液反応においては、 原料同士、 あるいは原料と酸化剤、 反応促進剤な どの反応試薬とが相溶性を持たない場合には、 反応を円滑に進めるために原料と 反応試薬とが相互に溶解する溶媒を用いて、 両者の均一な溶液を予め調整し、 し かる後反応させるプロセスが選択率、 収率などの点で有利であるとされていた。 ァリルアルコール類と酸素または過酸化水素との反応による , /3 -不飽和カル ポニル化合物の合成反応においても、 前記したように、 この発想が踏襲され、 溶 媒を使用して酸素を基質と混合されやすくなるように、 また過酸化水素を酸化剤 とする場合にはアルコール油性溶液と過酸化水素との均一溶液を予め調整してお き、 この均一溶液を触媒の存在下で反応させて α, iS -不飽和カルポニル化合物を 製造するプロセスが採られている。
本発明者らは、 かかる酸化反応を更に効率的にかつ環境 ·人体の保護の観点か ら、 種々様々な研究、 実験、 理論的な考察を模索した結果、 この過酸化水素を酸 化剤とする非水溶性のァリルアルコール類の酸化反応は、 従来の技術常識とは異 なり、 均一溶液系ではなく、 非水溶性のァリルアルコール類の油性溶液と過酸化 水素水溶液との不均一溶液系で行った場合には、 α, ]3 -不飽和カルポニル化合物 が収率良く生成し、 しかも環境負荷の軽減に著しく貢献することを知見した。 こ のような知見は従来の技術常識では到底予期できるものではなく、 本発明者の弛 まぬ実験研究の積み重ねによって見いだされた現象である。
本発明における原料であるァリルアルコール類としては、 種々のものが使用で きるが、 通常、 下記一般式 (1 ) で示される第 1級ァリルアルコール類及び一般 式 (2 ) で示される第 2級ァリルアルコール類が用いられる。
この場合、 第 1級ァリルアルコール類からは対応するひ, 3 -不飽和アルデヒド が、 第 2級ァリルアルコール類からはひ, j3 -不飽和ケトンが得られる。
Figure imgf000007_0001
(式中、 R R2及び R3はそれぞれ独立して、 水素原子、 力ルポキシル基、 シァノ 基、 ニトロ基、 スルホン酸基、 置換基を有していてもよい、 アルキル基、 シクロ アルキル基、 ァリール基、 ァラルキル基、 複素環基、 アルコキシ基、 アルコキシ カルポニル基、 ァシル基、 アミド基、 シリル基、 ホスホリル基、 スルフィニル基、 スルホニル基、 スルホナート基を示す。 また、 R1 R2及び R3の何れか二つがそれ ぞれから水素原子を取り除いた残基で互いに結合して環を形成していても良く、 更には 、 R2及び の何れか二つから水素原子を取り除いた残基が 2価の原子又 はノ及び 2価の官能基を介して互いに結合して環を形成していても良い。 )
Figure imgf000008_0001
1 0
(式中 R4は、 力ルポキシル基、 シァノ基、 置換基を有していてもよい、 アルキル 基、 シクロアルキル基、 ァリール基、 ァラルキル基、 複素環基、 アルコキシカル ポニル基、 ァシル基、 アミド基を示す。 また 、 及び R7はそれぞれ独立して、 水素原子、 力ルポキシル基、 シァノ基、 ニトロ基、 スルホン酸基、 置換基を有し ていてもよい、 アルキル基、 シクロアルキル基、 ァリール基、 ァラルキル基、 複 素環基、 アルコキシ基、 アルコキシカルポニル基、 ァシル基、 アミド基、 シリル 基、 ホスホリル基、 スルフィエル基、 スルホニル基、 スルホナート基を示す。 ま た、 R4、 R5、 及び R7の何れか二つがそれぞれから水素原子を取り除いた残基で 互いに結合して環を形成していても良く、 更には R4、 R5、 R6及び R7の何れか二つ から水素原子を取り除いた残基が 2価の原子又は Z及び 2価の官能基を介して互 いに結合して環を形成していても良い。 )
前記一般式 (1 ) において、 R1 R2、 R3が置換基を有していてもよいアルキル 基の場合のアルキル基としては、 炭素数は:!〜 30、 好ましくは 1〜20の直鎖状又は 分岐状のアルキル基が挙げられ、 具体例としては例えば、 メチル基、 ェチル基、 プロピル基、 へキシル基、 ォクチル基等が挙げられる。
RK R2、 R3が置換基を有していてもよいシクロアルキル基の場合のシクロアル キル基としては、 例えば、 炭素数 3〜20、 好ましくは 3〜10の単環、 多環又は縮合 環式のシクロアルキル基が挙げられ、 より具体的には、 シクロプロピル基、 シク 口ペンチル基、 シクロへキシル基、 シクロォクチル基等が挙げられる。 R R2、 R3が置換基を有していてもよいァリール基の場合のァリール基として は、 例えば炭素数は 6〜20、 好ましくは 6〜: 14の単環、 多環又は縮合環式の芳香族 炭化水素基が挙げられ、 より具体的には、 例えば、 フエニル基、 トリル基、 キシ リル基、 ナフチル基、 メチルナフチル基、 アントリル基、 フエナントリル基、 ビ フェニル基等が挙げられる。
R1, R2、 R3が置換基を有していてもよいァラルキル基の場合のァラルキル基と しては、 例えば、 炭素数は 7〜20、 好ましくは 7〜: 15の単環、 多環又は縮合環式の ァラルキル基が挙げられ、 より具体的には、例えば、ベンジル基、 フエネチル基、 ナフチルメチル基、 ナフチルェチル基等が挙げられる。
R R2、 R3が置換基を有していてもよい複素環基の場合の複素環基としては、 環中に少なくとも 1個以上の窒素原子、酸素原子又は硫黄原子を有する 3〜15員環、 好ましくは 3〜: 10員環であって、 シクロアルキル基、 シクロアルケニル基又はァリ —ル基などの炭素環式基と縮合していてもよい飽和又は不飽和の単環、 多環又は 縮合環式のものが挙げられ、 より具体的には、 例えば、 ォキシラエル基、 ピリジ ル基、 チェニル基、 フエニルチェニル基、 チアゾリル基、 フリル基、 ピペリジル 基、 ピペラジル基、 ピロリル基、 イミダゾリル基、 キノリル基、 ピリミジル基等 が挙げられる。
RK R2、 R3が置換基を有していてもよいアルコキシ基の場合のアルコキシ基と しては、 炭素数 1〜20、 好ましくは 1〜: 10の直鎖状又は分岐状のアルコキシ基が挙 げられ、 具体例としては例えば、 メトキシ基、 エトキシ基、 _プロポキシ基、 t 一ブトキシ基等が挙げられる。 ,
R\ R2、 R3が置換基を有していてもよいアルコキシカルポニル基の場合のアル コキシカルポニル基としては、 炭素数 1〜30、 好ましくは 1〜20の直鎖状又は分岐 状のアルコキシカルポニル基が挙げられ、 具体例としては例えば、 メトキシカル ポニル基、 エトキシカルポニル基、 一プロポキシカルポニル基、 t—ブトキシカ ルポニル基、 フエノキシ力ルポニル基等が挙げられる。
R1, R2、 R3が置換基を有していてもよいァシル基の場合のァシル基としては、 炭素数;!〜 30、 好ましくは:!〜 20の直鎖状又は分岐状のァシル基が挙げられ、 具体 例としては例えば、 ァセチル基、 ベンゾィル基、 ヘプ夕ノィル基、 シクロへキサ ンカルポニル基等が挙げられる。
RK R2、 R3が置換基を有していてもよいアミド基の場合のアミド基としては、 炭素数 1〜30、 好ましくは 1〜20の直鎖状又は分岐状のアミド基が挙げられ、 具体 例としては例えば、 メチルアミド基、 ェチルアミド基、 /一プロピルアミド基、 テ トラデシルアミド基等が挙げられる。 、
RK R2、 R3が置換基を有していてもよいシリル基の場合のシリル基としては、 具体例として、 例えばトリメチルシリル基、 トリェチルシリル基、 トリフエニル シリル基等が挙げられる。
R1, R2、 R3が置換基を有していてもよいホスホリル基の場合のホスホリル基と しては、 具体例として、 例えばジヒドロキシホスホリル基、 ジメトキシホスホリ ル基等が挙げられる。
R1, R2、 R3が置換基を有していてもよいスルフィニル基の場合のスルフィニル 基としては、 具体例として、 メチルスルフィエル基、 フエニルスルフィ二ル基等 が挙げられる。
R1, R2、 R3が置換基を有していてもよいスルホニル基の場合のスルホニル基と しては、 具体例として、 メチルスルホニル基、 フエニルスルホニル基等が挙げら れる。
R\ R2、 R3が置換基を有していてもよいスルホナ一ト基の場合のスルホナート 基としては、 具体例として、 メチルスルホナート基、 フエニルスルホナ一ト基等 が挙げられる。
これらのアルキル基、 シクロアルキル基、 ァリール基、 ァラルキル基、 複素環 基、 アルコキシ基、 アルコキシカルポニル基、 ァシル基、 アミド基、 シリル基、 ホスホリル基、 スルフィニル基、 スルホニル基、 スルホナ一ト基の置換基として は、 当該反応に悪影響を及ぼさないものであればどのような置換基でも良いが、 例えばメチル基、 ェチル基、 プロピル基等のアルキル基、 例えばフエニル基、 ナ フチル基等のァリール基、 例えばォキシラニル基、 ピリジル基、 フリル基等の複 素環基、 例えばメトキシ基、 エトキシ基、 フエノキシ基、 ナフチルォキシ基等の アルコキシ基、 例えばメトキシカルポニル基、 一プロポキシカルポニル基、 t一 ブトキシカルポニル基、 フエノキシ力ルポニル基等のアルコキシカルポニル基、 スルホン酸基、 シァノ基、 ニトロ基、 例えばトリメチルシリル基、 トリフエニル シリル基等のシリル基、ヒドロキシ基、例えば無置換アミド基、メチルアミド基、 プロピルアミド基、 テトラデシルアミド基等のアミド基、 例えばァセチル基、 ベ ンゾィル基等のァシル基、 例えばジヒドロキシホスホリル基、 ジメトキシホスホ リル基等のホスホリル基、 例えばメチルスルフィニル基、 フエニルスルフィニル 基等のスルフィエル基、 例えばメチルスルホニル基、 フエニルスルホニル基等の スルホニル基、 例えばメチルスルホナ一ト基、 フエニルスルホナート基等のスル ホナ一ト基等が挙げられる。
また、 R R2及び R3の何れか二つがそれぞれから水素原子を取り除いた残基で 互いに結合して環を形成していても良く、 更には R1, R2及び R3の何れか二つから 水素原子を取り除いた残基が 2価の原子又は Z及び 2価の官能基を介して互いに 結合して環を形成していても良い。 この場合の 2価の原子としては、 酸素原子、 窒素原子、 硫黄原子等が、 また 2価の官能基としてはシリレン基、 エチレンジォ キシ基、 ァリーレンジォキシ基、 カルボ二ル基、 スルホキシド基、 スルホン基等 が例示される。
このような第 1級ァリルアルコール類としては、 たとえば、 クロチルアルコー ル、 cis一 2—ペンテン一 1一オール、 3ーメチルー 2ーブテン一 1—オール、 cis ― 2一へキセン— 1—オール、 trans - 2—へキセン一 1一オール、 trans— 2—ォ クテン— 1 一オール、 trans _ 2—ドデセン一 1—ォ一ル、 桂皮アルコール、 ゲラ 二オールなどが挙げられる。
また、 前記一般式 (2 ) において、 R4、 R5、 R6、 R7が置換基を有していてもよ いアルキル基の場合のアルキル基としては、 炭素数は:!〜 30、 好ましくは 1〜20の 直鎖状又は分岐状のアルキル基が挙げられ、 具体例としては例えば、 メチル基、 ェチル基、 プロピル基、 へキシル基、 ォクチル基等が挙げられる。
R4、 R5、 R6、 R7が置換基を有していてもよいシクロアルキル基の場合のシクロ アルキル基としては、 例えば、 炭素数 3〜20、 好ましくは 3〜; 10の単環、 多環又は 縮合環式のシクロアルキル基が挙げられ、 より具体的には、 シクロプロピル基、 シクロペンチル基、 シクロへキシル基、 シクロォクチル基等が挙げられる。
R4、 R5、 R6、 R7が置換基を有していてもよいァリ一ル基の場合のァリール基と しては、 例えば炭素数は 6〜20、 好ましくは 6〜14の単環、 多環又は縮合環式の芳 香族炭化水素基が挙げられ、 より具体的には、 例えば、 フエニル基、 トリル基、 キシリル基、ナフチル基、 メチルナフチル基、 アントリル基、 フエナントリル基、 ビフエニル基等が挙げられる。
R4、 R5、 、 R7が置換基を有していてもよいァラルキル基の場合のァラルキル 基としては、 例えば、 炭素数は 7〜20、 好ましくは 7〜15の単環、 多環又は縮合環 式のァラルキル基が挙げられ、 より具体的には、 例えば、 ベンジル基、 フエネチ ル基、 ナフチルメチル基、 ナフチルェチル基等が挙げられる。
R4、 R5、 R R7が置換基を有していてもよい複素環基の場合の複素環基として は、環中に少なくとも 1個以上の窒素原子、酸素原子又は硫黄原子を有する 3〜: 15 員環、 好ましくは 3〜: 10員環であって、 シクロアルキル基、 シクロアルケ二ル基又 はァリール基などの炭素環式基と縮合していてもよい飽和又は不飽和の単環、 多 環又は縮合環式のものが挙げられ、 より具体的には、 例えば、 ォキシラエル基、 ピリジル基、 チェニル基、 フエニルチェニル基、 チアゾリル基、 フリル基、 ピぺ リジル基、 ピペラジル基、 ピロリル基、 イミダゾリル基、 キノリル基、 ピリミジ ル基等が挙げられる。 '
R4、 R5、 R R7が置換基を有していてもよいアルコキシ基の場合のアルコキシ 基としては、 炭素数:!〜 20、 好ましくは 1〜: 10の直鎖状又は分岐状のアルコキシ基 が挙げられ、具体例としては例えば、メトキシ基、エトキシ基、 i一プロポキシ基、 t一ブトキシ基等が挙げられる。
R4、 R5、 、 R7が置換基を有していてもよいアルコキシカルボニル基の場合の アルコキシカルポニル基としては、 炭素数:!〜 30、 好ましくは 1〜20の直鎖状又は 分岐状のアルコキシカルポニル基が挙げられ、 具体例としては例えば、 メトキシ カルポニル基、 エトキシカルポニル基、 /一プロポキシカルポニル基、 tーブトキ シカルポニル基、 フエノキシカルボニル基等が挙げられる。
R4、 R5、 R6、 R7が置換基を有していてもよいァシル基の場合のァシル基として は、 炭素数 1〜30、 好ましくは 1〜20の直鎖状又は分岐状のァシル基が挙げられ、 具体例としては例えば、 ァセチル基、 ベンゾィル基、 ヘプタノィル基、 シクロへ キサン力ルポニル基等が挙げられる。 R4、 R5、 、 R7が置換基を有していてもよいアミド基の場合のアミド基として は、 炭素数:!〜 30、 好ましくは 1〜20の直鎖状又は分岐状のアミド基が挙げられ、 具体例としては例えば、メチルアミド基、ェチルアミド基、 i一プロピルアミド基、 テ卜ラデシルアミド基等が挙げられる。
R4、 R5、 R6、 R7が置換基を有していてもよいシリル基の場合のシリル基として は、 具体例として、 例えばトリメチルシリル基、 トリェチルシリル基、 トリフエ 二ルシリル基等が挙げられる。
R4、 R5、 R6 R7が置換基を有していてもよいホスホリル基の場合のホスホリル 基としては、 具体例として、 例えばジヒドロキシホスホリル基、 ジメトキシホス ホリル基等が挙げられる。
R4、 R5、 R6、 R7が置換基を有していてもよいスルフィニル基の場合のスルフィ ニル基としては、 具体例として、 メチルスルフィニル基、 フエニルスルフィニル 基等が挙げられる。
R4、 R5、 、 R7が置換基を有していてもよいスルホニル基の場合のスルホニル 基としては、 具体例として、 メチルスルホニル基、 フエニルスルホニル基等が挙 げられる。
R4、 R5、 R R7が置換基を有していてもよいスルホナ一ト基の場合のスルホナ ート基としては、 具体例として、 メチルスルホナート基、 フエニルスルホナート 基等が挙げられる。
これらのアルキル基、 シクロアルキル基、 ァリール基、 ァラルキル基、 複素環 基、 アルコキシ基、 アルコキシカルポニル基、 ァシル基、 アミド基、 シリル基、 ホスホリル基、 スルフィエル基、 スルホニル基、 スルホナート基の置換基として は、 当該反応に悪影響を及ぼさないものであればどのような置換基でも良いが、 例えばメチル基、 ェチル基、 プロピル基等のアルキル基、 例えばフエニル基、 ナ フチル基等のァリール基、 例えばォキシラニル基、 ピリジル基、 フリル基等の複 素環基、 例えばメトキシ基、 エトキシ基、 フエノキシ基、 ナフチルォキシ基等の アルコキシ基、 例えばメトキシカルポニル基、 一プロポキシカルボ二ル基、 t一 ブトキシカルポニル基、 フエノキシカルボニル基等のアルコキシカルポニル基、 スルホン酸基、 シァノ基、 ニトロ基、 例えばトリメチルシリル基、 トリフエニル シリル基等のシリル基、ヒドロキシ基、例えば無置換アミド基、メチルアミド基、 プロピルアミド基、 テトラデシルアミド基等のアミド基、 例えばァセチル基、 ベ ンゾィル基等のァシル基、 例えばジヒドロキシホスホリル基、 ジメトキシホスホ リル基等のホスホリル基、 例えばメチルスルフィニル基、 フエニルスルフィニル 基等のスルフィニル基、 例えばメチルスルホニル基、 フエニルスルホニル基等の スルホニル基、 例えばメチルスルホナート基、 フエニルスルホナート基等のスル ホナー卜基等が挙げられる。
また 、 R5、 R6及び R7の何れか二つがそれぞれから水素原子を取り除いた残基 で互いに結合して環を形成していても良く、 更には R4、 R5、 及び R7の何れか二 つから水素原子を取り除いた残基が 2価の原子又は Z及び 2価の官能基を介して 互いに結合して環を形成していても良い。 この場合の 2価の原子としては、 酸素 原子、 窒素原子、 硫黄原子等が、 また 2価の官能基としてはシリレン基、 ェチレ ンジォキシ基、 ァリ一レンジォキシ基、 カルポニル基、 スルホキシド基、 スルホ ン基等が例示される。 ' このような第 2級ァリルアルコール類としては、 例えば、 3—ォクテン一 2— オール、 4—メチル— 4—ヘプテン一 3一オールなどが挙げられる。
本発明においては、 上記したように、 温和な反応条件下で、 非水溶性のァリル アルコール類から , 3 -不飽和カルボニル化合物を高収率で得ることができると 共に、 反応操作が簡便で反応終了後の溶媒除去操作を不要とし、 かつ環境や人体 への影響 ·毒性がきわめて小さい、 ァリルアルコール類と過酸化水素水溶液との 反応による安全かつ簡便で効率的なひ, ]3 -不飽和カルポニル化合物の製造方法を 提供することをその目的としていることから、 ァリルアルコール類の油性溶液と しては、 ァリルアルコール類それ自体の油性溶液の他、 水と相溶しない炭化水素 などの非極性溶媒中に溶解させたァリルアルコール類の油性溶媒溶液などを用い ることができるが、 前記した環境負荷の軽減や溶媒除去操作の観点からみて、 ァ リルアルコール類それ自体の油性溶液を用いることが最も望ましい。
過酸化水素の使用量はァリルアルコール類のヒドロキシ基に対して通常 1 . 0 から 1 0モル倍、 好ましくは 1 . 0から 3 . 0モル倍の範囲である。 過酸化水素 の濃度は特に制限はなく、 市販の 3〜50%水溶液、 好ましくは 3〜20%水溶液の範囲 である。
周期律表 8〜 1 0族の金属化合物を含む触媒としては、 これらの金属の担持金 属、 金属粉末、 金属錯体が使用できるが、 いわゆる 0価金属触媒を用いることが 好ましい。 このような触媒としては、 例えば、 白金 Z炭素、 白金/シリカ、 白金 アルミナ、 白金ブラック、 ビス (ジベンジリデンアセトン) 白金、 ビス (1、 5—シクロォク夕ジェン) 白金、 パラジウム 炭素、 パラジウム Zシリカ、 パラ ジゥムノアルミナ、 パラジウムブラック、 トリス (ビスジベンジリデンアセトン) 二パラジウム、 ニッケル Z炭素、 ニッケル Zシリカ、 ニッケル /アルミナ、 ニッ ゲル粉末、 ニッケルブラック、 ロジウム Z炭素、 ロジウム Zシリカ、 ロジウム アルミナ、 ロジウムブラック、 コバルト粉末、 ルテニウム Z炭素、 ルテニウム シリカ、 ルテニウム Zアルミナ、 ルテニウムブラックなどが挙げられるが、 白金 Z炭素、 白金ブラック、 ビス (ジベンジリデンァセトン) 白金、 パラジウム/炭 素、 ロジウム/炭素、 ルテニウム Z炭素が好ましい。 8〜 1 0族の0価金属触媒 類は単独で使用しても、 2種類以上を混合使用してもよい。
その使用量は基質のァリルアルコール類に対して通常 0 . 0 0 0 1〜 2 0モ ル%、 好ましくは 0 . 0 5〜 1 0モル%の範囲である。
本発明方法の反応条件には、 特に制約はないが、 通常、 反応は 30〜120°C、 好ま しくは 50〜100 °Cの範囲で行われる。 反応圧力は常圧、 加圧、 減圧のいずれでも 良いが、 常圧で行うことが望ましい。
本発明の好ましい製造方法においては、 非水溶性のァリルアルコール類の油性 溶液と触媒を混合した溶液を反応実施温度まで加温し、 ついで過酸化水素水溶液 を徐々に滴下して撹拌しながら反応させる方法が採られる。
本発明方法で得られる ,3 -不飽和アルデヒドとしては、 前記一般式 (1 ) に 対応するアルデヒド類が挙げられる。 このようなアルデヒド類としては、 たとえ ば、クロトンアルデヒド、 — 2—ペンテナール、 3—メチル— 2ーブテナール、 cw _ 2—へキセナール、 trims— 2—へキセナール、 cw _ 2—ォクテナール、 trans 一 2—ォクテナール、 tr««s— 2—ドデセナール、 桂皮アルデヒド、 シ卜ラールな どが例示される。
また、 本発明方法で得られる 不飽和ケトンとしては、 前記一般式 (2 ) に対応するケトン類が挙げられる。 このようなケトン類としては、 例えば、 3— ォクテン— 2一オン、 4ーメチルー 4一ヘプテン— 3一オンなどが例示される。 生成した目的生成物である 0!,]3 -不飽和カルポニル化合物は、 反応終了後に水 相から分離して取り出し、 再結晶や蒸留、 昇華等の通常の方法によって精製する ことができる。
また、 触媒の分離は、 反応液のろ過、 もしくはデカンテーシヨン等のような通 常行われる分離操作により容易に達成され、 回収触媒は水で洗浄することにより そのまま繰り返し使用することができる。 実施例
以下、 実施例により本発明をより詳細に説明するが、 本発明はこれらの実施例 により何ら限定されるものではない。
実施例 1
白金ブラック(58. 5 mg, 0. 300 匪 o l)と桂皮アルコール(1. 34 g, l O mmo l)を混 合し、 90 °Cで 10分間撹拌した。 その混合溶液へ 5%過酸化水素水溶液(7. 5 mL, 11 腿 o l)を徐々に滴下し、 90 °Cで 5時間撹拌した後、 反応溶液を室温まで冷却した。 GLCを測定したところ、 桂皮アルデヒドの収率は 96%であった。
比較例 1
桂皮アルコールと過酸化水素水溶液が均一相をなすように、 あらかじめジォキ サン(10 mL)を加えた以外は実施例 1と同じ条件で反応を行った結果、桂皮アルデ ヒドの収率は 48%であった。
実施例 2
白金ブラック(4. 36 g, 22. 3 腿 o l)と桂皮アルコール(100 g, 0. 745 mo l)を混合 し、 90 °Cで 15分間撹拌した。 その混合溶液へ 5%過酸化水素水溶液(558 g, 0. 821 mol)を徐々に滴下し、 90 °Cで 5時間撹拌した後、 反応溶液を室温まで冷却した。 有機層を分取し蒸留したところ、 91. 6 gの桂皮アルデヒド(収率 93%)が得られた。 実施例 3
白金ブラック(58. 5 mg, 0. 300 匪 o l)と桂皮アルコール(1. 34 g, l O mmo l)を混 合し、 90 °Cで 10分間撹拌した。 その混合溶液へ 5%過酸化水素水溶液(7. 5 mL, 11 mmol)を徐々に滴下し、 90 °Cで 5時間撹拌した後、 反応溶液を室温まで冷却した。 メンブレンろ紙を用いて溶液と白金触媒を分離した後、 白金を水で数回洗浄し、 再度、 桂皮アルコ一ルと過酸化水素水溶液の反応に使用した。 触媒の再使用を 7 回行った際の桂皮アルデヒドの収率は、 それぞれ 93%、 92¾, 94%、 93%、 90%、 92°ん 90%であった。
実施例 4
炭素に担持された白金(担持率^, 0.300 mmol)と桂皮アルコール(1.34 g, 10 mmol)を混合し、 90 °Cで 10分間撹拌した。その混合溶液へ 5%過酸化水素水溶液(7.5 mL, 11 mmol)を徐々に滴下し、 90 °Cで 5時間撹拌した後、 反応溶液を室温まで冷 却した。 GLCを測定したところ、 桂皮アルデヒドの収率は 80%であった。
実施例 5
炭素に担持されたルテニウム(担持率 5%, 0.300 mmol)と桂皮アルコール(1.34 g, 10 mmol)を混合し、 90でで 10分間撹拌した。 その混合溶液へ 5¾過酸化水素水溶液 (7.5 iL, 11 mmol)を徐々に滴下し、 90 °Cで 5時間撹拌した後、 反応溶液を室温ま で冷却した。 GLCを測定したところ、 桂皮アルデヒドの収率は 70%であった。
実施例 6
白金ブラック(58.5 mg, 0.300 匪 ol)とゲラニオール(1.7 mL, 10 腿 ol)を混合 し、 90°Cで 10分間撹拌した。 その混合溶液へ 5%過酸化水素水溶液(14 mL, 20顧 ol) を徐々に滴下し、 90 °Cで 5時間撹拌した後、 反応溶液を室温まで冷却した。 GLC を測定したところ、 シトラールの収率は 97%であった。
実施例 7
白金ブラック(58.5 mg, 0.300 mmol)と trans - 2 -ォクテン - 1 一オール(1.5 mL, 10 mmol)を混合し、 90°Cで 10分間撹拌した。 その混合溶液へ 5%過酸化水素水 溶液(7.5 mL, 11 mmol)を徐々に滴下し、 90°Cで 5時間撹拌した後、 反応溶液を室 温まで冷却した。 GLCを測定したところ、 //a/w - 2 -ォクテナールの収率は 97% であった。
実施例 8
白金ブラック(58.5 mg, 0.300 mmol)と trans - 2 -へキセン - 1 -オール(1.2 mL, 10 mmol)を混合し、 90 °C10分間撹拌した。 その混合溶液へ 5%過酸化水素水溶 液(7.5 mL, 11 匪 ol)を徐々に滴下し、 90°Cで 5時間撹拌した後、 反応溶液を室温 まで冷却した。 GLCを測定したところ、 trans - 2 -へキセナールの収率は 96 であ つた。
実施例 9
白金ブラック(58.5 mg, 0.300 腿 ol)と 3 -メチル - 2 ―ブテン - 1 -オール (1.0 mL, 10 iol)を混合し、 90 °C 10分間撹拌した。 その混合溶液へ 5%過酸化水 素水溶液(7.5 mL, 11 mmol)を徐々に滴下し、 90°Cで 5時間撹拌した後、 反応溶液 を室温まで冷却した。 GLCを測定したところ、 3 -メチル - 2 -ブテナールの収率 は 91%であった。
実施例 1 0
白金ブラック(58.5 mg, 0.300龍 ol)と c - 2 -へキセン - 1 -オール(1.2 mL, 10 mmol)を混合し、 90 °Cで 10分間撹拌した。 その混合溶液へ 5%過酸化水素水溶液 (20 mL, 30 mmol)を徐々に滴下し、 90°Cで 5時間撹拌した後、 反応溶液を室温まで 冷却した。 GLCを測定したところ、 cis - 2 -へキセナールの収率は 84%であった。 実施例 1 1
白金ブラック(58.5 mg, 0.300 mmol)と - 2 -ペンテン - 1 -オール(1.0 mL, 10匪 ol)を混合し、 90 °Cで 10分間撹拌した。 その混合溶液へ 5%過酸化水素水溶液 (20 mL, 30 mmol)を徐々に滴下し、 90°Cで 5時間撹拌した後、 反応溶液を室温まで 冷却した。 GLCを測定したところ、 cis- 2 -ペンテナールの収率は 72%であった。 実施例 1 2
白金ブラック(58.5 mg, 0.300 mmol)と/ ra?5 - 2 -デセン - 1 -オール(1.9mL, 10 mmol)を混合し、 90 °Cで 10分間撹拌した。 その混合溶液へ 5%過酸化水素水溶液 (7.5 mL, 11 mmol)を徐々に滴下し、 90°Cで 5時間撹拌した後、 反応溶液を室温ま で冷却した。 GLCを測定したところ、 /ra - 2 -デセナールの収率は 69%であった。 実施例 1 3
窒素下、 白金ブラック(97.5 mg, 0.50 mmol)とクロチルアルコール(0.85 mL, 10 匪 ol)を混合し、90 10分間撹拌した。その混合溶液へ 5 過酸化水素水溶液(14mL, 20 mmol)を徐々に滴下し、 90°Cで 5時間撹拌した後、反応溶液を室温まで冷却した。 GLCを測定したところ、 クロトンアルデヒドの収率は 46%であった。 実施例 1 4
白金ブラック(58. 5 mg, 0. 300 mmo l)と 3 -ォクテン - 2 -オール(1. 5 mL, 10 mmo l)を混合し、 90 °Cで 10分間撹拌した。 その混合溶液へ 30%過酸化水素水溶液 (2. 3 mL, 20 imno l)を徐々に滴下し、 90 で 5時間撹拌した後、 反応溶液を室温ま で冷却した。 GLCを測定したところ、 3 -ォクテン - 2 -オンの収率は 97%であつ た。
比較例 2
3 -ォクテン - 2 -オールと過酸化水素水溶液が均一相をなすように、 あらか じめジォキサン(10 mL)を加えた以外は実施例 1と同じ条件で反応を行った結果、 3 -ォクテン - 2 -オンの収率は 29%であった。
実施例 1 5
白金ブラック(58. 5 mg, 0. 300 mmo l)と 4 一メチル - 4 -ヘプテン - 3 -オール (1. 34 g, 10 mmo l)を混合し、 90 °Cで 10分間撹拌した。 その混合溶液へ 30%過酸化 水素水溶液(2. 3 mL, 20 mmo l)を徐々に滴下し、 90°Cで 5時間撹拌した後、 反応溶 液を室温まで冷却した。 GLCを測定したところ、 4 -メチル- 4 -ヘプテン - 3 - オンの収率は 61 %であった。 産業上の利用可能性
本発明の製造法によれば、 種々の有機化合物の中間体として幅広く用いられる 有用な , ) 3 -不飽和アルデヒド、 ひ, i3 -不飽和ケトンなどのひ, i3 -不飽和力ルポ ニル化合物を、 温和な条件下で、 かつ高収率で得ることができる。 また、 本発明 方法は、 有機溶媒、 酸および塩基を使用しないため、 反応操作が簡便で反応終了 後の溶媒除去操作等を不要とすると共に、 環境や人体への影響 ·毒性がきわめて 小さく、 環境に対する負荷を軽減する効果も有し、 安全かつ簡便で効率的にひ, β -不飽和カルポニル化合物を得ることができる。 したがって、本発明方法は工業 的に多大な効果をもたらす発明ということができる。

Claims

請求の範囲
1. 非水溶性のァリルアルコ一ル類の油性溶液と過酸化水素水溶液とを、 周期 律表第 8〜 1 0族の金属化合物を含む触媒の存在下、 不均一溶液で反応させるこ とを特徴とする α, 3-不飽和カルポニル化合物の製造方法。
2. ァリルアルコール類が第 1級ァリルアルコール類であり、 , i3-不飽和力 ルポニル化合物が、 , /3-不飽和アルデヒドであることを特徴とする請求の範囲 第 1項に記載の α, 3-不飽和カルポニル化合物の製造方法。
3. ァリルアルコール類が第 2級ァリルアルコール類であり、 , ) 3-不飽和力 ルポニル化合物が、 α , β -不飽和ケ卜ンであることを特徴とする請求の範囲第 1 項に記載の a, i3-不飽和カルポニル化合物の製造方法。
4. 周期律表第 8〜 1 0族の金属化合物を含む触媒が 0価金属触媒であること を特徴とする請求の範囲第 1項乃至第 3項何れかに記載のひ, β -不飽和力ルポ二 ル化合物の製造方法。
5. 0価金属触媒が、 白金 Ζ炭素、 白金ブラック、 ビス (ジベンジリデンァセ トン) 白金、 パラジウム/炭素、 ロジウム Ζ炭素、 ルテニウム Ζ炭素である請求 の範囲第 4項に記載の , /3-不飽和カルポニル化合物の製造方法。
PCT/JP2003/016983 2003-01-07 2003-12-26 α,β-不飽和カルボニル化合物の製造方法 WO2004060844A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004564553A JP4392500B2 (ja) 2003-01-07 2003-12-26 α,β−不飽和カルボニル化合物の製造方法
AU2003292698A AU2003292698A1 (en) 2003-01-07 2003-12-26 PROCESS FOR PRODUCING Alpha,ss-UNSATURATED CARBONYL COMPOUND

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-824 2003-01-07
JP2003-910 2003-01-07
JP2003000910 2003-01-07
JP2003000824 2003-01-07

Publications (1)

Publication Number Publication Date
WO2004060844A1 true WO2004060844A1 (ja) 2004-07-22

Family

ID=32716355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016983 WO2004060844A1 (ja) 2003-01-07 2003-12-26 α,β-不飽和カルボニル化合物の製造方法

Country Status (3)

Country Link
JP (1) JP4392500B2 (ja)
AU (1) AU2003292698A1 (ja)
WO (1) WO2004060844A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117224A (ja) * 2013-12-20 2015-06-25 国立研究開発法人産業技術総合研究所 α,β‐不飽和カルボニル化合物の製造法
WO2018172110A1 (en) * 2017-03-20 2018-09-27 Basf Se Process for the preparation of alpha, beta unsaturated aldehydes by oxidation of alcohols in the presence of a liquid phase
JP2019521131A (ja) * 2016-06-29 2019-07-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 液相の存在下でのアルコールの酸化によるアルファ,ベータ不飽和アルデヒドの製造方法
WO2020048855A1 (en) * 2018-09-07 2020-03-12 Basf Se Process for the preparation of alpha, beta unsaturated aldehydes by oxidation of alcohols in the presence of a liquid phase

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102527A (en) * 1979-02-01 1980-08-05 Mitsui Petrochem Ind Ltd Preparation of aldehyde or ketone
EP0232742A1 (en) * 1986-01-16 1987-08-19 ISTITUTO GUIDO DONEGANI S.p.A. Method for the preparation of ketones
JP2001075539A (ja) * 1999-09-06 2001-03-23 Citizen Watch Co Ltd 液晶表示装置
JP2003073323A (ja) * 2001-09-04 2003-03-12 Nippon Shokubai Co Ltd 有機化合物の酸化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102527A (en) * 1979-02-01 1980-08-05 Mitsui Petrochem Ind Ltd Preparation of aldehyde or ketone
EP0232742A1 (en) * 1986-01-16 1987-08-19 ISTITUTO GUIDO DONEGANI S.p.A. Method for the preparation of ketones
JP2001075539A (ja) * 1999-09-06 2001-03-23 Citizen Watch Co Ltd 液晶表示装置
JP2003073323A (ja) * 2001-09-04 2003-03-12 Nippon Shokubai Co Ltd 有機化合物の酸化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SRINIVAS N, ET AL: "Liquid phase selective oxidation of alcohols over modified molecular sieves", J. MOLECULAR CATALYSIS A, vol. 172, no. 1-2, 2001, pages 187 - 191, XP002976445 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117224A (ja) * 2013-12-20 2015-06-25 国立研究開発法人産業技術総合研究所 α,β‐不飽和カルボニル化合物の製造法
JP2019521131A (ja) * 2016-06-29 2019-07-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 液相の存在下でのアルコールの酸化によるアルファ,ベータ不飽和アルデヒドの製造方法
JP7039498B2 (ja) 2016-06-29 2022-03-22 ビーエーエスエフ ソシエタス・ヨーロピア 液相の存在下でのアルコールの酸化によるアルファ,ベータ不飽和アルデヒドの製造方法
WO2018172110A1 (en) * 2017-03-20 2018-09-27 Basf Se Process for the preparation of alpha, beta unsaturated aldehydes by oxidation of alcohols in the presence of a liquid phase
CN110418779A (zh) * 2017-03-20 2019-11-05 巴斯夫欧洲公司 通过在液相存在下氧化醇制备α,β不饱和醛的方法
US10875821B2 (en) 2017-03-20 2020-12-29 Basf Se Process for the preparation of alpha, beta unsaturated aldehydes by oxidation of alcohols in the presence of a liquid phase
CN110418779B (zh) * 2017-03-20 2023-12-15 巴斯夫欧洲公司 通过在液相存在下氧化醇制备α,β不饱和醛的方法
WO2020048855A1 (en) * 2018-09-07 2020-03-12 Basf Se Process for the preparation of alpha, beta unsaturated aldehydes by oxidation of alcohols in the presence of a liquid phase

Also Published As

Publication number Publication date
JPWO2004060844A1 (ja) 2006-05-11
JP4392500B2 (ja) 2010-01-06
AU2003292698A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
CN105837416B (zh) 一种铜配合物催化醇类选择性氧化制备醛或酮的方法
WO1999042211A1 (fr) Catalyseur d'oxydation et procede d'oxydation via ce catalyseur
JPWO2005116006A1 (ja) フラーレン誘導体の製造方法
CN106986768B (zh) 制备α,β-不饱和或α-卤代酮和醛的方法
WO2004060844A1 (ja) α,β-不飽和カルボニル化合物の製造方法
JP3600213B2 (ja) 1,2−ジオールの新規製造法
US11571687B2 (en) Methods for recovering and reusing selective homogeneous hydrogenation catalyst
JP2008019265A (ja) β−ヒドロキシヒドロペルオキシド類の製造法とその触媒
US20040030187A1 (en) User- and eco-friendly hypervalent iodine reagent and method of synthesis
JP4551000B2 (ja) 4−置換n−[(アルケ−2−エニ−1−イル)オキシ]−およびn−アラルキルオキシ−2,2,6,6−テトラアルキルピペリジンの合成方法
JP5077795B2 (ja) カルボニル化合物の製造方法
JP2021134141A (ja) 不均一系貴金属触媒を用いた芳香族化合物の製造方法
Bamoniri et al. Deprotection of trimethylsilyl ethers to corresponding alcohols promoted by silica chloride: a heterogeneous and eco-friendly protocol
WO2000017139A1 (fr) Procedes de production d'alcools
JP4066679B2 (ja) アラルキルケトン類の製造方法とその触媒
JPS6032746A (ja) ベンゾキノン類の製造方法
EP1472207B1 (en) A process for the oxidation of unsaturated alcohols
EP0482834A1 (en) Process for producing alpha-hydroxyketones
JP3529876B2 (ja) 3−メチル−3−メトキシブタン酸。
JPH07103095B2 (ja) ビタミンaアルデヒドの製造方法
WO2004054956A1 (ja) カルボン酸の製造方法
JP3014782B2 (ja) ラクトンまたはエステル化合物の製造方法
JPS623817B2 (ja)
JP2600858B2 (ja) 芳香族アセチル化合物の製造方法
JPS5976037A (ja) ベンゾキノン類の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004564553

Country of ref document: JP

122 Ep: pct application non-entry in european phase