WO2004060795A1 - オゾン発生方法 - Google Patents

オゾン発生方法 Download PDF

Info

Publication number
WO2004060795A1
WO2004060795A1 PCT/JP2003/016516 JP0316516W WO2004060795A1 WO 2004060795 A1 WO2004060795 A1 WO 2004060795A1 JP 0316516 W JP0316516 W JP 0316516W WO 2004060795 A1 WO2004060795 A1 WO 2004060795A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ozone
ozonizer
nitrogen
less
Prior art date
Application number
PCT/JP2003/016516
Other languages
English (en)
French (fr)
Inventor
Shigekazu Tokutake
Osamu Takemura
Takayuki Yamamoto
Original Assignee
Sumitomo Precision Products Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co., Ltd. filed Critical Sumitomo Precision Products Co., Ltd.
Publication of WO2004060795A1 publication Critical patent/WO2004060795A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/64Oxygen

Definitions

  • the present invention relates to an ozone generation method using a discharge-type ozonizer. Background Technology ⁇
  • ozone gas In the manufacture of semiconductors, ozone gas has begun to be used for forming oxide films on various substrates, such as glass substrates for semiconductors, LCDs, and liquid crystals, assuring resist on substrates, and cleaning substrates. Since ozone gas for semiconductor production needs to be low in impurities, it is usually produced by supplying high-purity oxygen gas as a source gas to a discharge-type ozonizer. The generated ozone gas for semiconductor production is sent to the use point via a pipe made of stainless steel such as SUS316L or fluororesin such as PFA which has been electropolished to prevent its contamination.
  • the problem is that metal impurities are detected in the ozone gas supply destination in the gas. This is due to the fact that oxygen gas contains nitrogen gas, which causes by-products in ozone gas. It is supposed that nitrogen oxides are generated, which deteriorate or corrode the inner surface of the metal pipe and the inner surface of the chamber, and as a result, metal impurities are generated from the inner surface of the pipe and the inner surface of the chamber. It goes without saying that such metal impurities resulting from the formation of nitrogen oxides have an adverse effect on semiconductor manufacturing. Recently, it has been pointed out that nitrogen oxides in ozone gas, as well as metal impurities secondary from the inner surface of metal pipes and the inner surface of the chamber, directly affect semiconductor manufacturing.
  • One of the methods is to add water to high-purity oxygen gas as a raw material gas.
  • a method of adding 0.05 to 4 O ppm is described in JP-A-2002-29710.
  • a method of adding 0.025% or more of carbon dioxide gas alone or mixing and adding with 0.025 to 0.25% of nitrogen gas is disclosed in Japanese Unexamined Patent Application Publication No. It is described in Japanese Patent Application Laid-Open No. 9-2008-202.
  • Etto process In this case, adding water to oxygen gas is not a problem. However, in the case of a dry process, ozone gas containing water is avoided. From this viewpoint, the dew point of oxygen gas, which is a raw material gas, is required to be 80 ° C or less. This corresponds to 0.52 ppm or less in terms of the amount of water in the raw material gas. If the amount of water added is limited to such a low level, the effect of increasing the ozone concentration will be insufficient.
  • ozone is generated in the process of increasing the AC voltage, and it is said that the ozone generation efficiency increases as the frequency of the applied voltage increases. For this reason, this frequency has been raised from the conventional one to several kHz to 15 kHz or more, and further to 20 kHz or more outside the audible range.
  • the discharge gap has recently been reduced to less than 0.4 mm, especially less than 0.1 mm, from around 1 mm in the past, in order to improve cooling efficiency and improve electric field strength. is there.
  • the gas temperature during discharge is calculated from the thermal conductivity.
  • Ozone gas has a characteristic that the decomposition reaction is promoted when the temperature is increased. In order to obtain a high concentration of ozone gas, it is necessary to lower the gas temperature, and it is advantageous that the gap is narrower, based on calculations from thermal conductivity.
  • the effectiveness of hydration has been confirmed with older ozonizers.
  • the preferred amount of added water is 0.05 to 40 ppm. Higher applied voltage Even with a new type of ozonizer with improved high concentration represented by a reduced discharge gap, the effectiveness of adding water is expected, and the ozone concentration is expected to be higher than that of the old type ozonizer. However, actually
  • the nitrogen gas works effectively with the new type ozonizer except for a trace area of less than 0.01%, and the old type ozonizer. Ensure higher ozone concentration. In the trace area, the ozone concentration drops extremely with the decrease in the amount of added nitrogen gas, and it becomes lower than that of the old type. However, the problem of nitrogen oxides is solved to a negligible extent.
  • the addition of carbon dioxide gas can be applied regardless of whether it is a dry type or a wet type.
  • this carbon dioxide gas is also highly effective in the old-type ozonizer, as in the case of nitrogen gas. The effect becomes poor, and a large amount of addition exceeding 10% is required.
  • the ozone concentration drops extremely with the decrease of the added amount, and it becomes lower than that of the old type.
  • Carbon dioxide gas is expensive, unlike nitrogen gas, and its use in large quantities degrades economic efficiency.
  • the frequency of cylinder replacement will increase due to the large amount of use.
  • the amount of carbon dioxide gas added should be limited to 1.0% or less. However, in that case, especially with a new type of ozonizer, sufficient addition effect cannot be obtained.
  • the amount of carbon dioxide gas used is reduced
  • the conventional mixed addition amount of nitrogen gas (0.025 to 0.25%) does not sufficiently solve the problem caused by nitrogen oxides.
  • the amount of nitrogen gas added to solve the problem caused by nitrogen oxides is less than 0.01%, which is the above-mentioned trace range.
  • the object of the present invention is applicable to both dry and wet systems, and even with a new type of ozonizer pursuing ozone generation efficiency, the ozone concentration can be reduced without causing problems due to nitrogen oxides. It is an object of the present invention to provide a method for generating a poson that can effectively solve the above problem. Disclosure of the invention
  • the present inventors diligently studied a solution to the problem that the effectiveness of moisture and carbon dioxide gas deteriorates in a new type ozonizer pursuing ozone generation efficiency.
  • a very small amount of nitrogen gas which is less than 0.01%, which cannot be used alone to achieve a sufficient effect of addition, and is effective, led to the completion of the present invention.
  • a very small amount of nitrogen gas, less than 1% can be combined with moisture to increase the ozone concentration regardless of the type of ozonizer, regardless of whether it is new or old. It is possible to drastically reduce the amount of added water With no dew point, it can be reduced to a level below 180 ° C.
  • the ozone concentration is increased regardless of whether the ozonizer is new or old. % Or less. Furthermore, a trace amount of nitrogen gas is almost as effective as carbon dioxide gas for carbon monoxide gas.
  • the discharge type of Ozonaiza as a raw material gas for the ozone onset raw, dew point of not more than one 1 0 0 e C over a 8 0 ° C, the ⁇ one nitrogen 0 Oxygen gas containing at least 0.001% and less than 0.01% is supplied.
  • a discharge-type ozonizer contains oxygen gas (C x Oy gas) as a raw material gas for ozone generation in an amount of from 0.01% to 1.0%, In addition, an oxygen gas containing not less than 0.01% and less than 0.01% of nitrogen gas is supplied.
  • oxygen gas C x Oy gas
  • the amount of other catalyst added can be significantly reduced by the combined use of nitrogen gas, so the first method can be applied to dry systems, and the second method can be used in dry systems.
  • the economic efficiency is improved by reducing the use of oxygen gas (C x O y gas).
  • Either method is effective not only for the old type ozonizer but also for the new type ozonizer pursuing the ozone generation efficiency.
  • the amount of nitrogen gas is very small, there is substantially no problem caused by nitrogen oxides. In this specification,% is V01% unless otherwise specified.
  • Oxygen gas used as a source gas for ozone generation in the semiconductor manufacturing field is usually high-purity oxygen gas of 99.9% or more, and liquefied oxygen or oxygen gas filled in a cylinder is used as an oxygen gas source. Supplied to. Moisture in oxygen gas is relatively easy to remove among impurities, and is almost completely removed with purification to remove impurities. For this reason, the water content in the oxygen gas is 0.9 O lp pm or less in the case of 99.9% and 0.01 p pm or less in the case of 99.999%. It is.
  • the oxygen gas before adding the catalyst is preferably a high-purity oxygen gas with a purity of 99.9% or more, particularly 99.9% or more, and among them, an ultra-high purity of 99.9% or more.
  • Oxygen gas is particularly preferred. This is because, by removing impurities by increasing the purity of oxygen gas, only a required amount of a predetermined catalyst gas for achieving the effects of the present invention can be added with good controllability.
  • the dew point of the oxygen gas supplied to the ozonizer is set to be equal to or more than 110 ° C and equal to or less than _80 ° C.
  • the reason is that below -100 ° C, the effect of increasing the ozone concentration is insufficient, and above 180 ° C, there is a risk that the moisture may become a problem in dry processes.
  • a particularly preferred dew point is from 190 ° C to _80 ° C, in which the effect of increasing the ozone concentration is particularly large in the region of 180 ° C or less (see FIG. 8). If these dew points are expressed in terms of water content, — 100 ° C is 0.01 ppm, 190. C is 0.09 ppm, and 180 ° C is 0.52 ppm.
  • Oxygen gas is supplied to the ozonizer from an oxygen gas source through a gas supply system.
  • an oxygen gas source When the moisture in the oxygen gas at the oxygen gas source is insufficient, it is advisable to add a predetermined amount of moisture to the oxygen gas by a humidifier in the middle of the gas supply system, and then supply the oxygen gas to the ozonizer.
  • oxygen gas to which a predetermined amount of water has been added in advance can be supplied from the oxygen gas source to the ozonizer. Noh. If the oxygen gas in the oxygen gas source contains excessive moisture, remove moisture with a dehumidifier so that the moisture content in the oxygen gas is controlled within a predetermined range in the gas supply system.
  • the oxygen gas may be supplied to the ozonizer.
  • the amount of carbon dioxide gas (the amount of Cx Oy gas) in the oxygen gas supplied to the ozonizer is set to 0.01% or more and 1.0% or less. The reason is that if it is less than 0.01%, the effect of increasing the ozone concentration is insufficient, that is, if it is more than 0.01%, a clear effect of increasing the ozone concentration appears. Although high-concentration ozone can be generated, economical deterioration is a problem.
  • the amount of the oxygen gas (the amount of the Cx Oy gas) is preferably basically large in view of ozone concentration, more preferably 0.05% or more, and particularly preferably 0.1% or more.
  • the improvement effect when the nitrogen gas concentration is reduced to 0.02% or less is particularly remarkable. Since the upper limit is 0.5% or more and there is no significant difference in the effect of increasing the ozone concentration, the upper limit is preferably 0.5% or less.
  • the amount of nitrogen gas in the oxygen gas supplied to the ozonizer is set to 0.001% or more and less than 0.01%.
  • the reason is that if it is less than 0.01%, the effect of increasing the ozone concentration is insufficient, and if it is more than 0.01%, it has the effect of increasing the ozone concentration.However, the adverse effect due to the generation of nitrogen oxides becomes a problem. Because it becomes.
  • a particularly preferred amount of nitrogen gas is 0.02% or more for the lower limit. If the content is less than 0.02%, a concentration of oxygen gas (CxOy gas) of 0.05% or more is required to obtain a remarkable effect.
  • the ozone concentration is always sufficient even when water and oxygen gas (Cx ⁇ y gas) are used together.
  • the upper limit is preferably 0.005% or less. In this region, the effect of the water content and the amount of oxygen gas (Cx Oy gas amount) is particularly remarkable. Nitrogen oxides in small amounts Are less harmful.
  • the timing of adding nitrogen gas to oxygen gas depends on the amount of water and oxygen gas (
  • C x O gas may be added before, after, or simultaneously with the addition, or may be directly supplied to the ozonizer and mixed with oxygen gas here.
  • the purity of each of the nitrogen gas and the carbonized oxygen gas (C x Oy gas) used is 99.9.99 to improve the controllability of the type and amount of the added gas, as well as the reason for purifying the oxygen gas. 9% or more is desirable.
  • the carbon dioxide gas (C x Oy gas) used in the second method is typically a carbon dioxide gas or a carbon monoxide gas, or a mixed gas thereof.
  • the ratio of both gases in the mixed gas does not matter.
  • carbon dioxide gas and carbon monoxide gas the effect on the increase in ozone concentration is slightly higher for carbon dioxide gas than for carbon monoxide gas. Has no significant effect.
  • carbon monoxide gas is a combustible gas and has acute toxicity, it is desirable to use carbon dioxide gas in actual operations.
  • the ozone concentration of the ozone gas generated by the ozonizer is preferably at least 100 g / m 3 (N), more preferably at least 150 g / m 3 (N), particularly preferably at least 200 g / m 3 (N). preferable. This is because the effect of not only improving the reactivity by increasing the concentration but also suppressing the decrease in the ozone concentration by a small amount of catalyst is more effective as the concentration of ozone gas becomes higher. In other words, as the ozone concentration increases, the decomposition reaction also increases, and this phenomenon appears remarkably in the absence of the catalyst gas, and the ozone concentration decreases greatly.
  • the ozonizer to be used is preferably a new type that increases the ozone generation efficiency by increasing the discharge voltage and reducing the discharge gap. This type of This is because the effect of the present invention is particularly remarkable in an ozonizer.
  • the new type ozonizer is distinguished from the old type ozonizer by the frequency of the discharge voltage and the size of the discharge gap. Specifically, the influence on the ozone concentration seems to be higher at the frequency of the discharge voltage, and the frequency is preferably 15 kHz or more, particularly preferably 20 kHz or more. After the frequency, the influence of the discharge gap seems to be large, and the discharge gap is preferably 0.4 mm or less, particularly preferably 0.1 mm or less.
  • the present invention is particularly effective with these ozonizers. Note that the upper limit of the frequency and the lower limit of the discharge gap are mainly determined by mechanical restrictions and are not specified. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a chart showing the effects of water addition on ozone concentration for new and old ozonizers.
  • Figure 2 is a chart showing the effects of the addition of carbon dioxide gas on ozone concentration for new and old ozonizers.
  • Figures 3 (a) and 3 (b) are charts showing the effects of the addition of nitrogen gas on ozone concentration for new and old ozonizers.
  • FIG. 4 is a block diagram of an ozone generator suitable for performing the ozone generation method of the present invention.
  • FIG. 5 is another ozone generator suitable for performing the ozone generation method of the present invention.
  • FIG. FIG. 6 is a chart showing the relationship between the nitrogen gas concentration and the ozone concentration using the carbon dioxide gas concentration as a parameter.
  • FIG. 7 is a chart showing the relationship between the nitrogen gas concentration and the ozone concentration using the carbon monoxide gas concentration as a parameter.
  • FIG. 8 is a chart showing the relationship between the nitrogen gas concentration and the ozone concentration with the amount of water as a parameter.
  • Figures 4 and 5 1 is a configuration diagram of an ozone generation device suitable for performing the ozone generation method of the present invention.
  • the ozone generator shown in FIG. 4 includes a discharge-type ozonizer 1 as a main body of the apparatus.
  • High-purity oxygen gas is supplied to the ozonizer 1 from the oxygen gas source 2 through the pipe 3.
  • the oxygen gas source 2 is, for example, a cylinder filled with liquid oxygen.
  • a humidifier 4 as a moisture regulator is provided in the middle of the pipe 3.
  • a nitrogen gas source 10 is connected.
  • the humidifier 4 includes a water tank 5 containing pure water, a spiral tube 6 made of a resin such as PTFE having moisture permeability, a heater 7 for controlling the temperature of the pure water in the water tank 5, and a heater 7 in the water tank 5. And a stirrer 8 for stirring pure water.
  • the tube 6 is interposed in the middle of the pipe 3 and is immersed in pure water in the water tank 5.
  • the nitrogen gas source 10 is a cylinder filled with high-purity nitrogen gas under pressure.
  • High-purity oxygen gas as a source gas is sent from the oxygen gas source 2 to the humidifier 4.
  • water is added through the resin wall of the tube 6 while passing through the tube 6 immersed in pure water.
  • the amount of addition is adjusted by changing the temperature of the pure water at day 7 and this adjustment controls the dew point of oxygen gas supplied to the ozonizer 1 to 110 to 180 ° C. You. For this control, the water content in the oxygen gas is monitored by a dew point meter 9 provided between the humidifier 4 and the ozonizer 1.
  • Oxygen gas whose dew point was adjusted by the humidifier 4 was further added with nitrogen gas from a nitrogen gas source 10, and the nitrogen gas concentration was adjusted to 0.01% or more and less than 0.01%. Above, is supplied to Ozonizer 1.
  • high-purity oxygen gas supplied from the oxygen gas source 2 to the ozonizer 1 through the pipe 3 is supplied to the oxygen gas source 11 from the oxygen gas source 11 in the middle of the pipe 3.
  • Dioxide as gas (CxOy gas) A carbon gas or a carbon monoxide gas is added, and a nitrogen gas is added from a nitrogen gas source 10.
  • the added amount of hydrocarbon gas (Cx Oy gas) is from 0.01% to 1.0%, and the added amount of nitrogen gas is from 0.01% to less than 0.01%.
  • Other configurations are the same as those of the ozone generator shown in FIG.
  • the old and new types shown in Table 1 were used as the ozonizer.
  • As the oxygen gas ultra-high-purity oxygen gas with a purity of 99.99% or more was used. The moisture content of this gas, measured by a dew point meter, is below the measurement limit of 110 ° C., and is on the order of 0.001 ppm.
  • the old type has an ozone concentration of 150 g / m 3 (N) or more at the start of ozone generation, around 70 g / m 3 (N). Has dropped.
  • the ozone concentration in the New Thailand Group which showed over 220 g / m 3 (N) at the start of ozone generation, dropped to about 5 g / m 3 (N).
  • the ozone concentration shows the rated value by adding approximately 0.05% or more of nitrogen gas, and the new type has a higher concentration than the old type (see Fig. 3) .
  • the formation of nitrogen oxides becomes a problem. If the nitrogen gas content is less than 0.01%, the ozone concentration will be significantly lower than the rated value. This tendency is remarkable in the New Year's Day, and below 0.02%, the new type is inferior to the old type.
  • the effect of carbon dioxide gas addition on ozone concentration is already evident at 0.11% addition.
  • the amount of nitrogen gas added is 0.02% or more, a sufficient effect can be obtained by adding 0.01% or more, desirably 0.05% or more of carbon dioxide gas.
  • the addition amount of carbon dioxide gas is preferably 0.1% or more.
  • Figure 7 shows the results when carbon monoxide gas was used instead of carbon dioxide gas.
  • carbon monoxide gas is used in place of carbon dioxide gas, as in the case of carbon dioxide gas addition, the extreme decrease in ozone concentration in the extremely low nitrogen gas region, which is a problem with the new type, is slightly increased. It is effectively eliminated by the addition.
  • Fig. 8 shows the results when water was added in place of these oxygenated gases (CxOy gas) (using the device in Fig. 4).
  • these oxygenated gases CxOy gas
  • the extreme decrease in ozone concentration in the extremely low nitrogen gas region which is a problem with the new type, is a problem even in dry processes. It can be effectively eliminated by adding water in an extremely low dew point of 180 ° C or less.
  • the ozone generation method according to the present invention is characterized by adding a small amount of moisture and nitrogen gas to an oxygen gas supplied to a discharge-type ozonizer, or adding a small amount of a hydrocarbon gas (CxOy gas) and a nitrogen gas. It is applicable to both dry and wet systems. In addition, even with a new type of ozonizer that pursues ozone generation efficiency, it is possible to effectively solve the problem of lowering the concentration of nitrogen without causing problems due to nitrogen oxides. It is more economical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

放電式のオゾナイザに高純度酸素ガスを供給してオゾンを発生させる際に、窒素ガスの添加による弊害を防止しつつオゾン濃度の低下を防止する。酸素ガス源からオゾナイザヘ高純度酸素ガスを供給する際に、その高純度酸素ガスに炭化酸素ガス(CxOyガス)及び窒素ガスを複合添加する。窒素ガスの添加量を弊害が生じない0.01%以下に抑制でき、合わせて炭化酸素ガス(CxOyガス)の添加量を経済性のよい1.0%以下に抑制できる。炭化酸素ガス(CxOyガス)は、代表的には二酸化炭素ガス又は一酸化炭素ガス若しくはこれらの混合ガスである。

Description

明 細 書 オゾン発生方法
技術分野
本発明は、 放電式のォゾナイザを用いるオゾン発生方法に関する。 背景技術 ·
半導体の製造においては、 半導体ゥエーハゃ液晶用ガラス基板といつ た各種基板上への酸化膜の形成、 基板上のレジストのアツシング、 基板 洗浄等にォゾンガスが用いられ始めた。 半導体製造用のォゾンガスは、 不純物の少ないことが必要であることから、 通常は高純度の酸素ガスを 原料ガスとして放電式のォゾナイザに供給して生成される。 生成された 半導体製造用のオゾンガスは、 その汚染を防ぐために、 電解研磨処理を 施した S U S 3 1 6 L等のステンレス鋼や P F A等のフッ素樹脂からな る配管によりユースボイントへ送られる。
しかしなから、 原料ガスとして高純度の酸素ガスを使用した場合、 低 純度の酸素ガスを使用した場合と比べてオゾンガスのオゾン濃度が極端 に低下し、 ォゾナイザの定格濃度に達しないという重大な問題がある。 この問題の解決策の一つとして、 高純度の酸素ガスに触媒としての窒素 ガスを添加することが一般に行われている。 窒素ガスの添加量は現在、 有効性の点から 0 . 0 1 %以上が妥当と考えられている。
高純度の酸素ガスに窒素ガスを添加することにより、 生成されるォゾ ンガスのォゾン濃度が上がり、 また安定した濃度のォゾンガスの発生が 可能になる。 しかし、 その一方では、 オゾンガスの供給先においてその ガス中から金属不純物が検出されることが問題になっている。 この原因 は、 酸素ガスに窒素ガスが含まれることにより、 ォゾンガス中に副生物 として窒素酸化物が生じ、 これが金属製配管の内面やチャンバ内面を劣 化或いは腐食させ、 その結果として配管内面やチャンバ内面から金属不 純物が生じることとされている。 このような窒素酸化物の生成に起因す る金属不純物が半導体製造に悪影響を与えることは言うまでもない。 また最近では、 金属製配管の内面やチャンバ内面から二次的に発生す る金属不純物だけでなく、 オゾンガス中の窒素酸化物が半導体製造に直 接悪影響を及ぼすことも指摘され始めている。
更に又、 生成したオゾンを分解処理する目的で触媒を使用している場 合、 副生成物である窒素酸化物は触媒に吸着し、 その表面を覆うために 、 その触媒は失活し、 オゾン分解性能の低下或いは短寿命化を引き起こ す。
このような事情から、 窒素ガスを使わずにオゾン濃度を高め、 また、 その濃度を安定化する方法が模索されており、 その一つとして、 原料ガ スとしての高純度の酸素ガスに水分を 0 . 0 5〜4 O p p m添加する方 法が特開 2 0 0 2 - 2 9 7 1 0号公報に記載されている。 また、 別方法 どして、 0 . 0 2 5 %以上の二酸化炭素ガスを単独で添加したり、 0 . 0 2 5〜0 . 2 5 %の窒素ガスと混合して添加する方法が特開平 9一 2 0 8 2 0 2号公報に記載されている。
窒素ガスに代えて水分や二酸化炭素ガスを高純度の酸素ガスに添加す ることにより、 高純度の酸素ガスを使用した場合に問題となるオゾン濃 度の低下が、 窒素ガスを添加した場合と同様に防止される。 しかも、 水 分や二酸化炭素ガスといった触媒は、 窒素ガスと異なり、 窒素酸化物の ような有害物質を副生しない特徴がある。 しかしながら、 その一方で以 下のような問題がある。
半導体製造プロセスはゥヱッ ト系とドライ系に大別されており、 ォゾ ンはいずれのプロセスにも使用されている。 ゥエツト系のプロセスの場 合、 酸素ガスへの水分添加は問題ない。 しかし、 ドライ系のプロセスの 場合は、 水分を含んだオゾンガスは忌避される。 この観点から、 原料ガ スである酸素ガスの露点としては 8 0 °C以下が要求されている。 これは 、 原料ガス中の水分量で言えば 0 . 5 2 p p m以下に相当する。 水分添 加量がこのような低位に制限されると、 オゾン濃度を高める効果が不十 分となる。
今一つは、 ォゾナイザに関係するオゾン濃度低下の問題である。 放電 式のォゾナイザ、 とりわけ半導体製造プロセスに使用されるォゾナイザ では、 高濃度のオゾンが必要とされることから、 オゾン生成効率の向上 が高度に追求されている。 その手法は概ね次のとおりである。
誘電体の薄肉化、 放電ギャップの縮小 (短ギャップ化) 、 印加電圧の 高周波化、 並びに放電電圧の低下などである。 これらのなかで例えば印 加電圧の周波数に関しては、 交流の電圧上昇過程でオゾンが生成するこ とから、 印加電圧の周波数を高めるほどォゾン生成効率が上がるとされ ている。 このため、 この周波数は、 従来の 1〜数 k H zから 1 5 k H z 以上、 更には可聴域を外れる 2 0 k H z以上に高められている。
また、 放電ギャップに関しては、 冷却効率の向上並びに電界強度の向 上の点から、 従来の 1 mm前後から 0 . 4 mm以下、 特に 0 . 1 mm以 下に縮小されるのが最近の傾向である。 ガスが静止した状態で水温 2 0 °Cを想定した場合、 熱伝導率から放電中のガス温度を求めると、 放電ギ ヤップが 1 mmのときは 1 8 8 °C、 0 . 4 mmのときは 3 8 °Cになる。 オゾンガスは温度が高くなると分解反応が促進される特徴をもつ。 高濃 度のォゾンガスを得るためにはガス温度を下げる必要があり、 熱伝導率 からの計算によってもギャップは狭い方が有利である。
水分添加の有効性は、 旧タイプのォゾナイザでは確認されている。 好 ましい水分添加量は 0 . 0 5〜 4 0 p p mである。 印加電圧の高周波化 や放電ギャップの縮小に代表される高濃度化の改良を施した新タイプの ォゾナイザでも、 当然、 水分添加の有効性は期待され、 オゾン濃度は旧 タイプのォゾナイザより高くなることが予想される。 ところが、 実際は
、 図 1に示すように、 水分添加によりオゾン濃度は上昇するものの、 無 添加でのオゾン濃度レベルが低い上に、 オゾン濃度の上昇程度が小さく 、 それらの結果、 添加量を増やしても旧タイプを凌ぐことができないと いう非常に意外なものであった。 即ち、 新タイプのォゾナイザにおいて は、 水分添加は全添加領域で有効に機能しないのである。
ちなみに、 窒素ガスの方は、 図 3 ( a ) ( b ) に示すように、 0 . 0 1 %未満というような微量域を除き、 新タイプのォゾナイザにおいても 有効に機能し、 旧タイプのォゾナイザより高いオゾン濃度を保証する。 微量域においては、 窒素ガス添加量の減少に伴ってオゾン濃度が極端に 低下して旧タイプ以下となる。 但し、 窒素酸化物の問題は無視できる程 度に解決される。
一方、 二酸化炭素ガスの添加についてはドライ系、 ゥエツ ト系を問わ ず適用が可能である。 しかし、 図 2に示すように、 この二酸化炭素ガス も窒素ガスと同様に旧タイプのォゾナイザでは高い効力を示すが、 新夕 イブのォゾナイザでは、 旧タイプのォゾナイザと比べて、 二酸化炭素ガ スの効きが悪くなり、 1 0 %を超える多量の添加が必要になる。 一方、 5 %以下の少量域では、 添加量の減少に伴ってオゾン濃度が極端に低下 して旧タイプ以下となる。
二酸化炭素ガスは窒素ガスと異なり高価であり、 多量の使用は経済性 を悪化させる。 また、 ボンベで供給する場合は、 使用量が多いために、 ボンベの交換頻度が高くなる。 このような経済的見地から、 二酸化炭素 ガスの添加量は 1 . 0 %以下に制限したい。 しかし、 そうすると、 特に 新タイプのォゾナイザでは、 十分な添加効果が得られないのである。 窒素ガスと混合添加する場合、 二酸化炭素ガスの使用量は低減される
。 しかし、 従来の窒素ガスの混合添加量 ( 0 . 0 2 5〜0 . 2 5 %) は 、 窒素酸化物による問題を十分に解決するものではない。 窒素酸化物に よる問題を解決するための窒素ガスの添加量は、 前述した微量域である 0 . 0 1 %未満である。
このように、 窒素ガス以外の触媒の場合、 オゾン発生効率を追求した 新タイプのォゾナイザでは、 添加効果が低下する傾向があり、 しかも、 その傾向は触媒の種類によって様々に相違する。 このため、 窒素酸化物 の問題を解決し、 合わせてォゾナイザの種類に関係なく安定にオゾン濃 度を高めることは困難であつた。
本発明の目的は、 ドライ系、 ウエッ ト系を問わず適用が可能であり、 しかもォゾン発生効率を追求した新タイプのォゾナイザにあっても、 窒 素酸化物による問題を生じることなくォゾン濃度低下の問題を効果的に 解決できるォゾン発生方法を提供することにある。 発明の開示
上記目的を達成するために、 本発明者らはオゾン発生効率を追求した 新タイプのォゾナイザにおいて水分や二酸化炭素ガスの効きが悪化する 問題に対する解決策について鋭意検討した。 その結果、 0 . 0 1 %未満 という、 単独では十分な添加効果を上げることができない、 非常に微量 の窒素ガスの併用が有効なことを知見し、 本発明を完成させるに至った 即ち、 0 . 0 1 %未満という非常に微量の窒素ガスは、 水分と組み合 わせることにより、 ォゾナイザの新旧を問わずオゾン濃度を高め、 特に 新タイプのォゾナイザで大きな添加効果を発揮することにより、 有効な 水分添加量の大幅低減を可能にし、 その水分添加量をドライ系でも問題 のない、 露点で一 8 0 °C以下のレベルにまで低減できる。
また、 二酸化炭素ガスと組み合わせることにより、 ォゾナイザの新旧 を問わずォゾン濃度を高め、 特に新夕ィプのォゾナイザで大きな添加効 果を発揮することにより、 有効な二酸化炭素ガス添加量を 1 . 0 %以下 に低減できる。 更に、 微量の窒素ガスは、 一酸化炭素ガスに対しても、 二酸化炭素ガスとほぼ同様に有効である。
そして、 このような微量の窒素ガスは、 窒素酸化物の生成に起因する 問題を皆無にし、 或いは皆無にできないまでもその問題が生じる危険性 を大きく低減できるのである。
本発明の第 1のオゾン発生方法は、 放電式のォゾナイザに、 オゾン発 生用の原料ガスとして、 露点が一 1 0 0 eC以上一 8 0 °C以下であり、 且 つ窒素ガスを 0 . 0 0 1 %以上 0 . 0 1 %未満含む酸素ガスを供給する ものである。
本発明の第 2のオゾン発生方法は、 放電式のォゾナイザに、 オゾン発 生用の原料ガスとして、 炭化酸素ガス (C x Oy ガス) を 0 . 0 1 %以 上 1 . 0 %以下含み、 且つ窒素ガスを 0 . 0 0 1 %以上 0 . 0 1 %未満 含む酸素ガスを供給するものである。
いずれの方法も、 窒素ガスの併用により他の触媒の添加量を大幅に低 減できるので、 第 1の方法にあってはドライ系への適用が可能になり、 第 2の方法にあっては、 炭化酸素ガス (C x O y ガス) の使用量低減に より経済性が向上する。 また、 いずれの方法も旧タイプのォゾナイザに 有効であるだけでなく、 オゾン発生効率を追求した新タイプのォゾナイ ザにあってもオゾン濃度を効果的に高めることができる。 そして更に、 いずれの方法も窒素ガスが微量であるため、 窒素酸化物による間題を実 質的に生じない。 なお、 本明細書において、 %は特にことわりのない限 り V 0 1 %である。 半導体製造分野においてオゾン発生用原料ガスとして使用される酸素 ガスは、 通常は 9 9. 9 9 %以上の高純度酸素ガスで、 ボンベに充填さ れた液化酸素又は酸素ガスを酸素ガス源としてォゾナイザに供給される 。 酸素ガス中の水分は不純物のなかでも比較的除去が容易であり、 不純 物を除去するための精製に伴って殆ど除去されている。 このため、 その 酸素ガス中の水分量は、 9 9. 9 9 %の場合で 0. O l p pm以下であ り、 9 9. 9 9 9 9 %の場合では 0. 0 0 1 p pm以下である。
触媒を添加する前の酸素ガスは、 純度 9 9. 9 %以上、 特に 9 9. 9 9 %以上の高純度酸素ガスが好ましく、 そのなかでも 9 9. 9 9 9 9 % 以上の超高純度酸素ガスが特に好ましい。 なぜなら、 酸素ガスの高純度 化により不純物が排除されることにより、 本発明の効果を奏するための 所定の触媒ガスを必要量のみ制御性よく添加することができるからであ る。
第 1の方法では、 ォゾナイザへ供給する酸素ガスの露点を一 1 0 o°c 以上 _ 8 0°C以下にする。 その理由は、 ― 1 0 0°C未満ではオゾン濃度 を上昇させる効果が不足し、 一 8 0°Cを超えた場合はその水分がドライ 系のプロセスで問題になる危険性があるからである。 特に好ましい露点 は、 一 8 0°C以下の領域でオゾン濃度上昇効果が特に大きい一 9 0°C以 上 _ 8 0°C以下である (図 8参照) 。 これらの露点を水分量で表すと、 — 1 0 0 °Cは 0. 0 1 p p m、 一 9 0。Cは 0. 0 9 p p m、 一 8 0 °Cは 0. 5 2 p pmである。
ォゾナイザへの酸素ガスの供給は、 酸素ガス源からガス供給系を通じ て行われる。 酸素ガス源における酸素ガス中の水分が不足する場合は、 ガス供給系の途中で加湿器により酸素ガスに所定量の水分を添加してか ら、 その酸素ガスをォゾナイザに供給するのがよいが、 予め所定量の水 分を添加した酸素ガスを酸素ガス源からォゾナイザに供給することも可 能である。 もし仮に、 酸素ガス源における酸素ガスが水分を過剰に含む 場合は、 ガス供給系の途中で酸素ガス中の水分量が所定範囲内に管理さ れるように除湿器で水分を除去してから、 その酸素ガスをォゾナイザに 供給すればよい。
第 2の方法では、 ォゾナイザへ供給する酸素ガス中の炭化酸素ガス量 (Cx Oy ガス量) を 0. 0 1 %以上1. 0%以下とする。 その理由は 、 0. 0 1 %未満ではオゾン濃度を上昇させる効果が不足し、 即ち、 0 . 0 1 %以上でオゾン濃度を上昇させる明確な効果が現れ、 一方、 1. 0 %を超えても高濃度オゾンの発生は可能であるが、 経済性の悪化が問 題になるからである。 この炭化酸素ガス量 (Cx Oy ガス量) は、 ォゾ ン濃度の点からは基本的に多い方が好ましく、 0. 0 5%以上が好まし く、 0. 1 %以上が特に好ましい。 0. 1 %以上の場合、 窒素ガス濃度 が 0. 0 0 2%以下に下げられたときの改善効果が特に顕著である。 上 限については 0. 5%以上でオゾン濃度上昇効果に大きな差がないこと から 0. 5%以下が好ましい。
第 1の方法及び第 2の方法の何れにおいても、 ォゾナイザに供給する 酸素ガス中の窒素ガス量を 0. 0 0 1 %以上0. 0 1 %未満とする。 そ の理由は、 0. 0 0 1 %未満ではオゾン濃度を上昇させる効果が不足し 、 0. 0 1 %以上ではオゾン濃度を上昇させる効果はあるが、 窒素酸化 物の生成による弊害が問題になるからである。 特に好ましい窒素ガス量 は、 下限については 0. 0 0 2 %以上である。 0. 0 0 2%未満の場合 、 顕著な効果を得ようとすると炭化酸素ガス (Cx Oy ガス) の濃度と して 0. 0 5%以上が必要になる。 また、 水分や炭化酸素ガス (Cx 〇 y ガス) を併用しても必ずしもオゾン濃度が十分とは言えない。 上限に ついては 0. 0 0 5 %以下が好ましい。 この領域で水分や炭化酸素ガス 量 (Cx Oy ガス量) の効きが特に顕著である。 少量の方が窒素酸化物 の生成による弊害もより少ない。
酸素ガスに窒素ガスを添加するタイミングは、 水分や炭化酸素ガス (
C x O ガス) を添加する前後、 同時のいずれでもよく、 ォゾナイザに 直接供給してここで酸素ガスと混合することもできる。 使用する窒素ガ ス及ぴ炭化酸素ガス (C x Oy ガス) の各純度は、 酸素ガスを高純度化 する理由と同じく添加ガス種及び添加量の制御性を向上させるために 9 9 . 9 9 9 %以上が望ましい。
第 2の方法に使用される炭化酸素ガス (C x Oy ガス) は、 代表的に は二酸化炭素ガス又は一酸化炭素ガス、 若しくはそれらの混合ガスであ る。 混合ガスにおける両ガスの比率は問わない。 二酸化炭素ガスと一酸 化炭素ガスを比較した場合、 オゾン濃度の上昇に対する効果は、 二酸化 炭素ガスの方が一酸化炭素ガスより若干高い程度であるので、 両ガスの 混合比率がオゾン濃度に重大な影響を及ぼすことはない。 但し、 一酸化 炭素ガスは可燃性ガスであり、 且つ急性毒性をもつガスであるため、 実 際の操業では二酸化炭素ガスを使用することが望まれる。
ォゾナイザで生成されるオゾンガスのオゾン濃度は 1 0 0 g /m3 ( N ) 以上が好ましく、 1 5 0 g /m3 ( N ) 以上、 とりわけ 2 0 0 g / m3 ( N ) 以上が特に好ましい。 なぜなら、 高濃度化によって反応性が 向上するだけでなく、 微量の触媒によつてォゾン濃度の低下を抑制する 効果は、 オゾンガスが高濃度であるほど有効であるからである。 即ち、 オゾン濃度が高くなると、 分解反応も同時に増大し、 触媒ガスがない場 合はこの現象が顕著に現れ、 オゾン濃度の低下が大きくなるが、 触媒の 添加により、 高濃度ほど顕著なオゾン濃度の低下を阻止できるのである 使用するォゾナイザは、 放電電圧の高周波化や放電ギャップの縮小に よりオゾン発生効率を高めた新タイプのものが好ましい。 このタイプの ォゾナイザで本発明の効果が特に顕著であるからである。 新タイプのォ ゾナイザは、 放電電圧の周波数や放電ギャップの大きさにより旧タイプ のォゾナイザから区別される。 具体的には、 オゾン濃度への影響度は放 電電圧の周波数が大きいようであり、 その周波数は 1 5 k H z以上、 特 に 2 0 k H z以上が好ましい。 周波数の次には放電ギャップの影響度が 大きいようであり、 その放電ギャップは 0 . 4 mm以下、 特に 0 . l m m以下が好ましい。 これらのォゾナイザで本発明は特に有効である。 な お、 周波数の上限及び放電ギャップの下限は、 主にメカ的な制限により 決まり、 特に規定するものではない。 図面の簡単な説明
図 1は、 水分添加がオゾン濃度に及ぼす各影響を新旧のォゾナイザに ついて示す図表である。 図 2は、 二酸化炭素ガスの添加がオゾン濃度に 及ぼす各影響を新旧のォゾナイザについて示す図表である。 図 3 ( a ) ( b ) は、 窒素ガスの添加がオゾン濃度に及ぼす各影響を新旧のォゾナ ィザについて示す図表である。 図 4は、 本発明のオゾン発生方法を実施 するのに適したオゾン発生装置の構成図であり、 第 5図は、 本発明のォ ゾン発生方法を実施するのに適した別のオゾン発生装置の構成図である 。 図 6は、 窒素ガス濃度とオゾン濃度との関係を二酸化炭素ガス濃度を パラメータとして示した図表である。 図 7は、 窒素ガス濃度とオゾン濃 度との関係を一酸化炭素ガス濃度をパラメータとして示した図表である 。 図 8は、 窒素ガス濃度とオゾン濃度との関係を水分量をパラメ一夕と して示した図表である。 発明を実施するための最良の形態
以下に本発明の実施形態を図面に基づいて説明する。 図 4及び図 5は 本発明のォゾン発生方法を実施するのに適したォゾン発生装置の構成図 である。
図 4に示されたオゾン発生装置は、 装置本体として放電式のォゾナイ ザ 1を備えている。 ォゾナイザ 1には、 酸素ガス源 2から配管 3を通し て高純度の酸素ガスが供給される。 酸素ガス源 2は、 例えば液体酸素を 充填したボンベである。 配管 3の途中には、 水分調整器としての加湿器 4が設けられている。 また、 窒素ガス源 1 0が接続されている。
加湿器 4は、 純水を収容する水槽 5と、 水分浸透性をもつ P T F E等 の樹脂からなる螺旋状のチューブ 6と、 水槽 5内の純水を温度管理する ヒータ 7と、 水槽 5内の純水を攪拌する攪拌機 8とを有している。 チュ ーブ 6は配管 3の途中に介装され、 水槽 5内の純水中に浸漬されている 。 窒素ガス源 1 0は、 ここでは高純度の窒素ガスを加圧充填したボンべ である。
原料ガスとしての高純度酸素ガスは、 酸素ガス源 2から加湿器 4に送 られる。 加湿器 4では、 純水中に浸漬されたチューブ 6を通過する過程 で、 チューブ 6の樹脂壁を通して水分を添加される。 その添加量は、 ヒ —夕 7で純水の温度を変更することにより調整され、 この調整により、 ォゾナイザ 1に供給される酸素ガスの露点が一 1 0 0〜一 8 0 °Cに管理 される。 この管理のため、 酸素ガス中の水分含有量が、 加湿器 4とォゾ ナイザ 1の間に設けられた露点計 9によりモニタされる。
加湿器 4で露点を調整された酸素ガスは、 更に窒素ガス源 1 0から窒 素ガスを添加され、 その窒素ガス濃度を 0 . 0 0 1 %以上 0 . 0 1 %未 満に調整された上で、 ォゾナイザ 1に供給される。
図 5に示されたオゾン発生装置では、 酸素ガス源 2から配管 3を通し てォゾナイザ 1に供給される高純度の酸素ガスに対して、 配管 3の途中 で炭化酸素ガス源 1 1から炭化酸素ガス (C x Oy ガス) として二酸化 炭素ガス又は一酸化炭素ガスが添加されると共に、 窒素ガス源 1 0から 窒素ガスが添加される。 炭化酸素ガス (Cx Oy ガス) の添加量は 0. 0 1 %以上 1. 0 %以下、 窒素ガスの添加量は 0. 0 0 1 %以上 0. 0 1 %未満である。 他の構成は、 図 4に示されたオゾン発生装置と同一で ある。
これらのオゾン発生装置を用いて実際にオゾンガスを生成した結果を 次に説明する。
表 1
Figure imgf000014_0001
ォゾナイザとしては表 1に示す旧夕ィプ及び新タイプを使用した。 酸 素ガスとしては純度が 9 9. 9 9 9 9 %以上の超高純度酸素ガスを用い た。 このガスの水分含有量は、 露点計で測定したところ、 その測定限界 である一 1 1 0°C以下であり、 0. 0 0 1 p pmレベルである。 この超 高純度酸素ガスをダイレクトにォゾナイザに供給した場合、 旧タイプで はオゾン発生開始時に 1 5 0 g/m3 (N) 以上を示したオゾン濃度が 7 0 g/m3 (N) 前後に低下した。 一方、 新タイ.,プではオゾン発生開 始時に 2 2 0 g/m3 (N) 以上を示したオゾン濃度が 5 g/m3 (N ) 程度に低下した。
この超高濃度酸素ガスに高純度の窒素ガス及び二酸化炭素ガスを添加 した (図 5の装置を使用) 。 これらの添加ガス量が、 初期低下後の安定 ォゾン濃度に与える影響を調査した結果を図 6に示す。
二酸化炭素ガスを添加しない場合、 概ね 0. 0 5%以上の窒素ガスを 添加することにより、 オゾン濃度は定格値を示し、 旧タイプより新タイ プの方が高濃度となる (図 3参照) 。 ただし、 この添加域では、 窒素酸 化物の生成が問題になる。 窒素ガス量を 0. 0 1 %より少なくすると、 ォゾン濃度が定格値に対して大幅に低下する。 この傾向は新夕ィプで顕 著であり、 0. 0 0 2%未満では新タイプが旧タイプより劣る結果にな る。
微量の二酸化炭素ガスを添加すると、 主に 0. 0 1 %未満の極低窒素 ガス領域でのオゾン濃度が改善され、 その傾向は新タイプで顕著である
。 その結果、 新タイプで問題になる極低窒素ガス領域での極端なオゾン 濃度低下が効果的に解消され、 1 %以下という少量の二酸化炭素ガス添 加にもかかわらず、 定格値乃至は定格値に近いオゾン濃度が確保される 。 そして、 このような少量の二酸化炭素ガス添加は、 経済性の低下を問 題のない程度に抑制する。
オゾン濃度に及ぼす二酸化炭素ガスの添加効果は 0. 0 1 %の添加量 で既に明確である。 窒素ガス添加量が 0. 0 0 2 %以上の場合は、 0. 0 1 %以上、 望ましくは 0. 0 5 %以上の二酸化炭素ガス添加でも十分 な効果が得られるが、 窒素ガス添加量が 0. 0 0 1 %の場合は、 二酸化 炭素ガスの添加量は 0. 1 %以上が好ましい。
窒素添加率と N03 生成量の間には線形の関係があり、 窒素添加率を 低減することで NO 3 生成量を低減することが可能になる。 従来オゾン ガスの分解に触媒を使用していた場合、 窒素酸化物が触媒に吸着するこ とで寿命が短くなることは前述したが、 窒素添加率の低減による窒素酸 化物生成量の低減により、 その触媒の長寿命化が図られる。 また、 加熱 式の分解器を使用する場合は、 窒素酸化物は殆ど分解されずに排出され るため、 窒素添加率の低減による窒素酸化物生成量の低減により、 環境 負荷の低減も可能になる。
二酸化炭素ガスに代えて一酸化炭素ガスを使用したときの結果を図 7 に示す。 二酸化炭素ガスに代えて一酸化炭素ガスを使用した場合も、 二 酸化炭素ガス添加の場合と同様に、 新タイプで問題になる極低窒素ガス 領域での極端なォゾン濃度低下が、 僅かのガス添加で効果的に解消され る。
また、 二酸化炭素ガスと一酸化炭素ガスの混合ガスを使用した場合も 同様の結果が得られることを確認している。
図 8は、 これらの炭化酸素ガス (C x O y ガス) に代えて水分を添加 したときの結果を示している (図 4の装置を使用) 。 この場合も、 炭化 酸素ガス (C x O y ガス) を添加した場合と同様に、 新タイプで問題に なる極低窒素ガス領域での極端なォゾン濃度低下が、 ドライ系のプロセ スでも問題にならない、 露点が一 8 0 °C以下という極低領域の水分添加 で効果的に解消される。 産業上の利用可能性
本発明のオゾン発生方法は、 放電式のォゾナイザに供給する酸素ガス に僅かの水分及び窒素ガスを添加したり、 僅かの炭化酸素ガス (C x 0 y ガス) 及び窒素ガスを添加することにより、 ドライ系、 ゥエツト系を 問わず適用可能である。 また、 オゾン発生効率を追求した新タイプのォ ゾナイザにあつても、 窒素酸化物による問題を生じることなく才ゾン濃 度低下の問題を効果的に解決できる。 更に経済性に優れる。

Claims

請 求 の 範 囲
1. 放電式のォゾナイザに、 オゾン発生用の原料ガスとして、 露点が一 1 00°C以上一 80°C以下であり、 且つ窒素ガスを 0. 0 0 1%以上 0 . 0 1%未満含む酸素ガスを供給することを特徴とするオゾン発生方法
2. 前記ォゾナイザにおける放電周波数が 1 5 kHz以上である請求の 範囲第 1項記載のオゾン発生方法。
3. 前記ォゾナイザにおける放電ギャップが 0. 4mm以下である請求 の範囲第 I項記載のオゾン発生方法。
4. 放電式のォゾナイザに、 オゾン発生用の原料ガスとして炭化酸素ガ ス (Cx Oy ガス) を 0. 0 1%以上1. 0%以下含み、 且つ窒素ガス を 0. 00 1 %以上 0. 0 1 %未満含む酸素ガスを供給することを特徴 とするオゾン発生方法。
5. 炭化酸素ガス (Cx Oy ガス) は、 二酸化炭素ガス又は一酸化炭素 ガス若しくはそれらの混合ガスである請求の範囲第 4項記載のオゾン発 生方法。
6. 炭化酸素ガス (Cx Oy ガス) の濃度が 0. 0 5%以上であり、 窒 素ガス濃度が 0. 0 0 2 %以上である請求の範囲第 4項記載のオゾン発 生方法。
7. 炭化酸素ガス (Cx Oy ガス) の濃度が 0. 1%以上であり、 窒素 ガス濃度が 0. 0 0 1%以上である請求の範囲第 4項記載のオゾン発生 方法。
8. 前記ォゾナイザにおける放電周波数が 1 5 kHz以上である請求の 範囲第 4項記載のオゾン発生方法。
9. 前記ォゾナイザにおける放電ギャップが 0. 4 mm以下である請求 の範囲第 8項記載のオゾン発生方法。
PCT/JP2003/016516 2002-12-27 2003-12-24 オゾン発生方法 WO2004060795A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002379074 2002-12-27
JP2002-379074 2002-12-27

Publications (1)

Publication Number Publication Date
WO2004060795A1 true WO2004060795A1 (ja) 2004-07-22

Family

ID=32708371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016516 WO2004060795A1 (ja) 2002-12-27 2003-12-24 オゾン発生方法

Country Status (2)

Country Link
TW (1) TW200427624A (ja)
WO (1) WO2004060795A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2891625A4 (en) * 2012-08-30 2016-04-20 Toshiba Mitsubishi Elec Inc OZONE PRODUCTION SYSTEM

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020532416A (ja) * 2017-09-01 2020-11-12 ソムニオ グローバル ホールディングス,エルエルシー フリーラジカル発生器およびその使用方法
CN114763321B (zh) * 2021-01-12 2024-06-25 万华化学集团股份有限公司 一种臭氧组合物及其制备方法,及一种反应精馏制备乙醛酸的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127906A (ja) * 1992-10-15 1994-05-10 Mitsubishi Electric Corp オゾン発生設備及びオゾン発生装置用酸素/窒素混合気体
JP2002029710A (ja) * 2000-07-10 2002-01-29 Sumitomo Precision Prod Co Ltd オゾン発生方法及び装置並びにオゾン発生用原料ガス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127906A (ja) * 1992-10-15 1994-05-10 Mitsubishi Electric Corp オゾン発生設備及びオゾン発生装置用酸素/窒素混合気体
JP2002029710A (ja) * 2000-07-10 2002-01-29 Sumitomo Precision Prod Co Ltd オゾン発生方法及び装置並びにオゾン発生用原料ガス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2891625A4 (en) * 2012-08-30 2016-04-20 Toshiba Mitsubishi Elec Inc OZONE PRODUCTION SYSTEM

Also Published As

Publication number Publication date
TW200427624A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US8444831B2 (en) Method of generating ozone
US9371229B2 (en) Ozone-generating system and ozone generation method
RU2602153C2 (ru) Способы озонолиза органических соединений
JPH01282104A (ja) 高純度、高濃度オゾンをほとんど経時変化なく発生させる方法
TWI435844B (zh) 無添加氮之臭氧產生單元
WO2004060795A1 (ja) オゾン発生方法
JP4166928B2 (ja) オゾン発生方法
JP2004217512A (ja) オゾン発生方法
EP0738684B1 (en) Ozone generating apparatus
JP2005350323A (ja) オゾン発生方法
JP4699919B2 (ja) 排ガス処理方法および処理装置
JP5221842B2 (ja) 排ガス処理方法
WO2003059809A1 (fr) Procede pour produire de l'ozone, generateur d'ozone, gaz d'alimentation pour la production d'ozone, humidificateur
JP2012055836A (ja) ガス処理方法
JP3260786B2 (ja) 水蒸気の精製方法
WO2006035571A1 (ja) 高純度液化塩素の製造方法
JP7262673B2 (ja) オゾン水製造装置、水処理装置およびオゾン水製造方法
JP2003175385A (ja) アンモニア含有廃水の浄化方法
JP2003145136A (ja) 廃水の処理方法及び処理装置
JP2005034772A (ja) 窒素酸化物処理装置
JP3292311B2 (ja) メタノールの精製方法
JP2005145762A (ja) 放電式オゾンガス生成方法
JP2002085939A (ja) フッ素系排ガス分解処理方法
TWI487565B (zh) 廢氣處理方法及廢氣處理裝置
JP3961127B2 (ja) オゾン発生方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US