TWI487565B - 廢氣處理方法及廢氣處理裝置 - Google Patents

廢氣處理方法及廢氣處理裝置 Download PDF

Info

Publication number
TWI487565B
TWI487565B TW099133966A TW99133966A TWI487565B TW I487565 B TWI487565 B TW I487565B TW 099133966 A TW099133966 A TW 099133966A TW 99133966 A TW99133966 A TW 99133966A TW I487565 B TWI487565 B TW I487565B
Authority
TW
Taiwan
Prior art keywords
reaction
removing agent
temperature
exhaust gas
heating
Prior art date
Application number
TW099133966A
Other languages
English (en)
Other versions
TW201119729A (en
Inventor
Katsumasa Suzuki
Kaoru Sakoda
Yoshio Ishihara
Tadahiro Ohmi
Yasuyuki Shirai
Original Assignee
Taiyo Nippon Sanso Corp
Univ Tohoku
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp, Univ Tohoku filed Critical Taiyo Nippon Sanso Corp
Publication of TW201119729A publication Critical patent/TW201119729A/zh
Application granted granted Critical
Publication of TWI487565B publication Critical patent/TWI487565B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/685Halogens or halogen compounds by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/311Porosity, e.g. pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)

Description

廢氣處理方法及廢氣處理裝置
本發明是關於一種廢氣處理方法及廢氣處理裝置,係將由半導體裝置的製造狀置所排出的廢氣所含的有毒氣體成分以固體的反應除去劑反應除去用的處理方法及裝置。[註:exhaust gas,機器設備或工廠排放的氣體,有稱為廢氣或排氣的情形,本文中稱為廢氣]
本申請案是依據在2009年10月7日在日本提出的特願2009-233368號而主張優先權,將其內容在此援用。
在如乾式蝕刻(dry etching)、薄膜化學氣相成長(CVD)、薄膜化學氣相成長室清洗(CVD chamber cleaning)等的利用電漿的半導體製造過程中,常使用如氬(Ar)、氪(Kr)、氙(Xe)、氦(He)等的惰性氣體之外,也有常使用CF4 、C2 F6 、C3 F8 、C4 H6 、C4 F8 、C5 H8 、CFH3 、C2 HF5 、SiHCl3 、HCl、BCl3 、AsH3 、PH3 、H2 Se、SiH4 等的含有氟碳化合物的多種多樣的化合物當做製造過程用氣體的情形。由這些半導體製造過程排出的廢氣中所含的全氟碳化合物類(以下稱為「PFCs」)或氫氟碳化合物類(以下稱為「HFCs」),是溫暖化係數非常高的溫室效應氣體,由防止地球溫暖化的觀點有減少其排出量的強烈需求。
就含有氟碳化合物的製造過程之廢氣的處理方法而言,例如有以燃燒或以電漿將氟碳化合物變換為二氧化碳(CO2 )或氟化氫(HF)而處理的方法,廣被使用。利用燃燒的處理方法是將製造過程之廢氣導入於以丙烷等燃料之燃燒而生成的燃燒場,而以高溫火燄分解要處理之對象成分,但需要消費大量的燃料,及由於燃燒而產生大量的CO2 及氮氧化物(NOx )等而成為問題。利用電漿的處理方法,是利用高頻率、高電壓的電力將製造過程之廢氣加以電漿化,以其能量分解要處理之對象的方法(例如:專利文獻1、2、3。)。通常,電漿可以瞬間生成,因而不需要等待中的放電,而有減少消費能量的浪費的優點,但在組成不斷地在變化的製造過程之氣體的處理時,要使等待的時間配合困難,結果而言,由於作業率高,消費在電漿生成的電力,即CO2 換算排出量增多,成為防止地球溫暖化的觀點上的課題。
而且任何一種上述方法,均為了要防止分解生成物在電漿腔的內壁面等形成堆積物,或防止再結合而形成PFCs、尤其是CF4 及C2 F4 為目的,在添加O2 或H2 O等的氧化劑後做分解處理,並在處理後以水刮除器(water scraper)做安定化處理。以水刮除器處理而生成的氟化氫廢液是強酸性,在其處理上有很大的危險性及需要勞力,因而也成為半導體工廠的大課題之一。
再且,近年來,資源耗竭的觀點上,有一種將這些形成物回收做成可做為氟的原料的螢石的方法受到重視,但CF4 、C2 F6 、C3 F8 等的飽和氟碳化合物是非常安定,特別是要將CF4 以鈣化合物(以下稱為「Ca化合物」)做反應處理時需要升溫到1500℃的高溫,而需要龐大的加熱器用電源電力。也有利用氧化鋁生成氟化鋁的手段(例如專利文獻4)的提案,但是需要1000℃程度的高溫,不能說能源效率有充分的改善。再者,也有由所生成的氟化鋁抽出氟是非常困難的課題。
在這樣的背景,有一種方法的提示,係只將比較容易除去的成分,以Ca化合物為主劑的乾式劑反應除去的方法,使用在加熱到200至500℃的Ca化合物為主劑的乾式劑,只將C2 F4 等的不飽和氟碳化合物反應除去的方法(例如:專利文獻5)。再者,也有一種使電漿分解所需的能量最小化的方法的提示(例如專利文獻6),是將HF,COF2 及保持有在電漿製程室中得到的能量而成為弱激態狀態的成分,以Ca化合物反應除去,只將未被除去的CF4 、C2 F6 、C3 F8 等的飽和氟碳化合物以電漿分解後,以在電漿的下游側另外配置的Ca化合物反應除去的方法。
[專利文獻]
[專利文獻1]日本特開2002-210330號公報
[專利文獻2]日本特開2003-10638號公報
[專利文獻3]日本特開2001-129359號公報
[專利文獻4]日本特開2002-224565號公報
[專利文獻5]日本特開2008-136932號公報
[專利文獻6]日本特開2006-326553號公報
由上述的各種以往的技術,表示可以不需要水處理,且以比較低的能量可以將製造過程之廢氣中的氟碳化合物除去,但對實際上做為廢氣處理裝置而使用時的能量效率的檢討不夠充分。即,要使有不飽和鍵結的氟碳化合物與Ca化合物產生反應,則需要供給熱能的加熱器用的電源電力,但在專利文獻5中,有對實用機器大小的消費電力的最小化沒有充分的檢討的課題。又,在專利文獻6中,對於第1段以Ca化合物除去不飽和鍵結的氟碳化合物的檢討查證也不夠充分。再者,對AsH3 、PH3 、H2 Se等,已知有使用氧化銅等的Cu化合物反應除去的方法,但關於反應過程中的溫度控制方法,則除了抑制因反應熱而致的溫度的過分上升以外,未有檢討。應知將廢氣處理裝置全體的消費電力最小化是在推行防止地球溫暖化之政策上所需要而不可缺的,對實用機器大小的有加以檢討查證之需要。
於是本發明的目的是,要提供一種廢氣處理方法及廢氣處理裝置,而能夠減低廢氣處理裝置整體的消費電力。
為了達成上述目的,本發明的廢氣處理方法是,將由半導體製造裝置排出的廢氣中所含的有害氣體成分以固體的反應除去劑(以化學反應的方法除去不要的成分的製劑,本文中稱為「反應除去劑」)予以反應除去的廢氣處理方法中,將用以測定反應除去劑充填筒(填有反應除去劑的筒體,本文中稱為「反應除去劑充填筒」)的外壁溫度的外壁溫度測定手段及用以測定前述反應除去劑的溫度的反應除去劑溫度測定手段的至少任1種溫度測定手段,設置在前述反應除去劑充填筒的氣體流動的方向的3處以上,將用以加熱前述反應除去劑充填筒的外壁面的外壁面加熱手段及加熱前述反應除去劑的反應除去劑加熱手段的至少任1種加熱手段,設置在前述反應除去劑充填筒的氣體流動的方向的3處以上,依據以各溫度測定手段測定的溫度檢測反應除去劑充填筒中的反應帶的位置,而依據前述反應帶的位置控制各加熱手段;前述溫度測定手段及前述加熱手段之設置,對前述反應除去劑充填筒的氣流的流動方向的間隔各在50至500mm的範圍即可。
又,本發明的廢氣處理裝置是,將由半導體製造裝置排出的廢氣中所含的有毒氣體成分以固體的反應除去劑予以反應除去的廢氣處理裝置中,將用以測定反應除去劑充填筒的外壁溫度的外壁溫度測定手段及測定前述反應除去劑的溫度的反應除去劑溫度測定手段的至少任1種溫度測定手段,設置在前述反應除去劑充填筒的氣體流動的方向的3處以上,將用以加熱前述反應除去劑充填筒的外壁面的外壁面加熱手段及加熱前述反應除去劑的反應除去劑加熱手段的至少任1種的加熱手段,設置在前述反應除去劑充填筒的氣體流動的方向的3處以上,並具備:依據以各溫度測定手段測定的溫度檢測反應除去劑充填筒中的反應帶的位置而依據前述反應帶的位置控制各加熱手段的加熱控制手段;前述溫度測定手段及前述加熱手段之設置,對前述反應除去劑充填筒的氣流的流動方向的間隔各在50至500mm的範圍即可。
使用本發明,可以減少浪費於加熱對反應無關係的反應除去劑的充填部位的電源電力,因此可以使廢氣處理裝置的消費電力減少到極小,對防止地球溫暖化有貢獻。
在第1圖所示的廢氣處理裝置1為,例如,係要將由反應性電漿蝕刻裝置或氟碳化合物薄膜化學氣相成長裝置等的半導體製造裝置2的廢氣處理的裝置,廢氣是由半導體製造裝置2經由排氣泵3導入於廢氣處理裝置1。
廢氣處理裝置1具備有:反應處理劑充填筒12,其中充填的固體反應除去劑11,係用於與廢氣中所含特定的有害氣體成分反應,而除去該特定有害成分;複數個筒表面溫度監視器13,係用於測定反應除去劑充填筒12的外壁面溫度;複數個加熱器14,用於加熱反應除去劑充填筒12的表面,而加熱反應除去劑11;加熱控制器15,係用於控制各加熱器的動作;及複數個反應除去劑溫度監視器16,係用於測定反應除去劑11的溫度。並且,在反應除去劑充填筒12的底部,設有過濾器17,用於防止反應除去劑的漏出。
反應除去劑充填筒12通常對其上游側及下游側的配管以凸緣接頭(flange)等連接成可自由裝卸,而形成可將內部的反應除去劑視需要而交換的形態。該反應除去劑充填筒12內的壓力調整在1kPa至大氣壓之範圍為理想。
而且,連接排氣泵3與反應除去劑充填筒12的上部的反應除去劑充填筒12的上游側的配管18,只要是能維持排氣泵3可正常動作的壓力的構造即可,一般而言該配管18的直徑較大為理想,更理想的是希望在直徑10mm以上的配管。
而且,處理對象的廢氣中,含有如C2 F4 等有堆積性的成分時,則配管18內保持低壓力,而提高配管表面溫度為理想。再者,選擇對氟化物的耐久性高的材質,而施加提高對氟化物的耐久性的表面處理為理想,例如,可使用有氟不動態化處理等的不銹鋼配管等。
排氣泵3而言,可利用耐蝕性高的乾式泵。又,一般性的乾式泵是大量使用氮氣做為稀釋吸入氣體的沖洗用氣體(purge gas)及封軸氣體,但要利用能將氮氣量控制在每分鐘3公升以下,理想的是在每分鐘1公升以下的泵。沖洗用氣體及封軸氣體流量減少,則可抑制反應除去劑充填筒12內的流速,可提高除去對象成分與反應去除劑的接觸可能率,並可抑制加熱所需的能量。再者,在通過廢氣處理裝置1的廢氣中所含CF4 等的安定的成分等的分解、除去,或回收、精製等的操作變成容易。又,在半導體製造裝置2中,使用螺旋式增壓泵(screw booster pump)等,壓縮比大,而在數kPa程度的背壓下也能正常動作的泵代替分子泵時,也可以將其做為排氣泵而利用。
就前述反應除去劑11而言,可使用與除去對象的氣體對應的化合物。例如,除去對象的有害氣體成分是C2 F4 、C4 F6 、C5 F8 、C2 H2 F2 、C2 HF3 、C3 HF5 、C3 H2 F4 等有不飽和鍵結的氟碳化合物時,使用氧化鈣或氫氧化鈣等的鈣化合物為主成分的反應除去劑(以下稱為「Ca除去劑」)。
Ca除去劑乃使用含有氧化鈣或氫氧化鈣90重量%以上者,該Ca除去劑通常是使用將氧化鈣或氫氧化鈣,或二者的混合物,以轉造或打錠、壓出成形等方法成形為粒徑在0.5至10mm範圍的顆粒狀、粒狀的形態的製劑,在反應除去劑充填筒12中充填成30至70體積%的空隙率,使廢氣之氣流不受阻礙為理想。Ca除去劑的粒徑小於0.5mm時,則要將反應除去劑充填筒12填成30體積%以上的空隙率有困難而會阻礙氣流,所以要把激態部的壓力控制在規定值很困難。又,Ca除去劑的粒徑超過10mm時,則要把反應除去劑充填筒12填成70體積%以下的空隙率充填有困難,有害氣體成分與反應劑的接觸可能率降低,不能充分反應到Ca除去劑的顆粒中心。再且,氧化鈣係使用將粒狀的氫氧化鈣焙燒而除掉水分,而在其內部形成有微細的孔洞的氧化鈣為佳。
具有不飽和鍵結的氟碳化合物係與Ca除去劑反應而被除去,但已知如果二者接觸的環境的溫度在10至30℃程度時,只有一小部分會反應。這是因為活化能高的緣故,為了要促進反應,就需如專利文獻5所提示,需要提高溫度等而供給能量。
另一方面,已知如前述氟碳化合物與Ca除去劑的配合,或AsH3 、PH3 、H2 Se等的氫化物與Cu除去劑(以銅化合物為主成分的反應除去劑)的配合反應,在有害氣體成分與反應除去劑的反應時會發生反應熱。其詳細過程可由個別的生成自由能的比較而算出。即,可藉由加熱器14在反應初期供給超過活化能程度的最低限度必要的熱能,而有效地促進反應。
又,當對充填有反應除去劑的反應除去劑充填筒12導入要處理之對象氣體(廢氣),則由於反應除去劑11與有害氣體成分的反應而在要處理之對象氣體中的有害氣體成分的濃度從反應除去劑充填筒12的氣流方向的上游側連續地減低。即,越靠近上游側的反應除去劑11暴露於越高濃度的有害成分,越有效率地產生反應,並會因反應熱而發生溫度上升。也就是說,在反應帶,比加熱器14給予的反應除去劑充填筒12的外壁溫度,反應除去劑11的溫度會較高。同樣地,反應帶沿著反應除去劑充填筒12的長度方向有某種程度的分佈特性。這種化學反應受流量、流速及共存成分的影響大,要將反應機制闡明很困難。
在前述半導體製造裝置2中,例如有Ar,Kr,Xe、CF4 、C2 F6 、C3 F8 、C4 F6 、C4 F8 、C5 F8 、CHF3 、C2 HF5 等的氣體做為製程氣體(process gas)而被導入。又,將半導體製造裝置2內的壓力安定化的步驟(以下,稱為「安定化製程」)中,被導入的氣體即直接變成為廢氣而被排出,在半導體製造裝置2內以電漿或加熱等施加的步驟(以下,稱為「處理製程」)中,則前述氣體之外,含有C2 F4 、COF2 、CO、CO2 、HF、SiF4 等的氣體變成為廢氣而被排出。處理製程中的廢氣的一部分,會保持激態的有活性的狀態,成為自由基等的活性種而存在。
這些廢氣乃經由排氣泵3而被導出於廢氣處理裝置1。廢氣中所含的CF4 、C2 F4 、C2 F6 、C3 F8 、C4 F6 、C4 F8 、C5 F8 、COF2 、CHF3 、C2 HF5 、HF、SiF4 等的氟化物氣體是應除去的有害氣體成分。又,視半導體製造裝置2的種類如何,廢氣中有時也會含有例如AsH3 、PH3 、B2 H6 、GeH4 等有害成分。這種廢氣中所含的有害成分的總量依半導體製造裝置2的種類或製程而會有不同,但以體積比在0.1至25%程度。
如CF4 、C2 F4 、C3 F8 等鍵結飽和的氟碳化合物是非常安定的化合物,所以不會與反應除去劑11反應而以原狀通過反應除去劑充填筒12,但其他的有害氣體成分的一部分會與前述Ca除去劑等的反應除去劑11反應而被除去。同時,維持激態狀態的氟化合物氣體也會與反應除去劑11反應而被除去。對於Ca除去劑而言,一般被認為比生成自由能的負質較大的氫氧化鈣,氧化鈣較容易反應,但是如COF2 或SiF4 等有加水分解性的成分時,因為氧化鈣表面的氫氧化鈣(Ca(OH)2 )會成為反應因子,而產生下列式所表示的反應。
SiF4 +2Ca(OH)2 →2CaF2 +SiO2 +2H2 O
COF2 +Ca(OH)2 →CaF2 +CO2 +H2 O
又,使用氧化鈣與氫氧化鈣的混合劑做為反應除去劑11而使用,則由於反應所產生的水與周邊的氧化鈣反應,而產生新的反應因子的氫氧化鈣,因而可減小反應除去劑充填筒下游側的水分放出的影響。
另一方面,有如C2 F4 、C4 F6 、C5 F8 的不飽和鍵結的氟碳化合物,則可由給與200至400℃程度的熱能,而依照下式會與氧化鈣(CaO)反應。
C2 F4+2CaO→2CaF2 +2CO
C4 F6 +3CaO→3CaF2 +3CO+C
C5 F8 +4CaO→4CaF2 +4CO+C
如此,有害氣體成分的主成分的氟化物,會成為氟化鈣(螢石)而被固定。因此,由廢氣處理裝置1導出的氣體的氟化物濃度比製程廢氣為低,且可說是只含有較安定的成分的氣體。由於氟化物氣體濃度降低,所以在PFC排出量的徹底性的削減為目的之高效率PFC分解處理的前段,配置本形態例所示的廢器處理裝置,則可貢獻於PFC的分解處理所必要的能量的減低。又,由於不安定的成分會被除去,將此廢氣處理裝置配置於PFC或稀有氣體的回收再利用為目的之回收裝置之前段,則可貢獻於使分離或精製容易,廢氣處理裝置1可以合適使用於高效率PFC分解除去裝置或PFC回收裝置、稀有氣體回收裝置的前處理裝置。
又,C2 F4 、C4 F8 、C5 F8 會被反應除去,所以廢氣處理裝置1的下游側的配管不需要堆積物的預防措施。即,只有排氣泵3與廢氣處理裝置1之間的前述配管18,實施堆積物預防的配管加熱即可。又,配管18的溫度是,在120至180℃程度為理想。
在產生這種反應的反應除去劑充填筒12中,以減少反應除去劑的交換頻度,即減少維修之目的,將反應除去劑充填盡可能的多,筒的全長達1000mm以上的情況不少。但是,雖然因有害氣體成分或反應除去劑的種類,被除去成分的濃度及流速而有不同,反應帶的長度一般是設計能在1至500mm的範圍以內。
在這種設計的反應除去劑充填筒12,在本形態例中,將複數個的筒表面溫度監視器13、加熱氣14、加熱器控制器15及反應除去劑溫度監視器16,在反應除去劑充填筒12的流動方向分割成複數個的狀態下,在各分割部分別配置筒表面溫度監視器13、加熱器14、加熱器控制器15及反應除去劑溫度監視器16各1個,而在每一分割部構成一組的溫度控制部19。
溫度控制部19的配置數量,即反應除去劑充填筒12的分割數量係根據反應除去劑充填筒12的氣體流向的長度(高度)及直徑、內部的氣體的流速、反應狀態等的條件而設定,通常是3分割以上,5分割以上為理想,反應除去劑充填筒12的氣體的流向的分割部的長度是500mm以下,理想的是300mm以下。反應除去劑充填筒12的分割數的分割數為2,或分割部的長度超過500mm時,不能充分得到將溫度控制部19配置複數個的效果。相反地,將反應除去劑充填筒12的分割數增多而縮短分割部的長度時,例如,分割部的長度未達50mm時,有不容易得到分割數增多的效果的提高,溫度控制部19的個數增多而各機器所需的成本增大,初期成本的負擔或維護所需的成本增大的情況。
在此,設反應帶在進行的領域(分割部)的筒表面溫度監視器13為TC-c(x),加熱器14為H(x),加熱器控制器15為PID(x),反應除去劑溫度控制器16為TC-m(x)時,由於反應熱的影響,TC-m(x)表示比TC-c(x)高的值,可利用這個物理現象而掌握反應帶的位置。因此,檢知反應帶到達的TC-m(x)向下一個下游側的加熱器控制器PID(x+1)送信號而使加熱器H(x+1)動作,同時向上游側的加熱器控制器PID(x-1)送信號而使H(x-1)動作。此時PID(x+1)控制加熱器H(x+1)而使TC-c(x+1)在200至400℃的範圍內被最適化的所規定的溫度。又,PID(x-1)是要控制加熱器H(x-1)而使TC-c(x-1)在120至180℃的範圍內被最適化的所規定的溫度,或將H(x-1)設成OFF。又,x為1以上的自然數,表示在反應除去劑充填筒12的氣流方向由上游側的領域起算的順序。
即,依據隨反應帶的進行而變化的筒表面溫度監視器13的測定溫度與反應除去劑溫度監視器16的測定溫度而檢知反應帶的位置,對於對應於所檢知的反應溫度帶的位置的溫度控制部19,在位置於此後反應帶要進行的下一個下游側的溫度控制部19,將加熱器14起動而加熱反應除去劑11,使其到達反應開始溫度,同時在位置於反應帶通過了的上一個上游側的溫度控制部19,則維持溫度而預防堆積物在該溫度控制部19被配置的分割部內產生,如此供應對除去反應所需的最小限度的熱能而可使有害氣體成分與反應除去劑11以高效率反應。
因此,在反應帶通過後的上游側的各分割部,則只要做足於預防堆積物產生的加熱即可,在反應帶要進行的下游側,則視分割部的長度及進行速度而將一個至複數個的下游側的各分割部,在反應帶即將到達之前將反應除去劑11預先加熱到所設定的溫度即可,在反應帶接近之前,可不起動加熱器14而保持在待機狀態即可。也就是說,像以往的做法,將反應除去劑充填筒12的全體預先加熱到相同的所設定的溫度,就是加熱多餘的領域,相當於浪費加熱器用的電源電力,所以由削減供應有害氣體成分與反應除去劑11反應的反應帶以外的熱能,而可謀求能源的節省。
又,由反應除去劑11與有害氣體成分反應而產生的副產成分具有在高溫環境下與反應除去劑11以高效率反應的性質時,例如氧化鈣(CaO)與氟化羰(COF2 )的反應中有副產物CO2 產生時等,像以往一樣,如反應除去劑充填筒12的全體預先加熱時,CaO與CO2 反應而成為CaCO3 ,反應除去劑的CaO被副產物氣體的CO2 所耗費,有害氣體成分的除去效率會降低。與此比較,如前述,由於改變為只加熱必要部分的反應除去劑,而抑制反應除去劑11被副產物氣體浪費,可有效利用反應除去劑11於有害氣體成分的反應除去。
再者,氣體流向的複數個領域中,為了測定筒表面溫度及測定反應除去劑溫度與控制加熱器,不只是能確認反應帶的進行,還有可預防反應除去劑充填筒12的溫度過度上升的優點。具體而言,比較同一領域的筒表面溫度與反應除去劑溫度,或上游側的反應除去劑溫度與下游側的反應除去劑溫度,則可檢知有害氣體成分與反應除去劑的過度發熱反應的徵兆,與此同時進行抑制由加熱器的加入熱量的控制,而可以同時辦到防止加熱器用電源電力的浪費,與預防反應除去劑充填筒的過度溫度上升。
[實施例]
以下,以實施例將本發明更詳細說明,但本發明不限定於這些例。
(實施例1)
將C5 F8 及Ar為製程氣體(process gas)的氟碳化合物薄膜用CVD裝置當做半導體製造裝置2而使用,將此半導體製造裝置2的廢氣經由排氣泵3導入於廢氣處理裝置1。又,排氣泵3到廢氣處理裝置1的配管18是不銹鋼製,加溫使配管表面溫度為150℃。導入廢氣處理裝置1的廢氣的主要成分是:Ar:55%、C5 F8 :15%、C2 F4 :24%、C2 F6 :3%、CF4 :2%。
反應除去劑充填筒12是使用內徑150mm、長1800mm的不銹鋼製圓筒,在內部充填粒徑約2至6mm的粒狀氧化鈣20kg使其空隙率為50體積%。廢氣處理裝置1是如第2圖所示,將反應除去劑充填筒12向長度的方向分割成6個各300mm的分割部,在各分割部分別設溫度控制部19。溫度感測器是全部使用K型熱電偶。
實驗開始時,以加熱控制器15的PID(1)起動加熱器14的H(1),使筒表面溫度監視器TC-c(1)表示300℃。在繼續廢氣處理中,在反應除去劑溫度監視器16的TC-m(1)的溫度上升到400℃以上時,以位置在下一個下游側的PID(2)起動H(2)而加熱到TC-c(2)為300℃。同樣,在TC-m(2)的溫度上升到400℃以上時,以PID(3)起動H(3)而加熱到TC-c(3)為300℃,以下,到起動H(6)為止,反覆同樣的控制。
又,TC-m(2)的溫度上升到400℃以上時,以PID(1)操控H(1),使TC-c(1)為150℃,以下,到操控H(5)為止,反覆同樣的控制。使用以上的控制,使反應除去劑充填筒表面溫度為300℃的加熱器,可抑制在全體的1/3。其餘的2/3在實驗開始時是在室溫,在實驗終了時在150℃。消費電力是,與始終加熱在300℃時的3600Wh比較,可削減50%。再者,實驗終了後的反應除去劑中所含的CaF2 的比率是,可改善到始終加熱在300℃時的40重量%至60重量%。
又,由廢氣處理裝置1排出的氣體中所含的有毒氣體成分是只有CF4 、C2 F6 、C3 F8 及CO而已。在本實施例1中,這些由廢氣處理裝置1排出的氣體導入於使用2MHz高頻率電源的產生感應耦合電漿(ICP:Inductively Coupled Plasma)的電漿產生裝置而做分解處理,再將分解生成物導入於粒狀氧化鈣劑處理。其結果,獲知全部的氟碳化合物的除去率超過99.9%。這時的高頻率電源的電力是2kW。另一方面,實施同樣的製造過程的半導體製造裝置2的廢氣,不經過廢氣處理裝置1而直接導入於電漿產生裝置處理,則將高頻率電源電力設為3kW也不能得到安定的電漿,氟碳化合物的除去率也在50%以下。
(實施例2)
將C5 F8 及Ar為製程氣體的氟碳化合物薄膜用CVD裝置當做半導體製造裝置2使用,將前述半導體製造裝置2的廢氣經由排氣泵3導入於廢氣處理裝置1。又,排氣泵3到廢氣處理裝置1的配管18是不銹鋼製,加溫使配管表面溫度為150℃。在廢氣處理裝置1導入的廢氣的主要成分是:Ar:55%、C5 F8 :15%、C2 F4 :24%、C2 F6 :3%、CF4 :2%。反應除去劑充填筒12是使用內徑250mm、長1200mm的不銹鋼製圓筒,在內部充填粒徑約2至6mm的粒狀氧化鈣37kg使其空隙率為50體積%。廢氣處理裝置1是如第2圖所示,將反應除去劑充填筒12向長度的方向分割成6個各200mm的分割部,在各分割部分別設溫度控制部19。溫度感測器是全部使用K型熱電偶。
實驗開始時,以PID(1)起動H(1),使TC-c(1)表示300℃。在繼續廢氣處理中,在TC-m(1)的溫度上升到400℃以上時,以PID(2)起動H(2)而加熱到TC-c(2)為300℃。同樣,在TC-m(2)的溫度上升到400℃以上時,以PID(3)起動H(3)而加熱到TC-c(3)為300℃,以下,到起動H(6)為止,反覆同樣的控制。又,TC-m(2)的溫度上升到400℃以上時,以PID(1)操控H(1),使TC-c(1)為150℃,以下,到操控H(5)為止,反覆同樣的控制。由使用以上的控制,而使反應除去劑充填筒表面溫度為300℃的加熱器,抑制在全體的1/3。其餘的2/3在實驗開始時是在室溫,在實驗終了時在150℃。消費電力是,與始終加熱在300℃時的7800Wh比較,可削減50%。再者,實驗終了後的反應除去劑中所含的CaF2 的比率是,可改善到始終加熱在300℃時的40重量%至60重量%。
(實施例3)
將C5 F8 及Ar為製程氣體的氟碳薄膜用CVD裝置當做半導體製造裝置2使用,將此半導體製造裝置2的廢氣經由排氣泵3導入於廢氣處理裝置1。又,排氣泵3到廢氣處理裝置1的配管18是不銹鋼製,加溫使配管表面溫度為150℃。在廢氣處理裝置1導入的廢氣的主要成分是:Ar:55%、C5 F8 :15%、C2 F4 :24%、C2 F6 :3%、CF4 :2%。反應除去劑充填筒12是使用內徑150mm、長1800mm的不銹鋼製圓筒,在內部充填粒徑約2至6mm的粒狀氧化鈣20kg使其空隙率為50體積體電%。廢氣處理裝置1是如第2圖所示,將反應除去劑充填筒12向長度的方向分割成6個各300mm的分割部,在各分割部分別設溫度控制部19。溫度感測器是全部使用K型熱電偶。
實驗開始時,以PID(1)起動H(1),TC-c(1)表示200℃。在繼續廢氣處理中,在TC-m(1)的溫度上升到280℃以上時,以PID(2)起動H(2)而加熱到TC-c(2)為200℃。同樣,在TC-m(2)的溫度上升到280℃以上時,以PID(3)起動H(3)而加熱到TC-c(3)為300℃,以下,到起動H(6)為止,反覆同樣的控制。又,TC-m(2)的溫度上升到280℃以上時,以PID(1)操控H(1),使TC-c(1)為150℃,以下,到操控H(5)為止,反覆同樣的控制。使用以上的控制,使反應除去劑充填筒表面溫度為200℃的加熱器,抑制在全部的1/3。其餘的2/3在實驗開始時是在室溫,在實驗終了時在150℃。消費電力是,與始終加熱在200℃時的1800Wh比較,可削減40%。
(實施例4)
以實施例1的條件為基準,在TC-m(x)的溫度上升到400℃以上時,起動H(x-1)的設定溫度TC-c(x-1)變化為100℃、120℃、180℃、200℃,而做實驗。使反應除去劑充填筒表面溫度為300℃的加熱器,抑制在全體的1/3。其餘的2/3在實驗開始時是在室溫,在實驗終了時各分別為100℃、120℃、180℃、200℃。消費電力是,與始終加熱在300℃時的(3600Wh)比較,設TC-c(x-1)為100℃時為55%,設TC-c(x-1)為120℃時53%,設TC-c(x-1)為180℃時47%,設TC-c(x-1)為200℃時44%。又,設TC-c(x-1)為100℃時,在除去處理終了後有氟碳化合物的堆積物的產生,由此可知應將TC-c(x-1)設在120℃以上。
1...廢氣處理裝置
2...半導體製造裝置
3...排氣泵
11...反應除去劑
12...反應除去劑充填筒
13...筒表面溫度監視器
14...加熱器
15...加熱氣控制器
16...反應除去劑溫度監視器
17...過濾器
18...配管
19...溫度控制部
第1圖係表示本發明的一種形態例的廢氣處理裝置的說明圖。
第2圖係表示在實施例所使用的廢氣處理裝置。
1...廢氣處理裝置
2...半導體製造裝置
3...排氣泵
11...反應除去劑
12...反應除去劑充填筒
13...筒表面溫度監視器
14...加熱器
15...加熱氣控制器
16...反應除去劑溫度監視器
17...過濾器
18...配管
19...溫度控制部

Claims (4)

  1. 一種廢氣處理方法,係以固體的反應除去劑將由半導體製造裝置排出的廢氣中所含的有害氣體成分予以反應除去的廢氣處理方法,其特徵為:將用以測定反應除去劑充填筒的外壁溫度的外壁面溫度測定手段及用以測定前述反應除去劑的溫度的反應除去劑溫度測定手段之至少任一種溫度測定手段,設置在前述反應除去劑充填筒的氣體流動的方向3處以上,並將加熱前述反應除去劑充填筒外壁面的外壁面加熱手段及加熱前述反應除去劑的反應除去劑加熱手段中的至少任一種加熱手段,設置在前述反應除去劑充填筒的氣體流動的方向3處以上,根據各溫度測定手段測定的溫度檢測反應除去劑充填筒內的反應帶的位置,而根據前述反應帶的位置控制各加熱手段。
  2. 如申請專利範圍第1項所述的廢氣處理方法,其中,前述溫度測定手段及前述加熱手段,係在前述反應除去劑充填筒的氣體流動的方向各分別間隔在50至500mm的範圍。
  3. 一種廢氣處理裝置,係以固體的反應除去劑將由半導體製造裝置排出的廢氣中所含的有害氣體成分予以反應除去的廢氣處理裝置,其特徵為:將用以測定反應除去劑充填筒的外壁溫度的外壁面溫度測定手段及用以測定前述反應除去劑的溫度的反應除去劑溫度測定手段之至少任一種溫度測定手段,設置在前述反應除去劑充 填筒的氣體流動的方向3處以上,並將加熱前述反應除去劑充填筒外壁面的外壁面加熱手段及加熱前述反應除去劑的反應除去劑加熱手段的至少任一種加熱手段,設置在前述反應除去劑充填筒的氣體流動的方向3處以上,並具備:根據各溫度測定手段測定的溫度檢測反應除去劑充填筒內的反應帶的位置而根據前述反應帶的位置控制各加熱手段的加熱控制手段。
  4. 如申請專利範圍第3項所述的廢氣處理裝置,其中,前述溫度測定手段及前述加熱手段係在前述反應除去劑充填筒的氣體流動的方向各分別間隔在50至500mm的範圍。
TW099133966A 2009-10-07 2010-10-06 廢氣處理方法及廢氣處理裝置 TWI487565B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233368A JP5498752B2 (ja) 2009-10-07 2009-10-07 排ガス処理方法及び排ガス処理装置

Publications (2)

Publication Number Publication Date
TW201119729A TW201119729A (en) 2011-06-16
TWI487565B true TWI487565B (zh) 2015-06-11

Family

ID=43856827

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099133966A TWI487565B (zh) 2009-10-07 2010-10-06 廢氣處理方法及廢氣處理裝置

Country Status (3)

Country Link
JP (1) JP5498752B2 (zh)
TW (1) TWI487565B (zh)
WO (1) WO2011043374A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224565A (ja) * 2000-12-01 2002-08-13 Japan Pionics Co Ltd フルオロカーボンの分解処理剤及び分解処理方法
JP2003080023A (ja) * 2001-09-12 2003-03-18 Alpha Tekku:Kk 除害装置及び除害方法
JP2007044667A (ja) * 2005-08-12 2007-02-22 Taiyo Nippon Sanso Corp 排ガス処理装置及び方法
JP2009034671A (ja) * 2007-07-10 2009-02-19 Ebara Corp Pfc処理装置及びpfc含有ガスの処理方法
JP2009217695A (ja) * 2008-03-12 2009-09-24 Taiyo Nippon Sanso Corp ガス検知装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224565A (ja) * 2000-12-01 2002-08-13 Japan Pionics Co Ltd フルオロカーボンの分解処理剤及び分解処理方法
JP2003080023A (ja) * 2001-09-12 2003-03-18 Alpha Tekku:Kk 除害装置及び除害方法
JP2007044667A (ja) * 2005-08-12 2007-02-22 Taiyo Nippon Sanso Corp 排ガス処理装置及び方法
JP2009034671A (ja) * 2007-07-10 2009-02-19 Ebara Corp Pfc処理装置及びpfc含有ガスの処理方法
JP2009217695A (ja) * 2008-03-12 2009-09-24 Taiyo Nippon Sanso Corp ガス検知装置

Also Published As

Publication number Publication date
WO2011043374A1 (ja) 2011-04-14
TW201119729A (en) 2011-06-16
JP5498752B2 (ja) 2014-05-21
JP2011078908A (ja) 2011-04-21

Similar Documents

Publication Publication Date Title
JP4895612B2 (ja) 排ガス処理方法および排ガス処理装置
TWI400354B (zh) 處理氣流的方法
US10889891B2 (en) Apparatus for gaseous byproduct abatement and foreline cleaning
JP7021237B2 (ja) 水蒸気および酸素の反応物を利用するプラズマ軽減技術
US20090314626A1 (en) Method for treating effluents containing fluorocompounds like pfc and hfc
KR20080032089A (ko) 기체 폐기물의 플라즈마 처리 방법
KR20070046794A (ko) 분자 불소를 함유하는 기체 또는 기체 혼합물의 제조 방법
US20140079617A1 (en) Apparatus for treating a gas stream
TWI487565B (zh) 廢氣處理方法及廢氣處理裝置
JP2003236338A (ja) 有機ハロゲン含有ガスの処理方法および装置
JP5221842B2 (ja) 排ガス処理方法
JP2007021290A (ja) 排ガスの処理方法および処理装置
TWI409097B (zh) 處理氣流之方法
KR100743399B1 (ko) 반도체 제조공정에서 발생하는 염소가스와 과불화물의처리장치
JP2010058009A (ja) 三フッ化窒素分解処理方法および三フッ化窒素分解処理装置
JP2006175317A (ja) 半導体製造プロセスからの排気ガスの処理装置
JP2006116424A (ja) 有害成分含有ガスの処理方法
JP2008155070A (ja) ハロゲン化合物の分解処理方法及び装置
JP2008279330A (ja) 過弗化物を含む排ガスの処理方法及び処理装置
JP2005152858A (ja) フッ素化合物を含有する排ガスの処理方法及び処理装置
JP2011110466A (ja) パーフルオロコンパウンド排ガスの乾式除去装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees