WO2004059876A1 - 伝送路シミュレート方法及び伝送路シミュレータ - Google Patents

伝送路シミュレート方法及び伝送路シミュレータ Download PDF

Info

Publication number
WO2004059876A1
WO2004059876A1 PCT/JP2003/016531 JP0316531W WO2004059876A1 WO 2004059876 A1 WO2004059876 A1 WO 2004059876A1 JP 0316531 W JP0316531 W JP 0316531W WO 2004059876 A1 WO2004059876 A1 WO 2004059876A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
path
correlated
instantaneous
transmission
Prior art date
Application number
PCT/JP2003/016531
Other languages
English (en)
French (fr)
Inventor
Kazunori Inogai
Daichi Imamura
Masayuki Hoshino
Genichiro Ota
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2004562901A priority Critical patent/JPWO2004059876A1/ja
Priority to US10/538,143 priority patent/US20060148429A1/en
Priority to EP03786254A priority patent/EP1578032A4/en
Priority to AU2003296072A priority patent/AU2003296072A1/en
Publication of WO2004059876A1 publication Critical patent/WO2004059876A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0087Monitoring; Testing using service channels; using auxiliary channels using auxiliary channels or channel simulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel

Definitions

  • the present invention relates to a transmission path simulation method for simulating a wireless transmission path in multi-antenna communication and a transmission path simulator for simulating the wireless transmission path in multi-antenna communication to promote development of wireless devices.
  • a device that simulates a wireless transmission path that is, a transmission path simulator, is required as an environment for evaluating the performance of the developed equipment. Become.
  • Fig. 1 shows a configuration example of a conventional transmission path simulator.
  • the transmission path simulator 10 allows the transmission signal output from the transmission system of the development device 40 to pass through a multipath transmission path configured according to the setting parameters from the control device 30. At this time, the signal passing through each path is subjected to amplitude fluctuation and phase fluctuation (hereinafter, referred to as transmission path fluctuation) imitating forging, and the signals are weighted and added by the gain of each path.
  • the signal given the transmission path fluctuation by the transmission path simulator 10 The signal is received and demodulated by the receiving system 50 of the transmitting device, and the demodulated signal is transmitted to the error rate measuring device 70. In this way, the performance of the transmission system 40 and the reception system 50 of the developed device can be evaluated by observing the error rate measurement results when various transmission line fluctuations are given by the transmission line simulator 10. Can be.
  • the transmission line simulator 10 is connected to the transmission system 40 of the development device consisting of a digital baseband processing unit (digital BB processing unit) 41, an analog baseband processing unit (analog BB processing unit) 42, and a radio circuit 43. In addition to being connected, it is connected to a receiving system 50 of a development device including a wireless circuit 53, an analog BB processing unit 52, and a digital BB processing unit 51. Note that in Fig. 1, the I-channel (in-phase, ie, the real part of the complex number) and the Q-channel (the orthogonal, ie, the complex Part) consists of two baseband signal lines.
  • the digital data generated by the data generator 60 is input to the transmission path simulator 10 via the digital BB processing unit 41, the analog BB processing unit 42, and the radio circuit 43 of the transmission system 40.
  • the transmission system 40 of the development device is a CDMA (Code Division Multiple Access) transmission device
  • the digital BB processing unit 41 performs digital modulation processing, spreading processing, and the like. If it is a device, it is a part that performs digital modulation processing, inverse Fourier transform processing, and the like.
  • the analog-to-analog BB processing unit 42 is a digital-to-analog conversion circuit
  • the wireless circuit 43 is a unit that performs up-conversion, signal amplification, and the like.
  • the transmission path simulator 10 includes a radio circuit 11 that performs a process reverse to that of the radio circuit 43, that is, a process such as down-conversion, and an analog BB processing unit 12 that is an analog-to-digital conversion circuit. Then, the signal from the transmission system 40 is returned to the digital baseband signal by the analog BB processing unit 12.
  • the digital baseband signal is input to a multipath signal generator 13 including a shift register 14 and a selector 15, and is converted into a multipath signal by the multipath signal generator 13. Specifically, shift register 14 is input The digital baseband signal is shifted by the time obtained by dividing the maximum delay time of the path by the sampling period of the analog BB processing unit 12.
  • the selector 15 selects and outputs as many signals as the number of passes from the signals output from each shift stage of the shift register 14.
  • the multipath generating unit 13 receives a multipath instruction signal S1 indicating the number of paths specified by the control device 30 and the delay time of each path, and the shift register 14 and the selector 15 It operates based on the path instruction signal S1.
  • a signal corresponding to each path in the multipath environment is output from the selector 15 of the multipath generation unit 13.
  • the signal corresponding to each path is sent to each of the complex multipliers A1 to Ak of the instantaneous fluctuation (ray leaf aging) adding section 16.
  • the complex multipliers A1 to Ak are supplied with complex Gaussian noise generated by band-limited complex Gaussian noise generators (LGN) D1 to Dk.
  • the band-limited complex Gaussian noise generators (LGN) D l to D k are composed of a white Gaussian noise generator and a Doppler filter, and have a bandwidth within the range of the maximum Doppler frequency S 2 input from the controller 30. Generates limited white Gaussian noise. As a result, the signals of the paths to which the instantaneous fluctuations are given are output from the complex multipliers A1 to Ak.
  • the signal of each path to which the instantaneous variation is added is sent to a plurality of complex multipliers B 1 to B k forming the short-period variation giving unit 17.
  • Each of the complex multipliers B 1 to B k is supplied with a complex gain S 3 corresponding to each path specified by the control device 30, whereby shadowing and distance from the short-period variation providing unit 17 are provided.
  • the signal of each path to which the fluctuation is given is output.
  • a signal to which the instantaneous fluctuation, shadowing, and distance fluctuation specified by the control device 30 are added is formed for each path, and the signal of each path is formed.
  • This multipath signal is supplied to the adder C3.
  • the white Gaussian noise generated by the white Gaussian noise generator (WGN) 21 is added to the adder C 3 to the amplifier 22.
  • the signal is amplified and supplied to the noise level S 4 specified by the control device 30.
  • receiver noise is added to the multipath signal in adder C3.
  • the analog BB processing section 19 and the radio circuit 20 have the same configuration as the analog BB processing section 42 and the radio circuit 43 of the transmission system 40, and transmission line fluctuation and receiver noise are added. After digital-to-analog conversion of the digital BB signal, it performs radio processing such as up-conversion and amplification.
  • the output signal of the transmission path simulator 10 is input to the wireless circuit 53 of the development device (reception system) 50.
  • the wireless circuit 53 has an AGC (Automatic Gain Control) circuit and an AFC (Automatic Frequency Control) circuit, and compensates for the carrier frequency offset and input / output fluctuation between transmission and reception.
  • the signal that has been converted from analog to digital by the analog BB processing unit 52 is sent to the digital BB processing unit 51. .
  • the development device (receiving system) 50 is a CDMA (Code Division Multiple Access) receiving device
  • the digital BB processing unit 51 performs digital demodulation processing and despreading processing. If so, it is the part that performs digital demodulation processing and Fourier conversion processing.
  • the signal processed by the digital BB processing unit 51 is sent to the error rate measuring unit 70, and the error rate measuring unit 70 measures the transmission line error rate.
  • the transmission path simulator 10 simulates the multipath that would occur on the transmission path and the fading fluctuation to each path for the radio signal obtained by the transmission system 40 of the development device.
  • the obtained signal is input to the receiving system 50 of the development device, and the error rate characteristics of the signal processed by the receiving system 50 are measured, whereby the transmission system 40 and the receiving system 50 are measured.
  • the transmission characteristics are evaluated.
  • a multi-antenna technology such as a multi-input multi-output (MIM) adaptive array antenna, has attracted attention as a technology that enables large-capacity data transmission. For example, using MIM ⁇ technology
  • the equipment has multiple antennas for the transmission system and the reception system. Different data are transmitted from the antennas, and in the receiving system, signals mixed with each other are separated by performing propagation path estimation or the like to recover multiple data. .
  • this multi-antenna device if an attempt is made to evaluate performance using a conventional transmission path simulator, only inadequate evaluation can be performed.
  • a transmission path for MXN channels exists, but the conventional transmission path simulator has one channel.
  • the conventional transmission path simulator has one channel.
  • it is remarkable to evaluate these methods whose performance depends on spatial information such as the arrangement of transmitting and receiving antennas and the radiation direction and arrival direction of each path. Not enough.
  • An object of the present invention is to provide a transmission path simulation method and a transmission path simulator that can easily and satisfactorily simulate an M N channel transmission path formed by a multi-antenna apparatus.
  • This object is achieved by generating transmission path fluctuations for all channels based on the arrangement information of the transmitting and receiving antennas.
  • attention is paid to the fact that a delay difference and a phase difference of each path occur between the channels according to the antenna installation position between the transmitting and receiving antennas, and only the delay difference and the phase difference of each path are checked.
  • the model of transmission path fluctuation of the MXN channel is simplified.
  • Figure 1 is a block diagram showing the configuration of a conventional transmission path simulator
  • Figure 2 shows a 1x1 channel transmission path
  • Figure 3 is a diagram for explaining the path
  • Figure 4 (A) shows the delay profile
  • Figure 4 (B) is a diagram showing instantaneous fluctuations
  • Figure 4 (C) is a diagram showing short-term fluctuations
  • Fig. 4 (D) is a diagram showing long-range fluctuations
  • Figure 5 is a diagram for explaining the ray
  • Figure 6 is a diagram showing the model when the number of rays is one
  • Figure 7 shows a case where a wave diffusely reflected by a sphere near the virtual antenna is received as a raw wave within the line-of-sight angle ⁇ ;
  • Fig. 9 (A) shows the direction of arrival of an elementary wave when the radius of the scattering sphere includes the receiving antenna
  • Figure 9 (B) is a diagram showing the direction of arrival of a ray when the radius of the scattering sphere includes the receiving antenna;
  • Fig. 10 is a diagram for explaining the principle of generation of standing waves in an environment with many reflected waves
  • Fig. 11 is a diagram for explaining the power density spectrum of envelope and line amplitude fluctuation due to Rayleigh fading ;
  • FIG. 12 is a diagram for explaining a power density spectrum of envelope amplitude fluctuation due to Rayleigh fading
  • Figure 13 is a diagram showing the M X N channel transmission path formed by the multi-antenna device
  • Figure 14 (A) is a diagram used to explain the path difference caused by the distance between the transmitting and receiving antennas, the radiation angle, and the angle of arrival
  • Fig. 14 (B) is a diagram for explaining the path difference caused by the distance between the transmitting and receiving antennas, the radiation angle, and the angle of arrival;
  • Figure 15 shows the environment where waves arrive from all directions
  • Figure 16 shows the model for adding the instantaneous variation to each channel when there is no multipath
  • Figure 17 is a diagram showing a model for the instantaneous variation of each channel when there are multipaths
  • Figure 18 shows a model that uses a matrix to generate mutually correlated band-limited complex Gaussian noise from M X N X P band-limited complex Gaussian noises;
  • Figure 19 is a block diagram showing the configuration for generating correlated instantaneous fluctuations (two waves) proposed by Sasaoka;
  • Figure 20 (A) is a diagram for explaining the principle of forming a correlated instantaneous variation of the M X N channel from the instantaneous variation of the 1 X 1 channel;
  • FIG. 20 (B) is a diagram for explaining the principle of forming a correlated instantaneous variation of the M ⁇ N channel from the instantaneous variation of the 1 ⁇ 1 channel;
  • FIG. 21 is a block diagram showing a state of connection with a transmission line simulator development device according to the embodiment of the present invention.
  • FIG. 22 is a block diagram showing the configuration of the transmission line simulator according to the embodiment.
  • FIG. 23 is a table showing the contents of each parameter used in the embodiment;
  • FIG. 24 is a block diagram showing a configuration of a reference channel path control unit
  • Figure 25 is a block diagram showing the configuration of the channel processing unit
  • Figure 26 is a block diagram showing the configuration of the correlated Gaussian noise generator
  • FIG. 27 is a block diagram showing a configuration of a reference channel path control unit
  • Figure 28 is a block diagram showing the configuration of the channel processing unit
  • Figure 29 is a block diagram showing the configuration of the correlated Gaussian noise generator
  • FIG. 30 is a block diagram showing a configuration of a fading adding unit
  • FIG. 31 is a block diagram showing a configuration of a transmission analog adjustment unit
  • FIG. 32 is a block diagram showing a configuration of a pseudo power amplifier (PA).
  • PA pseudo power amplifier
  • FIG. 33 is a block diagram showing a configuration of a reception analog adjustment unit. BEST MODE FOR CARRYING OUT THE INVENTION
  • the inventor of the present invention can simplify the transmission path model when forming the transmission path model for the MXN channel in the multi-antenna apparatus, thereby reducing the number of parameters and the amount of calculation, and as a result, the apparatus configuration is relatively simple.
  • the present invention was deemed to be possible.
  • the gist of the present invention is to generate transmission line fluctuations of all channels based on the arrangement information of the transmitting and receiving antennas.
  • attention is paid to the fact that the delay difference and the phase difference of each path occur between the channels according to the antenna installation position between the transmitting and receiving antennas, and only the delay difference and the phase difference of each path are determined between the channels.
  • the channel variation model of the MXN channel is simplified.
  • a transmission path fluctuation model that gives correlated instantaneous fluctuations for each path is generated. did.
  • a transmission line fluctuation model for multiple channels can be formed with a relatively small amount of computation using similar multipath transmission lines from existing one-channel transmission line measurement data obtained from RayTrace simulations and actual driving experiments. Can become so.
  • the present invention proposes the following five methods as a method for generating the instantaneous fluctuation (correlated complex Gaussian noise) correlated between the respective channels and between the respective paths.
  • 1 to ⁇ are used to calculate the correlated instantaneous fluctuation given to each channel from the band-limited complex Gaussian noise independent of each other using the transformation matrix A. It is something devised.
  • (2) is an extension of Sasaoka's method of generating correlated instantaneous fluctuations proposed for the IX2 channel, and is devised to generate correlated instantaneous fluctuations of the MXN channel.
  • the inventor of the present invention first considered differences and similarities between the 1 ⁇ 1 channel transmission line and the M ⁇ N channel transmission line.
  • the 1X1 channel model In order to extend the 1X1 channel model to the MXN channel model as easily as possible, we examined in detail how to extend the short-term variation and instantaneous variation. Hereinafter, they will be sequentially described.
  • Figure 2 shows a unidirectional 1x1 channel transmission path between one transmitting antenna and one receiving antenna.
  • the transmission path between the one-to-one transmission / reception antennas is referred to as one channel.
  • Figure 3 shows the path.
  • the channel is indicated by a straight line, but it is actually received by the receiver through various paths ( ⁇ to ⁇ ⁇ in Fig. 3) due to reflection and diffraction. It is.
  • the delay profile can be drawn with the propagation delay time on the horizontal axis and the received power on the vertical axis, as shown in Fig. 4 (A). Waves arriving with different delays must have different propagation paths, and these propagation paths are called paths.
  • Each path is specified by a transfer coefficient (complex number) that indicates how much delay and gain (actually attenuation) the signal passing through the path undergoes and how much the phase shifts.
  • a transfer coefficient complex number
  • the phase of each path changes depending on the traveling speed and the arrival angle of the wave with respect to the traveling direction.
  • Figures 4 (B) to 4 (D) show path gain fluctuations (note that the horizontal axis is distance, not time).
  • Gain fluctuations are classified into long-range fluctuations (distance fluctuations) depending on the distance from the transmitting antenna and the directivity of the transmitting and receiving antennas, short-range fluctuations (shadowing) due to the effect of shielding by terrestrial objects, and instantaneous fluctuations due to superposition of multiple waves. .
  • the long-term variation has almost the same shape as the delay profile.
  • the propagation distance (or propagation delay) of each path changes, and its reception level also changes, but its fluctuation speed is the slowest (very slow) compared to other fluctuations.
  • Long-range fluctuations have been modeled on the Okumura curve (Hata formula) created by statistical analysis of a large amount of running test data, and have been widely used recently. The improved Sakagami type is also used.
  • Short-term fluctuations are gain fluctuations caused by each path being blocked or appearing by a building, etc. (In a wireless LAN, etc., it may be blocked by people walking nearby). Although there is no theoretical formula for the fluctuation speed, it is generally said that the fluctuation speed is 1 Hz or less. Actually, short section fluctuations should be determined in relation to the features and traveling speed from the cause.For example, when traveling in a 30 m wide building at 30 km / h, it takes about 3.6 seconds. It is considered that it fluctuates with the period. It is expected to be less. A model is proposed in which the gain fluctuations due to short-term fluctuations follow a log-normal distribution, and the gain changes simultaneously within the band (in the above case, the band is 0 to lZ3.6 [Hz]).
  • the instantaneous fluctuation is a fluctuation that occurs when several rays are superimposed.
  • a path that appears as a single path on the delay profile actually passes through multiple waves (in the sense that the amplitude and phase do not completely match).
  • a multiplex wave that appears to have passed through one path on the delay profile is called an elementary wave, and its amplitude and phase fluctuate. (This means that one wave passes through a path whose gain and phase fluctuate. Can be considered to come).
  • the instantaneous fluctuation can be described as the Doppler effect, and fluctuates at a speed of about several Hz to 1 kHz as described later.
  • Fig. 5 focuses on the ray 3 in Fig. 4 (A).
  • the receiver receives a signal with completely different fluctuations. Therefore, for example, the elementary wave in (3) can be regarded as coming from the virtual transmitting antenna on the extension of the direction of arrival as shown in Fig. 5 (assuming that the receiver is moving upward at speed V).
  • Figure 6 shows a case where the number of rays is one.
  • the elementary wave is not a multiplex wave, it is received without fluctuation in amplitude and phase other than Doppler shift due to traveling.
  • Such cases are rare in mobile communications, but they are sometimes used as transmission channel models.
  • Doppler shift amount of rays 3 is when the f D two v X f e Z c, represented by f D COS 0.
  • Figure 7 shows the case where the wave diffusely reflected by the sphere near the virtual antenna is received as an elementary wave within the line of sight ( ⁇ ) (the fluctuation range of the angle of arrival ⁇ ).
  • the line of sight
  • the amplitude and phase of the ray fluctuate, but the line-of-sight angle ⁇ is small, so the delay difference is small, and the angle of arrival 0 can be measured stably.
  • the line-of-sight angle ⁇ increases (the radius of the scattering sphere near the virtual transmitting antenna increases), as shown in Fig. 8, waves with a considerably large delay difference are included in the rays.
  • both amplitude and phase fluctuate greatly. It becomes difficult to measure the angle of arrival 0 itself.
  • Fig. 9 (A) when the radius of the scattering sphere is further increased to include the receiving antenna, the ray appears to come from all directions. Rather, in such a case, it should be divided into multiple paths of rays on the delay profile. However, even if an elementary wave is divided by a delay profile, it includes a number of waves that have the same propagation delay but travel spatially different paths. It looks like it comes from all directions. In other words, the image is as shown in Fig. 9 (B) (just as the transmission direction in Fig. 7 is reversed). Obviously, the angle of arrival of each ray cannot be measured (measurement is meaningless). In an environment with many reflected waves, as shown in Fig.
  • Figures 11 and 12 show the power density spectra of envelope f spring amplitude fluctuations due to Rayleigh fading.
  • Fig. 11 when the waves arrive in the directions of 1, 2, 3, and ⁇ ⁇ ⁇ ⁇ with respect to the traveling direction V, the waves arriving from the direction of 1 appear to have the highest frequency, and conversely, from the direction of 4. The incoming wave appears at the lowest frequency. This maximum frequency shift is called the maximum Doppler frequency ⁇ D.
  • the maximum Doppler frequency f D can be calculated as a number included in the distance traveled per second by a standing wave repeated in the wavelength period, and is generally several Hz to about L k H z (carrier frequency 2 GHz For a running speed of 100 km / h, multiply these by 20 OH z).
  • Each path on the long section delay profile is subject to long section fluctuations.
  • the delay and gain are determined by the feature conditions, traveling speed, direction and angle of arrival, and change slowly.
  • Each path on the short-term delay profile receives short-term fluctuations (shadowing) in addition to long-term fluctuations.
  • the gain of each path fluctuates at a speed of 1 Hz or less in an independent lognormal distribution for each path.
  • Each path on the instantaneous delay profile receives instantaneous fluctuations in addition to long-term fluctuations and short-term fluctuations.
  • the gain and phase of each path undergo independent Rayleigh aging (gain is Rayleigh distribution and phase is uniform distribution) for each path.
  • the fluctuating speed is determined by the carrier frequency, running speed, angle of arrival, and line of sight, and ranges from several Hz to several hundred Hz.
  • the amplitude on the delay profile represents the received power of the ray arriving from each path and has no gain or phase (correctly, it can be called the complex amplitude of the complex impulse response of each channel). Conversely, expressions such as power for each path are inappropriate, but such expressions may be used to the extent that there is no misunderstanding according to custom. .
  • FIG. 13 shows an M ⁇ N channel transmission line formed by a multi-antenna device including M transmission antennas and N reception antennas.
  • each of the MXN channels would be very similar to each other.
  • the arrangement of the transmitting and receiving antennas is distributed over an area of several m square, it is a different story, but considering that the short-period fluctuation period is about several tens of meters, the long interval actually observed by each receiving antenna is considered.
  • the short-term delay profile as well as the delay profile should be considered almost equal.
  • the difference between the channels in the sense of the short-term delay profile was considered to be only the propagation delay and carrier phase of each path due to the path difference due to the transmission and reception antenna arrangement.
  • Fig. 14 (A) compares the paths from some two transmitting antennas to one receiving antenna. If the inter-element distance d T is sufficiently small, the path from the vicinity of this antenna to the receiving antenna can be regarded as common, so the path difference is d T ⁇ cos 0, and the path delay and phase (carrier) Phase, but may be called the phase of the path).
  • the inventor of the present invention has found that if the radiation angle and arrival angle of each path of any one channel short-term delay profile are known, the short-term delay profiles of other channels can be obtained from the arrangement of the transmitting and receiving antenna elements. It was concluded that can be calculated.
  • the transmission channel measurement data for one channel is transmitted and received.
  • the transmission path fluctuation model for the MXN channel is formed by calculating the short-term delay profile (delay of all paths' gain-phase fluctuation) for the MXN channel from the arrangement of the antenna elements. This makes it possible to easily and accurately generate path information of all channels from information of each path of the reference channel.
  • the instantaneous fluctuations for example, 5 standing waves in GH Z band average 3 cm equal gutter 'Ukoto in all antenna as short-term variation because it contains one wave in (half wavelength) is not a put. That said, at the moment a certain antenna is undergoing positive fluctuations, it is likely that the neighboring antennas are also moving in a substantially positive direction. The same can be said about the time direction. Since the instantaneous fluctuation fluctuates at a speed of 1 kHz or less, if a positive fluctuation is received at a certain moment, it is quite possible that the positive fluctuation continues 0.1 lms later. The former is quantitatively expressed by the spatial correlation function, and the latter is quantitatively expressed by the time correlation function. It has been derived that the following equation is given for Rayleigh fading in which waves arrive from all directions.
  • X i (t) and x i (t) are each i
  • d is the distance between the antennas
  • is the delay time of the path
  • f D is the maximum Doppler It is a frequency.
  • * Means conjugate complex number
  • J Means Bessel function. In the conventional antenna diversity performance evaluation, it was assumed that the received waves could be regarded as uncorrelated with each other by setting the distance between antennas so as to be separated by a half wavelength or a small space correlation value.
  • the M X N channel transmission channel shown in Fig. 13 can be rewritten to MN channels as shown in Fig. 16 when there is no multipath.
  • the gain of the short-term fluctuation of each channel is assumed to be equal, only the instantaneous fluctuation of each channel is shown in FIG.
  • all transmission data is fixed at "1".
  • the signal of each channel may be multiplied by an instantaneous variation (complex Gaussian noise) having a spatial correlation based on the distance between the antennas to give a variation.
  • each path follows the space-time correlation function of Eq. (2), and the band-limited complex with consideration of the angle of arrival and line of sight.
  • An instantaneous variation may be given by Gaussian noise.
  • the correlation matrix method eigenvalue transformation method, Cholesky decomposition method
  • the extended Sasaoka method are proposed as methods for generating correlated instantaneous fluctuations as described above.
  • Fig. 18 shows that the transformation matrix A (MNP rows and XMNP columns) converts the MXN XP (P: number of paths) band-limited complex Gaussian noises that are independent of each other into M XNXP mutually correlated band limits It is designed to generate attached complex gas noise (correlated Gaussian noise).
  • the problem is what transformation matrix A can be used to provide the desired inter-path correlation.
  • the inter-path correlation matrix is as follows.
  • the subscripts are represented by serial numbers for simplicity.
  • the superscript * denotes a conjugate complex number
  • denotes a conjugate complex transpose
  • ⁇ () denotes a set average.
  • the (M'NP) 2 pieces of each element represents the correlation between each pass, the propagation delay difference between paths between the path length difference determined from the radiation angle ⁇ AoA of the elements receive antenna arrangement and wave
  • the desired path correlation matrix ⁇ is obtained by calculating the space ⁇ time correlation value of the equation (2).
  • Equation (4) means that by multiplying the correlated (MNPX 1) signal vector Y as shown in equation (3) by the matrix A- 1 , the mutually uncorrelated (MNPX 1) signal vector X is obtained. Yes, this relationship is known as eigenvalue transformation (or KL transformation).
  • the eigenvalue transform is the MN of the desired path correlation matrix ⁇ ⁇ as A- 1.
  • ⁇ ⁇ (MNPX 1) unit eigenvectors e or e 2 ,, e MNP may be used.
  • the transformation matrix A is as follows.
  • the desired inter-path correlation matrix ⁇ can be Cholesky-decomposed as follows: ⁇ -LL (6) where L is the lower triangular matrix of (MNP ⁇ ) type
  • the transformation matrix ⁇ in FIG. 18 may be obtained by the following equation with respect to the obtained lower triangular matrix L.
  • Figure 19 shows a block diagram of the occurrence of correlated instantaneous fluctuations (two waves) proposed by Sasaoka.
  • the system and parameters defined in FIG. 19 are shown in FIG. Referring to FIG. 19, first, two systems of white Gaussian noise generated by the white Gaussian noise generators 101 and 104 by the Doppler filters 102 and 105, respectively, are generated from all directions. Spectral shaping into the power density spectrum of ray-leaf aging when arriving (if the angle of arrival or line of sight of the raw wave is known, the band should be further narrowed accordingly).
  • filters 103 and 106 are spatial correlation values p and f ( 1-2 ), and cannot express a temporal correlation. Sasaoka replaced it with a filter to include time correlation.
  • the filter characteristics H (f) and G (f) are determined by the distance d between the two receiving antenna elements, the antenna arrangement angle ⁇ with respect to the traveling direction, the carrier wavelength ⁇ , and the maximum Doppler frequency; Since the gain is in the relationship between sin and cos, the power density spectrum of the instantaneous fluctuations input to the complex multiplier 111 of the ray 2 is the same as that of the ray 1 (the form of a Doppler filter).
  • one of the rays is delayed by one of the delay circuits 108 and 109 according to the sign of cos. Note that the output from the delay circuit 108 is valid when cos 0, and the output from the delay circuit 109 is valid when cos is 0.
  • G () i 2x2 ()
  • 2 ⁇ S ()] nu 2 if) (f) S xlxl (f) H "(f) S, lxl (f) (9) First, even if correlated, the shape of the power density spectrum of the instantaneous fluctuations cannot change, so the following equation must be satisfied.
  • FIGS. 20 (A) and 20 (B) are diagrams for explaining the principle of forming a correlated instantaneous variation of the M ⁇ N channel from the instantaneous variation of the 1 ⁇ 1 channel.
  • FIG. 20 (A) shows 1 XN channel and 1 XM channel
  • FIG. 20 (B) shows conversion from 1 XM channel to 1 MX channel.
  • FIG. 20 (B) The left is a 1 XM channel transmission line from right to left. If the transmitting and receiving antennas are at the same position, the 1-1 channel has the same complex impulse response as the 11-channel in Fig. 20 (A) due to the reversibility of the transmission path. Therefore, all the correlated instantaneous fluctuations on the left side of FIG. 20 (B) can be generated similarly to FIG. 20 (A). After that, if the signal direction is changed again using the reversibility of the transmission path, the correlated instantaneous fluctuations of all the channels on the right in Fig. 20 (B) can be obtained (that is, even if the transmitting antenna is different, there is one receiving antenna). This means that the transmission path has a correlation.)
  • one channel is used as the reference transmission line, but any channel may be used as the reference. This is because when the reference channel is changed, the propagation delay and phase change, but there is no change as a relative value.
  • the reference channel may be set at the center point where there is no antenna.
  • the instantaneous fluctuation of each channel is generated by the force specified by the correlation with the reference channel.
  • the correlation between channels 112 and 113 is not guaranteed. Rather, the correlation is the cosine function value between the two data vectors. In view of this, this extension is not appropriate.
  • FIG. 21 in which parts corresponding to FIG. 1 are assigned the same reference numerals, shows how the transmission line simulator 120 and the development devices 40 and 50 according to the embodiment are connected. In the following, the description of the parts already described with reference to FIG. 1 will be omitted.
  • the transmission path simulator 120 simulates the transmission paths of the development apparatuses 40 and 50 having a multi-antenna configuration so that the transmission path characteristics of the development apparatuses 40 and 50 can be evaluated.
  • the transmission path simulator 120 can receive the digital baseband signal DB from the digital BB processing unit 41 of the transmission system 40, the analog baseband signal AB from the analog BB processing unit 42, and the radio signal RF from the radio circuit 43. ing.
  • the output from the transmission path simulator 120 is selectively output to the digital BB processing unit 51, analog BB processing unit 52, or wireless circuit 53 of the reception system 50 in accordance with the operation of the switches SW3 and SW4. Has been done.
  • the digital baseband signal DB from the digital BB processing unit 41 can be obtained.
  • the transmission path characteristics of the digital BB processing units 41 and 51 can be independently evaluated.
  • the operation of the digital baseband processing units 41 and 51 which is the center of the processing, can be performed without waiting for the completion of the radio circuits 43 and 53 (especially the radio circuit 53 of the receiving system 50). Since confirmation can be performed, development efficiency can be improved.
  • Fig. 22 shows the configuration of the transmission path simulator 120.
  • the transmission path simulator 120 is composed of the radio signal R Fin from the radio circuit 43, the analog baseband signal A Bin from the analog BB processor 42, or the digital baseband signal D Bin from the digital BB processor 41. Is input to the interface section 1 2 2. Specifically, a radio signal R Fin or an analog baseband signal A Bi corresponding to the number M of transmitting antennas is input to the analog circuit 123, and is converted into a digital baseband signal by the analog circuit 123. Is output.
  • the switch SW 10 selects either the input digital baseband signal D Bin or the digital baseband converted by the analog circuit 123 and outputs it to the transmission analog adjuster 124.
  • the baseband signal is composed of 2 XM signals composed of an I signal and a Q signal, and this is shown as 2 M in the figure. That is, in the circuits after the transmission analog adjustment section 124, M digital baseband signals are to be processed.
  • the transmission analog adjustment section 124 is provided with the number M of digital baseband signals, and the development apparatus (transmission system) 40] ⁇ 1 analog BB processing section 42, radio circuit 43, and analog port It corrects the change in the transmission characteristics among the M digital baseband signals caused by the performance variation in the switching circuit 123.
  • the detailed configuration of the transmission analog adjustment section 124 will be described later.
  • the switch 125 as a signal duplication means forms MXN digital baseband signals by copying each of the M digital baseband signals to N, and converts these into MXN channel processing units. 1 26-1 to 1 26-Send to MN.
  • each channel processing unit 126-1-1 to 126-MN has the transmission channel model information of the reference channel formed by the reference channel path control unit 127. Information, transmission / reception antenna arrangement information, and the like are input, and each of the channel processing units 126-1 to 126 _MN constructs a transmission channel model of its own channel. Then, the short-term complex impulse response for the own channel and the correlated instantaneous fluctuation according to the constructed channel model are given to the digital baseband signal of the own channel by complex multiplication.
  • the detailed configuration of the channel processing units 126_1 to 126-MN will be described later.
  • the selection / synthesis unit 128 forms a digital baseband signal with N reception antennas by selectively synthesizing M digital baseband signals output from the channel processing units 126-1 to 126-MN. .
  • the reception analog adjustment unit 129 is provided for the number N of digital baseband signals, and the performance of the N analog BB processing units 52, the radio circuit 53, and the analog circuit 13 1 of the development device (reception system) 50 is determined. Compensates for changes in transmission characteristics between N digital base spanned signals caused by variations. The detailed configuration of the reception analog adjustment unit 129 will be described later.
  • the digital baseband signal output from the reception analog adjustment section 129 is input to the output interface section 130.
  • the digital baseband signal DBout is input to the digital BB processing section 51 of the receiving system 50 via the switch SW4.
  • the analog baseband signal A Bout obtained by the analog circuit 131 is converted into the analog signal of the reception system 50 via the switch SW3. It is input to the BB processing unit 52.
  • FIG. 24 shows the configuration of the reference channel path control unit 127.
  • the reference channel path control unit 127 includes a reference channel transmission channel model forming unit 140 and an instantaneous fluctuation initial generation unit 141.
  • the reference channel transmission path model generator 140 sets the complex impulse response information manually (that is, set by the controller 122).
  • the standard model generator 142 periodically updates and sets the complex impulse response with random numbers.
  • Statistical model generation unit 144, EayTrace simulation ⁇ real driving model generation unit 144 that reads complex impulse response information obtained from actual driving experiments etc. and sequentially updates and sets them.
  • the selection unit 1450 selects and outputs the transmission channel model for one channel generated in any of 2 to 144.
  • the reference channel transmission path model forming section 140 obtains the complex impulse response information (consisting of the number of paths, the delay of each path, and the complex gain) of the transmission path that fluctuates at the number of + m intervals for the reference channel. It is formed. Since each of the model generators 142 to 144 is a known technique, a description thereof will be omitted.
  • the instantaneous fluctuation initial value generation unit 1441 generates the instantaneous fluctuation initial value for each path of the reference channel so as to be a random value by using a random number.
  • the control device 122 sends a parameter P 100 (model type instruction to indicate which traveling model is to be selected, traveling speed 'direction, arrangement of transmitting / receiving antennas) to the reference channel transmission path model forming unit 140. ⁇ Direction and phase fluctuation ONZO FF instruction) are input.
  • a parameter P 11 (number of paths, delay of each path ⁇ ⁇ complex gain) is input from the controller 12 1 to the standard model generator 14 2.
  • the parameter P 12 (Ray i'ace / actual driving experiment data) is input from the control device 12 1 to the actual driving model generating section 144. From the selection unit 14 5, the parameter P 14 (carrier frequency, running speed direction, transmission / reception antenna arrangement / directivity, ONZOO FF instruction of phase change) and parameter P 15 (The number of path divisions (when compressed), the number of paths of the reference channel, the delay of each path of the reference channel, the short-term fluctuation complex gain, the angle of arrival, and the line of sight) are output.
  • FIG. 25 shows the configuration of each channel processing unit 126-1-1 to 126-MN.
  • the channel processing unit 1266-1 inputs the parameters P14 and P15 to the short-term complex impulse response generation unit 150 for its own channel.
  • the own-channel short-term complex impulse response generator 150 calculates the path difference between the reference channel and the own channel from the arrangement of the transmitting and receiving antennas, and, based on the path difference, calculates the complex of the short-term variation of each path of the own channel. Calculate the gain and send it as a parameter P 18 to the data acquisition unit 15 1, and generate correlated Gaussian noise using the number of paths of the own channel, delay, arrival angle and line of sight of each path as parameters P 20. Send it to section 15 2.
  • the short-term complex impulse response generation section 150 for the own channel assumes that the gain due to the long-term variation and the short-term variation of each path included in the short-term complex impulse response is equal within the area where the transmitting and receiving antennas are installed.
  • the own channel has the same number of paths as the reference channel, and only the delay and phase of each path are determined by the transmission / reception points of the reference channel and the own channel, the positional relationship between the transmission / reception antennas of the own channel, and the Generates a complex impulse response of its own channel, assuming that it is shifted by the path difference obtained from the radiation direction and the arrival direction.
  • the short-term complex impulse response generating section 150 for its own channel generates an I component according to the phase change.
  • a complex gain is generated by controlling the magnitude of the Q component.
  • This complex impulse response is interpolated by the data interpolator After the up-conversion, it is sent to the short-period variation adding section 155 of the fading adding section 154.
  • the sampling frequency fs of the baseband signal can be obtained even if the processing operation before the data interpolation unit 151 is somewhat slower. It is possible to give fine fluctuations according to The same applies to the relationship between the data interpolator 15 3 and the correlated Gaussian noise generator 15 2.
  • the correlated Gaussian noise generating section 152 receives the parameters P 14, P 15 and P 20 and generates correlated Gaussian noise for each path of the own channel.
  • the correlated Gaussian noise generators 152 of each of the channel processing units 126-1-1 to 126-MN have a channel-to-channel or channel-to-channel
  • correlated instantaneous fluctuations of the MXN channels correlated between the paths are formed.
  • the correlated instantaneous fluctuation P 16 generated in the correlated Gaussian noise generator 15 2 (including information on the number of paths and the delay of each path in addition to the complex gain of the instantaneous fluctuation of each path) is a data interpolator After being interpolated by 153, it is sent to the correlated instantaneous variation adding section 156.
  • the number of paths and the delay information of each path are used as information for forming a multipath having a delay according to the antenna arrangement as described later.
  • FIG. 26 shows the configuration of the correlated Gaussian ⁇ sound collection unit 152.
  • the correlated Gaussian noise generator 15 2 generates Gaussian noise in a band corresponding to the arrival angle and line-of-sight angle of each path of the reference channel as a multitone having the initial phase of the initial value of the instantaneous variation of each path of the reference channel. Then, the multitone is weighted by a Doppler filter and a correlated filter characteristic using the antenna arrangement information as a parameter, thereby forming a correlated instantaneous fluctuation correlated with the instantaneous fluctuation of the reference channel. That is, the Sasaoka method described above is applied.
  • the multitone generating section 161 generates a multitone having the initial phase of the instantaneous variation initial value of each path of the own channel generated by the instantaneous variation initial value generating section 160 as an initial phase.
  • This multitone is applied to the Doppler filter 1 6 2 After a predetermined band within the Doppler frequency ⁇ D is further limited, the signal is transmitted to a filter 165 ⁇ ⁇ ⁇ ⁇ having a filter characteristic of Expression (12).
  • the multitone generating section 163 generates a multitone having an initial phase corresponding to the initial value of the instantaneous fluctuation of each path of the reference channel generated by the instantaneous fluctuation initial direct generation section 141 (FIG. 24). After being limited to a predetermined band of the Doppler frequency f D The multitone Doppler filter 16 4 is sent to a filter 165 B having (1 1) of the filter characteristics.
  • the carrier frequency and the traveling speed-direction are input to the Doppler filters 162 and 164, and the characteristics of the Doppler filters 162 and 164 are determined according to these.
  • the carrier frequency, the traveling speed ⁇ direction, the arrangement and directivity of the transmitting and receiving antennas, the arrival angle ⁇ line-of-sight angle of each path are input to the correlation filter unit 165, and the characteristics of the filters 165A and 165B are correspondingly input. Is determined.
  • the output from the correlation filter unit 165 is added to the adder 166 and then input to the phase fluctuation ONZOFF unit 167.
  • the phase fluctuation ONZOFF unit 167 performs ONZOFF control of the phase fluctuation of the correlated Gaussian phantom sound in response to the phase fluctuation ON / OFF instruction from the control device 121. Specifically, when it is instructed to perform ON control of the phase fluctuation, the correlated Gaussian noise from the adder 166 is output as it is.
  • the variation value envelope amplitude V ′′ (I 2 + Q 2 ) of the correlated Gaussian noise of the I channel and the Q channel is calculated.
  • the amplitudes of the fluctuation envelopes are output as I-channel and Q-channel signals, that is, the correlated Gaussian noise with the same magnitude of the I-channel and Q-channel is formed as the instantaneous fluctuation, and the subsequent correlated instantaneous fluctuation is added. Only the level variation is given without giving the phase variation in the unit 156. The reason for this will be described later.
  • the output of the phase fluctuation ON / OF F section 167 is automatically output via the delay section 168. It is sent to the correlated instantaneous fluctuation adding section 156 as an instantaneous fluctuation.
  • the correlated Gaussian noise generation unit 152 provided for each channel obtains the correlated instantaneous fluctuation correlated with the similar instantaneous fluctuation of the reference channel.
  • Correlated instantaneous fluctuations for MXN channels that are correlated with the reference channel can be formed.
  • the instantaneous variation of the MXN channel can be simulated accurately and easily compared to the case where the instantaneous variation of the MXN channel is independently set.
  • the correlated instantaneous fluctuation correlated with the reference channel is obtained using the multitone has been described, but the multitone generators 16 1 and 16 3 generate a single white Gaussian noise, and the Doppler filter 1
  • the correlated instantaneous fluctuations for the MXN channels may be obtained by setting 62, 164 as filter characteristics that pass only the band considering the arrival direction of the path.
  • FIG. 27 shows the reference channel path control unit 170 when the eigenvalue conversion method is used (the reference channel path control unit 127 in FIG. Corresponding) is shown.
  • the unit-specific vector calculation unit 171 which is a conversion matrix calculation means, includes a parameter output from the reference channel transmission channel model forming unit 140.
  • the meters P 14 and P 15 information on the arrangement of the transmitting and receiving antennas, the directivity information, and the information on the angle of arrival and the line of sight of each path of the reference channel are input.
  • the unit-specific vector calculation unit 171 first calculates the theoretical relationship between the positional relationship between the transmitting and receiving antennas, the radiation direction and arrival direction of the reference channel wave, and the Rayleigh fading (when only the correlation between channels is obtained, (1)
  • the correlation matrix is obtained from Eq. (2).
  • a matrix of (MXN) rows and (MXN) columns is obtained when a correlation matrix between channels is obtained.
  • the number of paths is a matrix of columns.
  • the unit-specific vector calculation unit 171 calculates the unit-specific vector based on the equations (3), (4), and (5) as described in the section (1-3-3-1). (Actually, the unit eigenvector is the conjugate complex transpose). Then, this is sent to correlated Gaussian noise generating section 173 as a transformation matrix for calculating mutually correlated signal vectors from mutually uncorrelated signal vectors.
  • the unit-specific vector calculator 171 generates the instantaneous fluctuation initial value of each path of each channel together with the unit-specific vector, and uses these as the parameter P30 as a correlated value of the channel processor 172 shown in FIG. It is sent to Gaussian noise generator 173.
  • FIG. 28 shows the configuration of channel processing section 172 in FIG. 28.
  • the correlated Gaussian noise generation unit 173 generates, in the Doppler filter unit 180, instantaneous fluctuations of (MX NX paths) independent of each other between channels and between paths. More specifically, the band-limited white Gaussian noise generator (LWGN) 181-1 receives the instantaneous fluctuation initial value of each path of channel 1_1, and the band-limited white Gaussian noise generator 181-1-2 Is the instantaneous fluctuation of each path of channels 1 and 2.
  • LWGN band-limited white Gaussian noise generator
  • the initial value is input, and the band-limited white Gaussian noise generator 181—MN receives the instantaneous variation initial value of each path of the channel M—N into the MN, thereby obtaining the band-limited white Gaussian noise generator 18 1— 1 to 181—MN generates band-limited white Gaussian noise independent of each other.
  • This independent band-limited white Gaussian noise is band-limited to the Doppler frequency f D by the Doppler filters 182-1 to 182 -MN, respectively, and then sent to the weighting and adding unit 183.
  • the weighting and adding section 183 as a matrix calculating means is configured to perform a unique calculation of its own channel with respect to instantaneous fluctuations (MXNX paths) independent of each other and between paths obtained by the Doppler filter section 180.
  • MXNX paths instantaneous fluctuations
  • correlated instantaneous fluctuations that are mutually correlated between paths are obtained.
  • the correlated instantaneous fluctuation has a correlation between channels.
  • the correlated instantaneous fluctuation output from the weighting and adding section 183 is transmitted to the correlated instantaneous fluctuation adding section 156 (FIG. 28) as the instantaneous fluctuation of each path of the own channel via the phase fluctuation ONZO F F section 184.
  • instantaneous fluctuations independent of each other are generated between the channels, and each is calculated based on the input data or experimental data and the antenna positional relationship.
  • a (MN X MN) correlation matrix is obtained from the path propagation path difference and the Rayleigh fading theoretical spatial correlation value, and a conversion matrix for calculating mutually correlated signal vectors from mutually uncorrelated signal vectors is obtained.
  • a matrix operation process using a transformation matrix is performed on the plurality of instantaneous variations for a number of passes to obtain correlated instantaneous variations of MXN channels that are mutually correlated between channels.
  • the correlated instantaneous fluctuation is formed by using the eigenvalue conversion method.
  • the correlated instantaneous fluctuation using the above-described Cholesky decomposition method can be formed with the same configuration.
  • the path correlation matrix is Cholesky-decomposed to obtain a lower triangular matrix, and its conjugate complex transpose is calculated. Then, this is sent to the correlated Gaussian noise elimination section 1 173 of the channel processing section 172.
  • the correlated Gaussian noise generation unit 173 inputs the transformation matrix obtained by this Cholesky decomposition to the weighting addition unit 183 as a matrix operation means, and performs weighting addition using this transformation matrix. Determine the instantaneous correlation fluctuation.
  • the weighted addition section 183 performs an operation using a conversion matrix in which half of the elements are 0, so that the correlated instantaneous variation can be obtained with a small amount of calculation.
  • FIG. 30 shows the configuration of the fusing adding section provided in each of the channel processing sections 126_1 to 126-MN.
  • the fading addition section 154 converts the digital baseband signal output from the switch 125 (FIG. 22) into a shift register 191 and a shift register 195.
  • the signal is input to a path forming unit 190 composed of a selector and a selector 192, and the path forming unit 190 forms each path signal.
  • the shift register 1991 shifts the input digital baseband signal by the time obtained by dividing the maximum delay time of the path by the sampling period of the analog BB processing unit 42 (FIG. 21).
  • the selector 1992 selects signals corresponding to the number of paths from the signals output from each shift stage of the shift register 191, and outputs the selected signals.
  • the path forming unit 190 receives the number of paths instructed by the control unit 122 and the parameter P 11 indicating the delay time according to the arrangement of the transmitting and receiving antennas for the signals of each channel, and the shift register 191 and the selector 192 operate based on this parameter P11.
  • the selector 1992 of the path forming section 190 outputs a signal of each path to which a path delay for its own channel according to the arrangement of the transmitting and receiving antennas is given.
  • the signal corresponding to each path is sent to each of the complex multipliers A1 to Ak of the correlated instantaneous variation adding section 156. Further, the complex multipliers A 1 to A k are supplied with the correlated Gaussian noise P 17 output from the data interpolation unit 15 3. As a result, the signal of each path to which the correlated instantaneous fluctuation is given is output from each of the complex multipliers A1 to Ak.
  • the signal of each path to which the correlated instantaneous fluctuation is added is transmitted to a plurality of complex multipliers Bl to Bk forming the short-period fluctuation adding section 155.
  • Each of the complex multipliers B 1 to B k is supplied with the complex gain P 19 of the short-term variation of each path output from the data interpolator 15 1, whereby the short-term variation adding unit 15 From 5, the signal of each path in which the complex impulse response is convolved is output.
  • the signals of the respective paths are all added by the adders C1 and C2, thereby forming a multipath signal reflecting the transmission path fluctuation.
  • This multipath signal is supplied to the adder C3.
  • the white Gaussian noise made by the white Gaussian noise generator (WGN) 21 is amplified by the amplifier 22 to the noise level S 4 specified by the controller 30 and supplied to the adder C 3. Have been.
  • receiver noise is added to the multipath signal in adder C3.
  • fading adding section 154 has automatic gain control section 193.
  • the automatic gain controller 193 causes the AGC controller 195 to amplify the difference between the target level and the output signal of the amplifier 194 by the amplifier 194. Set as a value.
  • the automatic gain control unit 193 can perform a simple digital gain control process to convert the multipath signal into a constant signal at the target level.
  • the reason why gain control needs to be performed on the multipath signal in this way is that the multipath signal added by the adder C1 is a signal obtained by adding the signals of the paths to which level fluctuations are independently given. Therefore, it can be assumed that the digital baseband signal itself has a level fluctuation.
  • the radio circuit 53 (FIG. 21) is not completed and the AGC Even when the processing cannot be performed, it is possible to prevent bit omission due to AD conversion in the receiving system 50 of the development device. As a result, it is possible to satisfactorily evaluate the transmission path characteristics in the multipath transmission path based on the digital baseband signal of the digital BB processing unit 41.
  • a digital baseband signal is input from the digital BB processing unit 41 of the transmission system, the transmission path fluctuation is given to this signal, and then the transmission system
  • the phase fluctuation ONZOFF units 1 67 (Fig. 26) and 184 (Fig. 29) are controlled to OFF, and Correlated instantaneous fluctuations of the same level for the I and Q channels are input to the correlation instantaneous fluctuation adding section 156. This is not shown, but the same applies to the short section fluctuation supplied to the short section fluctuation adding section 153.
  • the performance of the digital BB processing units 41 and 51 can be independently evaluated without the AFC of the wireless circuit 53.
  • the wireless circuits 43 and 53 are connected.
  • the envelope amplitudes of the I channel and the Q channel in each of the complex multipliers A 1 to A k and B 1 to B k are A phase variation may be given to the digital baseband signal by multiplying by a complex gain having a different short-term variation.
  • the transmission analog adjustment section 124 and the reception analog adjustment section 129 simulate variations in the signal of each channel caused by variations in the performance of the analog circuit corresponding to each of the M ⁇ N channels.
  • the development devices 40 and 50 to be simulated have M analog circuits on the transmitting side and N analog circuits on the receiving side, and the variation between these MXN analog circuits also affects the signals on the transmission path.
  • the transmission analog adjustment unit 124 and the reception analog adjustment unit 129 simulate the variation between channels as appropriate to the digital baseband signal. As a result, it becomes possible to simulate propagation fluctuations in a more realistic MxN channel transmission path.
  • the configurations of the transmission analog adjustment section 124 and the reception analog adjustment section 129 will be specifically described.
  • the transmission analog adjuster 1 2 4 The baseband signal from 25 (FIG. 22) is input to the gain imbalance generator 210.
  • the gain imbalance generator 210 generates a gain difference by independently amplifying the I and Q channel signals of the digital baseband signal.
  • the DC offset adding section 211 adds a DC offset by increasing or decreasing a fixed value to each of the I and Q channel signals.
  • the frequency offset / phase offset adding unit 2 12 adds the frequency offset and phase offset that would occur in the radio circuit 43 and the analog circuit 123 (Fig. 22) to the I and Q channel signals. I do.
  • the frequency offset-phase offset adding unit 2 1 2 is a complex multiplier that multiplies the signal of each channel by the variation amounts C OS 01 and SINS 2 according to the instantaneous phases ⁇ 1 and ⁇ 2.
  • the I-channel signal is multiplied by the variation COS 01, and the Q-channel signal is multiplied by the variation SIN02.
  • the instantaneous phases 0 1 and ⁇ 2 are constant, it means that only the phase offset is added. If the instantaneous phases 0 1 and 6 2 fluctuate with time, the frequency is added to the phase offset. This means that an offset has been added.
  • the transmission analog adjustment section 124 calculates the phase rotation amount per sample from the frequency offset set value S 2 0 E by the phase amount calculation circuit 215. This is calculated and sent to the mod 2 ⁇ calculation circuit 217, 219. At this time, in order to add the quadrature to raw collapse of the I-channel / Q-channel signal and the Q-channel signal, the adder 218 adds the orthogonality degradation S 20 F to the phase rotation of the Q-channel signal. .
  • phase one sample before is input to the adder 2 16.
  • the phase one sample before is calculated by performing a calculation based on the initial phase (ie, phase offset) S 20 D and the phase one sample before in the ⁇ -1 calculation circuit 222.
  • the phase rotation amount of the current sample is obtained by adding the phase rotation amount of one sample calculated by the phase increment calculation circuit 215 to the phase one sample before.
  • each sample including the phase offset and the frequency offset is added.
  • the instantaneous phase of the Q-channel 02 which is obtained by adding the amount of orthogonality degradation to the instantaneous phase 01, is calculated.
  • the amount of variation COS ⁇ 1 is added to the I-channel of the digital signal, and the amount of variation SIN ⁇ 2 is added to the Q-channel.
  • a frequency offset and a phase offset are added to each channel of the digital baseband signal which may occur in the radio circuit 43 and the analog circuit 123 of the present invention.
  • the delay adjuster 2 13 adds a circuit delay amount that may occur in the radio circuit 43 and the analog circuit.
  • the pseudo power amplifier (PA) unit 214 simulates non-linear distortion that may occur in the amplification unit of the radio circuit 43, and is configured as shown in FIG. 32, for example.
  • the pseudo PA unit 214 calculates the envelope amplitude X of the digital baseband signal by calculating (I 2 + Q 2 ) by the envelope amplitude calculation circuit 230, and calculates this by the averaging circuit 23. 1 and the distortion calculator 2 32.
  • the averaging circuit 2 3 1 averages the envelope amplitude for a time corresponding to the forgetting factor (that is, the level calculation time constant) S 2 0 H set by the controller 1 2 1, and calculates the average value P ave obtained.
  • the signal is sent to the saturation level calculation circuit 2 3 3.
  • the saturation level calculation circuit 233 calculates the saturation level Asat by the following equation.
  • the distortion calculator 2 32 includes the envelope amplitude value X obtained by the envelope amplitude calculator 2330 and the saturation level Asat obtained by the saturation level calculator 2 33. Using ⁇ The control value of the width unit 234 is calculated by the following equation.
  • the pseudo power amplifier (PA) unit 214 can simulately add the nonlinear distortion that would occur in the amplification unit of the radio circuit 43 to the digital baseband signal.
  • the reception analog adjustment section 129 is configured as shown in FIG. Reception analog adjustment section 129 inputs the digital baseband signal output from selection / combination section 128 (FIG. 22) to frequency offset / phase offset addition section 251.
  • the frequency offset / phase offset adding section 251 performs the same processing as the frequency offset / phase offset adding section 212 of the transmission analog adjusting section 124 described above. That is, a frequency offset and a phase offset which would occur in the radio circuit 53 and the analog circuit 131 (FIG. 22) of the receiving system 50 are added to the respective channels of I and Q. Actually, the frequency offset / phase offset adding section 212 generates a variation c ⁇ according to the instantaneous phase e 1 ′ and ⁇ 2 ′ for the signal of each channel.
  • the reception analog adjustment section 129 calculates the phase rotation amount per sample from the frequency offset set value S 22B by the phase increment amount calculation circuit 252. Is sent to the mod 2 ⁇ calculation circuits 254 and 256. At this time, the adder 255 adds the orthogonality deterioration amount S 22 C to the phase rotation amount of the Q channel signal in order to add the collapse of the orthogonality between the I channel signal and the Q channel signal. Further, the phase one sample before is input to the adder 253. The phase one sample before is calculated by performing a calculation based on the initial phase (that is, phase offset) S22A and the phase one sample before in the Z_1 calculation circuit 259. The adder 2553 calculates the phase rotation amount of the current sample by adding the phase rotation amount for one sample calculated by the phase increment calculation circuit 252 to the phase before one sample.
  • the frequency offset / phase offset adding section 25 1 adds the I channel ⁇ 4 variation amount COS I 1 of the digital baseband signal and the variation amount SIN 0 2 'to the Q channel, thereby A frequency offset and a phase offset are added to each channel of the digital baseband signal which will occur in the radio circuit 53 analog circuit 13 of the system 50.
  • the gain imbalance generating unit 2661 generates a gain difference by independently amplifying each of the I and Q channel signals of the digital baseband signal.
  • the DC offset adding section 262 adds a DC offset to each of the I and Q channels by increasing or decreasing a fixed value.
  • the delay adjuster 263 adds a circuit delay amount that would occur in the radio circuit 53 analog circuit 13 1.
  • the wireless circuit 43 of the transmitting system 40 and the fuzzy circuit 53 of the receiving system 50 are completed, that is, when only the digital BB processing units 41 and 51 are completed.
  • the wireless circuit It is possible to freely simulate gain imbalance, DC offset, frequency offset, phase offset, circuit delay or non-linear distortion during amplification that may occur in 43, 53, or analog circuits 123, 131. It is possible to evaluate the characteristics of the digital BB processing units 41 and 51 when the digital BB processing units 41 and 51 under development and the wireless circuits 43 and 53 with various characteristics are combined. Power to do S become able to.
  • the switches 125 that form MXN channel signals by duplicating the M signals obtained by the transmitting system 40 into N signals each, and the MXN signals
  • a channel processing unit that provides correlated instantaneous fluctuations and short-term fluctuations according to the arrangement of the transmitting and receiving antennas for each channel signal. 1 26-1 to 1 26 MN, and MXN channels with transmission path fluctuations
  • a selective combining section 128 that forms N signals by selectively combining M signals at a time, it becomes possible to simulate transmission line fluctuations actually occurring in a multi-antenna apparatus. This makes it possible to accurately and easily simulate the transmission path characteristics in a multi-antenna device.
  • a transmission path simulating method includes a transmission path fluctuation forming step of forming transmission path fluctuations in each MXN channel transmission path by using transmission / reception antenna arrangement information; And a transmission path variation giving step of giving a path variation to each signal of the MXN channel.
  • each transmission path caused by the antenna arrangement is used by using the arrangement information of the transmitting and receiving antennas. Then, the delay and phase change at each channel are determined, and the delay and the phase change between the respective channel transmission lines form different transmission line variations.
  • the transmission line simulating method in the transmission line variation forming step, in forming a short-term variation related to each channel transmission line as the transmission line variation, the positional relationship between the transmitting and receiving antennas of each channel is determined. Using the information and the information on the radiation direction and arrival direction of each path, the path difference between each path of the preset or prepared reference channel and each path of each channel is obtained, and the signal of each path of each channel is obtained. Then, by forming a short-term variation that causes a phase difference that is different from the short-term variation of each path of the reference channel by this path difference, the short-term variation for the MXN channel is formed. .
  • the distance between the transmitting antennas and the distance between the receiving antennas are sufficiently shorter than the short-period fluctuation period, so that the number of paths in each channel and the gain of the paths are considered to be equal, and the short-period of each path of the reference channel is considered. Since short-term fluctuations that cause a phase difference that differs by this path difference with respect to fluctuations are formed, short-term fluctuations of all MXN channels can be formed from the transmission channel model of the reference channel. By preparing a channel model of the reference channel in advance, short-term fluctuations of the MXN channel transmission channel can be formed easily and accurately.
  • each of the reference channel and one other channel in the transmission path fluctuation forming step, in forming the instantaneous fluctuation relating to each channel transmission path as the transmission path fluctuation, each of the reference channel and one other channel is formed.
  • the band-limited Gaussian noise is generated.
  • These two band-limited Gaussian noises are weighted and added by a correlated filter characteristic using at least the antenna arrangement information as a parameter, and are correlated with the instantaneous fluctuation of the reference channel.
  • this method it is possible to form correlated instantaneous fluctuations for ⁇ ⁇ ⁇ channels correlated with the reference channel from information of each path of the reference channel, and independently set instantaneous fluctuations for the MXN channel.
  • instantaneous fluctuations for MXN channels can be formed accurately and easily.
  • this method is an extension of the previously proposed method of generating correlated instantaneous fluctuations of two channels by Sasaoka to generate correlated instantaneous fluctuations of MXN channels. .
  • the transmission line simulation method includes a transmission line variation forming step 1, a step of generating instantaneous variations (the number of MXNX paths) independent of each channel, input data or experimental data, and an antenna. Calculating a (MN X MN) correlation matrix from the propagation path difference of each path obtained from the positional relationship of the path and the theoretical spatial correlation value of Rayleigh fading; and a signal vector having no correlation with a signal vector having no correlation with each other.
  • the transmission path fluctuation forming step includes the steps of: generating (MXNX paths) independent instantaneous fluctuations between channels and between paths; Calculating a ( ⁇ ⁇ path number ⁇ ⁇ path number) correlation matrix from the data or experimental data, the propagation path difference of each path obtained from the positional relationship of the antenna, and the theoretical spatiotemporal correlation value of Rayleigh fading; Obtaining a conversion matrix for calculating mutually correlated signal vectors from uncorrelated signal vectors based on the correlation matrix; and using the conversion matrix for the instantaneous variation of the (MXNX number of paths).
  • a step for obtaining correlated instantaneous fluctuations for (MXNX number of paths) mutually correlated between the paths is included.
  • the conversion matrix is obtained by eigenvalue conversion.
  • the conversion matrix is obtained by Cholesky decomposition.
  • a transmission path simulator is a transmission path simulator that simulates transmission path characteristics of a wireless device using an MXN channel transmission method using M transmission antennas and N reception antennas, Input means for inputting the M signals obtained by the transmission system of the wireless device; signal duplication means for forming MXN channel signals by duplicating each of the M signals N times; Channel processing means for providing transmission path fluctuations according to the arrangement of the transmitting and receiving antennas for each of the MXN channel signals, and MXN signals having the transmission path fluctuations And a synthesizing means for forming N signals by selectively synthesizing M channel signals.
  • the channel processing unit includes: a path forming unit that forms a signal of each path having a delay corresponding to the arrangement of the transmitting and receiving antennas for a signal of each channel; A short-term complex impulse response generating means for forming a complex gain of the short-term fluctuation given to the path; and a short-term fluctuation adding means for adding a short-term fluctuation to a signal of each path of each channel.
  • the complex impulse response generating means uses the information on the positional relationship between the transmitting and receiving antennas of each channel, and the information on the radiation direction and arrival direction of each path to determine the path between each path of the reference channel and each path of each channel.
  • the difference is obtained, and the signal of each path of each channel formed by the path forming means is added to the signal of the short-term variation of each path of the reference channel set or prepared in advance. So as to generate a short-ku between fluctuations that can cause only different phase differences.
  • the short-term variation of all MXN channels can be formed from the transmission channel model of the reference channel, so if the transmission channel model of the reference channel is prepared in advance, the short-term variation of the MXN channel transmission channel can be calculated. It can be formed easily and accurately.
  • the channel processing unit includes: a path forming unit that forms a signal of each path having a delay corresponding to the arrangement of the transmitting and receiving antennas for a signal of each channel; A configuration comprising: correlated Gaussian noise generating means for generating correlated instantaneous fluctuation given to a path; and correlated instantaneous fluctuation adding means for adding correlated instantaneous fluctuation to a signal of each path of each channel.
  • correlated Gaussian noise generating means for generating correlated instantaneous fluctuation given to a path
  • correlated instantaneous fluctuation adding means for adding correlated instantaneous fluctuation to a signal of each path of each channel.
  • the correlated Gaussian noise generating means generates band-limited Gaussian noise for each of a reference channel and the other one channel, and generates at least these two band-limited Gaussian noises.
  • the processing for the MXN channels must be executed.
  • a configuration that generates correlated instantaneous fluctuations for MXN channels is adopted.
  • this configuration it is possible to form the correlated instantaneous variation of the MXN channel correlated with the reference channel from the information of each path of the reference channel, and to set the instantaneous variation of the MXN channel independently.
  • instantaneous fluctuations for the MXN channel can be formed accurately and easily.
  • this configuration is an extension of the previously proposed method by Sasaoka as a method for generating correlated instantaneous fluctuations for two channels to generate correlated instantaneous fluctuations for MXN channels. .
  • the transmission path simulator of one embodiment of the present invention further obtains a correlation matrix from input data or experimental data, a propagation path difference of each path obtained from a positional relationship between antennas, and a theoretical spatial correlation value of Rayleigh fading.
  • a conversion matrix calculation unit for calculating a conversion matrix for calculating mutually correlated signal vectors from mutually uncorrelated signal vectors based on the correlation matrix, wherein the correlated Gaussian noise generation unit includes: An instantaneous fluctuation generating means for generating instantaneous fluctuations of (MXNX paths) independent of each other between channels; and performing a matrix operation process using the conversion matrix for the plurality of instantaneous fluctuations for the number of passes.
  • a matrix operation means for generating correlated instantaneous fluctuations for (the number of MXNX paths) mutually correlated between channels.
  • the transmission path simulator further includes a correlation matrix based on input data or experimental data, a propagation path difference of each path obtained based on a positional relationship between antennas, and a theoretical space-time correlation value of Rayleigh fusing. And a conversion matrix calculating means for calculating a mutually correlated signal vector from mutually uncorrelated signal vectors based on the correlation matrix.
  • the noise generation means includes: an instantaneous fluctuation generation means for generating instantaneous fluctuations of (MXNX number of paths) independent of each other between channels and paths; and a matrix operation using the transformation matrix for the plurality of instantaneous fluctuations And a matrix operation means for generating correlated instantaneous fluctuations of (the number of MXNX paths) correlated between the paths by performing the processing.
  • the transmission line simulator employs a configuration in which the conversion matrix calculation means obtains a conversion matrix by eigenvalue conversion.
  • a matrix having two (MXN) and (MXNX number of paths) elements of two is used when the correlated instantaneous fluctuation is obtained from mutually independent instantaneous fluctuations by the matrix calculation means.
  • a matrix (eigenvalue) having a small number of elements can be used, so that the amount of calculation by the matrix calculation means can be reduced.
  • the transmission channel simulator employs a configuration in which the conversion matrix calculation means obtains the conversion matrix by Cholesky decomposition.
  • a transmission path simulator is configured by a digital circuit, and an analog circuit that simulates a variation in a signal of each channel caused by a variation in performance of an analog circuit corresponding to each of the MXN channels.
  • a configuration further including adjusting means is adopted.
  • the analog adjustment means was used to simulate the variation between the channels as appropriate to the digital baseband signal, so that the transmission path fluctuation in the MXN transmission line, which is more realistic, was Can be simulated.
  • a transmission path simulator includes an input interface for inputting an output signal of a digital baseband processing unit of a transmission system of a wireless device, a multipath signal obtained by adding a signal of each path having a transmission path variation.
  • Gain control means for performing gain control such that the signal level of the signal is substantially constant, and an output interface for outputting the digital baseband signal after the gain control to a digital baseband processing unit of a reception system of a wireless device.
  • the channel processing means adopts a configuration in which a transmission path variation component in which the I component and the Q component are equal is provided.
  • the digital baseband signal is directly input from the input unit, and the gain control unit performs the AD conversion in the receiving system so that no bit drop occurs in the multipath signal given the transmission line fluctuation.
  • AFC and AGC operate almost ideally for each path even if there is no wireless circuit in the receiver of the developed device because level correction is performed and transmission line fluctuation components with the same I and Q components are given. Then, the characteristics can be measured.
  • the performance of the digital baseband processor can be evaluated using only the digital baseband signal. In this way, even if there is no Since the characteristics of the digital baseband processing unit can be evaluated, the development efficiency can be improved.
  • the transmission line fluctuation in each MXN channel is formed using the arrangement information of the receiving antenna, and the transmission line fluctuation of the MXN channel is converted into the MXN channel signal. Since each channel is given, the transmission line fluctuation of all MX N-channel transmission lines can be formed from the arrangement information of the transmitting and receiving antennas, and the transmission line fluctuation in the MX N-channel transmission line formed by the multi-antenna device can be accurately detected. It can be easily formed.
  • the present invention is suitable for use in, for example, developing a mobile phone, its base station, a mobile terminal (MT) or an access point (AP) of a wireless LAN (Local Area Network).
  • MT mobile terminal
  • AP access point
  • LAN Local Area Network

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

送信系により得られたM個の信号をそれぞれN個ずつ複製することによりM×N個のチャネル信号を形成するスイッチ125と、このM×N個のチャネル信号それぞれに対して、送受信アンテナの配置に応じた有相関瞬時変動及び短区間変動を与えるチャネル処理部126−1~126MNと、伝送路変動が与えられたM×N個のチャネル信号を選択的にM個ずつ合成することによりN個の信号を形成する選択合成部128を設けるようにした。

Description

明 細 書 伝送路シミュレート方法及び伝送路シミュレータ 技術分野
本発明は、 マルチアンテナ通信における無線伝送路をシミュレ一トするため の伝送路シミュレート方法及びマルチアンテナ通信における無線伝送路をシ ミュレートして無線機器の開発を促進するための伝送路シミュレータに関す る。 ' 背景技術
従来の携帯電話やその基地局、 無線 L ANの MTやその A Pを開発するにあ たっては、 開発装置の性能評価の環境として無線伝送路をシミュレートする装 置、 すなわち伝送路シミュレータが必要となる。
伝送路シミュレータを用いて、 開発装置から送出される信号に模擬的にフエ 一ジングゃ受信機雑音を付加したときに得られる伝送特性と、 理論値や計算機 シミュレーション値とを比較することにより、 開発装置が所望の動作をしてい るか否かを判定することができる。 また走行実験コースの伝送路状態を再現す ることにより、 実際の伝搬環境下で生じた開発装置の不具合を解析できるよう になる。 このように伝送路シミュレータを用いれば、 開発装置の特性評価を室 内で簡単に行うことができるようになる。
従来の伝送路シミュレータの構成例を、 図 1に示す。 伝送路シミュレータ 1 0は、 開発装置 4 0の送信系から出力される送信信号を制御装置 3 0からの設 定パラメータに応じて構成されるマルチパス伝送路を通過させる。 このとき各 パスを通過する信号に、 フ ージングを模した振幅変動と位相変動 (以下、 こ れを伝送路変動と呼ぶ) を与えることにより、 信号を各パスの利得で重み付け 加算する。 伝送路シミュレータ 1 0により伝送路変動が与えられた信号は、 開 発装置の受信系 5 0により受信復調され、 復調後の信号が誤り率測定器 7 0に 送出される。 このように、 伝送路シミュレータ 1 0にて様々な伝送路変動を与 えたときの誤り率測定結果を観測することで、 開発装置の送信系 4 0及ぴ受信 系 5 0の性能を評価することができる。
次に伝送路シミュレータ 1 0の具体的な構成について説明する。 伝送路シミ ユレータ 1 0は、 ディジタルベースバンド処理部 (ディジタル B B処理部) 4 1、 アナログベースバンド処理部 (アナログ B B処理部) 4 2及び無線回路 4 3からなる開発装置の送信系 4 0に接続されると共に、 無線回路 5 3、 アナ口 グ B B処理部 5 2及びディジタル B B処理部 5 1からなる開発装置の受信系 5 0に接続される。 なお図 1では、 無,線回路 4 3と 1 1、 2 0と 5 3間を接続 している線以外は、 Iチャネル (同相つまり複素数の実部) と Qチャネル (直 交つまり複素数の虚部) からなる 2本のベースバンド信号線である。
データ発生器 6 0により発生されたデイジタルデータは、 送信系 4 0のディ ジタル B B処理部 4 1、 アナログ B B処理部 4 2及び無線回路 4 3を介して伝 送路シミュレータ 1 0に入力される。 ここでディジタル B B処理部 4 1は、 開 発装置の送信系 4 0が C DMA (Code Division Multiple Access) 送信装置で あれば、 ディジタル変調処理や拡散処理等を行う部分であり、 〇 F DM送信装 置であれば、 ディジタル変調処理や逆フーリエ変換処理等を行う部分である。 またアナ口グ B B処理部 4 2はディジタルアナログ変換回路であり、 無線回路 4 3はアップコンバートや信号増幅等を行う部分である。
伝送路シミュレータ 1 0は、 無線回路 4 3と逆の処理、 すなわちダウンコン バート等の処理を行う無線回路 1 1及びアナログディジタル変換回路でなる アナログ B B処理部 1 2を有し、 当該無線回路 1 1及びアナ口グ B B処理部 1 2により送信系 4 0からの信号をディジタノレベースバンド信号に戻す。
ディジタルベースバンド信号は、 シフトレジスタ 1 4及びセレクタ 1 5から なるマルチパス信号生成部 1 3に入力され、 当該マルチパス信号生成部 1 3に よってマルチパス信号とされる。 具体的には、 シフトレジスタ 1 4は入力され たディジタルベースバンド信号を、 パスの最大遅延時間をアナログ B B処理部 1 2のサンプリング周期で除算した時間ずっシフトさせる。
セレクタ 1 5はシフトレジスタ 1 4の各シフト段から出力される信号の中 からパス数分の信号を選択して出力する。 ここでマルチパス生成部 1 3には、 制御装置 3 0により指定されたパス数と各パスの遅延時間を示すマルチパス 指示信号 S 1が入力され、 シフトレジスタ 1 4及びセレクタ 1 5はこのマルチ パス指示信号 S 1に基づいて動作する。 これによりマルチパス生成部 1 3のセ レクタ 1 5からは、 マルチパス環境下での各パスに対応する信号が出力される。 各パスに対応する信号はそれぞれ瞬時変動 (レイリーフエージング) 付加部 1 6の各複素乗算器 A l〜A kに送出される。 また各複素乗算器 A l〜A kに は帯域制限複素ガウス雑音発生部 (L G N) D l〜D kにより発生された複素 ガウス雑音が供給される。 因みに帯域制限複素ガウス雑音発生部 (L G N) D l ~D kは、 白色ガウス雑音宪生部とドップラーフィルタから構成されており、 制御装置 3 0から入力される最大ドップラー周波数 S 2の範囲に帯域制限さ れた白色ガウス雑音を発生する。 これにより各複素乗算器 A l〜A kからは瞬 時変動が与えられた各パスの信号が出力される。
瞬時変動が付与された各パスの信号は、 短区間変動付与部 1 7を形成する複 数の複素乗算器 B 1〜B kに送出される。 各複素乗算器 B 1〜B kには、 制御 装置 3 0から指定された各パスに応じた複素利得 S 3が供給されており、 これ により短区間変動付与部 1 7からはシャドウイングや距離変動が与えられた 各パスの信号が出力される。 このようにして、 伝送路シミュレータ 1 0におい ては、 各パス毎に、 制御装置 3 0で指定された瞬時変動、 シャドウイング及び 距離変動が付与された信号が形成され、 この各パスの信号が加算器 C 1、 C 2 により全て加算されることにより、伝送路変動が反映されたマルチパス 信号が形成される。
このマルチパス信号は加算器 C 3に供給される。 また加算器 C 3には、 白色 ガウス雑音発生部 (WG N) 2 1で発生された白色ガウス雑音が増幅器 2 2に より制御装置 3 0で指定された雑音レベル S 4に増幅されて供給されている。 これにより、 加算器 C 3においてマルチパス信号に受信機雑音が付加される。 アナログ B B処理部 1 9及ぴ無線回路 2 0は、 送信系 4 0のアナログ B B処 理部 4 2及び無線回路 4 3と同様の構成でなり、伝送路変動及び受信機雑音が 付カ卩されたディジタル B B信号をディジタルアナログ変換した後、 アップコン バートゃ増幅等の無線処理を施す。
伝送路シミュレータ 1 0の出力信号は、 開発装置 (受信系) 5 0の無線回路 5 3に入力される。 無線回路 5 3は A G C (Automatic Gain Control) 回路や A F C (Automatic Frequency Control) 回路を有し、 送受信間でのキヤリァ 周波数オフセットや入カレべノレ変動を補償する。 アナログ B B処理部 5 2によ りアナログディジタル変換された信号はディジタル B B処理部 5 1に送出さ れる。.
ディジタル B B処理部 5 1は、 開発装置 (受信系) 5 0が C DMA (Code Division Multiple Access)受信装置であれば、ディジタル復調処理や逆拡散処 理等を行う部分であり、 O F DM受信装置であれば、 ディジタル復調処理ゃフ 一リエ変換処理等を行う部分である。 ディジタル B B処理部 5 1により処理さ れた信号は誤り率測定器 7 0に送出され、 誤り率測定器 7 0によつて伝送路誤 り率が測定される。
このように伝送路シミュレータ 1 0においては、 開発装置の送信系 4 0によ り得られた無線信号に対して、 伝送路で生じるであろうマルチパス、 各パスへ のフェージング変動を模擬して与え、 これにより得られた信号を開発装置の受 信系 5 0に入力させ、 受信系 5 0によって処理した信号の誤り率特性を測定す ることで、 送信系 4 0及び受信系 5 0の伝送特性を評価するようになっている。 ところで、 近年、 大容量のデータ伝送を可能とする技術として M I M〇 (Multilnput Multi Output) ゃァダプティブァレイァンテナに代表されるよ うなマルチアンテナ技術が注目されている。 例えば M I M〇技術を用いたマル
-装置では、 送信系及び受信系に複数のアンテナを設け、 送信系の各 アンテナからそれぞれ異なるデータを送信し、 受信系では互レ、に混ざり合った 信号を伝搬路推定等を行うことにより分離して複数データを復元するもので める。 .
このマルチアンテナ装置の開発時に、 従来の伝送路シミュレータを用いて性 能評価を行おうとすると、 不十分な評価しか行うことができない。 つまり、 送 信側に M本のアンテナを有し、 受信側に N本のアンテナを有するマルチアンテ ナ装置では、 M X Nチャネル分の伝送路が存在することになるが、 従来の伝送 路シミュレータは 1チャネル分の測定しか行うことができない上、 単にチヤネ ル数を増やしたとしても送受信アンテナ配置や各パスの放射方向 ·到来方向な どの空間情報に性能が依存するこれらの方式を評価するには著しく不十分で ある。
さらに単にチャネル数を増やした伝送路シミュレータでは、 走行実験で収集 した伝送路データを用いてこれらのマルチチヤネルを再現するためには、 開発 装置と走行実験で用いるデータ収集装置の送受信アンテナ数及び配置を合わ せて、 全チャネル、 全パスのデータを収集する必要があるので、 データ蓄積用 の膨大なメモリが必要な上に送受信アンテナ数や配置を変える度に走行実験 をやり直さなければならない。 発明の開示
本発明の目的は、 マルチアンテナ装置により形成される M X Nチャネル伝送 路を簡単かつ良好にシミュレートできる伝送路シミュレート方法及び伝送路 シミュレータを提供することである。
この目的は、 送受信アンテナの配置情報に基づいて全チャネルの伝送路変動 を発生させることにより達成される。 この際、 本発明においては、 各チャネル 間では送受信ァンテナ間のアンテナ設置位置に応じて各パスの遅延差及び位 相差が生じることに着目し、 この各パスの遅延差及ぴ位相差のみをチ ネル間 で変えることにより、 M X Nチャネルの伝送路変動モデノレを単純化する。 図面の簡単な説明
図 1は、 従来の伝送路シミュレータの構成を示すブロック図;
図 2は、 1チャネル X 1チャネル伝送路を示す図;
図 3は、 パスの説明に供する図;
図 4 (A) は、 遅延プロファイルを示す図;
図 4 (B ) は、 瞬時変動を示す図;
図 4 ( C ) は、 短区間変動を示す図;
図 4 (D) は、 長区間変動示す図;
図 5は、 素波の説明に供する図;
図 6は、 素波が 1波のときのモデルを示す図;
図 7は、 仮想ァンテナ付近の球で乱反射した波が、 見通し角 φの中で素波と して受信される場合を示す図;
図 8は、 見通し角 φが大きいときの伝搬遅延を示す図;
図 9 (A) は、 散乱球の半径が受信アンテナを含む場合の素波の到来方向を 示す図;
図 9 ( B ) は、 散乱球の半径が受信アンテナを含む場合の素波の到来方向を 示す図;
図 1 0は、 反射波の多い環境での定在波の発生原理の説明に供する図; 図 1 1は、 レイリ一フェージングによる包絡,線振幅変動の電力密度スぺクト ラムの説明に供する図;
図 1 2は、 レイリ一フェージングによる包絡線振幅変動の電力密度スぺクト ラムの説明に供する図;
図 1 3は、 マルチアンテナ装置により形成される M X Nチャネル伝送路を示 す図;
図 1 4 (A) は、 送受信アンテナのアンテナ間の距離、 放射角、 到来角によ つて生じる経路差の説明に供する図; 図 1 4 ( B ) は、 送受信アンテナのアンテナ間の距離、 放射角、 到来角によ つて生じる経路差の説明に供する図;
図 1 5は、 全方向から波が到来する環境を示す図;
図 1 6は、 マルチパスが無い場合の各チャネルへの瞬時変動の付加モデルを 示す図;
図 1 7は、 マルチパスがある場合の各チャネルへの瞬時変動の付カ卩モデルを 示す図;
図 1 8は、 行列を使って、 互いに独立な M X N X P個の帯域制限複素ガウス 雑音から互いに相関のある帯域制限複素ガウス雑音を発生させるモデルを示 す図;
図 1 9は、 笹岡により提案された有相関瞬時変動 (2波) を発生させるため の構成を示すプロック図;
図 2 0 (A) は、 1 X 1チャネルの瞬時変動から M X Nチャネルの有相関瞬 時変動を形成する原理の説明に供する図;
図 2 0 (B ) は、 1 X 1チャネルの瞬時変動から M X Nチャネルの有相関瞬 時変動を形成する原理の説明に供する図;
図 2 1は、本発明の実施の形態に係る伝送路シミュレータの開発装置との接 続の様子を示すプロック図;
図 2 2は、 実施の形態の伝送路シミュレータの構成を示すプロック図; 図 2 3は、 実施の形態で用いる各パラメータの内容を示す図表;
図 2 4は、 基準チャネルパス制御部の構成を示すブロック図;
図 2 5は、 チャネル処理部の構成を示すプロック図;
図 2 6は、 有相関ガウス雑音発生部の構成を示すプロック図;
図 2 7は、 基準チャネルパス制御部の構成を示すブロック図;
図 2 8は、 チャネル処理部の構成を示すプロック図;
図 2 9は、 有相関ガウス雑音発生部の構成を示すプロック図;
図 3 0は、 フェージング付加部の構成を示すブロック図; 図 3 1は、 送信アナログ調整部の構成を示すブロック図;
図 3 2は、 疑似パワーアンプ (P A) の構成を示すブロック図; 及び
図 3 3は、 受信アナ口グ調整部の構成を示すブロック図である。 発明を実施するための最良の形態
M本の送信アンテナと N本の受信アンテナを有するマルチアンテナ装置に おける伝送路を正確にシミュレ一トするには、 M X Nチャネル分の伝送路それ ぞれに異なる伝送路変動を与えなければならない。 しかし、 単純にチャネル毎 に伝送路変動パラメータを与えて、 M X Nチャネル分の伝送路変動を模擬しよ うとすると、 膨大なパラメータや演算量が必要となり、 装置構成も複雑化して しまう。
そこで本発明の発明者は、 マルチアンテナ装置での M X Nチヤネル分の伝送 路モデルを形成するにあたって、 伝送路モデルを簡単化できれば、 パラメータ 数や演算量を削減でき、 その結果装置構成も比較的簡単化できると考えて本発 明に至った。
本発明の骨子は、 送受信アンテナの配置情報に基づいて全チャネルの伝送路 変動を発生させることである。 この際、 本発明においては、 各チャネル間では 送受信アンテナ間のアンテナ設置位置に応じて各パスの遅延差及び位相差が 生じることに着目し、 この各パスの遅延差及び位相差のみをチャネル間で変え ることにより、 M X Nチャネルの伝送路変動モデルを単純化する。 また本発明 においては、各パスの信号には有相関瞬時変動が重畳するといつた仮定に基づ き、 各パス毎に相関のある瞬時変動を与えるような伝送路変動モデレを発生す るようにした。
これにより、 RayTraceシミュレーションゃ実走行実験等で得られた既存の 1チャネル伝送路測定データから、 似通ったマルチパス伝送路を使って、 比較 的少ない計算量で複数チャネル分の伝送路変動モデルを形成することができ るようになる。
さらに本発明では、 この各チャネル間及ぴ又は各パス間で相関のある瞬時変 動 (有相関複素ガウス雑音) を発生させる方法として、 以下の 5つの方法を提 案する。
①固有値変換法 (時空間)
②固有値変換法 (空間)
③コレスキー分解法 (時空間)
④コレスキー分解法 (空間)
⑤拡張笹岡法 (時空間)
これら 4つの方法のうち、 ①〜④は、 互いに独立な帯域制限複素ガウス雑音 から各チャネルに与える有相関瞬時変動を変換行列 Aを用いて算出するにあ たって、 その変換行列 Aの求め方を工夫してものである。 また⑤は、 I X 2チ ャネルに関して提案されている笹岡の有相関瞬時変動発生方法を拡張して、 M X Nチャネルの有相関瞬時変動を発生できるように工夫を加えたものである。 以下、 本発明の実施の形態について図面を参照して詳細に説明する。
( 1 ) 実施の形態の原理
先ず、 実施の形態の構成を説明する前に、 本実施の形態の原理について説明 する。 本発明の発明者は先ず、 1 X 1チャネル伝送路と M X Nチヤネル伝送路 の相違点と相似点を考察した。 そして 1 X 1チャネル伝送路モデルをできるだ け簡単に M X Nチャネル伝送路モデルに拡張するためには、 短区間変動及び瞬 時変動をどのように拡張すればよいかについて詳細に検討した。 以下、 それら を順次説明する。
( 1 - 1 ) 1 X 1チャネル伝送路
図 2に、 送信アンテナ 1本と受信アンテナ 1本間での片方向 1 X 1チャネル 伝送路を示す。 以下、 1対 1送受信アンテナ間の伝送路を 1チャネルと記述す る。 図 3にパスを示す。 図 2では直線で示されたチャネルであるが、 実際は反 射や回折を受けて空間を様々な経路 (図 3の①〜④) を通って受信機に受信さ れる。すると経路長によって伝搬遅延が異なるので、図 4 (A)に示すように、 横軸に伝搬遅延時間、 縦軸に受信電力とした遅延プロファイルを描くことがで きる。 遅延が異なって到達してくる波は伝搬経路が異なるはずなので、 こうし た伝搬経路をパスと呼ぶ。
各パスは、 その経路を通過する信号がどれだけの遅延と利得 (実際は減衰) を受け、 かつどれだけ位相推移を受けるかを表す伝達係数 (複素数) で規定さ れる。 遅延プロファイルを測定することによってそのチャネルがおよそいくつ のパスで構成され、 各々がどれだけの遅延と利得を有しているかを知ることが できる。 各パスの位相は、 走行速度や走行方向に対する波の到来角などに依存 して変化する。
図 4 ( B ) 〜 (D) はパスの利得変動を示す (横軸は時間でなく距離である ことに注意) 。 利得変動は送信アンテナからの距離と送受信アンテナの指向性 に依存した長区間変動 (距離変動) 、 地物による遮蔽の影響による短区間変動 (シャドウイング) 及び多重波重畳による瞬時変動に分類される。
伝搬距離と伝搬遅延は比例関係にあるので、長区間変動は遅延プロファイル とほぼ同形になる。 移動通信で端末が走行すると、 各パスの伝搬距離 (または 伝搬遅延) が変化し、 その受信レベルも変化するが、 その変動速度は他の変動 に比べると最も遅い (非常に遅い) 。 長区間変動は多くの走行実験データを統 計解析して作られた奥村カーブ (秦式) にモデル化されて広く用いられてきた 力 最近ではこれに使用周波数帯や地物パラメータなどを加味して改良した坂 上式なども使われる。
短区間変動は、 各パスが建物などに遮られたり現れたりすることによる利得 変動である(無線 L ANなどでは近くを歩行する人で遮蔽されることもある)。 その変動速度について理論式などは無いが、 一般には 1 H z以下であるといわ れている。 実際に短区間変動は、 その発生原因から地物と走行速度に関連して 決まるはずであり、 例えば建物幅 3 0 mのビル街を時速 3 0 k mで走行する場 合は約 3 . 6秒周期で変動すると考えられるから、 確かに多くの場合で 1 H z 以下になるだろうと思われる。 短区間変動による利得変動は対数正規分布に従 い、 帯域内 (上記の場合、 帯域は 0 〜 l Z 3 . 6 [H z ]) で同時に利得が変化 するというモデルィヒがされている。
瞬時変動はいくつかの素波が重畳した時に生ずる変動である。 遅延プロファ ィル上で 1パスに見える経路も実際には (振幅や位相が完全に一致しないと言 う意味で) 複数の波が通過する。 このように遅延プロファイル上で 1つのパス を通過してきたように見える多重波を素波といい、 振幅や位相が変動する (こ のことは利得及び位相が変動するパスを 1波が通過してくると見なすことが できる) 。 瞬時変動はドップラー効果として説明することができ、 後述のよう に数 H Z 〜 1 k H z程度の速度で変動する。
瞬時変動の原因となる素波の十生質は、 到来角 Θと見通し角 φ (到来角 Θの変 動幅)で特徴付けられる。図 5は、図 4 (A) の素波③に着目したものである。 図 4 (A) では各パスは空間的にかなり分離しているので受信機では全く異な る変動を受けた信号が受信される。 従って、 例えば③の素波は図 5のように到 来方向の延長上の仮想送信アンテナから到来すると見なせる (受信機は上方向 に速度 Vで移動しているものとする) 。
図 6は素波が 1波のときを示すものである。 この場合、 素波は多重波ではな いので走行によるドップラーシフト以外に振幅も位相も変動することなく受 信される。 移動通信ではこのような場合はあまりないが、 伝送路モデルとして 用いる場合がある。 なお素波③のドップラーシフト量は、 f D二 v X f eZ cと したとき、 f D C O S 0で表される。
図 7は、 仮想アンテナ付近の球で乱反射した波が、 見通し角 (ί) (到来角 Θの 変動幅) の中で素波として受信される場合である。 この場合、 素波は振幅も位 相も変動するが、 見通し角 Φが小さいので遅延差も小さく、 到来角 0も安定し て測定できる。 ただし、 見通し角 φが大きくなる (仮想送信アンテナ付近の散 乱球半径が大きくなる) につれて、 図 8に示すように、 かなり遅延差の大きい 波が素波に含まれるようになる。 この結果、 振幅、 位相ともに大きく変動する ようになり、 到来角 0は測定すること自体が困難になってくる。
図 9 (A) に示すように散乱球の半径がさらに大きくなつて受信アンテナを 含むようになると、 素波はあらゆる方向から到来するように見える。 というよ り、 このような場合は遅延プロフアイル上で複数パスの素波として分割される べきである。 但し、 遅延プロファイルで素波を分割しても、 その中には伝搬遅 延こそ等しいが空間的に全く違った経路を経てくる多数の波が含まれるから、 分割した素波毎に見ても、 やはりあらゆる方向から到来して見える。 つまり、 図 9 ( B ) のようなイメージ (ちょうど図 7の伝送方向を逆にしたような形) になる。当然、各素波の到来角などは測定できない(測定しても意味が無い)。 図 1 0のように反射波の多い環境では、 定在波が発生し、 空間的に受信レべ ルの強い地点と弱い地点が繰り返し現れる。 これが瞬時変動が空間的に分布す る理由である。 特に全方向から同程度レベルの独立波が到来するときに発生す る瞬時変動はレイリ一フェージングと呼ばれ、包絡線振幅変動はレイリ一分布、 位相変動は一様分布に従うことが知られている。
図 1 1及び図 1 2に、 レイリーフェージングによる包絡 f泉振幅変動の電力密 度スペク トラムを示す。 図 1 1のように走行方向 Vに対して、 ①、 ②、 ③、 ④ の方向から波が到来する場合、 ①の方向から到来する波は最も高い周波数に見 え、 逆に④の方向から到来する波は最も低い周波数に見える。 この最大周波数 偏移量を最大ドップラー周波数 ί Dという。最大ドッブラー周波数 f Dは波長周 期で繰り返される定在波が 1秒間に走行する距離に含まれる数として計算で き、 一般に数 H z〜; L k H z程度である (キャリア周波数 2 G H z、 走行速度 1 0 0 k m/ hの場合、 これらを掛けた 2 0 O H zになる) 。 同様に走行方向 Vに向かって 0の角度から到来する波②に関しては f D ' cos 0の周波数偏移を 受け、 0 =90° の波③は偏移を受けない。
なお、 例えば図 1 1において素波④が網がけの方向 (到来角 0 = 1 8 0 ° 、 見通し角 φ = 8 0 ° ) からのみ到来するような瞬時変動も、 そこに 5波以上の 波が含まれている場合には、 レイリーフエージングと見なせることが言われて いる。 但し、 電力密度スペク トラムは図 1 2の網がけ部分のみになる。
以上のこどから、 長区間遅延プロファイル、 短区間遅延プロファイル、 瞬時 遅延プロファイルと呼ばれるものが定義できる。 長区間遅延プロフアイル上の 各パスは長区間変動を受ける。 その遅延、 利得は地物条件や走行速度 ·方向お よび到来角によって定まり、 緩慢に変化する。 短区間遅延プロファイル上の各 パスは長区間変動に加えて短区間変動 (シャドウイング) を受ける。 これによ り各パスの利得はパス毎に独立な対数正規分布で 1 H z以下の速度で変動す るようになる。
瞬時遅延プロファイル上の各パスは、 長区間変動、 短区間変動に加えて瞬時 変動を受ける。 これにより各パスの利得と位相はパス毎に独立なレイリーフエ' 一ジング(利得はレイリー分布、位相は一様分布)を受ける。その変動速度は、 キャリア周波数、 走行速度、 到来角、 見通し角によって決まり、 数 H zから数 百 H zである。
なお遅延プロファイル上の振幅は各パスから到来する素波の受信電力を表 すものであって利得や位相はない (正しくは各チャネルの複素ィンパルス応答 の各複素振幅ということができる) 。 逆に、 各パスの電力といった表現は不適 当であるのだが、慣例に従って誤解の無い範囲でこのような表現を用いること がある。 .
( 1 - 2 ) M X Nチャネル伝送路への拡張
( 1 - 2 - 1 ) 短区間変動の拡張
図 1 3に、 M本の送信ァンテナと N本の受信ァンテナからなるマルチアンテ ナ装置により形成される M X Nチヤネル伝送路を示す。
ここで本楽明の発明者は、 M X N個の各チャネルは互いによく似ているだろ うと考えた。 つまり、 送受信アンテナの配置が数 m平方のエリアに分散してい るというならば話は別だが、 短区間変動周期を十数 m程度と考えると、 実際に は各受信アンテナで観測される長区間遅延プロファイルはもちろん短区間遅 延プロファイルもほぼ等しいと見なせるはずである。 そして、 短区間遅延プロファイルの意味で各チャネル間で異なる点は、 送受 信ァンテナ配置に伴う経路差による各パスの伝搬遅延およびキヤリァ位相だ けと考えた。
図 1 4 (A) は、 ある 2つの送信アンテナから 1つの受信アンテナにいたる 経路を比べたものである。 素子間距離 d Tが十分小さければこのアンテナ近傍 から受信アンテナに至る経路は共通と見なせるので、 経路差は d T■ cos 0丁で あり、 この分このチャネル間にはパスの遅延と位相 (キャリア位相だが、 パス の位相と言い換えてもよい) に違いがある。
図 1 4 (B ) に示す受信アンテナについても同様である。ただし放射角 0 T、 到来角 0 Rはいずれも各パス毎に規定されるので注意を要する。 図 9のような 場合つまり放射角や到来角が全方向の場合は、 角度によって経路長差が逆転す るので平均して経路長差なしと考えることができる。 放射角や到来角が不明の パスについても同様である。
かかる考察に基づいて、 本発明の発明者は、 どれか 1チャネルの短区間遅延 プロファイルの各パスの放射角、 到来角がわかれば、 送受信アンテナ素子の配 置からその他のチャネルの短区間遅延プロファイルを計算できるという結論 に至った。
従って、 本発明においては、 : RayTrace シミュレーションや実走行実験等で 得られた既存の 1チャネル伝送路測定データ (短区間遅延プロファイルを含 む) を用い、 この 1チャネル分の伝送路測定データと送受信アンテナ素子の配 置とから M X Nチャネル分の短区間遅延プロファイル (全パスの遅延 '利得 - 位相の変動) を計算により形成することで、 M X Nチャネル分の伝送路変動モ デルを形成する。 これにより、 基準チャネルの各パスの情報から、 全てのチヤ ネルのパスの情報を簡単かつ的確に発生させることができる。
( 1 - 2 - 2 ) 瞬時変動の拡張
次に各チャネルの瞬時変動について考えなければならない。 ここで本発明の 発明者は、 各チャネルおよび各パスの瞬時変動はどのくらい互いに似ているだ ろうかということを考察した。
瞬時変動の場合、 例えば 5 GH Z帯での定在波は平均 3 cm (半波長) で 1 波含まれるので短区間変動のように全アンテナで等しいとい'うことは言えな い。 そうは言ってもあるアンテナが正の変動を受けている瞬間、 隣接するアン テナも大体正方向に変動しているくらいは言えそうである。 同様のことは時間 方向に関しても言える。 瞬時変動は 1 kHz以下の速さで変動するので、 ある 瞬間正の変動を受けていたなら、 それから 0. lm s後も正の変動が持続して いることは十分ありうる。 前者は空間相関関数、 後者は時間相関関数にて定量 的に表され、 全方向から波が到来するレイリーフェージングに関しては次式に なることが導かれている。
空間相関関数: P≠ )=x^ (t) -xj (t) = 2πά/λ)
(1) 時間相関関数: (て ) = * ) (t+T)=j0( 2π/Ότ) ここで (1) 式において、 X i (t) 、 x i (t) .は各々 i番目と j番目のアン テナの受信信号 (複素ベースバンド信号) であり、 dはアンテナ間の距離であ り、 τはパスの遅延時間であり、 えは波長であり、 f Dは最大ドップラ一周波 数である。 また *は共役複素数を意味し、 J。はベッセル関数を意味する。 従来のアンテナダイバーシチ性能評価の場合、 アンテナ間距離を空間相関値 が小さくなる半波長とか十分離すように設定することにより、 受信波が互いに 無相関と見なせるとして行っていた。 これは (1) 式の空間相関関数に着眼し た考えであるが、 実際には時間相関が存在するのを無視しているわけである。 従って、 より正確な結果を得るためには時間相関■空間相関を同時に扱える 理論が必要である。この問題に対し、笹岡は図 15のような状況の下で、空間 - 時間相関関数が次式のようになることを導いた (笹岡: 「有相関擬似マルチパ スフエージング波の発生法」 , 電子情報通信学会論文誌, ' 88/6, Vol.J71-B No6) 。 ここで図 1 5において、 φは走行方向に対するアンテナの配置角度を 示す。
空間 ·時間相関関数:
P(d , τ) = J。LV (2^ / ) + (2 て, (2) ここで、 dr = d 'sin y , て r = て—{ / fn ) 'cos \j なお、 図 1 5では全方向から波が到来する環境を示しているが、 ある方向か らのみ到来する場合はレイリーフェージングの U字形電力密度スぺク トラム (図 1 2 ) の一部のみを有する瞬時変動を用いればよい。 何故なら、 正弦波で 考えると明らかであるが、 周波数の異なる波間の相関は空間的にも時間的にも 0であり、 従って (2 ) 式は周波数成分 (つまり到来方向) に関係なぐ独立に 成り立つと考えることができるためである。
次にマルチパス (正確には遅延時間で識別できるマルチパス) 間の相関につ いて考える。 例えば図 5に示したように各パスを通過する素波が 1波である場 合は、 素波は完全なビームであり瞬時変動自体が発生しないので、 短区間遅延 プロファイルそのものが瞬時遅延プロファイルになる。 つまりビームによるマ ルチパス間では相関は発生しないわけだが、 これは見通し角が 0の場合である から到来角が一致しない限り瞬時変動スペク トルが一致しないので相関 0で める。
逆に図 9に示したような見通し角が極端に大きい、 というか波が全方向から 到来するようなものを素波とする場合は、 遅延差の大きいパス間では明らかに 各パスの空間的な経路差が大きくなるので無相関に近いはずであるが、 遅延差 の小さいパス間では空間的な経路差も小さく似たような瞬時変動を受ける (つ まり相関がある) と考えられる。 つまりこの場合は、 パス間に対しても (2 ) 式を適用できると考えられる。
そして図 7に示したような見通し角がある範囲以内のまとまりのある素波 の瞬時変動を有するパスの場合は両者の中間的な結果になると考えられる。 つ まり以下のことが言える。
( a ) 各パスの到来角および見通し角のオーバラップが少ない場合は明らか に空間的に経路の異なるパスなので相関は小さい (極端な場合は図 5のビーム の場合) 。
( b ) 各パスの到来角および見通し角のオーバラップが大きい場合でも、 遅 延時間差が大きい場合は、 やはり空間的に経路の異なるパスなので相関は小さ い (図 9の場合) 。
( c ) 異なるアンテナで受信されるパス間の相関は、 アンテナ間距離に大き く依存する。
結果として、 パス間の相関に関しては (a ) は異なれば相関が小さくなるこ とから到来角と見通し角に応じて瞬時変動に帯域制限を行うことにより実現 でき、 (b ) 、 (c ) に対しては (2 ) 式の空間 '時間相関関数を適用するこ とにより実現できる。
以上を整理すると、 まず図 1 3に示す M X Nチヤネノレ伝送路は、 マルチパス が無い場合、 図 1 6のように MN個のチャネルに書き直すことができる。 ここ で各チャネルの短区間変動の利得は等しいとしているので、 図 1 6では各チヤ ネル瞬時変動のみを示している。 またチャネル間の類似度を見るのに送信デー タの影響があってはいけないので、 送信データは全て" 1 " 固定としている。 そして各チャネルの信号にアンテナ間距離に基づいた空間相関のある瞬時変 動 (複素ガウス雑音) を掛けて変動を与えればよい。
次に P個のマルチパスの場合は、 図 1 7のように展開し、 各パスの信号にァ ンテナ間距離と遅延差に基づく (2 ) 式の空間,時間相関のある瞬時変動を掛 ければよい。つまり、図 1 7のような構成で、各パスが互いに (2 )式の空間 - 時間相関関数に従うように、 到来角および見通し角を考慮した帯域制限付複素 ガウス雑音で瞬時変動を与えればよい。
(1-3) 有相関瞬時変動の発生方法
問題はどうやって所望の相関のある複素ガウス雑音を発生するかである。 そ こでこの実施の形態では、 上述したように有相関瞬時変動を発生させる方法と して、 相関行列法 (固有値変換法、 コレスキー分解法) 及び拡張笹岡法を提案 する。
図 18は、 変換行列 A (MNP行 XMNP列) により、 互いに独立な MXN XP (P :パス数) 個の帯域制限付複素ガウス雑音から、 互いに相関のある M XNXP個の互いに相関のある帯域制限付複素ガゥス雑音 (有相関ガウス雑 音) を発生するようにしたものである。 問題はどのような変換行列 Aを用いる と所望のパス間相関を与えることができるかである。
まず各パス出力を Y= (yい y2、 、 yMNP) τとすると、 パス間相 関行列は次式のようになる。 なお以下では簡単のために添字は通し番号で表す。 また次式において、上文字の *は共役複素数、 Ηは共役複素転置を表し、 Ε () は集合平均を表す。
Figure imgf000020_0001
(3) この (M'NP) 2個の各要素が各パス間相関を表し、 各要素を送受信アンテ ナ配置と波の放射角■到来角から求めたパス間経路長差と伝搬遅延差から(2) 式の空間■時間相関値を計算して得られるものが所望のパス相関行列∑γγであ る。
つまり∑ΥΥ=Ε (ΥΥΗ) となるように Υを発生できればよいのだが、 その ためには図 1 8における変換行列 Aをどのように決めればよいかが問題とな る。 そこでこの実施の形態では、 固有値変換に基づく方法とコレスキー分解に 基づく方法を提案する。
(1 -3- 1) 固有値変換法
図 18において、 各複素ガウス雑音間には Y = AXという関係が成り立つ。 ここで、 変換行列 Aに逆行列が存在するとすれば、 次式が成り立つ。
X=A~1Y (4)
(4) 式は、 (3) 式のような相関のある (MNPX 1) 信号ベクトル Yに行 列 A—1を掛けることによって互いに無相関な (MNPX 1) 信号べクトル Xを 得るという意味であり、 この関係は固有値変換 (または KL変換) として知ら れているものである。固有値変換は A—1として所望のパス相関行列∑γγの MN
Ρ個の (MNPX 1) 単位固有ベクトル eい e 2, , eMNPを並べたも のを用いればよく、 こ'のとき変換行列 Aは次式のようになる。
A =\ex e2 eMNP
H
H
-1 一 1 H e2
A (5)
H
eMNP'
このように固有値変換法により変換行列 Aを求めることにより、 互いに独立 な瞬時変動から有相関瞬時変動を求める際に、 要素数の少ない行列を用いるこ とができるようになるので、 少ない計算量で有相関瞬時変動を求めることがで きるようになる。
なおここでは、 (MXNXパス数) 分の互いに独立な瞬時変動に対して変換 行列 Aを用いた行列演算処理を施すことにより、 パス間で互いに相関のある (MX NXパス数) 分の有相関瞬時変動を形成することで、 各チャネル間及び 各パス間で互いに相関のある有相関瞬時変動を形成する場合について説明し たが、 本発明はこの場合に限らず適用できる。
例えば (MXN) チャネル分の互いに独立な複数の瞬時変動に対して変換行 列を用いた行列演算処理を施すことにより、 チャネル間で互いに相関のある M X Nチャネル分の有相関瞬時変動を形成することで、 全チャネル間で相関のあ る MXNチャネル分の有相関瞬時変動を形成してもよい。 これは以下の説明で も同様である。 .
(1-3-2) コレスキー分解法
所望のパス間相関行列∑γγは次式のようにコレスキー分解できる。 γ ― L L (6) 但し、 L は (MNP ΜΝΡ ) 型の下側三角行列
このとき、 図 18中の変換行列 Αは得られた下側三角行列 Lに対して次式のよ うにすればよい。
A=LH (7) 何故なら、 図 18より Y = AX=LHXなので、 パス相関行列 E (YHY) は次 式のようになるからである。
E ( YH)
Figure imgf000022_0001
YY (8) ここで、ベタトル Xの各要素は互いに独立なガウス変数なので、相関行列 E (X XH) = Iを用いた。 コレスキー分解については最近演算量を大幅に削減できる近似アルゴリズ ムが発表されており(H.H.Karimi etc:「A Novel and efficient Solution to Block-Based Joint-Detection Using Approximate Cholesky FactoiizationJ ,PIMRC'98.p, 1340- 1345, 1998), これらを適用するのも効果的 である。
このようにコレスキー分解法により変換行列 Aを求めることにより、 互いに 独立な瞬時変動から有相関瞬時変動を求める際に、 コレスキー分解により得ら れた下側三角行列を用いることができるようになるので、 少ない計算量で有相 関瞬時変動を求めることができるようになる。
( 1 - 3 - 3 ) 拡張笹岡法
次に、 行列 Aにより有相関瞬時変動を求めるのとは別に、 笹岡法を M X Nチ ャネル伝送路に拡張して適用する方法 (以下、 これを拡張笹岡法と呼ぶ) を提 案する。
まず笹岡が提案した方法を簡単に説明する。 図 1 9に笹岡が提案した有相関 瞬時変動 (2波) の発生ブロック図を示す。 因みに、 図 1 9で ^ 定している系 とパラメータは、 図 1 5に示すものである。 図 1 9について説明すると、 まず ドップラーフィルタ 1 0 2、 1 0 5によって、 それぞれ白色ガウス雑音発生部 1 0 1、 1 0 4により発生された 2系統の白色ガウス雑音を、 全方向から素波 が到来するときのレイリーフエージングの電力密度スぺクトラムにスぺクト ル整形する (素波の到来角や見通し角がわかっている場合は、 それに応じてさ らに帯域を狭めればよい) 。
そしてこれらを有相関にするために 2種類のフィルタ 1 0 3、 1 0 6を通過 させる。 従来の発生法ではこれらのフィルタ 1 0 3、 1 0 6は空間相関値 pと f ( 1 - 2) であり時間相関を表現することができなかった。 笹岡は時間相 関をも盛込むためにこれをフィルタに置き換えたのである。 フィルタ特性 H ( f ) 、 G ( f ) は、 2つの受信アンテナ素子間距離 d、 走行方向に対するァ ンテナの配置角度 φ、キヤリァ波長 λ、最大ドップラー周波数; f Dで決まるが、 利得が sinと cosの関係にあるので、 素波 2の複素乗算器 1 1 1に入力する瞬 時変動の電力密度スぺクトラムは素波 1のものと同形 (ドップラーフィルタの 形) になる。 最後に cos の符号に応じて遅延回路 108、 109のいずれか によって一方の素波に遅延を与える。 なお遅延回路 108からの出力は、 cos 0のとき有効となり、遅延回路 109からの出力は、 cosゆく 0のとき有効 となる。
なお図 1 9のフィルタ 103、 106は、 複雑な特性 (それも条件によって 変化する) になるので、 笹岡は周波数の異なるマルチトーンを重付け加算する ことにより実現することを提案している。
次に図 1 9のようなスぺクトル整形によって ( 2 ) 式の空間 ·時間相関関数 を満たす有相関瞬時変動を発生させるフィルタ 103、 106のフィルタ特性 H (f ) 及び G (f ) を求める (因みに笹岡以前の有相関瞬時変動はこれらの フィルタが空間相関係数になったものが提案されていたが、 《 1でない と良好な近似にならないことが述べられている) 。
図 1 9において 2つのドップラーフィルタ出力信号を X ( t) , χ 2 ( t ) とする。 またチャネル間の相関の検討なので送信信号に依存しないよう 2つの 素波入力は共に 1とし、 瞬時変動の加わった素波出力を y i ( t) , y 2 ( t ) とする (つまりこれは有相関瞬時変動そのものである) 。 各々の電力密度スぺ クトル (自己相関関数の周波数表現) 及ぴ相互電力密度スぺクトル (相互相関 関数の周波数表現) は次式のようになる。
Sylyl (f) =Sxlxl (f) =S(f) :ドップラースペクトラム 2( ^(/ Ι ω + |G( )i 2x2( )={|H( )|2+|G( )|2}S( ) 】ヌ2 if) (f) Sxlxl (f) =H" (f) S,lxl {f) (9) まず有相関であっても瞬時変動の電力密度スぺク トルの形は変わってはい けないので、 次式を満たさなければならない。
\Hf)\2^\Gf)\2-\ (10) また相互電力密度スぺク トル Syly2 (f ) は (2) 式をフーリエ変換したも のであるから、 次式が成り立たなければならなレ、。
Figure imgf000025_0001
(11) すると (10) 式と (1 1) 式より、 G (f ) :ついて次式が得られる t
Figure imgf000025_0002
G ~~—
(12) 因みに、 (1 2) 式は平方根を求める際に正負の複号が現れるが、 どちらを選 んでも瞬時変動の相関値には影響しないので正符号を選んでレヽる。
次に図 1 9に示した有相関瞬時変動の発生法を MX Nチャネル伝送路に適 用する方法を考察する。 図 20 (A) 、 図 20 (B) は、 1 X 1チヤネノレの瞬 時変動から M X Nチャネルの有相関瞬時変動を形成する原理の説明に供する 図である。
図 20 (A) は、 1 XNチャネルと 1 XMチャネルを示し、図 20 (B) は、 1 XMチャネルから MX 1チャネルへの変換を示す。 まず図 20 (A) のよう に 1本の送信アンテナからの波を N本の受信アンテナで受信する場合を考え る (この場合、 各受信信号はいかにも相関がありそうである) 。 ここで送信ァ ンテナー受信アンテナ 1間の伝送路 (以下これを 1一 1チャネルのように記 す) の複素インパルス応答はわかっていて、 これより各チャネルの短区間遅延 プロファイルは計算されているものとする。
瞬時変動に関しては、 1一 1チャネルの各パスと 1一 2チャネルの対応する 各パスに対して図 1 9の方法を適用する。 以下同様にアンテナ間距離を変えな がら 1一 3チャネル, , 1一 Nチャネルの有相関瞬時変動を発生させれ ばよい。
図 2 0 (B ) 左は、 右から左方向の 1 XMチャネル伝送路である。 送受信ァ ンテナが同じ位置とすると伝送路の可逆性から 1 _ 1チャネルは、図 2 0 (A) の 1一 1チャネルと同じ複素インパルス応答である。 従って、 図 2 0 (A) と 同様に図 2 0 ( B ) 左の全ての有相関瞬時変動を発生させることができる。 後 は再び伝送路の可逆性を用いて信号方向を変えれば、 図 2 0 ( B ) 右の全チヤ ネルの有相関瞬時変動が得られる (つまり送信アンテナが異なっても受信アン テナが 1つならゃはり相関のある伝送路ということである) 。
図 2 0 (A) の各受信アンテナに対して図 2 0 ( B ) 左を適用することによ り、 M X Nチヤネノレ伝送路の全ての有相関瞬時変動を発生させることができる。 伹し以下の点に注意する必要がある。
1 . 遅延プロファイルで分離識別された各パス間では独立した白色ガウス雑 音を用いる。 これは、 異なるパスは空間的にかなり違った経路であると考える ためである。
2 . 上記では 1一 1チャネルを基準伝送路としたが、 どのチャネルを基準に しても構わない。これは、基準チャネルを変えると伝搬遅延や位相が変わるが、 相対値としての変化は無いためである。 因みに、 アンテナ素子を円形配置にし たときには実際にはアンテナの無い中心点で基準チャネルを設定することも ある。
3 . 各チャネルの瞬時変動は基準チャネルに対する相関で規定して発生して いる力 例えば図 2 0 (A) で 1一 2チャネルと 1一 3チャネルの相関につい ては保証されない。 というより、 相関が 2データべクトル間の余弦関数値であ ることを考えると、 この拡張法は適切でない。
(1-4) まとめ
以上の提案により、 送受信アンテナの設置情報から、 全チャネルのパスの遅 延、 位相および有相関瞬時変動を計算することができ、 MX Nチャネルについ ての全ての伝送路変動モデルを発生させることができる。 これにより、 RayTraceシミュレーションゃ実走行実験等で得られた既存の 1チャネル伝送 路測定データを MX Nチャネル伝送路用測定データとして利用できるように なる。
(2) 実施の形態の構成
(2-1) 全体構成
図 1との対応部分に同一符号を付した図 21に、 実施の形態による伝送路シ ミュレータ 120と開発装置 40、 50との接続の様子を示す。なお以下では、 図 1を用いて既に説明した部分の説明は省略する。
伝送路シミュレータ 120は、 マルチアンテナ構成でなる開発装置 40、 5 0の伝送路をシミュレートすることにより、 開発装置 40、 50の伝送路特性 を評価可能とするものである。
伝送路シミュレータ 120は、 送信系 40のディジタル BB処理部 41から のディジタルベースバンド信号 DB、 アナログ BB処理部 42からのアナログ ベースバンド信号 AB及び無線回路 43からの無線信号 RFを入力可能とさ れている。 また伝送路シミュレータ 1 20からの出力は、 受信系 50のデイジ タル BB処理部 51、 アナログ BB処理部 52又は無線回路 53にスィッチ S W3、 SW4の動作に応じて選択的に出力されるようになされている。
これにより伝送路シミュレータ 1 20においては、 無線回路 43及びアナ口 グ B B処理部 42の開発が動作可能な状態まで完了していなくても、 ディジタ ル BB処理部 41からのディジタルベースバンド信号 DBを直接入力するこ とで、 ディジタル B B処理部 41、 51の伝送路特性を独立して評価すること ができるようになっている。 この結果、 無線回路 4 3 , 5 3 (特に受信系 5 0の無線回路 5 3 ) が完成す るのを待たなくても、 処理の中心であるディジタルベースバンド処理部 4 1、 5 1の動作確認を行うことができるようになるので、 開発効率を向上させるこ とができる。
図 2 2に伝送路シミュレータ 1 2 0の構成を示す。 伝送路シミュレータ 1 2 0は、 無線回路 4 3からの無線信号 R Fin、 アナログ B B処理部 4 2からのァ ナログベースバンド信号 A Bin又はディジタル B B処理部 4 1からのデイジ タルベースバンド信号 D Binを、インターフェース部 1 2 2に入力する。 具体 的には、送信アンテナ数 Mぶんの無線信号 R Fin又はアナログベースバンド信 号 A Bi がアナログ回路 1 2 3に入力され、当該アナログ回路 1 2 3によりデ イジタルベースバンド信号に変換されて出力される。 スィッチ S W 1 0は、 入 力ディジタルベースバンド信号 D Bin とアナログ回路 1 2 3により変換され たディジタルベースバンドのいずれかを選択して送信アナログ調整部 1 2 4 に出力する。 因みに、 ベースバンド信号は I信号と Q信号とからなり、 2 XM 個の信号により形成されているので、 図中ではこれを 2 Mとして示している。 つまり、 送信アナログ調整部 1 2 4以降の回路では、 M個のディジタルべ一 スバンド信号が処理対象となる。 送信アナログ調整部 1 2 4は、 ディジタルべ ースバンド信号の数 Mだけ設けられており、 開発装置 (送信系) 4 0の]\1個の アナログ B B処理部 4 2と無線回路 4 3とアナ口グ回路 1 2 3での性能のば らつきに起因して生じる M個のディジタルベースバンド信号間での伝送特性 の変化を補正する。 送信アナログ調整部 1 2 4の詳細な構成については後述す る。
信号複製手段としてのスィツチ 1 2 5は、 M個のディジタルベースバンド信 号をそれぞれ N個にコピーすることにより、 M X N個のディジタルベースバン ド信号を形成し、 これらを M X N個の各チャネル処理部 1 2 6— 1〜1 2 6— MNに送出する。 また各チャネル処理部 1 2 6— 1〜1 2 6—MNには、 基準 チャネルパス制御部 1 2 7により形成された基準チャネルの伝送路モデル情 報や送受信アンテナ配置情報等が入力され、各チャネル処理部 126— 1〜 1 26 _MNは各々自チャネルの伝送路モデルを構築する。 そして構築した伝送 路モデルに応じた自チャネル用短区間複素ィンパルス応答と有相関瞬時変動 を複素乗算にて自チャネルのディジタルベースバンド信号に与える。 このチヤ ネル処理部 126_ 1〜126—MNの詳細構成については後述する。
選択合成部 128は、 チャネル処理部 126— 1〜1 26— MNから出力さ れたディジタルベースバンド信号を M個ずつ選択合成することにより、 受信ァ ンテナ数 Nぶんのディジタルベースバンド信号を形成する。
受信アナログ調整部 129は、 ディジタルベースバンド信号の数 Nだけ設け られており、 開発装置 (受信系) 50の N個のアナログ BB処理部 52と無線 回路 53とアナログ回路 1 3 1での性能のばらつきに起因して生じる N個の ディジタルべ一スパンド信号間での伝送特性の変化を補正する。 受信アナ口グ 調整部 129の詳細な構成については後述する。
受信アナログ調整部 1 29から出力されたディジタルベースバンド信号は、 出力インターフェース部 1 30に入力される。 ここでディジタル BB処理部 4 1、 51の伝送路特性評価時には、 ディジタルベースバンド信号 D Boutがス ィツチ SW4を介して受信系 50のディジタル B B処理部 5 1に入力される。 一方、 ディジタル B B処理部 41、 51とアナログ BB処理部 42、 52の伝 送路特性評価時には、 アナログ回路 131により得られたアナログベースバン ド信号 A Boutがスィッチ SW3を介して受信系 50のアナログ BB処理部 5 2に入力される。 またディジタル BB処理部 41、 51、 アナログ BB処理部 42、 52及び無線回路 43、 53の伝送路特性評価時には、 アナログ回路 1 31により得られた無/線信号 R F outが受信系 50の無 f泉回路 53に入力され る。
(2-2) 基準チャネルパス制御部及ぴチャネル処理部の構成
次に基準チャネルパス制御部 1 27とチャネル処理部 1 26— 1〜 1 26 -MNの構成例について説明する。 ここでは上述した拡張笹岡法を用いる場合 の構成例と、 固有値変換法を用いる場合の構成例の 2つの構成例について説明 する。 以下の説明をするにあたって、 図 2 3に示すようなパラメータ P 1 0〜 P 2 0、 P 3 0を用いるものとする。
( 2 - 2 - 1 ) 拡張笹岡法を用いる場合
図 2 4に、 基準チャネルパス制御部 1 2 7の構成を示す。 基準チャネルパス 制御部 1 2 7は、 基準チャネル伝送路モデル形成部 1 4 0と瞬時変動初期 発 生部 1 4 1とから構成されている。
基準チャネル伝送路モデル形成部 1 4 0は、複素ィンパルス応答情報を手動 設定する (つまり制御装置 1 2 1により設定する) スタンダードモデノレ発生部 1 4 2、 定期的に乱数によって複素インパルス応答を更新設定する統計モデル 発生部 1 4 3、 EayTrace シミュレーションゃ実走行実験などから得られた複 素ィンパルス応答情報を読込み逐次更新設定する実走行モデル発生部 1 4 4 を有し、 これらのモデル発生部 1 4 2〜 1 4 4のいずれかで発生した 1チヤネ ル分の伝送路モデルを選択部 1 4 5により選択して出力する。
これにより、 基準チャネル伝送路モデル形成部 1 4 0では、 基準チャネルに ついての数 +m間隔で変動する伝送路の複素インパルス応答情報 (パス数、 各 パスの遅延及ぴ複素利得からなる) が形成される。 なお各モデル発生部 1 4 2 〜1 4 4については、 公知の技術であるためここでの説明は省略する。
瞬時変動初期値 生部 1 4 1は、 基準チャネル各パスについての瞬時変動初 期値を乱数によりランダムな値となるように発生する。 なお制御装置 1 2 1か ら基準チャネル伝送路モデル形成部 1 4 0にはパラメータ P 1 0 (どの走行モ デルを選択するかを指示するモデルタイプ指示、 走行速度 '方向、 送受信アン テナの配置.指向性、 位相変動の O NZO F F指示) が入力される。 また制御 装置 1 2 1からスタンダードモデル発生部 1 4 2にはパラメータ P 1 1 (パス 数、 各パスの遅延 '複素利得) が入力される。 また制御装置 1 2 1から実走行 モデル発生部 1 4 4にはパラメータ P 1 2 (Ray i'ace/実走行実験データ ) が入力される。 選択部 1 4 5からは、 基準チャネル伝送路モデルとして、 パラメータ P 1 4 (キャリア周波数、 走行速度 '方向、 送受信アンテナの配置 ·指向性、 位相変 動の O NZO F F指示) およびパラメータ P 1 5 (パス分割数 (圧縮時) 、 基 準チャネルのパス数、 基準チャネルの各パスの遅延 ·短区間変動複素利得■到 来角 ·見通し角) が出力される。
図 2 5に、 各チャネル処理部 1 2 6— 1〜1 2 6— MNの構成を示す。 ここ で各チャネル処理部 1 2 6— 1〜 1 2 6— MNの構成は同じなので、 以下チヤ ネル処理部 1 2 6— 1の構成について説明する。 チャネル処理部 1 2 6— 1は、 自チャネル用短区間複素ィンパルス応答発生部 1 5 0にパラメータ P 1 4と パラメータ P 1 5を入力する。
自チャネル用短区間複素インパルス応答発生部 1 5 0は、 送受信アンテナの 配置から基準チャネルと自チャネルとの経路差を算出し、 この経路差に基づい て、 自チャネル各パスの短区間変動の複素利得を算出しこれをパラメータ P 1 8としてデータ捕間部 1 5 1に送出すると共に、 自チャネルのパス数、 各パス の遅延 ·到来角 ·見通し角をパラメータ P 2 0として有相関ガウス雑音発生部 1 5 2に送出する。
すなわち、 自チャネル用短区間複素インパルス応答発生部 1 5 0は、 送受信 アンテナが設置される面積内では短区間複素インパルス応答に含まれる各パ スの長区間変動及び短区間変動による利得は等しいと見なすことにより、 自チ ャネルにも基準チャネルと同数のパスがあり、 各パスの遅延と位相のみが、 基 準チャネルと自チャネルとの送受信点と自チャネルの送受信アンテナの位置 関係と各パスの放射方向と到来方向から求まる経路差分だけずれるとして、 自 チャネルの複素ィンパルス応答を発生させる。
具体的には、 遅延については後述するパス形成部 1 9 0 (図 3 0 ) で生じさ せるので、 自チャネル用短区間複素ィンパルス応答発生部 1 5 0では、 位相変 化に応じて I成分、 Q成分の大きさを制御した複素利得を発生させる。
この複素ィンパルス応答は、 データ補間部 1 5 1によりデータ補間されてァ ップコンバートされた後、 フェージング付加部 1 5 4の短区間変動付加部 1 5 5に送出される。 このようにチャネル処理部 1 2 6— 1では、 データ補間部 1 5 1を設けるようにしたことにより、 データ補間部 1 5 1より前の処理動作が ある程度遅くてもベースバンド信号のサンプリング周波数 f sに応じた細かな 変動を与えることができるようになつている。 データ補間部 1 5 3と有相関ガ ウス雑音発生部 1 5 2との関係についても同様である。
有相関ガウス雑音発生部 1 5 2は、 パラメータ P 1 4、 P 1 5、 P 2 0を入 力し、 自チャネルの各パスについての有相関ガウス雑音を発生する。 つまり、 この実施の形態の伝送路シミュレータ 1 2 0においては、 各チャネル処理部 1 2 6— 1〜 1 2 6—MNそれぞれの有相関ガウス雑音発生部 1 5 2において、 チャネル間、 又はチャネル間及びパス間で相関のある M X Nチャネル分の有相 関瞬時変動を形成する。
有相関ガウス雑音発生部 1 5 2において発生された有相関瞬時変動 P 1 6 (各パスの瞬時変動の複素利得に加えて、パス数、各パスの遅延の情報を含む) は、 データ補間部 1 5 3により補間された後、 有相関瞬時変動付加部 1 5 6に 送出される。 因みに、 パス数、 各パスの遅延情報は、 後述するようにアンテナ 配置に応じた遅延を有するマルチパスを形成するための情報として使われる。 図 2 6に、 有相関ガウス杂集音発生部 1 5 2の構成を示す。 有相関ガウス雑音 発生部 1 5 2は、 基準チャネルの各パスの到来角と見通し角に応じた帯域のガ ウス雑音を基準チャネルの各パスの瞬時変動初期値の初期位相を有するマル チトーンとして発生し、 このマルチトーンをドップラーフィルタとアンテナ配 置情報をパラメータとする有相関フィルタ特性とで重み付けすることで、 基準 チャネルの瞬時変動と相関のある有相関瞬時変動を形成するものである。 つま り、 上述した笹岡法を適用したものである。
具体的に説明すると、 マルチトーン発生部 1 6 1は、 瞬時変動初期値発生部 1 6 0により発生された自チャネル各パスの瞬時変動初期値を初期位相とす るマルチトーンを発生する。 このマルチトーンはドップラーフィルタ 1 6 2に より ドッブラ一周波数 ί D内の所定帯域制限された後、 (12) 式のフィルタ 特性を有するフィ タ 165 Αに送出される。
一方、マルチトーン発生部 163は、瞬時変動初期イ直発生部 141 (図 24 ) により発生された基準チャネル各パスの瞬時変動初期値に応じた初期位相を 有するマルチトーンを発生する。 このマルチトーンはドップラーフィルタ 16 4により ドップラー周波数 fD内の所定帯域に制限された後、 (1 1) 式のフ ィルタ特性を有するフィルタ 165 Bに送出される。
ここでドップラーフィルタ 1 62、 164にはキャリア周波数及び走行速 度 -方向が入力されており、 これらに応じてドップラーフィルタ 162、 16 4の特性が決められる。 また相関フィルタ部 165にはキヤリァ周波数、 走行 速度■方向、 送受信アンテナの配置 ·指向性、 各パスの到来角■見通し角が入 力されており、 これらに応じて各フィルタ 165 A、 165Bの特性が決めら れる。
相関フィルタ部 165からの出力は加算器 166により加算された後、位相 変動 ONZOFF部 167に入力される。 位相変動 ONZOFF部 1 67は、 制御装置 121からの位相変動 ON/ OFF指示に応じて有相関ガウス杂象音 の位相変動を ONZOFF制御する。 具体的には、 位相変動を ON制御するこ とが指示された場合には、加算器 166からの有相関ガウス雑音をそのまま出 力する。
これに対して、 位相変動を OFF制御することが指示された場合には、 Iチ ャネルと Qチャネルの有相関ガウス雑音の変動値包絡線振幅 V" (I 2 + Q2) を 求め、 求めた変動値包絡線振幅を Iチャネル及び Qチャネルの信号として出力 する。 つまり、 瞬時変動値として Iチャネル及び Qチャネルの大きさが同じ有 相関ガウス雑音を形成することにより、続く有相関瞬時変動付加部 1 56にお いて位相変動を与えずにレベル変動のみを与えるようにする。 この理由につい ては後述する。
位相変動 ON/OF F部 1 6 7の出力は遅延部 1 68を介して自 瞬時変動として、 有相関瞬時変動付加部 1 5 6に送出される。
かくして、 各チャネル毎に設けられた有相関ガウス雑音発生部 1 5 2により 同様の基準チヤネルの瞬時変動と相関のある有相関瞬時変動を求めることに より、 基準チャネルの各パスの情報から、 当該基準チャネルと相関のある M X Nチャネル分の有相関瞬時変動を形成できる。 この結果、 M X Nチヤネノレ分の 瞬時変動を独立に設定する場合と比較して、 的確かつ容易に M X Nチヤネル分 の瞬時変動をシミュレートできるようなる。
なおここではマルチトーンを使つて基準チャネルと相関のある有相関瞬時 変動を求める場合について述べたが、 マルチトーン発生部 1 6 1、 1 6 3で単 なる白色ガウス雑音を発生し、 ドップラーフィルタ 1 6 2、 1 6 4をパスの到 来方向を考慮した帯域のみを通過させるフィルタ特性とすることにより、 M X Nチャネル分の有相関瞬時変動を求めるようにしてもよい。
つまり、 マルチトーンを発生して基準チャネルの瞬時変動と相関のある有相 関瞬時変動を形成する場合に限らず、 基準チャネルとそれ以外の 1チャネル分 それぞれの帯域制限したガウス雑音を発生し、 これら 2つの帯域制限したガウ ス雑音を少なくともアンテナ配置情報をパラメータとする有相関フィルタ特 性で重付け加算することで、 基準チャネルの瞬時変動と相関のある有相関瞬時 変動を形成する、 といった処理を M X Nチャネル分だけ実行することにより、 M X Nチャネル分の有相関瞬時変動を形成してもよい。
( 2 - 2 - 2 ) 固有値変換法を用いる場合
次に固有値変換法を用!/ヽる場合の基準チャネルパス制御部、 チャネル処理部 及び有相関ガウス雑音発生部の構成を、 図 2 7、 図 2 8及び図 2 9を用いて説 明する。
図 2 4との対応部分に同一符号を付して示す図 2 7に、 固有値変換法を用い る場合の基準チャネルパス制御部 1 7 0 (図 2 2の基準チャネルパス制御部 1 2 7に対応する) の構成を示す。 変換行列算出手段としての単位固有べクトル 算出部 1 7 1は、 基準チャネル伝送路モデル形成部 1 4 0から出力されるパラ メータ P 14、 P 15のうち、 送受信アンテナの配置'指向性の情報と、 基準 チャネルの各パスの到来角■見通し角の情報を入力する。
単位固有べクトル算出部 171は、 先ず送受信アンテナの位置関係と基準チ ャネルの波の放射方向及ぴ到来方向とレイリーフェージングの理論相関値 (チ ャネル間の相関のみを求める場合には (1) 式の空間相関関数を用い、 チヤネ ル間及びパス間の相関を求める場合には (2) 式の空間 ·時間相関関数を用い る) とから相関行列を求める。ここでチャネル間の相関行列を求める場合には、 (MXN) 行、 (MXN) 列の行列となり、 チャネル間及びパス間の相関行列 を求める場合には、 (MXNXパス数) 行、 (MX NXパス数) 列の行列とな る。
次に、 単位固有べクトル算出部 1 71は、 (1— 3— 1) の項で説明したよ うに、 (3) 式、 (4) 式及び (5) 式に基づいて、 単位固有べクトル (実際 には単位固有ベクトルを共役複素転置したもの) を算出する。 そしてこれを互 いに無相関な信号べクトルから互いに相関のある信号べクトルを算出するた めの変換行列として有相関ガウス雑音発生部 1 73に送出する。 実際上、 単位 固有べクトル算出部 171は、 単位固有べクトノレと共に、 各チャネルの各パス の瞬時変動初期値を発生し、 これらをパラメータ P 30として図 28に示すチ ャネル処理部 172の有相関ガウス雑音発生部 173に送出する。
ここで図 28のチャネル処理部 1 72の構成は、 有相関ガウス雑音発生部 1 73の構成が異なることを除いて図 25で説明した構成と同様なので、 ここで は有相関ガウス雑音発生部 173の構成のみ説明する。 図 29に、 有相関ガウ ス雑音発生部 173の構成を示す。
有相関ガウス雑音発生部 1 73は、 ドップラーフィルタ部 1 80において、 各チャネル間及び各パス間で互いに独立な (MX NXパス数) 分の瞬時変動を 発生する。 具体的に説明すると、 帯域制限白色ガウス雑音発生部 (LWGN) 181- 1にはチャネル 1 _ 1の各パスの瞬時変動初期値が入力され、 帯域制 限白色ガウス雑音発生部 1 8 1— 2にはチャネル 1一 2の各パスの瞬時変動 初期値が入力され、 、 帯域制限白色ガウス雑音発生部 181— MNには チャネル M—Nの各パスの瞬時変動初期値が入力されることにより、 各帯域制 限白色ガウス雑音発生部 18 1— 1〜 181— MNで互いに独立な帯域制限 白色ガウス雑音が発生される。 この独立な帯域制限白色ガウス雑音は、 それぞ れドップラーフィルタ 182— 1〜 1 82—MNにより ドップラー周波数 fD 内に帯域制限された後、 重み付け加算部 183に送出される。
行列演算手段としての重み付け加算部 183は、 ドップラーフィルタ部 18 0で得られた各チャネル間及ぴ各パス間で互いに独立な (MXNXパス数) 分 の瞬時変動に対して、 自チャネルの固有べクトルを用いた行列演算処理を施す ことにより、 パス間で互いに相関のある有相関瞬時変動を求める。 因みにこの 有相関瞬時変動は、 チャネル間でも相関をもっている。
重み付け加算部 1 83から出力された有相関瞬時変動は位相変動 ONZO F F部 184を介して自チャネル各パスの瞬時変動として、 有相関瞬時変動付 加部 1 56 (図 28) に送出される。
かくして、 各チャネル間及び各パス間で互いに独立な (MX NXパス数) 分 の瞬時変動を発生し、 入力データ又は実験データと、 アンテナの位置関係によ り求めた各パスの伝搬経路差と、 レイリーフェージングの理論時空間相関値と から (ΜΝ·パス数 ΧΜΝ·パス数) 相関行列を求め、 互いに無相関な信号べク トルから互いに相関のある信号ベクトルを算出するための変換行列を前記相 関行列に基づいて求め、 (ΜΧΝΧパス数) 分の瞬時変動に対して前記変換行 列を用いた行列演算処理を施すことにより、 パス間で互いに相関のある (MX NXパス数) 分の有相関瞬時変動を求めるようにしたので、 各チャネル間及び 各パス間で互!/、に相関のある有相関瞬時変動を求めることができ、 MXNチヤ ネルでかつマルチパスが存在する伝送路のシミュレートを的確かつ容易に行 うことができるようになる。
また同様に、 各チャネル間で互いに独立な (MX NXパス数) 分の瞬時変動 を発生し、 入力データ又は実験データと、 アンテナの位置関係により求めた各 パスの伝搬経路差と、 レイリーフェージングの理論空間相関値とから (MN X MN) 相関行列を求め、 互いに無相関な信号べクトルから互いに相関のある信 号べクトルを算出するための変換行列を前記相関行列に基づいて求め、 前記複 数の瞬時変動に対して変換行列を用いた行列演算処理をパス数回分施すこと により、 チャネル間で互いに相関のある M X Nチャネル分の有相関瞬時変動を 求めれば、 基準チャネルと各チャネルの相関のみならず、 全チャネル間で相関 のある M X Nチャネル分の有相関瞬時変動を形成できるようになる。 この結果、 実際の M X Nチヤネル伝送路で発生する瞬時変動により近い瞬時変動を形成 することができるようになる。
なおここでは、 固有値変換法を用いて有相関瞬時変動を形成する場合につい て説明したが、 同様の構成で上述したコレスキー分解法を用いた有相関瞬時変 動を形成することができる。
簡単に説明すると、 図 2 7の単位固有べクトル算出部 1 7 1で固有べクトル を算出するのではなく、 (1一 3— 2 )' の項で説明したように、 (6 ) 式及び ( 7 ) 式に基づいて、 パス相関行列をコレスキー分解して下側三角行列を得、 その共役複素転置行列を算出する。 そしてこれをチャネル処理部 1 7 2の有相 関ガウス雑音努生部 1 7 3に送出する。
有相関ガウス雑音発生部 1 7 3では、 行列演算手段としての重み付け加算部 1 8 3にこのコレスキー分解により得た変換行列を入力し、 この変換行列を用 いて重み付け加算を行うことで、 有相関瞬時変動を求めるようにする。 これに より、 重み付け加算部 1 8 3では、 要素の半分が 0の変換行列による演算を行 うことになるので、 少ない計算量で有相関瞬時変動を求めることができるよう になる。
( 2— 3 ) フェージング付加部の構成
図 3 0に、各チャネル処理部 1 2 6 _ 1〜1 2 6— MNに設けられたフエ一 ジング付加部の構成を示す。フェージング付加部 1 5 4は、スィッチ 1 2 5 (図 2 2 ) から出力されたディジタルベースバンド信号をシフトレジスタ 1 9 1及 びセレクタ 1 9 2からなるパス形成部 1 9 0に入力し、 当該パス形成部 1 9 0 によって各パス信号を形成する。 具体的には、 シフトレジスタ 1 9 1は入力さ れたディジタルベースバンド信号を、 パスの最大遅延時間をアナログ B B処理 部 4 2 (図 2 1 ) のサンプリング周期で除算した時間ずつシフトさせる。
セレクタ 1 9 2はシフトレジスタ 1 9 1の各シフト段から出力される信号 の中からパス数分の信号を選択して出力する。 ここでパス形成部 1 9 0には、 制御装置 1 2 1により指示されたパス数と、 各チャネルの信号について送受信 アンテナの配置に応じた遅延時間を示すパラメータ P 1 1が入力され、 シフト レジスタ 1 9 1及びセレクタ 1 9 2はこのパラメータ P 1 1に基づいて動作 する。 これによりパス形成部 1 9 0のセレクタ 1 9 2からは、 送受信アンテナ の配置に応じた自チャネルについてのパス遅延が与えられた各パスの信号が 出力される。
各パスに対応する信号はそれぞれ有相関瞬時変動付加部 1 5 6の各複素乗 算器 A l〜A kに送出される。 また各複素乗算器 A l〜A kにはデータ補間部 1 5 3から出力された有相関ガウス雑音 P 1 7が供給される。 これにより各複 素乗算器 A 1〜A kからは有相関瞬時変動が与えられた各パスの信号が出力 される。
有相関瞬時変動が付与された各パスの信号は、 短区間変動付加部 1 5 5を形 成する複数の複素乗算器 B l〜B kに送出される。 各複素乗算器 B 1〜: B kに は、 データ補間部 1 5 1から出力された各パスの短区間変動の複素利得 P 1 9 が供給されており、 これにより短区間変動付加部 1 5 5からは複素ィンパルス 応答が畳み込まれた各パスの信号が出力される。 次に、 この各パスの信号が加 算器 C l、 C 2 により全て加算されることにより、 伝送路変動が反映さ れたマルチパス信号が形成される。
このマルチパス信号は加算器 C 3に供給される。 また加算器 C 3には、 白色 ガウス雑音発生部 (WG N) 2 1で努生された白色ガウス雑音が増幅器 2 2に より制御装置 3 0で指定された雑音レベル S 4に増幅されて供給されている。 これにより、 加算器 C 3においてマルチパス信号に受信機雑音が付加される。 加えて、 フェージング付加部 154は自動利得制御部 1 93を有する。 自動 利得制御部 193は、制御装置 121から AGC制御部 1 95に目標レベルが 入力されることにより、 AGC制御部 1 95は目標レベルと増幅器 1 94の出 力信号の差分値を増幅器 194の増幅値として設定する。 この結果、 自動利得 制御部 193では、 簡易的なディジタル利得制御処理を行って、 マルチパス信 号を目標レベルで一定の信号とすることができる。
このようにマルチパス信号に対して利得制御を行う必要があるのは、 加算器 C 1により加算されたマルチパス信号は、 それぞれ独立にレベル変動が与えら れた各パスの信号を加算したものなので、 ディジタルベースバンド信号自体に レベル変動が生じていると想定できるためである。 これを考慮して、 利得制御 部 1 93により簡易的なディジタル利得制御処理を行って、 マルチパス信号の レベルを一定とすることにより、 無線回路 53 (図 21) が完成しておらず A GC処理が行えない場合でも、 開発装置の受信系 50内の AD変換でのビット 落ちを防止することができる。 この結果、 ディジタル BB処理部 41のデイジ タルベースバンド信号に基づいてマルチパス伝送路での伝送路特性を良好に 評価できるようになる。
またこの実施の形態の伝送路シミュレータ 1 20においては、 送信系のディ ジタル BB処理部 41からのディジタルベースバンド信号を入力して、 この信 号に伝送路変動を与えた後、 受信系 50のディジタル B B処理部 51に出力し て、 ディジタル BB処理部 41、 51の伝搬特性を評価する場合には、 位相変 動 ONZOFF部 1 67 (図 26) 、 184 (図 29) を OFF制御し、 有相 関瞬時変動付加部 1 56に Iチャネルと Qチャネルが同一レベルの有相関瞬 時変動を入力する。 これは図示していないが、 短区間変動付加部 153に供給 する短区間変動についても同様である。
これにより、無線回路 53の AFCが無くても、ディジタル BB処理部 41、 51の性能を単独で評価できるようになる。 因みに、 無線回路 43、 53が接 続された段階では、 無線回路 5 3による A G C機能及び A F C機能が働くので、 各複素乗算器 A l〜A k、 B 1〜B kにおいて Iチャネルと Qチャネルのそれ ぞれの包絡線振幅が異なるような短区間変動の複素利得を乗算してディジタ ルベースパンド信号に位相変動を与えてもよい。
( 2— 4 ) 送信アナログ調整部及び受信アナログ調整部の構成
次に送信アナ口グ調整部 1 2 4と受信アナログ調整部 1 2 9の構成につい て説明する。 この送信アナログ調整部 1 2 4と受信アナログ調整部 1 2 9は、 M X Nチャネルの各チャネルに対応するアナログ回路の性能のばらつきによ り生じる各チヤネルの信号のばらつきを模擬するものである。
すなわちシミュレート対象としている開発装置 4 0、 5 0には、 送信側に M 個、 受信側に N個のアナログ回路が存在し、 これら M X N個のアナログ回路間 のばらつきが伝送路上の信号にも影響することに着目し、 送信アナログ調整部 1 2 4及び受信アナ口グ調整部 1 2 9によりディジタルベースバンド信号に 適宜このチヤネル間でのばらつきを模擬して与えるようにした。 これにより、 より現実に近い M X Nチャネル伝送路での伝搬変動をシミュレートできるよ うになる。
この結果、 伝送路シミュレータ 1 2 0においては、 送信系 4 0の無線回路 4 3及び受信系 5 0の無線回路 5 3の開発が終了していなくても、 これら無線回 路 4 3、 5 3で生じるであろう信号劣化をディジタルベースバンド信号に付カロ して、 ディジタル B B処理部 4 1、 5 1の特性を評価できるようになる。
この結果、 ディジタル B B処理部 4 1、 5 1と無線回路 4 3、 5 3との適合 性も含めて、 ディジタル B B処理部 4 1、 5 1の伝送路特性を評価できるよう になる。 また、 後に開発される無線回路 4 3、 5 3においてどの程度の信号劣 化が生じるまで、 ディジタル B B処理部 4 1、 5 1の性能が所望値を満たすか を前もって測定できるようになる。
送信アナログ調整部 1 2 4及び受信アナログ調整部 1 2 9の構成を具体的 に説明する。 送信アナ口グ調整部 1 2 4は、 図 3 1に示すように、 スィツチ 1 2 5 (図 2 2 ) からのベースバンド信号を利得アンバランス発生部 2 1 0に入 力する。利得アンバランス発生部 2 1 0は、ディジタルベースバンド信号の I、 Qそれぞれのチャネル信号を独立に増幅することにより利得差を生じさせる。 D Cオフセット付加部 2 1 1は、 I、 Qそれぞれのチヤネノレ信号に一定値を増 減することにより直流オフセットを付加する。
周波数オフセット ·位相オフセット付加部 2 1 2は、 I、 Qそれぞれのチヤ ネル信号に無線回路 4 3やアナログ回路 1 2 3 (図 2 2 ) で生じるであろう周 波数オフセット及ぴ位相オフセットを付加する。 実際上、 周波数オフセット - 位相オフセット付加部 2 1 2は、 各チャネルの信号に対して、 瞬時位相 Θ 1、 Θ 2に応じた変動量 C O S 0 1、 S I N S 2を乗ずる複素乗算器でなる。
つまり、 Iチャネル信号には変動量 C O S 0 1を乗じ、 Qチャネル信号には 変動量 S I N 0 2を乗じる。 ここで瞬時位相 0 1、 Θ 2を一定とした場合には 位相オフセットのみを付加したことを意味し、 瞬時位相 0 1、 6 2が時間と共 に変動する場合には位相オフセットに加えて周波数オフセットを付加したこ とを意味する。
送信アナログ調整部 1 2 4では、 この瞬時位相 Θ 1、 Θ 2を求めるに当たつ て、 位相增分量算出回路 2 1 5により周波数オフセット設定値 S 2 0 Eから 1 サンプル当たりの位相回転量を算出し、 これを m o d 2 π算出回路 2 1 7、 2 1 9に送出する。 この際、 Iチヤネ/レ信号と Qチヤネノレ信号の直交~生の崩れ を付加するために、 Qチャネル信号の位相回転量には加算器 2 1 8により直交 性の劣化量 S 2 0 Fを加える。
また加算器 2 1 6には 1サンプル前の位相が入力される。 この 1サンプル前 の位相は、 Ζ— 1算出回路 2 2 2で初期位相 (つまり、 位相オフセット) S 2 0 Dと 1サンプル前の位相とに基づく演算を行うことにより算出される。 加算 器 2 1 6では、 1サンプル前の位相に位相増分量算出回路 2 1 5で算出した 1 サンプル分の位相回転量を加算することで、 現サンプルの位相回転量が求めら れる。 このように、 加算器 2 1 6、 m o d 2 π算出回路 2 1 7及び Ζ— 1算出回 路 2 2 2の処理ループを繰り返すことにより、位相オフセット及び周波数オフ セットが加味された 1サンプル毎の Iチャネル瞬時位相 0 1が算出されると 共にこの瞬時位相 0 1に直交性の劣化量を加えた Qチャネル瞬時位相 0 2が 算出される。
そして周波数オフセット ·位相オフセット付加部 2 1 2では、 ディジタノレべ 一スパンド信号の Iチャネルに変動量 C O S θ 1が付加され、 Qチャネルに変 動量 S I N Θ 2が付加されることにより、 送信系 4 0の無線回路 4 3やアナ口 グ回路 1 2 3で生じるであろうディジタルベースバンド信号の各チャネルに ついての周波数オフセット及び位相オフセットが付加される。 遅延調整部 2 1 3は、 無線回路 4 3やアナログ回路で生じるであろう回路遅延量を付加する。 疑似パワーアンプ (P A) 部 2 1 4は、 無線回路 4 3の増幅部で生じるであ ろう非線形歪みを模擬的に生じさせるもので、 例えば図 3 2に示すように構成 されている。疑似 P A部 2 1 4は、包絡線振幅計算回路 2 3 0によって、 ( I 2 + Q 2 )を計算することによりディジタルベースバンド信号の包絡線振幅 Xを 計算し、 これを平均化回路 2 3 1及び歪み演算部 2 3 2に送出する。
平均化回路 2 3 1は、 制御装置 1 2 1によって設定される忘却係数 (つまり レべ 計算時定数) S 2 0 Hに応じた時間だけ包絡線振幅を平均化し、 求めた 平均値 P aveを飽和レベル演算回路 2 3 3に送出する。 飽和レベル演算回路 2 3 3は、 包絡線振幅の平均値を P aveとし、 制御部 1 1 0により設定されるパ ヮーァンプのバックオフを I B Oとしたとき、 飽和レベル Asat を次式により 求める。
_ ΙΒΟ
A -ρ χι o" 20 ( 1 3) 歪み演算部 2 3 2は、包絡線振幅計算回路 2 3 0により求めた包絡線振幅値 Xと、 飽和レベル演算回路 2 3 3により求めた飽和レベル Asat を用いて、 增 幅器 234の制御値を次式により算出する。
制御値
10 (14)
1+
■"■sat
これにより、 疑似パワーアンプ (PA) 部 214は、 ディジタルべースバンド 信号に対して、 無線回路 43の増幅部で生じるであろう非線形歪みを模擬的に 付加することができる。
受信アナログ調整部 129は、 図 33に示すように構成されている。 受信ァ ナログ調整部 129は、 選択合成部 128 (図 22) から出力されたディジタ ルベースバンド信号を周波数オフセット■位相オフセット付加部 251に入力 する。
周波数オフセット ·位相オフセット付加部 251は、 上述した送信アナログ 調整部 124の周波数オフセット ·位相オフセット付加部 212と同様の処理 を行う。 すなわち I、 Qそれぞれのチャネルに受信系 50の無線回路 53ゃァ ナログ回路 131 (図 22) で生じるであろう周波数オフセット及ぴ位相オフ セットを付加する。 実際上、 周波数オフセット ·位相オフセット付加部 212 は、 各チャネルの信号に対して、 瞬時位相 e 1' 、 Θ 2' に応じた変動量 c〇
S θ 1 ' 、 S INS 2, を乗ずる複素乗算器でなる。 つまり、 Iチャネル信号 には変動量 CQS e i' を乗じ、 Qチャネル信号には変動量 S I N 02' を乗 じる。
受信アナログ調整部 129では、 この瞬時位相 0 1' 、 Θ 2' を求めるに当 たって、位相増分量算出回路 252により周波数オフセット設定値 S 22Bか ら 1サンプル当たりの位相回転量を算出し、 これを mo d 2 π算出回路 25 4、 256に送出する。 この際、 Iチャネル信号と Qチャネル信号の直交性の 崩れを付加するために、 Qチヤネノレ信号の位相回転量には加算器 255により 直交性の劣化量 S 22 Cを加える。 また加算器 2 5 3には 1サンプル前の位相が入力される。 この 1サンプル前 の位相は、 Z _ 1算出回路 2 5 9で初期位相 (つまり、 位相オフセット) S 2 2 Aと 1サンプル前の位相とに基づく演算を行うことにより算出される。 加算 器 2 5 3では、 1サンプル前の位相に位相増分量算出回路 2 5 2で算出した 1 サンプル分の位相回転量を加算することで、 現サンプルの位相回転量が求めら れる。
そして周波数オフセット■位相オフセット付加部 2 5 1では、 ディジタルべ ースバンド信号の Iチャネ^ 4こ変動量 C O S Θ 1, が付加され、 Qチャネルに 変動量 S I N 0 2 ' が付加されることにより、 受信系 5 0の無線回路 5 3ゃァ ナログ回路 1 3 1で生じるであろうディジタルベースバンド信号の各チヤネ ^こついての周波数オフセット及び位相オフセットが付加される。
利得アンバランス発生部 2 6 1は、 ディジタルベースバンド信号の I、 Qそ れぞれのチャネル信号を独立に増幅することにより利得差を生じさせる。 D C オフセット付加部 2 6 2は、 I、 Qそれぞれのチャネルに一定値を増減するこ とにより直流オフセットを付加する。 遅延調整部 2 6 3は、 無線回路 5 3ゃァ ナログ回路 1 3 1で生じるであろう回路遅延量を付加する。
ここで送信アナログ調整部 1 2 4及び受信アナログ調整部 1 2 9の各種の 設定値 S 2 0 ( S 2 0 A〜S 2 0 1 ) 、 S 2 2 ( S 2 2 A〜S 2 2 H) は、 ュ 一ザが制御装置 1 2 1を介して任意に選択することができるようになつてい る。
これにより、 送信系 4 0の無 ϋ回路 4 3や受信系 5 0の無 f泉回路 5 3ができ あがる前から、つまりディジタル B B処理部 4 1、 5 1のみが完成した段階で、 無線回路 4 3、 5 3やアナログ回路 1 2 3、 1 3 1で生じるであろう利得アン バランス、 D Cオフセット、 周波数オフセット、 位相オフセット、 回路遅延又 は増幅時の非線形歪み等を自在に模擬することができるようになるので、 開発 中のディジタル B B処理部 4 1 , 5 1と種々の特性の無線回路 4 3、 5 3とを 組み合わせた際の、 ディジタル B B処理部 4 1、 5 1の特性評価を行うこと力 S できるようになる。
( 3 ) 実施の形態の効果
かくして以上の構成によれば、 送信系 4 0により得られた M個の信号をそれ ぞれ N個ずつ複製することにより M X N個のチャネル信号を形成するスィッ チ 1 2 5と、 この M X N個のチャネル信号それぞれに対して、 送受信アンテナ の配置に応じた有相関瞬時変動及び短区間変動を与えるチャネル処理部 1 2 6— 1 ~ 1 2 6 MNと、伝送路変動が与えられた M X N個のチャネル信号を選 択的に M個ずつ合成することにより N個の信号を形成する選択合成部 1 2 8 を設けたことにより、 マルチアンテナ装置において実際に生じる伝送路変動を 模擬できるようになるので、 マルチアンテナ装置における伝送路特性を的確か つ容易にシミュレ一トできるようになる。
本発明は、 上述した実施の形態に限定されずに、 種々変更して実施すること ができる。
本発明の一つの態様の伝送路シミュレート方法は、 送受信アンテナの配置情 報を用いて、 M X Nチャネル伝送路それぞれにおける伝送路変動を形成する伝 送路変動形成ステップと、 この M X Nチャネル分の伝送路変動を M X Nチヤネ ルの信号にそれぞれに与える伝送路変動付与ステップと、 を含むようにする。 この方法によれば、 送受信ァンテナの配置情報から M X Nチャネル伝送路全 ての伝送路変動を形成しているので、 マルチアンテナ装置により形成される M X Nチャネル伝送路での伝送路変動を的確かつ容易に形成できるようになる。 また走行実験で伝送路データを収集し再現する場合にも、 送受信ァンテナを各 1本を有するデータ収集装置で 1チャネル分のデータを収集し、 これを基準チ ャネルとしてこれと開発装置の送受信アンテナとの相対配置から M X Nチヤ ネル伝送路での伝送路変動を的確かつ容易に形成できるので、 データ蓄積用の メモリを大幅に節約でき、 走行実験回数も激減して開発効率を向上できる。 本発明の一つの態様の伝送路シミュレート方法は、伝送路変動形成ステップ では、 送受信アンテナの配置情報を用いて、 アンテナ配置に起因する各伝送路 での遅延と位相変化を求め、 各チャネル伝送路間でこの遅延と位相変化が異な る伝送路変動を形成するようにする。
この方法によれば、 アンテナ配置に起因する各伝送路での遅延と位相変化の みを異ならせて、 M X Nチャネル分の伝送路変動を形成するようにしたので、 容易に M X Nチャネル分の伝送路変動を形成することができるようになる。 本発明の一つの態様の伝送路シミュレ一ト方法は、伝送路変動形成ステツプ では、伝送路変動として各チャネル伝送路に関する短区間変動を形成するにあ たって、 各チャネルの送受信アンテナの位置関係の情報と、 各パスの放射方向 及び到来方向の情報とを用いて、予め設定又は用意された基準チャネルの各パ スと各チャネルの各パスとの経路差を求め、 各チャネルの各パスの信号に、 基 準チャネルの各パスの短区間変動に対してこの経路差分だけ異なる位相差を 生じさせるような短区間変動を形成することで、 M X Nチヤネノレ分についての 短区間変動を形成するようにする。
この方法によれば、 送信ァンテナ間および受信ァンテナ間の距離は短区間変 動周期よりも十分短いため各チャネル内のパス数およびパスの利得が等しい と見なして、 基準チャネルの各パスの短区間変動に対してこの経路差分だけ異 なる位相差を生じさせるような短区間変動を形成するようにしたので、 基準チ ャネルの伝送路モデルから M X Nチャネル全ての短区間変動を形成すること ができ、 予め基準チャネルの伝送路モデルさえ用意すれば、 M X Nチヤネノレ伝 送路の短区間変動を容易かつ的確に形成することができるようになる。
本発明の一つの態様の伝送路シミュレート方法は、伝送路変動形成ステップ では、伝送路変動として各チャネル伝送路に関する瞬時変動を形成するにあた つて、 基準チャネルとそれ以外の 1チャネル分それぞれの帯域制限したガウス. 雑音を発生し、 これら 2つの帯域制限したガウス雑音を少なくともアンテナ配 置情報をパラメータとする有相関フィルタ特性で重付け加算することで、 基準 チヤネルの瞬時変動と相関のある有相関瞬時変動を形成する、 といった処理を M X Nチャネル分だけ実行することにより、 M X Nチャネル分の有相関瞬時変 動を形成するようにする。
この方法によれば、 基準チャネルの各パスの情報から、 当該基準チヤネ と 相関のある Μ Χ Νチャネル分の有相関瞬時変動を形成できるようになり、 M X Nチヤネル分の瞬時変動を独立に設定する場合と比較して、 的確かつ容易に M X Nチヤネル分の瞬時変動を形成できるようなる。 なおこの方法は、 換言すれ ば、 2チャネル分の有相関瞬時変動を発生させる方法として従来提案されてい た笹岡による方法を、 M X Nチャネルの有相関瞬時変動を発生させるように拡 張したものである。
本 明の一つの態様の伝送路シミュレート方法は、伝送路変動形成ステップ 1 各チャネル間で互いに独立な (M X N Xパス数) の瞬時変動を発生するス テツプと、 入力データ又は実験データと、 アンテナの位置関係により求めた各 パスの伝搬経路差と、 レイリーフェージングの理論空間相関値とから (MN X MN) 相関行列を求めるステップと、 互いに無相関な信号べクトルから互いに 相関のある信号ベク トルを算出するための変換行列を前記相関行列に基づい て求めるステップと、 前記各チャネルで対応するパスの瞬時変動毎に前記変換 行列を用いた行列演算処理をパス数回分施すことにより、 チャネル間で互いに 相関のある (M X N Xパス数) 分の有相関瞬時変動を求めるステップと、 を含 むようにする。
この方法によれば、 基準チャネルと各チャネルの相関のみならず、 全チヤネ ル間で相関のある (M X N Xパス数) 分の有相関瞬時変動を形成できるように なる。 この結果、 実際の M X Nチャネル伝送路で発生する瞬時変動により近い 瞬時変動を形成することができるようになる。
本宪明の一つの態様の伝送路シミュレート方法は、伝送路変動形成ステップ は、 各チャネル間及び各パス間で互いに独立な (M X N Xパス数) 分の瞬時変 動を発生するステップと、 入力データ又は実験データと、 アンテナの位置関係 により求めた各パスの伝搬経路差と、 レイリーフェージングの理論時空間相関 値とから (ΜΝ ·パス数 ΧΜΝ ·パス数) 相関行列を求めるステップと、 互いに 無相関な信号べクトルから互いに相関のある信号べクトルを算出するための 変換行列を前記相関行列に基づいて求めるステップと、前記(M X N Xパス数) 分の瞬時変動に対して前記変換行列を用いた行列演算処理を施すことにより、 パス間で互いに相関のある (M X N Xパス数) 分の有相関瞬時変動を求めるス テツプと、 を含むようにする。
この方法によれば、 '各チャネル間及び各パス間で互 ヽに相関のある有相関瞬 時変動を求めるようにしたので、 M X Nチャネルでかつマルチパスが存在する 伝送路のシミュレートも的確かつ容易に行うことができるようになる。
本発明の一つの態様の伝送路シミュレート方法は、 変換行列を求めるステツ プでは、 前記変換行列を固有値変換により求めるようにする。
この方法によれば、 互いに独立な瞬時変動から有相関瞬時変動を求める際に、
(M X N) 2個や (M X N Xパス数) 2個の要素をもった行列を用いるのではな く、 要素数の少ない行列 (固有値) を用いることができるようになるので、 少 ない計算量で有相関瞬時変動を求めることができるようになる。
本発明の一つの態様の伝送路シミュレ一ト方法は、 変換行列を求めるステッ プでは、 前記変換行列をコレスキー分解により求めるようにする。
この方法によれば、 互いに独立な瞬時変動から有相関瞬時変動を求める際に、 (M X N) 2個や (M X N Xパス数) 2個の要素をもった行列を用いるのではな く、 コレスキー分解により得られた下側三角行列を用いるようにしたので、 少 ない計算量で有相関瞬時変動を求めることができるようになる。
本発明の一つの態様の伝送路シミュレータは、 M本の送信アンテナと N本の 受信アンテナを用いる M X Nチャネル伝送方式を用いた無線機器の伝送路特 性をシミュレートする伝送路シミュレータであって、 無線機器の送信系により 得られた M個の信号を入力する入力手段と、 この M個の信号をそれぞれ N個ず つ複製することにより、 M X N個のチャネル信号を形成する信号複製手段と、 この M X N個のチャネル信号それぞれに対して、 送受信ァンテナの配置に応じ た伝送路変動を与えるチャネル処理手段と、伝送路変動が与えられた M X N個 のチャネル信号を選択的に M個ずつ合成することにより、 N個の信号を形成す る合成手段とを具備する構成を採る。
この構成によれば、 マルチアンテナ装置において実際に生じる伝送路変動を 模擬できるようになるので、 マルチアンテナ装置における伝送路特性を的確か つ容易にシミュレートできるようになる。
本発明の一つの態様の伝送路シミュレータは、 チャネル処理手段は、 各チヤ ネルの信号について送受信アンテナの配置に応じた遅延を有する各パスの信 号を形成するパス形成手段と、 各チャネルの各パスに与える短区間変動の複素 利得を形成する短区間複素ィンパルス応答発生手段と、 各チャネルの各パスの 信号に対して短区間変動を付加する短区間変動付加手段と、 を具備し、 短区間 複素ィンパルス応答発生手段は、各チャネルの送受信アンテナの位置関係の情 報と、 各パスの放射方向及び到来方向の情報とを用いて、 基準チャネルの各パ スと各チャネルの各パスとの経路差を求め、 パス形成手段により形成された各 チャネルの各パスの信号に、予め設定又は用意された基準チャネルの各パスの 短区間変動に対してこの経路差分だけ異なる位相差を生じさせるような短区 間変動を発生するようにする。
この構成によれば、 基準チャネルの伝送路モデルから M X Nチャネル全ての 短区間変動を形成することができるので、 予め基準チャネルの伝送路モデレさ え用意すれば、 M X Nチャネル伝送路の短区間変動を容易かつ的確に形成する ことができるようになる。
本発明の一つの態様の伝送路シミュレータは、 チャネル処理手段は、 各チヤ ネルの信号について送受信アンテナの配置に応じた遅延を有する各パスの信 号を形成するパス形成手段と、 各チャネルの各パスに与える有相関瞬時変動を 発生する有相関ガウス雑音発生手段と、 各チャネルの各パスの信号に対して有 相関瞬時変動を付加する有相関瞬時変動付加手段と、 を具備する構成を採る。 この構成によれば、 M X Nチヤネル分の瞬時変動を独立に設定する場合と比 較して、 マルチアンテナ装置において実際に生じるであろう M XNチャネル分 の瞬時変動を良好に模擬して、 送受信アンテナの配置に応じた遅延が与えられ た各パスの信号に付加することができるようになる。
本発明の一つの態様の伝送路シミュレータは、 有相関ガウス雑音発生手段は、 基準チャネルとそれ以外の 1チャネル分それぞれの帯域制限したガウス雑音 を発生し、 これら 2つの帯域制限したガウス雑音を少なくともアンテナ配置情 報をパラメータとする有相関フィルタ特性で重付け加算することで、 基準チヤ ネルの瞬時変動と相関のある有相関瞬時変動を形成する、 といつた処理を M X Nチャネル分だけ実行することにより、 M X Nチャネル分の有相関瞬時変動を 発生する構成を採る。
この構成によれば、 基準チャネルの各パスの情報から、 当該基準チャネルと 相関のある M X Nチャネル分の有相関瞬時変動を形成できるようになり、 M X Nチャネル分の瞬時変動を独立に設定する場合と比較して、 的確かつ容易に M X Nチヤネル分の瞬時変動を形成できるようなる。 なおこの構成は、 換言すれ ば、 2チャネル分の有相関瞬時変動を発生させる方法として従来提案されてい た笹岡による方法を、 M X Nチャネルの有相関瞬時変動を発生させるように拡 張したものである。
本発明の一つの態様の伝送路シミュレータは、 さらに、 入力データ又は実験 データと、 アンテナの位置関係により求めた各パスの伝搬経路差と、 レイリー フェージングの理論空間相関値とから相関行列を求めた後、 互いに無相関な信 号べクトルから互いに相関のある信号べクトルを算出するための変換行列を 前記相関行列に基づいて求める変換行列算出手段を具備し、 前記有相関ガウス 雑音発生手段は、 各チャネル間で互いに独立な (M X N Xパス数) 分の瞬時変 動を発生する瞬時変動発生手段と、 前記複数の瞬時変動に対して前記変換行列 を用いた行列演算処理をパス数回分施すことにより、 チャネル間で互いに相関 のある (M X N Xパス数) 分の有相関瞬時変動を発生する行列演算手段と、 を 具備する構成を採る。
この構成によれば、 基準チャネルと各チャネルの相関のみならず、 全チヤネ ル間で相関のある M X N Xパス数分の有相関瞬時変動を形成できるようにな る。 この結果、 実際の M X Nチャネル伝送路で発生する瞬時変動により近い瞬 時変動を形成することができるようになる。
本発明の一つの態様の伝送路シミュレータは、 さらに、 入力データ又は実験 データと、 アンテナの位置関係により求めた各パスの伝搬経路差と、 レイリー フエ一ジングの理論時空間相関値とから相関行列を求めた後、 互レヽに無相関な 信号べクトルから互いに相関のある信号べクトルを算出するための変換行列 を前記相関行列に基づいて求める変換行列算出手段を具備し、 前記有相関ガウ ス雑音発生手段は、 各チャネル間及び各パス間で互いに独立な (M X N Xパス 数) 分の瞬時変動を発生する瞬時変動発生手段と、 前記複数の瞬時変動に対し て前記変換行列を用いた行列演算処理を施すことにより、 パス間で互いに相関 のある (M X N Xパス数) 分の有相関瞬時変動を発生する行列演算手段と、 を 具備する構成を採る。
この構成によれば、 各チヤネ 間及び各パス間で互 、に相関のある有相関瞬 時変動を求めるようにしたので、 M X Νチャネルでかつマルチパスが存在する 伝送路特性のシミュレートも的確かつ容易に行うことができるようになる。 本発明の一つの態様の伝送路シミュレータは、 変換行列算出手段は、 変換行 列を固有値変換により求める構成を採る。
この構成によれば、 行列演算手段で互レヽに独立な瞬時変動から有相関瞬時変 動を求める際に、 (M X N) 2個や (M X N Xパス数) 2個の要素をもった行列 を用いるのではなく、 要素数の少ない行列 (固有値) を用いることができるよ うになるので、 行列演算手段での計算量を少なくすることができる。
本発明の一つの態様の伝送路シミュレータは、 変換行列算出手段は、 変換行 列をコレスキー分解により求める構成を採る。
この構成によれば、 行列演算手段で互いに独立な瞬時変動から有相関瞬時変 動を求める際に、 (M X N) 2個や (M X N Xパス数) 2個の要素をもった行列 を用いるのではなく、 コレスキー分解により得られた下側三角行列を用いるよ うになるので、 行列演算手段での計算量を少なくすることができる。
本発明の一つの態様の伝送路シミュレータは、 ディジタル回路により構成さ れ、 前記 M X Nチャネルの各チャネルに対応するアナログ回路の性能のばらつ きにより生じる各チヤネルの信号のばらつきを模擬するアナ口グ調整手段を、 さらに具備する構成を採る。
この構成によれば、 シミュレートの対象としているマルチアンテナ装置には、 送信側に M個、 受信側に N個のアナログ回路が存在し、 これら M X N個のアナ ログ回路間のばらつきが伝送路上の信号にも影響することに着目し、 アナログ 調整手段によりディジタルベースバンド信号に適宜このチャネル間でのばら つきを模擬して与えるようにしたので、 より現実に近い M X Nチヤネノレ伝送路 での伝送路変動をシミュレートできるようになる。
本発明の一つの態様の伝送路シミュレータは、 無線機器の送信系のディジタ ルベースバンド処理部の出力信号を入力する入カインターフェースと、 伝送路 変動を与えた各パスの信号を加算したマルチパス信号の信号レベルがほぼ一 定になるような利得制御を行う利得制御手段と、利得制御後のディジタルべ一 スバンド信号を無線機器の受信系のディジタルベースバンド処理部に出力す る出力インターフェースと、 をさらに具備すると共に、 前記チャネル処理手段 において、 I成分と Q成分が等しい伝送路変動成分を与えるようにする構成を 採る。
この構成によれば、入力手段からディジタルベースバンド信号を直接入力し、 かつ伝送路変動が与えられたマルチパス信号に対して受信系内の AD変換で ビット落ちの生じないように利得制御手段によるレベル補正を行い、 かつ I成 分と Q成分が等しい伝送路変動成分を与えるようにしたので、 開発装置受信系 の無線回路がなくても各パスに対して A F Cと A G Cがほぼ理想的に動作し たときの特性を測定することができるようになる。 この結果、 A G C回路や A F C回路が無くても、 ディジタルベースバンド信号のみでディジタルベースバ ンド処理部の性能を評価できるようになる。 このように無,線回路が無くてもデ ィジタルベースバンド処理部の特性を評価できるようになるので、 開発効率を 向上させることができるようになる。
以上説明したように本 明によれば、 受信アンテナの配置情報を用いて、 M X Nチャネル伝送路それぞれにおける伝送路変動を形成し、 この MX Nチヤネ ル分の伝送路変動を MX Nチャネルの信号にそれぞれに与えるようにしたの で、 送受信アンテナの配置情報から MX Nチャネル伝送路全ての伝送路変動を 形成でき、 マルチアンテナ装置により形成される MX Nチャネル伝送路での伝 送路変動を的確かつ容易に形成できるようになる。
本明細書は、 2002年 12月 24日出願の特願 2002— 372960に 基づく。 その内容はすべてここに含めておく。 産業上の利用可能性
本発明は、例えば携帯電話やその基地局、無線 LAN (Local Area Network) の MT (Mobile Terminal) や AP (Access Point) を開発する際に用いて好 適なものである。

Claims

請求の範囲
1 . M本の送信アンテナと N本の受信アンテナから形成される M X Nチャネル伝送路をシミュレ一トする伝送路シミュレ一ト方法であって、 送受信ァンテナの配置情報を用いて、 前記 M X Nチヤネル伝送路それぞれに おける伝送路変動を形成する伝送路変動形成ステップと、
この M X Nチャネル分の伝送路変動を M X Nチャネルの信号にそれぞれに 与える伝送路変動付与ステップと、 を含む伝送路シミュレート方法。
2 . 前記伝送路変動形成ステップでは、前記送受信アンテナの配 置情報を用いて、 アンテナ配置に起因する各伝送路での遅延と位相変化を求め、 各チヤネノレ伝送路間でこの遅延と位相変化が異なる伝送路変動を形成する、 請 求項 1に記載の伝送路シミュレート方法。
3 . 前記伝送路変動形成ステップでは、前記伝送路変動として各 チヤネル伝送路に関する短区間変動を形成するにあたって、 各チャネルの送受 信アンテナの位置関係の情報と、各パスの放射方向及び到来方向の情報とを用 いて、 予め設定又は用意された基準チャネルの各パスと各チャネルの各パスと の経路差を求め、 各チャネルの各パスの信号に、 基準チャネルの各パスの短区 間変動に対してこの経路差分だけ異なる位相差を生じさせるような短区間変 動を形成することで、 前記 M X Nチヤネル分についての短区間変動を形成する、 請求項 2に記載の伝送路シミュレート方法。
4 . 前記伝送路変動形成ステップでは、前記伝送路変動として各 チヤネノレ伝送路に関する瞬時変動を形成するにあたって、 基準チャネルとそれ 以外の 1チャネル分それぞれの帯域制限したガウス雑音を発生し、 これら 2つ の帯域制限したガウス雑音を少なくともアンテナ配置情報をパラメータとす る有相関フィルタ特性で重付け加算することで、 基準チャネルの瞬時変動と相 関のある有相関瞬時変動を形成する、 といった処理を M X Nチャネル分だけ実 行することにより、 M X Nチャネル分の有相関瞬時変動を形成する、 請求項 1 に記載の伝送路シミュレート方法。
5 · 前記伝送路変動形成ステップは、
各チャネル間で互いに独立な (M X N Xパス数) 分の瞬時変動を発生するス 入力データ又は実験データと、 アンテナの位置関係により求めた各パスの伝 搬経路差と、 レイリーフェージングの理論空間相関値とから (MN XMN) 相 関行列を求めるステップと、
互いに無相関な信号べクトルから互いに相関のある信号べクトルを算出す るための変換行列を前記相関行列に基づいて求めるステップと、
前記各チヤネルで対応するパスの瞬時変動毎に前記変換行列を用いた行列 演算処理をパス数回分施すことにより、 チャネル間で互いに相関のある (M X N Xパス数) 分の有相関瞬時変動を求めるステップと、
を含む請求項 1に記載の伝送路シミュレート方法。
6 . 前記伝送路変動形成ステップは、
各チャネル間及び各パス間で互いに独立な (M X N Xパス数) 分の瞬時変動 を発生するステップと、
入力データ又は実験データと、 アンテナの位置関係により求めた各パスの伝 搬経路差と、 レイリーフェージングの理論時空間相関値とから (ΜΝ ·パス数 Χ ΜΝ ·パス数) 相関行列を求めるステップと、
互いに無相関な信号べクトルから互いに相関のある信号べクトルを算出す るための変換行列を前記相関行列に基づいて求めるステップと、
前記 (M X N Xパス数) 分の瞬時変動に対して前記変換行列を用いた行列演 算処理を施すことにより、 パス間で互いに相関のある (M X N Xパス数) 分の 有相関瞬時変動を求めるステップと、
を含む請求項 1に記載の伝送路シミュレ一ト方法。
7 . 前記変換行列を求めるステップでは、前記変換行列を固有値 変換により求める、 請求項 5又は請求項 6に記載の伝送路シミュレ一ト方法。
8 . 前記変換行列を求めるステツプでは、前記変換行列をコレス キー分解により求める、 請求項 5又は請求項 6に記載の伝送路シミュレート方 法。
9 . M本の送信アンテナと N本の受信アンテナを用いる M X Nチ ャネル伝送方式を用いた無線機器の伝送路特性をシミュレートする伝送路シ ミュレータであって、
無線機器の送信系により得られた M個の信号を入力する入力手段と、 前記 M個の信号をそれぞれ N個ずつ複製することにより、 M X N個のチヤネ ル信号を形成する信号複製手段と、
前記 M X N個のチャネル信号それぞれに対して、 送受信ァンテナの配置に応 じた伝送路変動を与えるチャネル処理手段と、
伝送路変動が与えられた M X N個のチャネル信号を選択的に M個ずつ合成 することにより、 N個の信号を形成する合成手段と
を具備する伝送路シミュレータ。
1 0 . 前記チャネル処理手段は、各チャネルの信号について送受 信アンテナの配置に応じた遅延を有する各パスの信号を形成するパス形成手 段と、各チャネルの各パスに与える短区間変動の複素利得を形成する短区間複 素ィンパルス応答発生手段と、 各チャネルの各パスの信号に対して短区間変動 を付加する短区間変動付加手段と、 を具備し、 前記短区間複素インパルス応答 発生手段は、 各チャネルの送受信アンテナの位置関係の情報と、 各パスの放射 方向及び到来方向の情報とを用いて、 基準チャネルの各パスと各チャネルの各 パスとの経路差を求め、 前記パス形成手段により形成された各チャネルの各パ スの信号に、 予め設定又は用意された基準チャネルの各パスの短区間変動に対 してこの経路差分だけ異なる位相差を生じさせるような短区間変動を発生す る、 請求項 9に記載の伝送路シミュレータ。
1 1 . 前記チャネル処理手段は、各チャネルの信号について送受 信アンテナの配置に応じた遅延を有する各パスの信号を形成するパス形成手 段と、 各チャネルの各パスに与える有相関瞬時変動を発生する有相関ガゥス雑 音発生手段と、各チャネルの各パスの信号に対して有相関瞬時変動を付加する 有相関瞬時変動付加手段と、 を具備する請求項 9に記載の伝送路シミュレータ。
1 2 . 前記有相関ガウス雑音発生手段は、基準チャネルとそれ以 外の 1チャネル分それぞれの帯域制限したガウス雑音を発生し、 これら 2つの 帯域制限したガウス雑音を少なくともアンテナ配置情報をパラメータとする 有相関フィルタ特性で重付け加算することで、 基準チャネルの瞬時変動と相関 のある有相関瞬時変動を形成する、 といつた処理を M X Nチャネル分だけ実行 することにより、 M X Nチャネル分の有相関瞬時変動を形成する、 請求項 1 1 に記載の伝送路シミュレータ。
1 3 . さらに、 入力データ又は実験データと、 アンテナの位置関 係により求めた各パスの伝搬経路差と、 レイリーフェージングの理論空間相関 値とから相関行列を求めた後、 互いに無相関な信号べクトルから互いに相関の ある信号ベク トルを算出するための変換行列を前記相関行列に基づいて求め る変換行列算出手段を具備し、
前記有相関ガウス杂象音発生手段は、
各チャネル間で互いに独立な (M X N Xパス数) 分の瞬時変動を発生する瞬 時変動発生手段と、
前記複数の瞬時変動に対して前記変換行列を用いた行列演算処理をパス数 回分施すことにより、 チャネル間で互いに相関のある (M X N Xパス数) 分の 有相関瞬時変動を発生する行列演算手段と、
を具備する請求項 1 1に記載の伝送路シミュレータ。
1 4 . さらに、 入力データ又は実験データと、 アンテナの位置関 係により求めた各パスの伝搬経路差と、 レイリ一フェージングの理論時空間相 関値とから相関行列を求めた後、 互いに無相関な信号べクトルから互いに相関 のある信号べクトルを算出するための変換行列を前記相関行列に基づいて求 める変換行列算出手段を具備し、
前記有相関ガウス雑音発生手段は、 各チャネル間及び各パス間で互いに独立な (M X N Xパス数) 分の瞬時変動 を発生する瞬時変動発生手段と、
前記複数の瞬時変動に対して前記変換行列を用いた行列演算処理を施すこ とにより、 パス間で互いに相関のある (M X N Xパス数) 分の有相関瞬時変動 を発生する行列演算手段と、
を具備する請求項 1 1に記載の伝送路シミュレータ。
1 5 . 前記変換行列算出手段は、前記変換行列を固有値変換によ り求める、 請求項 1 3又は請求項 1 4に記載の伝送路シミュレータ。
1 6 . 前記変換行列算出手段は、前記変換行列をコレスキー分解 により求める、 請求項 1 3又は請求項 1 4に記載の伝送路シミュレータ。
1 7 . ディジタル回路により構成され、前記 M X Nチャネルの各 チャネルに対応するアナ口グ回路の性能のばらつきにより生じる各チャネル の信号のばらつきを模擬するアナ口グ調整手段を、 さらに具備する請求項 9に 記載の伝送路シミユレータ。
1 8 . 無線機器の送信系のディジタルベースバンド処理部の出力 信号を入力する入力インターフェースと、伝送路変動を与えた各パスの信号を 加算したマルチパス信号の信号レベルがほぼ一定になるような利得制御を行 う利得制御手段と、利得制御後のディジタルベースバンド信号を無線機器の受 信系のディジタルベースバンド処理部に出力する出力インターフェースと、 を さらに具備すると共に、 前記チャネル処理手段において、 I成分と Q成分が等 しい伝送路変動成分を与えるようにする、 請求項 9に記載の伝送路シミュレー タ。
PCT/JP2003/016531 2002-12-24 2003-12-24 伝送路シミュレート方法及び伝送路シミュレータ WO2004059876A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004562901A JPWO2004059876A1 (ja) 2002-12-24 2003-12-24 伝送路シミュレート方法及び伝送路シミュレータ
US10/538,143 US20060148429A1 (en) 2002-12-24 2003-12-24 Transmission path simulation method and transmission path simulator
EP03786254A EP1578032A4 (en) 2002-12-24 2003-12-24 TRANSMISSION PATH SIMULATION PROCEDURE AND TRANSMISSION ROUTE SIMULATOR
AU2003296072A AU2003296072A1 (en) 2002-12-24 2003-12-24 Transmission path simulation method and transmission path simulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-372960 2002-12-24
JP2002372960 2002-12-24

Publications (1)

Publication Number Publication Date
WO2004059876A1 true WO2004059876A1 (ja) 2004-07-15

Family

ID=32677246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016531 WO2004059876A1 (ja) 2002-12-24 2003-12-24 伝送路シミュレート方法及び伝送路シミュレータ

Country Status (6)

Country Link
US (1) US20060148429A1 (ja)
EP (1) EP1578032A4 (ja)
JP (1) JPWO2004059876A1 (ja)
CN (1) CN1754326A (ja)
AU (1) AU2003296072A1 (ja)
WO (1) WO2004059876A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106693A1 (ja) * 2005-03-30 2006-10-12 Matsushita Electric Industrial Co., Ltd. マルチアンテナシステムにおける制限フィードバック方法、チャネルパラメータ生成方法および無線受信装置
JP2007067951A (ja) * 2005-08-31 2007-03-15 Koden Electronics Co Ltd Mimoフェージングシミュレータ
JP2008532400A (ja) * 2005-03-01 2008-08-14 エレクトロビット システム テスト オーイー データ特性化mimo環境を生成するための方法、装置機構、送信器ユニット、及び受信器ユニット
JP2009171502A (ja) * 2008-01-21 2009-07-30 Anritsu Corp 携帯端末試験装置および携帯端末試験方法
CN1702986B (zh) * 2005-07-15 2010-04-28 清华大学 基带多径衰落信道模拟器
JP2010226713A (ja) * 2009-03-16 2010-10-07 Actix Gmbh セルラー無線ネットワーク内におけるマルチアンテナの配備によって得られる容量および有効範囲の利得を近似し最適化する方法
CN101959132A (zh) * 2009-07-15 2011-01-26 雷凌科技股份有限公司 用于无线通讯系统的基地台选择方法及装置
JP2011515050A (ja) * 2008-03-07 2011-05-12 ローデ ウント シュワルツ ゲーエムベーハー ウント コー カーゲー マルチアンテナ信号の生成方法
JP2011176873A (ja) * 2011-04-25 2011-09-08 Koden Electronics Co Ltd Mimoフェージングシミュレータ
JP2012039170A (ja) * 2010-08-03 2012-02-23 Nippon Telegr & Teleph Corp <Ntt> 伝送品質評価補助装置
CN102608630A (zh) * 2012-03-02 2012-07-25 中国船舶重工集团公司第七〇五研究所 一种具有共同衰减能力的多种信号合成方法
CN103210603A (zh) * 2010-06-24 2013-07-17 科达无线私人有限公司 无线通信系统中的多路径信号的估计
US9203485B2 (en) 2013-05-31 2015-12-01 Fujitsu Limited Communication system, communications device, and antenna element arrangement method
JP2017108236A (ja) * 2015-12-08 2017-06-15 アンリツ株式会社 Mimo方式システムの試験装置および試験方法
JP2018101841A (ja) * 2016-12-19 2018-06-28 アンリツ株式会社 Mimo方式システムの試験装置および試験方法
CN111149305A (zh) * 2017-09-28 2020-05-12 松下电器(美国)知识产权公司 波束故障恢复过程的资源分配
JP2021520581A (ja) * 2018-05-08 2021-08-19 クアンチー インスティテュート オブ アドヴァンスト テクノロジーKuang−Chi Institute Of Advanced Technology ビーム指向調整可能なアンテナの指向性パターンの計算方法及び装置
CN113595654A (zh) * 2019-04-23 2021-11-02 上海微小卫星工程中心 一种可以模拟导电滑环的电阻变化的模拟器及模拟方法
CN113890655A (zh) * 2021-11-18 2022-01-04 南京航空航天大学 基于数字地图的全射线信道模拟装置及数字孪生方法

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7738595B2 (en) * 2004-07-02 2010-06-15 James Stuart Wight Multiple input, multiple output communications systems
US7548592B2 (en) * 2004-07-02 2009-06-16 James Stuart Wight Multiple input, multiple output communications systems
CN1838653A (zh) * 2005-03-24 2006-09-27 松下电器产业株式会社 低功耗通信装置、低功耗多天线通信系统及其操作方法
JP2006287622A (ja) * 2005-03-31 2006-10-19 Fujitsu Ltd 高周波通信制御装置および高周波通信制御方法
EP1746747B1 (de) * 2005-07-21 2016-06-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Nachbildung eines Mehrwegeübertragungskanals
JP4958565B2 (ja) * 2006-01-06 2012-06-20 パナソニック株式会社 無線通信装置
CN101072060B (zh) * 2006-05-08 2011-01-19 中兴通讯股份有限公司 一种用于多输入多输出系统模拟空间传输环境的方法
CN101087163B (zh) * 2006-06-07 2011-07-20 普天信息技术研究院 一种td-scdma系统仿真中智能天线的实现方法
EP1870718A1 (fr) * 2006-06-23 2007-12-26 The Swatch Group Research and Development Ltd. Système de mesure du diagramme de rayonnement d'une antenne d'émission
GB2440165B (en) * 2006-07-20 2010-03-24 Racal Instr Wireless Solutions A real-time signal generation apparatus
KR100965687B1 (ko) * 2006-11-07 2010-06-24 삼성전자주식회사 통신 시스템에서 빔 형성 장치 및 방법, 그리고 그에 따른 시스템
US8332196B2 (en) * 2007-11-30 2012-12-11 Motorola Mobility Llc Method and apparatus for enhancing the accuracy and speed of a ray launching simulation tool
US20090167756A1 (en) * 2007-12-31 2009-07-02 Motorola, Inc. Method and apparatus for computation of wireless signal diffraction in a three-dimensional space
US8019385B1 (en) * 2008-01-09 2011-09-13 Clear Wireless Llc Load simulation for testing uplink of wireless networks
US7941302B2 (en) * 2008-05-30 2011-05-10 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Enhanced channel simulator for efficient antenna evaluation
KR100972034B1 (ko) * 2008-07-23 2010-07-23 한국전자통신연구원 동적 전파 환경에서의 삼차원 광선 추적 방법
KR101308212B1 (ko) 2008-10-06 2013-09-13 엘렉트로비트 시스템 테스트 오와이 오티에이 시험
CN102342056A (zh) * 2009-03-05 2012-02-01 三菱电机株式会社 无线通信系统、发送装置以及接收装置
EP2432073A4 (en) * 2009-05-12 2014-12-24 Panasonic Ip Corp America ANTENNA TESTING DEVICE AND ANTENNA TESTING PROCEDURE
US9473963B2 (en) 2009-05-27 2016-10-18 Echo Ridge Llc Interactive RF system testing system and method
US8521092B2 (en) 2009-05-27 2013-08-27 Echo Ridge Llc Wireless transceiver test bed system and method
JP5767966B2 (ja) * 2009-05-29 2015-08-26 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America アンテナ評価装置及びアンテナ評価方法
US8401487B2 (en) * 2009-12-30 2013-03-19 Telefonaktiebolaget L M Ericsson (Publ) Radio channel analyzer to determine doppler shifts across multiple frequencies of a wideband signal
US9588218B2 (en) 2010-09-30 2017-03-07 Echo Ridge Llc System and method for robust navigation and geolocation using measurements of opportunity
US10212687B2 (en) 2010-09-30 2019-02-19 Echo Ridge Llc System and method for robust navigation and geolocation using measurements of opportunity
US9705190B2 (en) * 2011-03-02 2017-07-11 Keysight Technologies Singapore (Holdings) Ptd. Ltd. Over-the-air test
US9739891B2 (en) 2011-09-30 2017-08-22 Echo Ridge Llc System and method of using measurements of opportunity with vector tracking filters for improved navigation
US8917201B2 (en) * 2011-09-30 2014-12-23 Honeywell International Inc. ADS-B receiver system with multipath mitigation
US9594170B2 (en) 2011-09-30 2017-03-14 Echo Ridge Llc Performance improvements for measurement of opportunity geolocation/navigation systems
US9148808B2 (en) 2011-12-01 2015-09-29 Echo Ridge Llc Adaptive RF system testing system and method
WO2013100970A1 (en) * 2011-12-28 2013-07-04 Intel Corporation Transmitter precoding for optimizing positioning performance
EP2867691B1 (fr) * 2012-06-29 2016-11-02 Blinksight Dispositif et procédé de localisation d'un émetteur rfid
KR101997954B1 (ko) 2012-09-27 2019-07-08 키사이트 테크놀로지스 싱가포르 (세일즈) 피티이. 엘티디. 무선 채널 에뮬레이션
CN103095387B (zh) * 2013-01-31 2015-05-27 北京邮电大学 用于宽带多输入多输出系统的信道仿真仪
WO2014184519A1 (en) * 2013-05-17 2014-11-20 Crfs Limited Rf signal generating device
US9397761B2 (en) 2013-05-17 2016-07-19 Crfs Limited RF signal generating device
JP5844396B2 (ja) * 2014-01-30 2016-01-13 アンリツ株式会社 移動体端末試験装置および試験方法
US9246607B2 (en) * 2014-02-10 2016-01-26 Spirent Communications, Inc. Automatic phase calibration
CN104283623B (zh) * 2014-10-01 2016-09-14 工业和信息化部电信研究院 一种支持多小区干扰的mimo-ota测试方法
US9948415B2 (en) * 2015-03-27 2018-04-17 Intel IP Corporation Method of processing a plurality of signals and signal processing device
US10243628B2 (en) 2015-07-16 2019-03-26 Spirent Communications, Inc. Massive MIMO array emulation
US10244411B2 (en) 2016-06-14 2019-03-26 Spirent Communications, Inc. Over the air testing for massive MIMO arrays
AT519270B1 (de) * 2016-11-11 2018-07-15 Ait Austrian Inst Tech Gmbh Verfahren zur Emulation eines Funkkanals
US10285082B2 (en) * 2016-11-17 2019-05-07 Rohde & Schwarz Gmbh & Co. Kg Testing device and method for testing a device under test with respect to its beamforming behavior
CN106850006B (zh) * 2017-02-28 2020-10-27 北京睿信丰科技有限公司 一种基于mimo的信道建模装置和方法
MX2017004400A (es) * 2017-04-04 2018-11-09 Centro De Investigacion Y De Estudios Avanzados Del Instituto Politecnico Nac Método y sistema para generar realizaciones de canal estacionarias y no-estacionarias de longitud arbitraria.
US10313034B2 (en) 2017-10-12 2019-06-04 Spirent Communications, Inc. Massive MIMO array testing using a programmable phase matrix and channel emulator
US10587350B2 (en) 2017-10-12 2020-03-10 Spirent Communications, Inc. Calibrating a programmable phase matrix and channel emulator and performing massive MIMO array testing using the calibrated phase matrix and channel emulator
MX2017016952A (es) * 2017-12-20 2019-06-21 Centro De Investig Y De Estudios Avanzados Del I P N Emulador de canal doblemente selectivo, estacionario o no-estacionario en tiempo, con función de dispersión no-separable.
CN108512619B (zh) * 2018-01-21 2020-04-14 西安电子科技大学 一种短波多通道多带宽信道的模拟方法
US10097282B1 (en) * 2018-01-26 2018-10-09 Litepoint Corporation System and method for testing a device under test (DUT) capable of determining relative times of arrival or angles of arrival of multiple radio frequency signals
US11451312B2 (en) 2020-07-02 2022-09-20 Spirent Communications, Inc. Mobile-assisted phase calibration method and system
TWI768646B (zh) * 2021-01-06 2022-06-21 泓博無線通訊技術有限公司 天線信號與輻射場型分析系統
CN112953655A (zh) * 2021-03-01 2021-06-11 中国电子科技集团公司第二十研究所 一种基于Hata open衰落模型的路径衰落修正方法
CN113795034B (zh) * 2021-09-24 2024-03-29 哈尔滨工程大学 通信信号群模拟系统和装置
CN114095099B (zh) * 2021-11-26 2023-12-22 深圳市联平半导体有限公司 信号的生成方法、生成装置及生成设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325011A (ja) * 2001-04-26 2002-11-08 Koden Electronics Co Ltd アレーアンテナ用フェージング・シミュレータ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325011A (ja) * 2001-04-26 2002-11-08 Koden Electronics Co Ltd アレーアンテナ用フェージング・シミュレータ

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532400A (ja) * 2005-03-01 2008-08-14 エレクトロビット システム テスト オーイー データ特性化mimo環境を生成するための方法、装置機構、送信器ユニット、及び受信器ユニット
WO2006106693A1 (ja) * 2005-03-30 2006-10-12 Matsushita Electric Industrial Co., Ltd. マルチアンテナシステムにおける制限フィードバック方法、チャネルパラメータ生成方法および無線受信装置
CN1702986B (zh) * 2005-07-15 2010-04-28 清华大学 基带多径衰落信道模拟器
JP2007067951A (ja) * 2005-08-31 2007-03-15 Koden Electronics Co Ltd Mimoフェージングシミュレータ
JP4763386B2 (ja) * 2005-08-31 2011-08-31 株式会社光電製作所 Mimoフェージングシミュレータ
JP2009171502A (ja) * 2008-01-21 2009-07-30 Anritsu Corp 携帯端末試験装置および携帯端末試験方法
JP2011515050A (ja) * 2008-03-07 2011-05-12 ローデ ウント シュワルツ ゲーエムベーハー ウント コー カーゲー マルチアンテナ信号の生成方法
JP2010226713A (ja) * 2009-03-16 2010-10-07 Actix Gmbh セルラー無線ネットワーク内におけるマルチアンテナの配備によって得られる容量および有効範囲の利得を近似し最適化する方法
CN101959132A (zh) * 2009-07-15 2011-01-26 雷凌科技股份有限公司 用于无线通讯系统的基地台选择方法及装置
CN103210603A (zh) * 2010-06-24 2013-07-17 科达无线私人有限公司 无线通信系统中的多路径信号的估计
CN103210603B (zh) * 2010-06-24 2016-08-10 科达无线私人有限公司 无线通信系统中的多路径信号的估计
JP2012039170A (ja) * 2010-08-03 2012-02-23 Nippon Telegr & Teleph Corp <Ntt> 伝送品質評価補助装置
JP2011176873A (ja) * 2011-04-25 2011-09-08 Koden Electronics Co Ltd Mimoフェージングシミュレータ
CN102608630A (zh) * 2012-03-02 2012-07-25 中国船舶重工集团公司第七〇五研究所 一种具有共同衰减能力的多种信号合成方法
US9203485B2 (en) 2013-05-31 2015-12-01 Fujitsu Limited Communication system, communications device, and antenna element arrangement method
JP2017108236A (ja) * 2015-12-08 2017-06-15 アンリツ株式会社 Mimo方式システムの試験装置および試験方法
JP2018101841A (ja) * 2016-12-19 2018-06-28 アンリツ株式会社 Mimo方式システムの試験装置および試験方法
CN111149305B (zh) * 2017-09-28 2023-08-29 松下电器(美国)知识产权公司 用于启动波束故障恢复过程的方法和移动终端
CN111149305A (zh) * 2017-09-28 2020-05-12 松下电器(美国)知识产权公司 波束故障恢复过程的资源分配
JP2021520581A (ja) * 2018-05-08 2021-08-19 クアンチー インスティテュート オブ アドヴァンスト テクノロジーKuang−Chi Institute Of Advanced Technology ビーム指向調整可能なアンテナの指向性パターンの計算方法及び装置
JP7087113B2 (ja) 2018-05-08 2022-06-20 クアンチー インスティテュート オブ アドヴァンスト テクノロジー ビーム指向調整可能なアンテナの指向性パターンの計算方法及び装置
US12066477B2 (en) 2018-05-08 2024-08-20 Kuang-Chi Institute Of Advanced Technology Method and device for calculating directional pattern of beam pointing adjustable antenna
CN113595654B (zh) * 2019-04-23 2023-03-31 上海微小卫星工程中心 一种模拟导电滑环的电阻变化的模拟器及模拟方法
CN113595654A (zh) * 2019-04-23 2021-11-02 上海微小卫星工程中心 一种可以模拟导电滑环的电阻变化的模拟器及模拟方法
CN113890655A (zh) * 2021-11-18 2022-01-04 南京航空航天大学 基于数字地图的全射线信道模拟装置及数字孪生方法
CN113890655B (zh) * 2021-11-18 2022-06-03 南京航空航天大学 基于数字地图的全射线信道模拟装置及数字孪生方法

Also Published As

Publication number Publication date
AU2003296072A1 (en) 2004-07-22
EP1578032A4 (en) 2006-05-10
CN1754326A (zh) 2006-03-29
EP1578032A1 (en) 2005-09-21
US20060148429A1 (en) 2006-07-06
JPWO2004059876A1 (ja) 2006-05-11

Similar Documents

Publication Publication Date Title
WO2004059876A1 (ja) 伝送路シミュレート方法及び伝送路シミュレータ
US6879624B2 (en) Adaptive antenna receiver
JP3888189B2 (ja) 適応アンテナ基地局装置
US5973638A (en) Smart antenna channel simulator and test system
JP5358021B2 (ja) オーバーザエアー試験システム
US6236363B1 (en) Smart antenna channel simulator and test system
US20050259006A1 (en) Beam forming apparatus and method using interference power estimation in an array antenna system
JP3738705B2 (ja) 適応アンテナ装置
US6377812B1 (en) Combined power control and space-time diversity in mobile cellular communications
US8954014B2 (en) Over-the air test
RU2232485C2 (ru) Способ формирования диаграммы направленности антенны и устройство для его реализации
KR100757696B1 (ko) 개선된 신호 포착과 프로세싱을 지닌 코드 분할 다중 접속 시스템 및 오퍼레이션 방법
EP1401121A2 (en) Smart antennas for IMT-2000 code division multiple access wireless communications
EP1362492A2 (en) Positioning method and radio system
EP1258160B1 (en) Estimating the antenna angle-of-arrival using uplink weight vectors
JPH11340884A (ja) ダイバーシチ受信下での信号合成方法及び装置
Laspougeas et al. Radio propagation in urban small cells environment at 2 GHz: experimental spatio-temporal characterization and spatial wideband channel model
Messier et al. An empirical model for nonstationary Ricean fading
Laurila et al. Semi-blind separation and detection of co-channel signals
JP4015055B2 (ja) アダプティブアレーアンテナシステム、無線装置およびアレーアンテナ指向性制御方法
Wennstrom et al. Effects of finite weight resolution and calibration errors on the performance of adaptive array antennas
JP3966756B2 (ja) 雑音発生器及び伝搬路模擬装置
Srikanth et al. Systematic comparison of performance of different Adaptive beam forming Algorithms for Smart Antenna systems
JP2003255034A (ja) 到来方向推定方法、到来方向推定装置、送受信装置、および基地局装置
Fuhl et al. Temporal reference algorithms versus spatial reference algorithms for smart antennas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004562901

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003786254

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A99673

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006148429

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10538143

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003786254

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10538143

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003786254

Country of ref document: EP