CN113890655A - 基于数字地图的全射线信道模拟装置及数字孪生方法 - Google Patents

基于数字地图的全射线信道模拟装置及数字孪生方法 Download PDF

Info

Publication number
CN113890655A
CN113890655A CN202111372953.7A CN202111372953A CN113890655A CN 113890655 A CN113890655 A CN 113890655A CN 202111372953 A CN202111372953 A CN 202111372953A CN 113890655 A CN113890655 A CN 113890655A
Authority
CN
China
Prior art keywords
ray
channel
unit
signal
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111372953.7A
Other languages
English (en)
Other versions
CN113890655B (zh
Inventor
朱秋明
杨阳
冯瑞瑞
房晨
陈小敏
毛开
仲伟志
李奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202111372953.7A priority Critical patent/CN113890655B/zh
Publication of CN113890655A publication Critical patent/CN113890655A/zh
Application granted granted Critical
Publication of CN113890655B publication Critical patent/CN113890655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本发明公开了一种基于数字地图的全射线信道模拟装置及数字孪生方法,该全射线信道模拟装置包括信道参数计算单元,大规模射线孪生单元、信号下变频转换单元、自动增益控制单元、时延模拟单元、信道衰落叠加单元、信号上变频转换单元和功率补偿单元。本发明基于三维数字地图,根据数字地图以及发送端和接收端的几何运动参数精确模拟无线信道中各射线的传播特性,可用于无线通信系统和通信设备的性能测试和验证。

Description

基于数字地图的全射线信道模拟装置及数字孪生方法
技术领域
本发明涉及无线信息传输技术领域,具体而言涉及一种基于数字地图的全射线信道模拟装置及数字孪生方法。
背景技术
无线电波信号在传输过程中会受到周围环境的影响,发射端发射的信号由于受到墙面、障碍物以及植被等物体的反射、散射的作用,在到达接收端之前会存在多个传播路径,并且各传播路径的传播时延、到达/离开角、信号幅值各不相同。同时,由于收发端可能处于运动状态,接收端接收到的各路无线信号多普勒频率也存在差异。
为了有效地验证和评估无线通信系统和设备的性能,同时减少研发成本、缩短开发测试周期,需要在实验室环境下快速、低成本地复现特定真实场景的无线传播场景。基于真实场景数字地图和射线跟踪方法,利用确定性信道建模方法进行全射线数字信道孪生,能更逼真、准确地模拟无线信道的信道特性。
然而,采用全射线的确定性信道建模方法,会导致硬件资源消耗大、复杂度高等问题。全射线信道数字孪生的关键是如何高效并精确地模拟信号传播过程中每一条路径的时延、功率和多普勒频率。传统的信道模拟方法采用查找表法对射线或衰落进行模拟,其易于硬件实现且具有较好的实时性,但针对大规模的射线孪生时,会面临大量的硬件资源消耗问题。因此,需要一种高效的全射线信道数字孪生方法来大规模射线时延和多普勒频率的逼真复现。
发明内容
本发明针对现有技术中的不足,提供一种基于数字地图的全射线信道模拟装置及数字孪生方法,基于三维数字地图,根据数字地图以及发送端和接收端的几何运动参数精确模拟无线信道中各射线的传播特性,可用于无线通信系统和通信设备的性能测试和验证。
为实现上述目的,本发明采用以下技术方案:
第一方面,本发明实施例提及一种基于数字地图的全射线信道模拟装置,所述全射线信道模拟装置包括信道参数计算单元1-1,大规模射线孪生单元1-2、信号下变频转换单元1-3、自动增益控制单元1-4、时延模拟单元1-5、信道衰落叠加单元1-6、信号上变频转换单元1-7和功率补偿单元1-8;
所述信道参数计算单元1-1的输出接口分别与大规模射线孪生单元1-2、时延模拟单元1-5以及信道衰落叠加单元1-6的输入接口以PCIE高速串行计算机扩展总线连接;信道参数计算单元1-1设置通信场景并载入三维场景数字地图,设置系统参数、移动收发端的位置参数和速度参数,并且完成三维信道环境重构以及信道参数的计算,得到包括离开/到达角、射线增益、多普勒频率以及路径时延在内的各项信道参数,通过PCIE总线将信道参数和系统参数传输至大规模射线孪生单元1-2、时延模拟单元1-5和信道衰落叠加单元1-6;大规模射线孪生单元1-2根据信道参数计算单元1-1输出的多普勒频率参数和射线增益参数,产生各有效射线的复指数值,将其传输至信道衰落叠加单元1-6;
所述信号下变频转换单元1-3的输出接口与自动增益控制单元1-4的输入接口连接,自动增益控制单元1-4的输出接口与时延模拟单元1-5的输入端口连接;所述时延模拟单元1-5、大规模射线孪生单元1-2的输出接口均与信道衰落叠加单元1-6的输入接口连接;所述信道衰落叠加单元1-6的输出接口与信号上变频转换单元1-7的输入接口连接,所述信号上变频转换单元1-7的输出接口与功率补偿单元1-8的输入接口连接;
射频模拟输入信号经过信号下变频转换单元1-3后转变为数字基带信号,将输出的基带信号传输至自动增益控制单元1-4进行输入信号功率统计并计算增益系数,同时完成自适应功率调整,并将调整功率后的信号传输至时延模拟单元1-5;时延模拟单元1-5根据信道参数计算单元1-1输出的时延参数对信号进行多径时延模拟,将各路延时信号传输至信道衰落叠加单元1-6;信道衰落叠加单元1-6根据信道参数计算单元1-1输出的系统参数将各路射线复指数值进行内插,并与各路延时信号进行相乘累加,将结果传输至动态截位模块进行位宽的自适应截位,同时计算截位误差系数;信号上变频转换单元1-7将信道衰落叠加单元1-6输出结果转变为射频模拟信号,然后再传输至功率补偿单元1-8进行自适应功率匹配。
进一步地,所述大规模射线孪生单元1-2由射线参数初始化模块和谐波迭代孪生模块组成;所述射线参数初始化模块用于存储信道中各射线多普勒频率参数定点化值以及谐波初始相位对应的定点化值;所述谐波迭代孪生模块包括复数乘法器、位宽恢复子模块、2-1选择器、加/减法器、比较器以及乘法器,用于根据信道参数计算单元1-1输出的多普勒频率参数和射线增益参数,产生各有效射线的复指数值,将其传输至信道衰落叠加单元1-6。
进一步地,所述自动增益控制单元1-4由增益控制模块、存储器模块和乘法器模块组成;所述增益控制模块用于统计输入信号功率以及计算增益系数。
进一步地,所述信道衰落叠加单元1-6由延迟叠加模块和动态截位模块组成;所述延迟叠加模块用于射线复指数值与延时信号的相乘累加;所述动态截位模块用于延迟叠加后信号的自适应截位。
第二方面,本发明实施例提及一种基于数字地图的全射线信道数字孪生方法,所述数字孪生方法包括以下步骤:
S1,通过信道参数计算单元1-1设置通信场景并载入三维场景数字地图,设置系统参数、移动收发端的位置参数和速度参数,完成三维信道环境重构以及信道参数的计算,并得到包括离开/到达角、射线增益、多普勒频率以及路径时延在内的各项信道参数;将信道参数和系统参数传输至大规模射线孪生单元1-2、时延模拟单元1-5和信道衰落叠加单元1-6;
S2,将射频模拟输入信号导入信号下变频转换单元1-3,使其转变为相应的数字基带信号,再传输至自动增益控制单元1-4进行输入信号功率统计并计算增益系数,完成自适应功率调整,并将调整功率后的信号传输至时延模拟单元1-5;
s3,采用时延模拟单元1-5根据信道参数计算单元1-1输出的时延参数对步骤S2中调整功率后的信号进行多径时延模拟,产生各路延时信号;
S4,采用大规模射线孪生单元1-2根据信道参数计算单元1-1输出的多普勒频率参数和射线增益参数,产生各有效射线的复指数值;
S5,将时延模拟单元1-5与大规模射线孪生单元1-2的输出结果传输至信道衰落叠加单元1-6,使信道衰落叠加单元1-6根据信道参数计算单元1-1输出的系统参数对各路射线复指数值进行内插,并与各路延时信号进行相乘累加,将结果传输至动态截位模块进行位宽的自适应截位,同时计算截位误差系数;
S6,将信道衰落叠加单元1-6输出结果传输至信号上变频转换单元1-7转变为射频模拟信号,再传输至功率补偿单元1-8进行自适应功率匹配。
进一步地,步骤S1中,完成三维信道环境重构以及信道参数的计算,并得到包括离开/到达角、射线增益、多普勒频率以及路径时延在内的各项信道参数的过程包括以下子步骤:
S11,根据移动发射端的位置坐标LMT(l)、移动接收端的位置坐标LMR(l)和散射点的位置坐标LS(l),计算收发端之间、发射端与散射点之间以及接收端与散射点之间的距离以及时延参数τn(l):
Figure BDA0003361065990000031
式中,n=0表示第n条射线为视距路径,n≠0则表示非视距路径,l表示离散时间序号,c表示光速,
Figure BDA0003361065990000032
表示收发端之间的视距距离,DMT,S(l)表示发射端与散射点之间的距离,DMR,S(l)表示接收端与散射点之间的距离;
S12,根据接收场强En、发射天线增益GMT和接收天线增益GMR,计算射线增益Pn(t):
Figure BDA0003361065990000033
式中,E1m表示单位场强,信号波长λ0=c/f0,f0表示信号中心频率;
S13,根据移动发射端的位置坐标LMT(l)、移动接收端的位置坐标LMR(l)和散射点的位置坐标LS(l),计算离开/到达角的方位角和俯仰角:
Figure BDA0003361065990000034
Figure BDA0003361065990000041
式中,
Figure BDA0003361065990000042
表示第n根射线对应离开/到达角的方位角,
Figure BDA0003361065990000043
表示第n根射线对应离开/到达角的俯仰角,
Figure BDA0003361065990000044
分别表示散射点在x轴、y轴和z轴方向对应的坐标值,
Figure BDA0003361065990000045
Figure BDA0003361065990000046
分别表示移动发射/接收端在x轴、y轴和z轴方向对应的坐标值;
S14,根据移动接收端的速度vMR(l)和移动发射端vMT(l),计算第n根射线的多普勒频率参数:
Figure BDA0003361065990000047
其中,
Figure BDA0003361065990000048
Figure BDA0003361065990000049
Figure BDA00033610659900000410
式中,
Figure BDA00033610659900000411
表示移动发射/接收端速度的方位角,
Figure BDA00033610659900000412
表示移动发射/接收端速度的俯仰角,||vMT/MR(l)||表示移动发射/接收端速度的模值大小,
Figure BDA00033610659900000413
表示移动发射/接收端速度方位角的角速度,
Figure BDA00033610659900000414
表示移动发射/接收端速度俯仰角的角速度,
Figure BDA00033610659900000415
表示移动发射/接收端速度的加速度,Tu表示信道状态平稳间隔。
进一步地,步骤S2中,进行输入信号功率统计并计算增益系数,完成自适应功率调整的过程包括以下步骤:
S21,根据下述公式对信号下变频转换单元(1-3)的输出信号xin进行输入信号功率统计:
Figure BDA0003361065990000051
式中,W1为模数转换模块的有效位宽,l表示离散时间序号,L为输入信号功率统计序列长度;xin(l)是第l时刻信号下变频转换单元(1-3)的输出信号;
S22,计算增益系数α:
Figure BDA0003361065990000052
式中,xref(l)为模数转换模块最大幅值;
S23,对增益系数进行定点化:
Figure BDA0003361065990000053
式中,Wα为定点化增益系数位宽,round(·)为舍入取整处理;将定点化增益系数αcoeff作为只读存储器(ROM)的读地址,读取只读存储器(ROM)中相应地址的值,同时将只读存储器(ROM)的输出结果与输入信号进行乘法运算;对乘法器输出结果进行截位,使乘法器输出结果稳定在动态幅值范围的80%。
进一步地,步骤S4中,根据信道参数计算单元(1-1)输出的多普勒频率参数和射线增益参数,产生各有效射线的复指数值的过程包括以下子步骤:
S41,读取定点化射线初始值
Figure BDA0003361065990000054
Figure BDA0003361065990000055
传输至复数乘法器的被乘数输入端口;
S42,读取定点化频率参数Rn,k和In,k,传输至复数乘法器的乘数输入端口,进行复数乘法运算得到第n条射线当前时刻的复指数值:
Figure BDA0003361065990000056
Figure BDA0003361065990000057
k=1,2,3…,K
式中,
Figure BDA0003361065990000058
表示第k个信道状态下第n条射线第l时刻下的复指数值,
Figure BDA0003361065990000059
表示第k个信道状态下第n条射线频率参数的实数部分,
Figure BDA00033610659900000510
表示频率参数的虚数部分,
Figure BDA00033610659900000511
表示第k个信道状态下第n条射线频率参数实数部分的初始值,
Figure BDA00033610659900000512
表示第k个信道状态下第n条射线频率参数虚数部分的初始值,K表示信道状态数目,fn,k表示第k个信道状态下第n条射线的多普勒频率,Ts′表示射线复指数值的采样时间间隔;
S43,将复数乘法器输出结果传输至位宽恢复模块,并与射线复指数初始值的位宽W0进行匹配,同时判断位宽恢复模块输出结果是否大于零;
S44,将位宽恢复模块的输出结果幅值大小与参考值作比较,参考值取值为
Figure BDA0003361065990000061
若位宽恢复模块输出结果的绝对值小于参考值,则直接输出;若位宽恢复模块输出结果的绝对值大于参考值,当位宽恢复模块输出结果大于零时,将其加上误差因子δ(l);当位宽恢复模块输出结果小于零时,将其减去误差因子8(l),误差因子δ(l)为:
Figure BDA0003361065990000062
式中,W0表示射线复指数值的数据位宽,
Figure BDA0003361065990000063
表示第n条射线的复指数值,
Figure BDA0003361065990000064
表示第n条射线复指数值的实数部分;
S45,将步骤S44中经误差修正后的结果作为前一时刻射线复指数值传输至复数乘法器被乘数输入端口,重复步骤S42至S45,直至误差修正结果满足预设要求或者达到预设最大重复次数;
S46,切换时分复用模块选择器地址至下一个地址,重复步骤S41至S45,产生不同信道状态下每一根射线的复指数值;将每一路射线复指数值与信道参数计算单元(1-1)输出的射线增益参数Pn传输至乘法器模块进行射线增益的控制,传输至寄存器进行缓存。
进一步地,步骤S5中,根据信道参数计算单元(1-1)输出的系统参数对各路射线复指数值进行内插,并与各路延时信号进行相乘累加,将结果传输至动态截位模块进行位宽的自适应截位,同时计算截位误差系数的过程包括以下子步骤:
S51,将大规模射线孪生单元(1-2)输出的各路射线复指数值进行内插,内插倍数与输入信号的速率匹配;
S52,将内插后的射线复指数值与时延模拟单元(1-5)的输出结果传输至延迟叠加模块进行相乘累加:
Figure BDA0003361065990000065
式中,x(l)表示信道输入信号,h(l)表示信道冲激响应,y(l)表示信道输出信号,N(l)表示有效射线数目,Pn(l)表示第n条射线的功率增益,τn(l)表示第n条射线的路径时延;
假设相乘后数据位宽为W3,累加后数据位宽W4为:
Figure BDA0003361065990000071
式中,N表示射线总数;
S53,将延迟叠加模块输出至动态截位模块,计算输入数据的最大幅值并统计无效符号位数,对输入信号进行奇偶舍入截位,截位误差系数β为:
Figure BDA0003361065990000072
式中,W5表示数模转换模块数据位宽,W6表示无效符号位数。
进一步地,步骤S6中,根据下述公式计算功率补偿系数γ:
γ=α·β
式中,α为增益系数,β是截位误差系数。
本发明的有益效果是:
本发明提出了一种基于数字地图的全射线信道数字孪生方法,采用基于差分迭代的射线孪生方法,通过迭代实时产生射线复指数值,大大减少硬件实现复杂度,节省了硬件资源,支持大规模全射线信道的数字孪生。本发明提出了一种基于数字地图的全射线信道模拟装置,该模拟装置具有通用和高效的硬件结构,适用于大规模多支路全射线信道的硬件实时模拟。
附图说明
图1为本发明实施例的基于数字地图的全射线信道模拟装置的系统框图。
图2为本发明实施例的大规模射线孪生单元实现框图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。
需要注意的是,发明中所引用的如“上”、“下”、“左”、“右”、“前”、“后”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
实施例一
图1为本发明实施例的基于数字地图的全射线信道模拟装置的系统框图。参见图1,该全射线信道模拟装置包括信道参数计算单元1-1,大规模射线孪生单元1-2、信号下变频转换单元1-3、自动增益控制单元1-4、时延模拟单元1-5、信道衰落叠加单元1-6、信号上变频转换单元1-7、功率补偿单元1-8。
信道参数计算单元1-1的输出接口分别与大规模射线孪生单元1-2、时延模拟单元1-5以及信道衰落叠加单元1-6的输入接口以PCIE高速串行计算机扩展总线连接;信号下变频转换单元1-3的输出接口与自动增益控制单元1-4的输入接口连接,自动增益控制单元1-4的输出接口与时延模拟单元1-5的输入端口连接;时延模拟单元1-5、大规模射线孪生单元1-2的输出接口均与信道衰落叠加单元1-6的输入接口连接;信道衰落叠加单元1-6的输出接口与信号上变频转换单元1-7的输入接口连接,信号上变频转换单元1-7的输出接口与功率补偿单元1-8的输入接口连接。
图2为本发明实施例的大规模射线孪生单元实现框图。参见图2,大规模射线孪生单元1-2由射线参数初始化模块和谐波迭代孪生模块组成;所述射线参数初始化模块用于存储信道中各射线多普勒频率参数定点化值以及谐波初始相位对应的定点化值;谐波迭代孪生模块由复数乘法器、位宽恢复子模块、2-1选择器、加/减法器、比较器以及乘法器等组成。
自动增益控制单元1-4由增益控制模块、存储器模块和乘法器模块组成;增益控制模块用于统计输入信号功率以及计算增益系数。
信道衰落叠加单元1-6由延迟叠加模块和动态截位模块组成;延迟叠加模块用于射线复指数值与延时信号的相乘累加;动态截位模块用于延迟叠加后信号的自适应截位。
信道参数计算单元1-1设置通信场景并载入三维场景数字地图,设置系统参数、移动收发端的位置参数和速度参数,并且完成三维信道环境重构以及信道参数的计算,得到包括离开/到达角、射线增益、多普勒频率以及路径时延在内的各项信道参数,通过PCIE总线将信道参数和系统参数传输至大规模射线孪生单元1-2、时延模拟单元1-5和信道衰落叠加单元1-6;大规模射线孪生单元1-2根据信道参数计算单元1-1输出的多普勒频率参数和射线增益参数,产生各有效射线的复指数值,将其传输至信道衰落叠加单元1-6。射频模拟输入信号经过信号下变频转换单元1-3后转变为数字基带信号,输出的基带信号继续传输至自动增益控制单元1-4进行输入信号功率统计并计算增益系数,同时完成自适应功率调整,并将调整功率后的信号传输至时延模拟单元1-5;时延模拟单元1-5根据信道参数计算单元1-1输出的时延参数对信号进行多径时延模拟,将各路延时信号传输至信道衰落叠加单元1-6;信道衰落叠加单元1-6根据信道参数计算单元1-1输出的系统参数将各路射线复指数值进行内插,并与各路延时信号进行相乘累加,将结果传输至动态截位模块进行位宽的自适应截位,同时计算截位误差系数;信号上变频转换单元1-7将信道衰落叠加单元1-6输出结果转变为射频模拟信号,然后再传输至功率补偿单元1-8进行自适应功率匹配。
实施例二
基于前述全射线信道模拟装置,本实施例提及一种数字地图的全射线信道数字孪生方法,具体包括以下步骤:
步骤一,用户通过信道参数计算单元1-1设置通信场景并载入三维场景数字地图,设置系统参数、移动收发端的位置参数和速度参数,系统据此完成三维信道环境重构以及信道参数的计算,并得到离开/到达角、射线增益、多普勒频率以及路径时延等信道参数;同时,信道参数计算单元1-1通过PCIE总线将信道参数和系统参数传输至大规模射线孪生单元1-2、时延模拟单元1-5和信道衰落叠加单元1-6。
具体的,步骤一包括以下子步骤:
1.1)根据移动发射端的位置坐标LMT(l)、移动接收端的位置坐标LMR(l)和散射点的位置坐标LS(l),计算收发端之间、发射端与散射点之间以及接收端与散射点之间的距离以及时延参数,方法如下:
Figure BDA0003361065990000091
其中,n=0表示该射线为视距路径,n≠0则表示非视距路径,l表示离散时间序号,c表示光速,
Figure BDA0003361065990000092
表示收发端之间的视距距离,DMT,S(l)表示发射端与散射点之间的距离,DMR,S(l)表示接收端与散射点之间的距离。
1.2)根据接收场强En、发射天线增益GMT和接收天线增益GMR,计算射线增益,方法如下:
Figure BDA0003361065990000093
其中,E1m表示单位场强,信号波长λ0=c/f0,f0表示信号中心频率。
1.3)根据移动发射端的位置坐标LMT(l)、移动接收端的位置坐标LMR(l)和散射点的位置坐标LS(l),计算离开/到达角的方位角和俯仰角,方法如下:
Figure BDA0003361065990000094
Figure BDA0003361065990000095
其中,
Figure BDA0003361065990000096
表示第n根射线对应离开/到达角的方位角,
Figure BDA0003361065990000097
表示第n根射线对应离开/到达角的俯仰角,
Figure BDA0003361065990000098
分别表示散射点在x轴、y轴和z轴方向对应的坐标值,
Figure BDA0003361065990000099
Figure BDA00033610659900000910
分别表示移动发射/接收端在x轴、y轴和z轴方向对应的坐标值。
1.4)根据移动接收端的速度vMR(l)和移动发射端vMT(l),计算第n根射线的多普勒频率参数,方法如下:
Figure BDA0003361065990000101
其中,
Figure BDA0003361065990000102
其中,
Figure BDA0003361065990000103
表示移动发射/接收端速度的方位角,
Figure BDA0003361065990000104
表示移动发射/接收端速度的俯仰角,||vMT/MR(l)||表示移动发射/接收端速度的模值大小,
Figure BDA0003361065990000105
表示移动发射/接收端速度方位角的角速度,
Figure BDA0003361065990000106
表示移动发射/接收端速度俯仰角的角速度,
Figure BDA0003361065990000107
表示移动发射/接收端速度的加速度,Tu表示信道状态平稳间隔。
步骤二,射频模拟输入信号经过信号下变频转换单元1-3后转变为数字基带信号,将输出的基带信号传输至自动增益控制单元1-4进行输入信号功率统计并计算增益系数,同时完成自适应功率调整,并将调整功率后的信号传输至时延模拟单元1-5。
具体的,步骤二包括以下子步骤:
2.1)将信号下变频转换单元1-3的输出信号传输至增益控制模块进行输入信号功率统计,计算方法如下:
Figure BDA0003361065990000108
其中,W1为模数转换模块的有效位宽,L为输入信号功率统计序列长度。
2.2)计算增益系数α,计算方法如下:
Figure BDA0003361065990000109
其中,xref(l)为模数转换模块最大幅值。
2.3)对增益系数进行定点化,计算方法如下:
Figure BDA0003361065990000111
其中,Wα为定点化增益系数位宽,round(·)为舍入取整处理;将定点化增益系数作为只读存储器ROM的读地址,读取ROM中相应地址的值,同时将ROM的输出结果与输入信号进行乘法运算;对乘法器输出结果进行截位,使乘法器输出结果稳定在动态幅值范围的80%。
步骤三,时延模拟单元1-5根据信道参数计算单元1-1输出的时延参数对信号进行多径时延模拟,产生各路延时信号。
具体的,多径时延模拟的过程包括以下子步骤:
首先信号数据传输至双端口随机存取存储器(RAM),通过控制双端口随机存取存储器(RAM)的读写地址进行基于系统时钟精度的粗时延模拟,而后将双端口随机存取存储器(RAM)输出的信号通过多相延迟器进行高精度时延模拟,最后将各路延时信号传输至信道衰落叠加单元1-6。
步骤四,大规模射线孪生单元1-2根据信道参数计算单元1-1输出的多普勒频率参数和射线增益参数,产生各有效射线的复指数值,将其传输至信道衰落叠加单元1-6。
具体的,步骤四包括以下子步骤:
4.1)读取存储器(RAM)中定点化射线初始值
Figure BDA0003361065990000112
Figure BDA0003361065990000113
传输至复数乘法器的被乘数输入端口。
4.2)读取存储器(RAM)中定点化频率参数Rn,k和In,k,传输至复数乘法器的乘数输入端口,进行复数乘法运算得到第n条射线当前时刻的复指数值,计算方法如下:
Figure BDA0003361065990000114
其中,
Figure BDA0003361065990000115
表示第k个信道状态下第n条射线第l时刻下的复指数值,
Figure BDA0003361065990000116
表示第k个信道状态下第n条射线频率参数的实数部分,而
Figure BDA0003361065990000117
表示频率参数的虚数部分,
Figure BDA0003361065990000118
表示第k个信道状态下第n条射线频率参数实数部分的初始值,
Figure BDA0003361065990000119
表示第k个信道状态下第n条射线频率参数虚数部分的初始值,K表示信道状态数目,fn,k表示第k个信道状态下第n条射线的多普勒频率,Ts′表示射线复指数值的采样时间间隔。
4.3)将复数乘法器输出结果传输至位宽恢复模块,并与射线复指数初始值的位宽W0进行匹配,同时判断位宽恢复模块输出结果是否大于零。
4.4)将位宽恢复模块的输出结果幅值大小与参考值作比较,参考值取值为
Figure BDA0003361065990000121
若位宽恢复模块输出结果的绝对值小于参考值,则直接输出;若位宽恢复模块输出结果的绝对值大于参考值,当位宽恢复模块输出结果大于零时,将其加上误差因子δ(l);当位宽恢复模块输出结果小于零时,将其减去误差因子δ(l),误差因子计算方式如下:
Figure BDA0003361065990000122
其中,W0表示射线复指数值的数据位宽,
Figure BDA0003361065990000123
表示第n条射线的复指数值,
Figure BDA0003361065990000124
表示第n条射线复指数值的实数部分。
4.5)将4.4)误差修正后的结果作为前一时刻射线复指数值传输至复数乘法器被乘数输入端口,重复4.2)-4.5)步骤,直至误差修正结果满足预设要求。
4.6)切换时分复用模块选择器地址至下一个地址,重复4.1)-4.5)步骤即可产生不同信道状态下每一根射线的复指数值,最后将每一路射线复指数值与信道参数计算单元1-1输出的射线增益参数Pn传输至乘法器模块进行射线增益的控制,最后传输至寄存器进行缓存。
步骤五,将时延模拟单元1-5与大规模射线孪生单元1-2的输出结果传输至信道衰落叠加单元1-6,根据信道参数计算单元1-1输出的系统参数将各路射线复指数值进行内插,并与各路延时信号进行相乘累加,将结果传输至动态截位模块进行位宽的自适应截位,同时计算截位误差系数。
具体的,步骤五包括以下子步骤:
5.1)将大规模射线孪生单元1-2输出的各路射线复指数值进行内插,内插倍数与输入信号的速率匹配。
5.2)将内插后的射线复指数值与时延模拟单元1-5的输出结果传输至延迟叠加模块进行相乘累加,方法如下:
Figure BDA0003361065990000125
式中,x(l)表示信道输入信号,h(l)表示信道冲激响应,y(l)表示信道输出信号,N(l)表示有效射线数目,Pn(l)表示第n条射线的功率增益,τn(l)表示第n条射线的路径时延。
假设相乘后数据位宽为W3,累加后数据位宽可计算为:
Figure BDA0003361065990000131
其中,N表示射线总数。
5.3)将延迟叠加模块输出至动态截位模块,计算输入数据的最大幅值并统计无效符号位数,对输入信号进行奇偶舍入截位,截位误差系数β的计算方法如下:
Figure BDA0003361065990000132
其中,W5表示数模转换模块数据位宽,W6表示无效符号位数。
步骤六,将信道衰落叠加单元1-6输出结果传输至信号上变频转换单元1-7转变为射频模拟信号,然后再传输至功率补偿单元1-8进行自适应功率匹配。
具体的,功率补偿系数γ计算方法如下:
γ=α·β (15)
其中,α为增益系数,β是截位误差系数。
实施例三
本实施例通过一个具体的实例对前述数字孪生方法做进一步说明。在本实施例中,设中心频率f0=2.4GHz,系统工作时钟频率fs=100MHz,信道状态平稳间隔Tu=100ms,信道状态数K=1000,最大有效射线数目N=400;移动发射端初始坐标为LMT=[0,0,150m],移动接收端初始坐标为LMR=[272.6m,321m,2m],移动发射端速度||vMT(t)||=10m/s,方位角
Figure BDA0003361065990000133
俯仰角
Figure BDA0003361065990000134
移动接收端速度
Figure BDA0003361065990000135
方位角
Figure BDA0003361065990000136
俯仰角
Figure BDA0003361065990000137
步骤一、参数计算。具体实现步骤如下:
1.1)根据移动发射端的位置坐标LMT(l)、移动接收端的位置坐标LMR(l)和散射点的位置坐标LS(l),计算收发端之间、发射端与散射点之间以及接收端与散射点之间的距离,计算时延参数,方法如下:
Figure BDA0003361065990000138
具体时延计算结果见表1。
1.2)根据接收场强En、发射天线增益GMT和接收天线增益GMR,计算射线增益,方法如下:
Figure BDA0003361065990000141
本实施例中,发射天线增益GMT=1,接收天线增益GMR=1,波长λ0=0.125m,具体射线增益计算结果见表1。
表1第一个信道状态(k=1)各信道参数
Figure BDA0003361065990000142
Figure BDA0003361065990000151
1.3)根据移动发射端的位置坐标LMT(l)、移动接收端的位置坐标LMR(l)和散射点的位置坐标LS(l),计算离开/到达角的方位角和俯仰角,方法如下:
Figure BDA0003361065990000152
Figure BDA0003361065990000153
具体角度计算结果见表2。
表2第一个信道状态(k=1)各角度参数
Figure BDA0003361065990000154
Figure BDA0003361065990000161
1.4)根据移动接收端的速度vMR(l)和移动发射端vMT(l),计算第n根射线的多普勒频率参数,方法如下:
Figure BDA0003361065990000162
式中,
Figure BDA0003361065990000163
本实施例中,移动发射端速度||vMT(l)||=10m/s,发射端方位角
Figure BDA0003361065990000164
发射端方位角的角速度
Figure BDA0003361065990000165
发射端俯仰角
Figure BDA0003361065990000166
发射端俯仰角的角速度
Figure BDA0003361065990000167
移动接收端速度||vMR(l)||=5+0.05·lTum/s,接收端方位角
Figure BDA0003361065990000168
接收端方位角的角速度
Figure BDA0003361065990000169
接收端俯仰角
Figure BDA00033610659900001610
接收端俯仰角的角速度
Figure BDA00033610659900001611
信道状态平稳间隔Tu=100ms;具体多普勒频率计算结果见表1。
步骤二,射频模拟输入信号经过信号下变频转换单元1-3后转变为数字基带信号,将输出的基带信号输入至自动增益控制单元1-4进行输入信号功率统计并计算增益系数,同时完成自适应功率调整,并将调整功率后的信号输入至时延模拟单元1-5。
步骤二的具体实现过程如下:
2.1)将信号下变频转换单元1-3的输出信号传输至增益控制模块进行输入信号功率统计,计算方法如下:
Figure BDA0003361065990000171
本实施例中,模数转换模块的有效位宽W1=14bit,输入信号功率序列统计长度L=10000。
2.2)计算增益系数α,计算方法如下:
Figure BDA0003361065990000172
2.3)对增益系数进行定点化,计算方法如下:
αcoeff=round(α·255) (24)。
本实施例中,增益系数定点化位宽Wα=8bit,自动增益控制单元输出信号数据位宽W2=16bit;将定点化增益系数作为只读存储器(ROM)的读地址,读取ROM中相应地址的值,同时将ROM的输出结果与输入信号进行乘法运算;对乘法器输出结果进行截位,使乘法器输出结果稳定在动态幅值范围的80%;本实施例中,ROM存储器内存储的十进制数据(地址从0至255)为{510,508,506,504,502,500,498,496,494,492,490,489,487,485,483,481,480,478,476,474,473,471,469,468,466,464,463,461,459,458,456,455,453,451,450,448,447,445,444,442,441,439,438,436,435,434,432,431,429,428,426,425,424,422,421,420,418,417,416,414,413,412,410,409,408,407,405,404,403,402,400,399,398,361,。。。。。。}。
步骤三,时延模拟单元1-5根据信道参数计算单元1-1输出的时延参数对信号进行多径时延模拟,首先信号数据传输至双端口随机存取存储器(RAM),通过控制(RAM)的读写地址进行基于系统时钟精度的粗时延模拟,而后将(RAM)输出的信号数据通过多相延迟器进行高精度时延模拟,最后将各路延时信号传输至信道衰落叠加单元1-6;本实施例中,系统工作时钟频率为100MHz,粗时延精度为10ns,多项延迟器相数Q=100,精时延精度为0.1ns。
步骤四,大规模射线孪生单元1-2根据信道参数计算单元1-1输出的多普勒频率参数和射线增益参数,产生各有效射线的复指数值,将其传输至信道衰落叠加单元1-6。
进一步地,步骤四的具体实现过程如下:
4.1)读取存储器(RAM)中定点化射线初始值
Figure BDA0003361065990000173
Figure BDA0003361065990000174
传输至复数乘法器的被乘数输入端口。
4.2)读取存储器(RAM)中定点化频率参数Rn,k和In,k,传输至复数乘法器的乘数输入端口,进行复数乘法运算得到第n条射线当前时刻的复指数值,计算方法如下:
Figure BDA0003361065990000181
本实施例中,信道状态数目K=1000,射线复指数值的采样时间间隔Ts′=50ns。
4.3)将复数乘法器输出结果传输至位宽恢复模块,并与射线复指数初始值的位宽W0进行匹配,同时判断位宽恢复模块输出结果是否大于零;本实施例中,射线复指数值初始值位宽W0=14bit。
4.4)将位宽恢复模块的输出结果幅值大小与参考值作比较,参考值取值为
Figure BDA0003361065990000182
若位宽恢复模块输出结果的绝对值小于参考值,则直接输出;若位宽恢复模块输出结果的绝对值大于参考值,当位宽恢复模块输出结果大于零时,将其加上误差因子δ(l);当位宽恢复模块输出结果小于零时,将其减去误差因子δ(l),误差因子计算方式如下:
Figure BDA0003361065990000183
本实施例中W0=14bit,参考值取值为8191。
4.5)将4.4)误差修正后的结果作为前一时刻射线复指数值传输至复数乘法器被乘数输入端口,重复4.2)-4.5)步骤。
4.6)切换时分复用模块选择器地址至下一个地址,重复4.1)-4.5)步骤即可产生不同信道状态下每一根射线的复指数值,最后将每一路射线复指数值与信道参数计算单元1-1输出的射线增益参数Pn传输至乘法器模块进行射线增益的控制,最后传输至寄存器进行缓存。
步骤五,将时延模拟单元1-5与大规模射线孪生单元1-2的输出结果传输至信道衰落叠加单元1-6,根据信道参数计算单元1-1输出的系统参数将各路射线复指数值进行内插,并与各路延时信号进行相乘累加,将结果传输至动态截位模块进行位宽的自适应截位,并计算截位误差系数。
具体的,步骤五的具体实现过程如下:
5.1)将大规模射线孪生单元1-2输出的各路射线复指数值进行内插,内插倍数与输入信号的速率匹配;本实施例中,内插倍数I取值为5。
5.2)将内插后的射线复指数值与时延模拟单元1-5的输出结果传输至延迟叠加模块进行相乘累加,方法如下:
Figure BDA0003361065990000191
相乘后输出数据位宽W3,累加后信道输出信号数据位宽为W4,计算方式如下:
Figure BDA0003361065990000192
本实施例中,相乘后输出数据位宽W3=20bit,射线总数量N=400,累加后信道输出信号数据位宽W4=25bit。
5.3)将延迟叠加模块输出至动态截位模块,计算输入数据的最大幅值并统计无效符号位数,对输入信号进行奇偶舍入截位,截位误差系数β的计算方法如下:
Figure BDA0003361065990000193
本实施例中,数模转换模块数据位宽W5=16bit,当无效符号位数W5=6bit时,误差系数β=0.125。
步骤六,将信道衰落叠加单元1-6输出结果传输至信号上变频转换单元1-7转变为射频模拟信号,然后再传输至功率补偿单元1-8进行自适应功率匹配,功率补偿系数计算方法如下:
γ=α·β (30)。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (10)

1.一种基于数字地图的全射线信道模拟装置,其特征在于,所述全射线信道模拟装置包括信道参数计算单元(1-1),大规模射线孪生单元(1-2)、信号下变频转换单元(1-3)、自动增益控制单元(1-4)、时延模拟单元(1-5)、信道衰落叠加单元(1-6)、信号上变频转换单元(1-7)和功率补偿单元(1-8);
所述信道参数计算单元(1-1)的输出接口分别与大规模射线孪生单元(1-2)、时延模拟单元(1-5)以及信道衰落叠加单元(1-6)的输入接口以PCIE高速串行计算机扩展总线连接;信道参数计算单元(1-1)设置通信场景并载入三维场景数字地图,设置系统参数、移动收发端的位置参数和速度参数,并且完成三维信道环境重构以及信道参数的计算,得到包括离开/到达角、射线增益、多普勒频率以及路径时延在内的各项信道参数,通过PCIE总线将信道参数和系统参数传输至大规模射线孪生单元(1-2)、时延模拟单元(1-5)和信道衰落叠加单元(1-6);大规模射线孪生单元(1-2)根据信道参数计算单元(1-1)输出的多普勒频率参数和射线增益参数,产生各有效射线的复指数值,将其传输至信道衰落叠加单元(1-6);
所述信号下变频转换单元(1-3)的输出接口与自动增益控制单元(1-4)的输入接口连接,自动增益控制单元(1-4)的输出接口与时延模拟单元(1-5)的输入端口连接;所述时延模拟单元(1-5)、大规模射线孪生单元(1-2)的输出接口均与信道衰落叠加单元(1-6)的输入接口连接;所述信道衰落叠加单元(1-6)的输出接口与信号上变频转换单元(1-7)的输入接口连接,所述信号上变频转换单元(1-7)的输出接口与功率补偿单元(1-8)的输入接口连接;
射频模拟输入信号经过信号下变频转换单元(1-3)后转变为数字基带信号,将输出的基带信号传输至自动增益控制单元(1-4)进行输入信号功率统计并计算增益系数,同时完成自适应功率调整,并将调整功率后的信号传输至时延模拟单元(1-5);时延模拟单元(1-5)根据信道参数计算单元(1-1)输出的时延参数对信号进行多径时延模拟,将各路延时信号传输至信道衰落叠加单元(1-6);信道衰落叠加单元(1-6)根据信道参数计算单元(1-1)输出的系统参数将各路射线复指数值进行内插,并与各路延时信号进行相乘累加,将结果传输至动态截位模块进行位宽的自适应截位,同时计算截位误差系数;信号上变频转换单元(1-7)将信道衰落叠加单元(1-6)输出结果转变为射频模拟信号,然后再传输至功率补偿单元(1-8)进行自适应功率匹配。
2.根据权利要求1所述的基于数字地图的全射线信道模拟装置,其特征在于,所述大规模射线孪生单元(1-2)由射线参数初始化模块和谐波迭代孪生模块组成;所述射线参数初始化模块用于存储信道中各射线多普勒频率参数定点化值以及谐波初始相位对应的定点化值;所述谐波迭代孪生模块包括复数乘法器、位宽恢复子模块、2-1选择器、加/减法器、比较器以及乘法器,用于根据信道参数计算单元(1-1)输出的多普勒频率参数和射线增益参数,产生各有效射线的复指数值,将其传输至信道衰落叠加单元(1-6)。
3.根据权利要求1所述的基于数字地图的全射线信道模拟装置,其特征在于,所述自动增益控制单元(1-4)由增益控制模块、存储器模块和乘法器模块组成;所述增益控制模块用于统计输入信号功率以及计算增益系数。
4.根据权利要求1所述的基于数字地图的全射线信道模拟装置,其特征在于,所述信道衰落叠加单元(1-6)由延迟叠加模块和动态截位模块组成;所述延迟叠加模块用于射线复指数值与延时信号的相乘累加;所述动态截位模块用于延迟叠加后信号的自适应截位。
5.一种基于权利要求1-4任一项中所述模拟装置的基于数字地图的全射线信道数字孪生方法,其特征在于,所述数字孪生方法包括以下步骤:
S1,通过信道参数计算单元(1-1)设置通信场景并载入三维场景数字地图,设置系统参数、移动收发端的位置参数和速度参数,完成三维信道环境重构以及信道参数的计算,并得到包括离开/到达角、射线增益、多普勒频率以及路径时延在内的各项信道参数;将信道参数和系统参数传输至大规模射线孪生单元(1-2)、时延模拟单元(1-5)和信道衰落叠加单元(1-6);
S2,将射频模拟输入信号导入信号下变频转换单元(1-3),使其转变为相应的数字基带信号,再传输至自动增益控制单元(1-4)进行输入信号功率统计并计算增益系数,完成自适应功率调整,并将调整功率后的信号传输至时延模拟单元(1-5);
S3,采用时延模拟单元(1-5)根据信道参数计算单元(1-1)输出的时延参数对步骤S2中调整功率后的信号进行多径时延模拟,产生各路延时信号;
S4,采用大规模射线孪生单元(1-2)根据信道参数计算单元(1-1)输出的多普勒频率参数和射线增益参数,产生各有效射线的复指数值;
S5,将时延模拟单元(1-5)与大规模射线孪生单元(1-2)的输出结果传输至信道衰落叠加单元(1-6),使信道衰落叠加单元(1-6)根据信道参数计算单元(1-1)输出的系统参数对各路射线复指数值进行内插,并与各路延时信号进行相乘累加,将结果传输至动态截位模块进行位宽的自适应截位,同时计算截位误差系数;
S6,将信道衰落叠加单元(1-6)输出结果传输至信号上变频转换单元(1-7)转变为射频模拟信号,再传输至功率补偿单元(1-8)进行自适应功率匹配。
6.根据权利要求5所述的基于数字地图的全射线信道数字孪生方法,其特征在于,步骤S1中,完成三维信道环境重构以及信道参数的计算,并得到包括离开/到达角、射线增益、多普勒频率以及路径时延在内的各项信道参数的过程包括以下子步骤:
S11,根据移动发射端的位置坐标LMT(l)、移动接收端的位置坐标LMR(l)和散射点的位置坐标LS(l),计算收发端之间、发射端与散射点之间以及接收端与散射点之间的距离以及时延参数τn(l):
Figure FDA0003361065980000021
式中,n=0表示第n条射线为视距路径,n≠0则表示非视距路径,l表示离散时间序号,c表示光速,
Figure FDA0003361065980000022
表示收发端之间的视距距离,DMT,S(l)表示发射端与散射点之间的距离,DMR,S(l)表示接收端与散射点之间的距离;
S12,根据接收场强En、发射天线增益GMT和接收天线增益GMR,计算射线增益Pn(t):
Figure FDA0003361065980000031
式中,E1m表示单位场强,信号波长λ0=c/f0,f0表示信号中心频率;
S13,根据移动发射端的位置坐标LMT(l)、移动接收端的位置坐标LMR(l)和散射点的位置坐标LS(l),计算离开/到达角的方位角和俯仰角:
Figure FDA0003361065980000032
Figure FDA0003361065980000033
式中,
Figure FDA0003361065980000034
表示第n根射线对应离开/到达角的方位角,
Figure FDA0003361065980000035
表示第n根射线对应离开/到达角的俯仰角,
Figure FDA0003361065980000036
分别表示散射点在x轴、y轴和z轴方向对应的坐标值,
Figure FDA0003361065980000037
Figure FDA0003361065980000038
分别表示移动发射/接收端在x轴、y轴和z轴方向对应的坐标值;
S14,根据移动接收端的速度vMR(l)和移动发射端vMT(l),计算第n根射线的多普勒频率参数:
Figure FDA0003361065980000039
其中,
Figure FDA0003361065980000041
Figure FDA0003361065980000042
Figure FDA0003361065980000043
式中,
Figure FDA0003361065980000044
表示移动发射/接收端速度的方位角,
Figure FDA0003361065980000045
表示移动发射/接收端速度的俯仰角,||vMT/MR(l)||表示移动发射/接收端速度的模值大小,
Figure FDA0003361065980000046
表示移动发射/接收端速度方位角的角速度,
Figure FDA0003361065980000047
表示移动发射/接收端速度俯仰角的角速度,
Figure FDA0003361065980000048
表示移动发射/接收端速度的加速度,Tu表示信道状态平稳间隔。
7.根据权利要求5所述的基于数字地图的全射线信道数字孪生方法,其特征在于,步骤S2中,进行输入信号功率统计并计算增益系数,完成自适应功率调整的过程包括以下步骤:
S21,根据下述公式对信号下变频转换单元(1-3)的输出信号xin进行输入信号功率统计:
Figure FDA0003361065980000049
式中,W1为模数转换模块的有效位宽,l表示离散时间序号,L为输入信号功率统计序列长度;xin(l)是第l时刻信号下变频转换单元(1-3)的输出信号;
S22,计算增益系数α:
Figure FDA00033610659800000410
式中,xref(l)为模数转换模块最大幅值;
S23,对增益系数进行定点化:
Figure FDA00033610659800000411
式中,Wα为定点化增益系数位宽,round(·)为舍入取整处理;将定点化增益系数αcoeff作为只读存储器(ROM)的读地址,读取只读存储器(ROM)中相应地址的值,同时将只读存储器(ROM)的输出结果与输入信号进行乘法运算;对乘法器输出结果进行截位,使乘法器输出结果稳定在动态幅值范围的80%。
8.根据权利要求5所述的基于数字地图的全射线信道数字孪生方法,其特征在于,步骤S4中,根据信道参数计算单元(1-1)输出的多普勒频率参数和射线增益参数,产生各有效射线的复指数值的过程包括以下子步骤:
S41,读取定点化射线初始值
Figure FDA00033610659800000412
Figure FDA00033610659800000413
传输至复数乘法器的被乘数输入端口;
S42,读取定点化频率参数Rn,k和In,k,传输至复数乘法器的乘数输入端口,进行复数乘法运算得到第n条射线当前时刻的复指数值:
Figure FDA0003361065980000051
Figure FDA0003361065980000052
k=1,2,3…,K
式中,
Figure FDA0003361065980000053
表示第k个信道状态下第n条射线第l时刻下的复指数值,
Figure FDA0003361065980000054
表示第k个信道状态下第n条射线频率参数的实数部分,
Figure FDA0003361065980000055
表示频率参数的虚数部分,
Figure FDA0003361065980000056
表示第k个信道状态下第n条射线频率参数实数部分的初始值,
Figure FDA0003361065980000057
表示第k个信道状态下第n条射线频率参数虚数部分的初始值,K表示信道状态数目,fn,k表示第k个信道状态下第n条射线的多普勒频率,Ts′表示射线复指数值的采样时间间隔;
S43,将复数乘法器输出结果传输至位宽恢复模块,并与射线复指数初始值的位宽W0进行匹配,同时判断位宽恢复模块输出结果是否大于零;
S44,将位宽恢复模块的输出结果幅值大小与参考值作比较,参考值取值为
Figure FDA0003361065980000058
若位宽恢复模块输出结果的绝对值小于参考值,则直接输出;若位宽恢复模块输出结果的绝对值大于参考值,当位宽恢复模块输出结果大于零时,将其加上误差因子δ(l);当位宽恢复模块输出结果小于零时,将其减去误差因子δ(l),误差因子δ(l)为:
Figure FDA0003361065980000059
式中,W0表示射线复指数值的数据位宽,
Figure FDA00033610659800000510
表示第n条射线的复指数值,
Figure FDA00033610659800000511
表示第n条射线复指数值的实数部分;
S45,将步骤S44中经误差修正后的结果作为前一时刻射线复指数值传输至复数乘法器被乘数输入端口,重复步骤S42至S45,直至误差修正结果满足预设要求或者达到预设最大重复次数;
S46,切换时分复用模块选择器地址至下一个地址,重复步骤S41至S45,产生不同信道状态下每一根射线的复指数值;将每一路射线复指数值与信道参数计算单元(1-1)输出的射线增益参数Pn传输至乘法器模块进行射线增益的控制,传输至寄存器进行缓存。
9.根据权利要求5所述的基于数字地图的全射线信道数字孪生方法,其特征在于,步骤S5中,根据信道参数计算单元(1-1)输出的系统参数对各路射线复指数值进行内插,并与各路延时信号进行相乘累加,将结果传输至动态截位模块进行位宽的自适应截位,同时计算截位误差系数的过程包括以下子步骤:
S51,将大规模射线孪生单元(1-2)输出的各路射线复指数值进行内插,内插倍数与输入信号的速率匹配;
S52,将内插后的射线复指数值与时延模拟单元(1-5)的输出结果传输至延迟叠加模块进行相乘累加:
Figure FDA0003361065980000061
式中,x(l)表示信道输入信号,h(l)表示信道冲激响应,y(l)表示信道输出信号,N(l)表示有效射线数目,Pn(l)表示第n条射线的功率增益,τn(l)表示第n条射线的路径时延;
假设相乘后数据位宽为W3,累加后数据位宽W4为:
Figure FDA0003361065980000062
式中,N表示射线总数;
S53,将延迟叠加模块输出至动态截位模块,计算输入数据的最大幅值并统计无效符号位数,对输入信号进行奇偶舍入截位,截位误差系数β为:
Figure FDA0003361065980000063
式中,W5表示数模转换模块数据位宽,W6表示无效符号位数。
10.根据权利要求5所述的基于数字地图的全射线信道数字孪生方法,其特征在于,步骤S6中,根据下述公式计算功率补偿系数γ:
γ=α·β
式中,α为增益系数,β是截位误差系数。
CN202111372953.7A 2021-11-18 2021-11-18 基于数字地图的全射线信道模拟装置及数字孪生方法 Active CN113890655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111372953.7A CN113890655B (zh) 2021-11-18 2021-11-18 基于数字地图的全射线信道模拟装置及数字孪生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111372953.7A CN113890655B (zh) 2021-11-18 2021-11-18 基于数字地图的全射线信道模拟装置及数字孪生方法

Publications (2)

Publication Number Publication Date
CN113890655A true CN113890655A (zh) 2022-01-04
CN113890655B CN113890655B (zh) 2022-06-03

Family

ID=79015833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111372953.7A Active CN113890655B (zh) 2021-11-18 2021-11-18 基于数字地图的全射线信道模拟装置及数字孪生方法

Country Status (1)

Country Link
CN (1) CN113890655B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059876A1 (ja) * 2002-12-24 2004-07-15 Matsushita Electric Industrial Co., Ltd. 伝送路シミュレート方法及び伝送路シミュレータ
CN105610529A (zh) * 2015-12-28 2016-05-25 南京航空航天大学 一种非平稳衰落信道的建模产生方法
CN109964422A (zh) * 2016-11-17 2019-07-02 三星电子株式会社 考虑与实际环境有关的信息来分析通信信道和设计无线网络的方法和设备
CN112040499A (zh) * 2020-08-11 2020-12-04 南京航空航天大学 无线信道时延和衰落精确模拟装置及方法
CN113612559A (zh) * 2021-09-07 2021-11-05 南京航空航天大学 一种可重构信道衰落模拟装置及其衰落孪生方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059876A1 (ja) * 2002-12-24 2004-07-15 Matsushita Electric Industrial Co., Ltd. 伝送路シミュレート方法及び伝送路シミュレータ
CN105610529A (zh) * 2015-12-28 2016-05-25 南京航空航天大学 一种非平稳衰落信道的建模产生方法
CN109964422A (zh) * 2016-11-17 2019-07-02 三星电子株式会社 考虑与实际环境有关的信息来分析通信信道和设计无线网络的方法和设备
CN112040499A (zh) * 2020-08-11 2020-12-04 南京航空航天大学 无线信道时延和衰落精确模拟装置及方法
CN113612559A (zh) * 2021-09-07 2021-11-05 南京航空航天大学 一种可重构信道衰落模拟装置及其衰落孪生方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱秋明 等: "传播模型驱动的三维频谱地图测绘研究", 《宇航总体技术》, 15 November 2021 (2021-11-15) *
李浩 等: "非平稳信道衰落FPGA实时模拟方法", 《信号处理》, no. 03, 25 March 2018 (2018-03-25) *

Also Published As

Publication number Publication date
CN113890655B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN111064503B (zh) 一种卫星信道高动态时延多普勒模拟系统
CN112040499B (zh) 无线信道时延和衰落精确模拟装置及方法
CN110542900B (zh) 一种sar成像方法及系统
CN111337890A (zh) 一种lfmcw雷达目标回波信号模拟方法
CN113612559B (zh) 一种可重构信道衰落模拟装置及其衰落孪生方法
CN113890655B (zh) 基于数字地图的全射线信道模拟装置及数字孪生方法
CN111367196B (zh) W波段宽带可变分数延时方法及系统
CN116318341B (zh) 一种低轨卫星信道建模方法、硬件模拟装置及模拟方法
CN111181659B (zh) 基于5g的无线信道仿真器的多普勒效应实现方法
CN112054857A (zh) 一种用于星地通信的信道模拟器及信道模拟方法
RU2158008C1 (ru) Космический радиолокатор с синтезированной апертурой, формирующий изображение в реальном времени
KR20110067908A (ko) 위성 항법 신호 생성 장치
JP3578944B2 (ja) 伝搬シミュレーション方法、伝搬シミュレーション装置、及び伝搬シミュレーションプログラムを記録した記録媒体
CN103293519B (zh) 基于流水线工作方式的i/q通道误差校正方法及其系统
Shuli et al. A real-time simulation design of multi-path fading channel based on SOS method
CN112731318B (zh) 单/双站动态复杂目标回波模拟方法及实现
CN115118366B (zh) 多目标分辨全数字链路建模与校验方法、装置及电子设备
CN113114315B (zh) 目标对象分组方法、装置、智能终端及存储介质
CN110808935B (zh) 线性调频信号自相关运算的精确高效实现方法及装置
CN115173964B (zh) 一种多普勒模拟方法
CN113612560B (zh) 一种面向三维mimo信道仿真的无人机信道模拟方法、装置和系统
CN112994814B (zh) 一种大规模信道仿真的fpga系统
CN115047498A (zh) 用于罗兰信号生成中的高精度时间对准方法
CN116032400A (zh) 一种基于双散射簇的非平稳信道模拟方法及模拟器
CN113281713A (zh) 一种雷达信号模拟方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant