Direkteinspritzende Otto-Brennkraftmaschine
Die Erfindung betrifft eine direkteinspritzende Otto- Brennkraftmaschine mit pro Zylinder einem Injektor zur Kraftstoffeinspritzung in einen Brennraum der im Oberbegriff des Patentanspruchs 1 angegebenen Gattung sowie ein Verfahren zum Betrieb einer solchen Brennkraftmaschine mit den Merkmalen des Patentanspruchs 10.
Bei direkteinspritzenden Brennkraftmaschinen wird im Brennraum jedes Zylinders das zum Antrieb des Kolbens zu verbrennende Kraftstoff/Luft-Gemisch aus direkt in den Brennraum eingespritztem Kraftstoff mit separat durch Einlaßkanäle zugeführter Verbrennungsluft gebildet. Bei fremdgezündeten Otto-Brennkraftmaschinen ist das Kraftstoff/Luft-Gemisch durch den Zündfunken einer in den Brennraum einragenden Zündkerze zu zünden und daher an den Elektroden der Zündkerze zündfähiges Gemisch bereitzustellen. In einem Schichtladungsbetrieb kann dabei durch späte Kraftstoffeinspritzung während des Arbeitsspiels des jeweiligen Zylinders eine geschichtete Gemischwolke mit zündfähiger Kraftstoffkonzentration gebildet werden bei insgesamt magerem Gemisch im gesamten Brennraumvolumen. Der Betrieb mit geschichtetem Gemisch führt dabei zu einer Reduzierung des Kraftstoffverbrauchs und der Schadstoffemission der Brennkraftmaschine. Um die Zündfähigkeit des Gemisches im Bereich der Zündkerze insbesondere im Schichtladungsbetrieb sicherzustellen, wird der Kraftstoff meistens in einem Kegelstrahl in den Brennraum eingespritzt, wobei eine kegelförmige Kraftstoffwolke mit der Verbrennungs-
luft gebildet wird. Bei einem sogenannten strahlgeführten Brennverfahren hängt die Gemischbildung stark von der zündfähigen Qualität des Gemisches der Kraftstoffwolke im Bereich der Zündkerze ab. Um eine stabile Gemischbildung und Zündung des Gemisches bei einem strahlgeführten Brennverfahren durch eine wohl konfigurierte, kegelförmige Kraftstoffwölke zu gewährleisten, sind sogenannte Mehrlochinjektoren bekannt, deren Einspritzdüse mit mehreren, über ihren Umfang verteilten Einspritzlöchern versehen ist.
Die DE 198 04 463 AI offenbart einen solchen Mehrlochinjektor, bei dem wenigstens eine Reihe von über den Umfang der Einspritzdüse verteilten Einspritzlöchern vorgesehen ist, um durch eine gezielte Einspritzung von Kraftstoff über die Ein- spritzlδcher ein strahlgeführtes Brennverfahren durch Bildung der Gemischwolke zu realisieren.
Die geometrische Form des Brennraumes wird beeinflußt durch eine im Kolbenboden des Kolbens ausgesparte Kolbenmulde. Die Kolbenmulde liegt dabei etwa gegenüber der Einspritzdüse und stellt im Bereich des oberen Totpunktes der Kolbenbewegung das Restvolumen des Brennraumes dar, in dem sich der eingespritzte Kraftstoff befindet. Die DE 199 22 964 AI offenbart eine geometrische Gestaltung der Kolbenmulde zur Verbesserung der Gemischbildung mit kegelförmig eingespritztem Kraftstoff. Insbesondere bei selbstzündenden Dieselbrennkraftmaschinen hat die geometrische Brennraumform maßgeblichen Anteil an der Qualität der Gemischbildung. Die bekannte Brennraumgestaltung weist dabei eine sogenannte Omega-Kolbenmulde auf, bei der der Kraftstoff durch eine zentrale Anhebung am Grund der Kol- benmulde in die außenliegenden Randbereiche der kreisförmigen Kolbenmulde gerichtet wird, um dort zur Bildung des Kraftstoff/Luft-Gemisches beizutragen .
Bei direkteinspritzenden Otto-Motoren mit Fremdzündung wird bei der Verwendung von Mehrlochinjektoren bei der inneren Gemischbildung der Kraftstoff möglichst spät während des Korn-
pressionshubes des Kolbens eingespritzt, um einen größtmöglichen Schichtungsgrad der Gemischwolke zu erreichen. Im Betrieb solcher Brennkraftmaschinen wird immer wieder festgestellt, daß die Schadstoffemission unerwünscht hoch liegt und auch die Kolbenoberfläche zu Verkokungen neigt. Solche Erscheinungen beruhen auf einer Benetzung der Kolbenoberfläche mit dem eingespritzten Kraftstoff, welche trotz des zum Einspritzzeitpunkts hohen Innendrucks des Zylinders in Folge des geringen Abstandes zwischen Injektor und Kolbenboden nicht zu vermeiden ist .
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Brennkraftmaschine derart auszubilden, daß auch bei einem Betrieb mit später Kraftstoffeinspritzung eine Kraftstoffbenetzung des Kolbens bei der Einspritzung ausgeschlossen ist.
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Patentanspruchs 1 gelöst. Außerdem wird ein Verfahren zum Betrieb einer solchen Otto-Brennkraftmaschine mit den Merkmalen des Patentanspruchs 10 vorgeschlagen.
Erfindungsgemäß ist die Kolbenmulde mit mehreren im Kolbenboden ausgehöhlten Radialkavitäten in radialer Richtung des Kolbens erweitert . Die Radialkavitäten sind dabei derart über den Umfang der Kolbenmulde verteilt, daß jedem Einspritzloch des Injektors eine Kavität zur Aufnahme des jeweiligen KraftstoffStrahls dieses Einspritzloches zugeordnet ist. Bei der Kraftstoffeinspritzung werden die innerhalb des Kegelstrahls auch mit radialen Komponenten vom Injektor ausgehenden Einzelstrahlen des eingespritzten Kraftstoffes in den Radialkavitäten aufgenommen und werden von der Oberfläche des Kolbenbodens ferngehalten. Die erfindungsgemäße Gestaltung der Kol- benmulde mit zusätzlichen Radialkavitäten schließt eine Benetzung der Kolbenoberfläche mit Brennstoff aus und verringert so die Schadstoffemission der Brennkraftmaschine. Die Aushöhlung des Kolbenbodens mit Radialkavitäten zur Aufnahme der Kraftstoffstrahlen des Mehrlochinjektors erlauben dabei
eine freie Gestaltung der Kraftstoffeinspritzung beim strahl - geführten Gemischbildungsverfahren und gestatten auch größere Öffnungswinkel des Kegelstrahls. Dabei kann der Kraftstoff bedarfsweise an einem Öffnungswinkel des aus den Kraftstoff- strahlen aller Einspritzlöcher des Mehrlochinjektors gebildeten Kegels von etwa 130° eingespritzt werden. Der Öffnungskegel beträgt vorzugsweise 75° bis 85°.
Die Erweiterung der Kolbenmulde mit Radialkavitäten und der damit erreichte Ausschluß jeglicher Benetzung der Kolbenoberfläche mit Kraftstoff ermöglicht sehr späte Einspritzzeitpunkte während des Kompressionstaktes. Erfindungsgemäß wird wenigstens in unteren Lastbereichen der Brennkraftmaschine durch die späte Kraftstoffzumessung ein geschichtetes Gemisch mit örtlich unterschiedlichen Kraftstoffkonzentrationen gebildet (Schichtladungsbetrieb) , wobei ein Beginn der Kraftstoffzumessung zu einem späteren Zeitpunkt als etwa 50° Kurbelwinkel vor dem oberen Totpunkt während des Kompressions- taktes vorgesehen ist. Vorteilhaft erfolgt die Zündung des Kraftstoff/Luft-Gemisches spätestens 10° Kurbelwinkel nach dem Ende der Kraftstoffeinspritzung des Mehrlochinjektors. Die Radialkavitäten nehmen den jeweiligen Kraftstoffstrahl der einzelnen Spritzlöcher des Injektors in sich auf und verlängern die Entfernung der Kolbenmulde von dem jeweiligen Einspritzloch und erlauben daher eine Kraftstoffeinspritzung mit einem hohen Druck von mehr als 80 bar. Vorzugsweise wird der Kraftstoff mit mehr als 160 bar eingespritzt.
Vorteilhaft ist pro Einspritzloch des Injektors eine Radial - kavität vorgesehen, in welche der Kraftstoffstrahl des jeweiligen Einspritzloches gerichtet ist und der eingespritzte Kraftstoff mit der Verbrennungsluft gemischt wird. In bevorzugter Gestaltung der Erfindung werden die Radialkavitäten drehsymmetrisch am Umfang der Kolbenmulde verteilt. Ein Kolben mit einer derartig ausgestalteten Kolbenmulde kann mit Mehrlochinjektoren verschiedener Lochanzahl zusammenwirken, welche gleichmäßig am Umfang der Mehrlochdüse verteilt sind
und ein ganzteiliges Vielfaches der Anzahl der drehsymmetrischen Radialkavitäten beträgt. In bevorzugter Ausgestaltung wird die Anzahl der Einspritzlöcher am Umfang der Einspritzdüse mit der Anzahl der Radialkavitäten zur Erweiterung der Kolbenmulde abgestimmt, wobei jedem Einspritzloch eine Radi- alkavität zugeordnet wird. Dabei kann auch eine Drehwinkel- orientierte Einbaulage des Injektors vorgesehen sein, beispielsweise mit einer örtlich unterschiedlichen Kraftstoffkonzentration im Kegelmantel des Kegelstrahls zum Zwecke der Anreicherung des Kraftstoffes im Bereich der Zündkerze, wobei eine auf der Drehwinkel-Orientierung des Injektors Rechnung tragende Gestaltung der Radialkavitäten möglich ist.
In bevorzugter Ausgestaltung wird die Kolbenmulde mit den Radialkavitäten im Kolben radial über einen auf Höhe des Kol- benbodens liegenden Rand der Kolbenmulde hinaus ausgebaucht, wodurch sich die Radialkavitäten nach Art einer Kaverne teilweise unterhalb der Überdeckung des Kolbenbodens erstreckt. Die Kolbenmulde wird dabei vorteilhaft mit einer zentralen Erhebung von ihrem Grund ausgebildet, welche kegelförmig ausgestaltet sein kann, um die Gemischbildung in den Radialkavitäten aktiv zu unterstützen. Die diametral am Rand der Kol- benmulde gegenüberliegenden Radialkavitäten weisen dabei einen etwa Omega-förmigen Querschnitt auf.
Ein Ausführungsbeispiel der Erfindung ist nachstehend anhand der Zeichnung näher erläutert .
Dabei zeigen:
Fig. 1 einen Längsschnitt eines Zylinders einer Otto- Brennkraftmaschine,
Fig. 2 eine geschnittene Ansicht einer Einspritzdüse,
Fig. 3 eine Draufsicht auf einen Kolbenboden mit daran ausgebildeter Kolbenmulde.
Die in Fig. 1 im Schnitt dargestellte Brennkraftmaschine 1 umfaßt mehrere Zylinder 2, in denen in an sich bekannter Weise ein Hubkolben 3 längsbeweglich angeordnet ist und mit seinem Kolbenboden 5 einen Brennraum 4 begrenzt. Der Zylinder 2 ist von einem Zylinderkopf 9 verschlossen, in dem ein Injektor 8 zur direkten Einspritzung von Kraftstoff in den Brennraum 4 aufgenommen ist. In dem Zylinderkopf 9 ist außerdem mindestens ein Einlaßventil vorgesehen, durch das beim Ladungswechsel Frischgas in den Brennraum 4 geführt wird zur Bildung von zündfähigem Kraftstoff/Luft-Gemisch mit dem vom Injektor 8 eingespritzten Kraftstoff. Das Kraftstoff/Luft- Gemisch wird von einer Zündkerze 10 gezündet. Der Injektor 8 ist in zentraler Lage des Brennraumes 4 auf einer Zylinderachse 7 des Zylinders 2 angeordnet und spritzt mit seiner in den Brennraum 4 ragenden Einspritzdüse den Kraftstoff kegelförmig in den Brennraum ein. Mit der Verbrennungsluft wird dabei eine kegelförmige Gemischwolke 14 gebildet, wobei sich die Elektroden der Zündkerze 10 im Mantelbereich der kegelförmigen Kraftstoffwölke 14 befinden. In unteren Lastbereichen der Brennkraftmaschine ist ein Schichtladungsbetrieb vorgesehen, wobei der Kraftstoff zu einem späten Zeitpunkt kurz vor der Zündung des Gemisches eingespritzt wird. Dabei liegen im Brennraum örtliche Unterschiede der Kraftstoffkon- zentration vor und bei insgesamt magerem Gemisch kann an den Elektroden der Zündkerze 10 kraftstoffreiches und zündfähiges Gemisch bereitgestellt werden.
Zur Erzeugung des Kegelstrahls ist die Einspritzdüse 11 des Injektors 8 mit mehreren Einspritzlöchern an ihrem Umfang ausgestattet, durch die bei einem Einspritzvorgang einzelne Kraftstoffstrahlen in den Brennraum 4 gelangen. Die Einspritzdüse 11 ist dabei vorzugsweise als sogenannte Sitzlochdüse ausgestaltet, wie in Fig. 2 gezeigt ist. Der Injektor 8 weist dabei eine nach innen öffnende Ventilnadel 18 auf. Das
Ventilglied 18 verschließt dabei die Kraftstoffkammer, welche durch Einspritzlöcher 12 am Umfang der Düse 11 Zugang zum Äußeren hat. In der Kraftstoffkammer 20 wird Kraftstoff unter einem hohen Druck von vorzugsweise mehr als 160 bar zur Einspritzung bereitgestellt. Bei Abheben der Injektornadel 18 in Richtung der Längsachse 7 werden die am Umfang der Sitzlochdüse 11 gleichmäßig verteilten Einspritzlöcher 12 freigegeben. Die Einspritzlöcher 12 sind als Kanäle in der Wandung der Einspritzdüse 11 derart ausgebildet, daß jeder Kraftstoffstrahl eines Einspritzloches in einem Winkel zur Längsachse 7 abgegeben wird. Die einzelnen Kraftstoffstrahlen bilden den Mantel eines Kegelstrahls aus.
Fig. 2 zeigt einen Injektor 8, an dessen Injektorspitze 19 eine kegelig zugespitzte Einspritzdüse 11 ausgebildet ist, an deren Umfang gleichmäßig verteilte Einspritzlöcher 12 vorgesehen sind. Zur Ausbildung des Kegelstrahls sind mindestens sechs Einspritzlöcher, vorzugsweise 10 bis 12 Einspritzlöcher 12 am Umfang der Einspritzdüse 11 gleichmäßig verteilt. Um die Qualität der inneren Gemischbildung durch genaue Führung der einzelnen Kraftstoffstrahlen zu verbessern, können die Einspritzlöcher hydroerosiv verrundet sein. Die Einspritzlöcher 12 weisen vorzugsweise einen Durchmesser von weniger als 140 μm auf. Dabei wird ein Verhältnis der Länge der Einspritzlöcher L zu den Durchmessern D von L/D < 3 als vorteilhaft angesehen; das Verhältnis betrifft vorzugsweise etwa 2. Die Injektorspritze 19 des Injektors 8 nach Fig. 2 wird vorzugsweise mit Verhältnissen D1/D2 von 0,4 bis 0,7 und L1/L2 = 0,08 bis etwa 0,22 gestaltet.
Um bei einem strahlgeführten Brennverfahren und insbesondere im Schichtladungsbetrieb der Brennkraftmaschine eine sichere Zündung und saubere Verbrennung sicherzustellen, kann die innere Gemischbildung und Kraftstoffverteilung durch geeignete Luftbewegung im Brennraum unterstütz werden. Die Einlaßluft kann dabei durch entsprechende Gestaltung der Einlaßkanäle in bedarfsweise steuerbaren Drallbewegungen um die Zylinderachse
7 oder Tumblebewegungen in der Ebene der Injektorachse 7 gesteuert werden.
Erfindungsgemäß ist in dem Kolbenboden 5 des in Fig. 1 im Schnitt dargestellten Kolbens 3 eine Kolbenmulde 6 vorgesehen, welche in zentraler Lage gegenüberliegend der Einspritzdüse 11 ausgespart ist. Um einer Benetzung des Kolbenbodens 5 mit Kraftstoff bei sehr später Einspritzung im Schichtladungsbetrieb entgegenzuwirken, wenn der Kolbenboden sich nämlich bereits nahe dem Injektor befindet, ist die Kolbenmulde 6, wie in Fig. 3 dargestellt, mit radialen Kavitäten 16 erweitert. Die im Kolbenboden 5 ausgehöhlten Radialkavitäten 16 sind dabei derart am Umfang der Kolbenmulde 6 verteilt, daß jedem Einspritzloch 12 des Injektors 8 eine Kavität 16 zur Aufnahme des jeweiligen KraftstoffStrahls 13 zugeordnet ist. Im Ausführungsbeispiel des in Fig. 3 in Draufsicht dargestellten Kolbens 3 sind für einen Injektor mit acht Einspritzlöchern acht Kavitäten 16 vorgesehen, welche gemäß der gleichmäßigen Anordnung der Einspritzlöcher am Umfang der Düse drehsymmetrisch am Umfang der Kolbenmulde 6 angeordnet sind. Die Radialkavitäten 16 erstrecken sich in radialer Richtung bis zu einem gemeinsamen Umkreis 22, dessen Radius Rκ etwa das 0,6 bis 0,9fache, vorzugsweise das 0,8fache des Radius Rz des Kolbens 3 bzw. des Zylinders 2 beträgt. Die Radialkavitäten 16 weiten die sich auf dem Umkreis 21 erstreckende Kolbenmulde 6 abschnittsweise im Bereich der Kraftstoffstrahlen des Injektors auf, wodurch für jeden Kraftstoffstrahl 13 eine längere Wegstrecke auch bei injektornaher Position des Kolbens bereitsteht und einer Benetzung der Kol- benoberflache entgegengewirkt ist.
Die Radialkavitäten 16 sind vorzugsweise derartig in dem Kolben 3 ausgebaucht, daß sich die Kolbenmulde 6 im Bereich der Kavitäten innerhalb des Kolbens 3 radial über einen auf Höhe des Kolbenbodens 5 liegenden Rand 17 hinaus erstreckt. Die radialen Aushöhlungen zur Aufnahme der jeweiligen Kraftstoff- strahlen liegen nach Art einer Kaverne innerhalb des Kolbens
3 unterhalb der Kolbenoberfläche. Vorteilhaft ist die Kolbenmulde 6 mit einer Tiefe von mindestens 5 mm ausgestaltet und weist eine zentrale Erhebung 15 auf, welche den Grund der Kolbenmulde 6 kegelförmig gestaltet und zur Führung der Gemischwolke bei der Gemischbildung in die Radialkavitäten 16 beiträgt .
Die erfindungsgemäßen Radialkavitäten 16 der Kolbenmulde 6 verhindern zum einen die Benetzung der Kolbenoberfläche mit Kraftstoff, so daß auch sehr späte Kraftstoffeinspritzungen im Schichtladungsbetrieb möglich sind und so die Qualität der Gemischbildung erhöht werden kann. Darüber hinaus tragen die erfindungsgemäßen Radialkavitäten 16 in radialer Richtung der Strahlausbreitung des Injektor-Kegelstrahls zur Wahrung des konstruktiv geforderten Verdichtungsverhältnisses der jeweiligen Brennkraftmaschine bei. Das Verdichtungsverhältnis bewegt sich vorteilhaft bei Saugmotoren zwischen 10 und 13 und bei aufgeladenen Brennkraftmaschinen zwischen 8,5 und 11.
Die Ausbildung der Kolbenoberfläche mit Radialkavitäten in der Kolbenmulde erlaubt eine freie Wahl der Öffnungswinkel des Kegelstrahls des Injektors 8 im Hinblick auf die zu erreichende Verbrennungsgualität . Ein Strahlwinkel zwischen den einzelnen Stahlachsen der Krafftstoffstrahlen gemessen in der Injektorachse von 60° bis 130° ist frei wählbar, wobei ein Öffnungswinkel des Kegelstrahls von 75° bis 85° als vorteilhaft gesehen wird.
Der Injektor kann mit Heizelementen zur Kraftstoffvorwärmung ausgestattet sein oder auch Einrichtungen zur Zuführung verschiedener Kraftstoffarten aufweisen (Bi-Fuel-Ventil) , beispielsweise zur Zuführung leichtflüchtigen Startkraftstoffes für den Kaltstart.
In einer Gesamtabstimmung der Brennkraftmaschine erscheint zur Verbesserung der Gemischbildung mit einem Kolben mit Radialkavitäten in der Kolbenmulde ein Verhältnis der Durchmes-
ser des Einspritzventils zur Zylinderbohrung von 0,3 bis 0,38 und ein Verhältnis des Durchmessers des Auslaßventils zur Zylinderbohrung von 0,28 bis 0,32 für zweckmäßig. Die Einlaßventile und die Auslaßventile liegen dabei vorteilhaft in einem Verhältnis von 1,02 bis 1,1 zueinander. Mit einem hohen Einspritzdruck von vorteilhaft mehr als 160 bar kann eine genaue und sehr späte Kraftstoffzumessung erfolgen, da die erfindungsgemäßen Radialkavitäten auch bei einem hohen Druck eine Benetzung der Kolbenoberfläche verhindern. Die diametral in der Kolbenmulde 6 gegenüberliegenden Kavitäten 16 bilden dabei eine Omega-Form, welche zur Aufbereitung des in die jeweilige Radialkavität 6 eingespritzten KraftstoffStrahls beiträgt. Ein Verhältnis der Kanallänge der in Fig. 2 dargestellten Einspritzlöcher 12 zu dem Einspritzdruck sollte weniger als 0,25 x 10"9 /Pa betragen.
Zur Verbesserung der Entflammbarkeit der Gemischwolke 14 im Schichtladungsbetrieb wird die Zündkerze zweckmäßig zwischen zwei Kraftstoffstrahlen 13 des Injektors positioniert. Bei Verwendung eines Zylinderköpfes mit vier Ventilen sollte sich die Zündkerze zwischen den Auslaßventilen befinden. Die Zündkerze kann dabei mit Drehwinkel-orientierter Massenelektrode eingebaut werden, wobei zur Stabilisierung der Zündung auch mehrere Zündkerzen und insbesondere eine Wechselspannungs- zündanlage mit variabler Funkendauer Verwendung finden kann.
Die erfindungsgemäße Brennraumgeometrie mit Radialkavitäten zur Erweiterung der Kolbenmulde und Aufnahme der einzelnen Kraftstoffstrahlen 13 eines Mehrlochinjektors 8 erlaubt ohne Benetzung des Kolbens eine sehr späte Kraftstoffeinspritzung und eine rasche Zündung des Kraftstoff/Luft-Gemisches spätestens 10° Kurbelwinkel nach dem Ende der Kraftstoffeinspritzung.