WO2004058098A2 - Total disc implant - Google Patents
Total disc implant Download PDFInfo
- Publication number
- WO2004058098A2 WO2004058098A2 PCT/US2003/040086 US0340086W WO2004058098A2 WO 2004058098 A2 WO2004058098 A2 WO 2004058098A2 US 0340086 W US0340086 W US 0340086W WO 2004058098 A2 WO2004058098 A2 WO 2004058098A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- disc implant
- end plates
- generally
- bearing surfaces
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2/4425—Intervertebral or spinal discs, e.g. resilient made of articulated components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/30224—Three-dimensional shapes cylindrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/30301—Three-dimensional shapes saddle-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
- A61F2002/30362—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
- A61F2002/30364—Rotation about the common longitudinal axis
- A61F2002/30365—Rotation about the common longitudinal axis with additional means for limiting said rotation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30604—Special structural features of bone or joint prostheses not otherwise provided for modular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30604—Special structural features of bone or joint prostheses not otherwise provided for modular
- A61F2002/30616—Sets comprising a plurality of prosthetic parts of different sizes or orientations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/30934—Special articulating surfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2/4425—Intervertebral or spinal discs, e.g. resilient made of articulated components
- A61F2002/443—Intervertebral or spinal discs, e.g. resilient made of articulated components having two transversal endplates and at least one intermediate component
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0033—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0069—Three-dimensional shapes cylindrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0095—Saddle-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00023—Titanium or titanium-based alloys, e.g. Ti-Ni alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00029—Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00299—Ceramics or ceramic-like structures based on metal nitrides
- A61F2310/00317—Ceramics or ceramic-like structures based on metal nitrides containing silicon nitride
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S606/00—Surgery
- Y10S606/907—Composed of particular material or coated
Definitions
- a novel motion preserving total disc replacement implant is provided.
- the TDI is particularly designed for implantation into a human patient or other mammal, into the inter-vertebral space between adjacent spinal discs or vertebrae, as a prosthetic replacement for one or more surgically removed discs.
- the TDI beneficially provides a substantially full and natural post-operative range of motion (ROM).
- the components of the TDI of the present invention are formed from ceramic materials, or biocompatible metals, or a combination thereof, with preferred ultra-low wear ceramic-ceramic or ceramic-metal articulatory components and materials being described in copending U.S. Serial No. 10/171 ,376, filed June 13, 2002, and entitled METAL-CERAMIC COMPOSITE ARTICULATION, which is incorporated by reference herein.
- Such ultra-low wear bearing material or materials have shown impressive mechanical and tribological properties for hip articulations, and may be used in the TDI of the present invention thereby avoiding the problems and disadvantages associated with prior art concepts using metal end plates articulating with a conventional high molecular weight polyethylene (PE) insert.
- PE polyethylene
- articulating disc implants typically have metal end plates with a compliant articulating, typically high density polyethylene (PE) insert between them.
- PE high density polyethylene
- Compliant inserts are used to enable low friction articulation and also to enable resilient cushioning under load, although no clinical proof exists that shock absorption is necessary.
- PE wear particles are one of the principal causes of implant failures.
- the ultra-high molecular weight polyethylene (PE) particles are released over time from the acetabular liner v .
- knee joint implants since they are kinematically analogous to intervertebral discs: they have a similar range of complex motion including sliding in the anterior-posterior (A-P) direction, rotation and bending in the medial-lateral (M-L) direction, and combinations thereof.
- A-P anterior-posterior
- M-L medial-lateral
- Implant stability was found to be a function of how well the tibial component was fixed.
- Diagnostic imaging using radiography or MRI is commonly used to assess the presence of spinal disease, determine range of motion or evaluate the patients progress in healing post surgical treatment'*' x .
- the present generation of total disc replacements use metal end plates which present problems with imaging MRI or in X-Ray -CT imaging, due to the presence of halos and other artifacts.
- PE inserts can suffer damage from several modes: creep, pitting, scratching, burnishing, abrasion, delamination and embedded particulates. While there is debate over whether creep or wear is the main cause of dimensional changes in PE inserts x "' x ⁇ ", there is little doubt that damage to PE can and does occur over the long term.
- the proposed TDI design of the present invention is geometrically configured to accommodate a substantially full and natural range of motion, and, in the preferred form, is constructed from an alternate ultra-low wear bearing material that restores anatomic function avoids all the drawbacks of current artificial disc designs.
- a total disc implant for total replacement of a spinal disc or discs in a human patient or other mammal, wherein the TDI is designed to maintain a substantially full range of natural motion (ROM) following implantation.
- the TDI comprises upper and lower end plates for affixation to adjacent vertebral bodies, wherein this pair of end plates are adapted for accommodating a substantially full and natural range of anterior-posterior (A-P) rotation or flexion, medial-lateral (M-L) rotation or flexion, and axial rotation.
- A-P anterior-posterior
- M-L medial-lateral
- the TDI generally comprises the upper and lower end plates for affixation to adjacent vertebral bodies, in combination with an intervening insert disposed therebetween.
- the upper and lower end plates include elongated and generally convex part-cylindrical surfaces oriented generally perpendicular to each other, with one of said surfaces extending in an anterior-posterior direction and other extending in a medial- lateral direction.
- the intervening insert defines concave upper and lower part-cylindrical seats oriented generally perpendicular to each other for respectively engaging these part-cylindrical surfaces, but wherein at least one and preferably both of these part-cylindrical seats are defined by offset radii to include a somewhat flattened central base region merging smoothly with upwardly curving radiused sides.
- the TDI accommodates a substantially full and natural range of motion, including anterior-posterior flexion, medial-lateral extension, and a limited range of axial rotation.
- an elongated and generally convex part- cylindrical surface is formed on one of the upper and lower end plates, and a generally convex part- cylindrical seat defined preferably by offset radii is formed on the other of the two end plates.
- Preferred materials include ceramic, with a most preferred material being sintered silicon nitride (Si 3 N 4 ), for the upper and lower end plates and insert, or a biocompatible metal such as titanium or cobalt- chrome alloy, or a combination of such ceramic and metal materials.
- a ceramic-ceramic or a ceramic- metal articulation interface are disclosed in copending U.S. Serial No. 10/171 ,376, filed June 13, 2002, which is incorporated by reference herein.
- FIGURE 1 is an exploded top perspective view showing a total disc implant constructed in accordance with one preferred form of the present invention, and illustrating upper and lower end plates with an insert positioned therebetween;
- FIGURE 2 is a side elevation view of the total disc implant depicted in FIG. 1 ;
- FIGURE 3 is an enlarged side elevation view of the insert
- FIGURE 4 is a top plan view of the total disc implant of FIG. 1 , showing axial rotation;
- FIGURE 5 is an anterior- posterior or sagital sectional view of the total disc implant of FIG. 1 , showing anterior-posterior articulation;
- FIGURE 6 is a medial-lateral or coronal sectional view of the total disc implant of FIG. 1 , showing medial-lateral articulation;
- FIGURE 7 is an exploded top perspective view showing a total disc implant constructed in accordance with an alternative preferred form of the present invention.
- FIGURE 8 is an exploded bottom perspective view of the total disc implant of FIG. 7;
- FIGURE 9 is a side elevation view of the total disc implant depicted in FIG. 7;
- FIGURE 10 is an anterior-posterior or sagital sectional view of the total disc implant of FIG. 7, showing anterior-posterior articulation;
- FIGURE 11 is a medial-lateral or coronal sectional view of the total disc implant of FIG. 7, showing medial-lateral articulation;
- FIGURE 12 is a top plan view of the total disc implant of FIG. 7, showing axial rotation;
- FIGURE 13 is a pair of photomicrographs comparing porosity and pore size between a preferred cancellous structured ceramic material for use in forming one or more portions of the total disc implant, with natural trabecular bone structure of a human lumbar vertebral body;
- FIGURE 14 is a radiograph showing the preferred cancellous structured ceramic material implanted a condylar bone of a sheep;
- FIGURE 15 is a back scattered electron (BSE) microscope image showing new bone ingrowth into the preferred cancellous structured ceramic material, and apposition along the host bone/implant interface;
- BSE back scattered electron
- FIGURE 16 is an exploded top perspective view showing a total disc implant constructed in accordance with a further alternative preferred form of the present invention.
- FIGURE 17 is a side elevation view of the total disc implant embodiment depicted in FIG. 16;
- FIGURE 18 is an inverted side elevation view of an upper component of the total disc implant embodiment of FIG. 16;
- FIGURE 19 is a top plan view of the total disc implant embodiment of FIG. 16, showing axial rotation;
- FIGURE 20 is an anterior-posterior or sagital sectional view of the total disc implant embodiment of FIG. 16, showing anterior-posterior articulation;
- FIGURE 21 is a medial-lateral or coronal sectional view of the total disc implant embodiment of FIG. 16, showing medial-lateral articulation.
- the TDI design of the present invention is based on the principles of maintaining spine anatomy, restoring function by preserving segmental motion, providing immediate stability, withstanding spine loads safely, and providing rapid osteo-integration between implant/host bone.
- FIGURES 1 and 2 show the proposed TDI design for lumbar spine.
- the design features an upper end plate 10 and a lower end plate 12 formed respectively with upper and lower surfaces that engage with the adjacent vertebral bodies (not shown).
- Each end plate 10, 12 includes a solid rim 14 substantially circumscribing the respective upper and lower surface to rest on the cortex of the adjacent vertebral body.
- Fixation elements such as fins, teeth or pins 16 protrude axially from the respective upper and lower surfaces of the end plates 10, 12 to provide anchoring and immediate stability with the adjacent vertebral bodies.
- These upper and lower surfaces include or are surface-coated each to define a porous ingrowth surface 18 to permit and accommodate rapid bone in-growth and osteo-integration for long term stability.
- a variety of suitable bone ingrowth coatings and materials are known to persons skilled in the art.
- these in-growth surfaces are depicted with a generally planar configuration in FIGS. 1 and 2, alternative geometries particularly, such as a convexly contoured or domed configuration for more optimal and extended surface area contact with adjacent porous or cancellous interior structures of prepared adjacent vertebral bodies, will be apparent to persons skilled in the art.
- the anterior-posterior (A-P) and medial-lateral (M-L) dimensions of the upper and lower end plates 10, 12 are chosen to suit typical lumbar/cervical spinal body dimensions, such as an A-P dimension of about 20-25 mm and a M-L dimension of about 28-35 mm as viewed in the illustrative drawings.
- the illustrative end plates 10, 12 further include an anterior to posterior lordotic taper to better restore the natural curvature of spine, as viewed in FIG. 2 which shows each end plate 10, 12 with a tapered thickness that increases in the anterior to posterior direction.
- this lordotic taper may provide a posterior spacing between the end plates 10, 12 of about 8 mm, with the upper and lower surfaces of the end plates 10, 12 tapering forwardly in the anterior direction at a diverging angle of about 6 degrees.
- the articulating lower surface of the upper end plate 10, and the articulating upper surface of the lower end plate 12 each include a unique contour that permits a substantially normal range flexion in the A-P direction in combination with extension in the M-L direction, while additionally accommodating a limited range of axial rotation.
- These articulating surfaces of the upper and lower end plates 10, 12 respectively engage and articulate with an intervening insert 20 having uniquely contoured upper and lower surfaces.
- the articulating lower surface of the upper end plate 10 comprises a part-cylindrical, downwardly convex elongated bearing component or strip 22 defining a bearing surface extending generally in the M-L direction.
- the articulating upper surface of the lower end plate 12 comprises a similarly sized and shaped, part-cylindrical and upwardly convex elongated bearing component or strip 24 oriented to define a bearing surface extending generally in the A-P direction.
- the two bearing strips 22, 24 are oriented generally on orthogonal axes relative to each other.
- the insert 20 is captured between these bearing strips 22, 24, and includes generally part-cylindrical recessed bearing seats 26 and 28 formed respective in the upper and lower sides thereof, generally on mutually orthogonal axis, for respective reception and bearing engagement with the part-cylindrical bearing strips 22, 24. Accordingly, the articulating geometry between the upper bearing strip 22 on the upper end plate 10, with the upper bearing seat 26 on the insert 20, accommodates A-
- each bearing seat 26, 28 formed on the insert 20 each have a part-cylindrical contour defined in cross sectional shape by offset radii, as shown best in FIG. 3.
- each bearing seat 26, 28 is defined by upwardly curving sides shown in the illustrative example of FIG. 3 to be formed on radii of about 7.3 mm, but wherein the centers of these radii are spaced apart or laterally offset by a small increment (0.7 mm in the illustrative example) to provide a relatively flattened base segment interposed between the upwardly curving radiuses sides.
- the part-cylindrical bearing seats 26, 28, defined by offset radii provide a platform permitting a limited amount of axial rotation and translation. That is, the effect of this special asymmetric articulating geometry with offset radii is to accommodate a substantially natural range of anatomic rotational motion on the order of about plus/minus 5° as viewed in FIG. 4, while at the same time providing a limit to extreme rotation motion and restoring a "neutral" position following a rotation motion. In such rotation, the radiused sides of the insert 20 initially abut the bearing strips 22, 24 of the top and bottom plates 10, 12 (FIG. 4).
- this unique TDI articulation geometry functions like the natural disc, by limiting axial rotation while permitting normal anatomic flexion- extension and lateral bending motions. No other features such as positive stops or grooves or additional components such as elastomeric materials are necessary.
- Figure 5 and 6 show the implant design in the extreme lateral bending and flexion-extension positions respectively.
- anatomic combined lateral bending and flexion-extension range of motion (ROM) are permitted for the lumbar implant.
- the total intervertebral height is in the illustrative embodiment is about 8 mm.
- the design permits a higher range of motion - up to about 20° for flexion- extension and lateral bending.
- the ROM for the proposed lumbar and cervical spines are in accord with those reported by Wilke et al XIV
- TDI total disc implant
- a further goal is to prevent adjacent segment hypermobility.
- the proposed TDI is more natural - allowing controlled and limited motion between segments.
- the TDI has a special bi-convex articulating contour or geometry which permits "normal" flexion- extension, lateral bending, and limited axial rotation. This geometry is in sharp contrast to some designs which use fixed hard stops (e.g., Flexicore), with the potential for implant loosening, or other discs such as the Charite',
- ProDisc and Maverick which have passive stops to limit axial rotation, and require the annulus to be tightened for optimal function.
- Minimal End Plate Preparation by preserving the load bearing cortical bone and minimizing end plate perforation to expose the highly vascular cancellous bone, both immediate stability and long term in-growth is enabled.
- Surgical Technique the surgical technique for insertion of these implants is consistent with the established methods of disc removal, and requires neither specialized instrumentation nor specialized instrumentation nor specialized surgical technique. In fact, the technique will be similar to that used for over a decade for artificial discs.
- the technique involves removal of the nucleus pulposus, flattening of the end plates and leaving most of the annular circumferentially intact. The anterior or anterior-lateral aspect of the annulus is removed as needed for TDI placement. Based upon templating the patient spine and using trial implants, the vertebral bodies are distracted to a near maximum needed for optimal placement of the TDI.
- the fins cut through the end plates and the osteo-integration surface which may be domed, is forced into contact with the cancellous portion of the adjacent vertebral bodies.
- Ligamentoxasis is also used to maintain the TDI in place.
- the surgical goal is to relieve pain by restoring the patient's natural spinal anatomy and allowing for some motion between the diseased vertebral segments, and thereby minimize or avoid adjacent segment hypermobility. Clinical success will be defines by reduction or elimination of patient pain, improvement in function and maintenance of motion with the TDI. 5.
- Extent of Disc Removal the extent of disc removal can be determined by the surgeon at the time of surgery and can be individualized for each patient. As noted above, the end plate is flattened most of the annulus is left circumferentially intact. It is contemplated that multiple TDI's with variable height end plates insert will be provided in order to restore a unique individual anatomy with a relatively high degree of precision.
- Modular Design the proposed implant design will be made available in different standardized A-P depths and M-L widths to accommodate the physiological range of inter-vertebral space.
- the articulating inserts will also be made available in varying heights within typical the physiological range. This will enable standardization of the modular implant system over the lumbar/cervical size ranges.
- the implant is made from ceramic material many times stronger than bone and will not collapse.
- the implantation technique and TDI design relies on preservation of the strong vertebral cortex, which is resistant to compression, thus preventing or minimizing migration or subsidence of the TDI into the vertebrae.
- the large bearing surface area of the implant minimizes the load per unit area on the insert.
- the proposed TDI is an inter-vertebral space implant and not a "through vertebrae" cross inter-vertebral space implant.
- the technique envisioned requires minimal end plate preparation.
- the design features multiple 2 mm fins which bite into the adjacent vertebral bone for stability. It is expected that revision of the implant, should it become necessary, would be possible with a minimal chance of iatrogenic destruction of the adjacent vertebrae.
- the implant surface is designed to resist dislodgment with multiple fins assuring immediate anchoring. Long term stability is provided by rapid osteo-integration into the bio-mimetic cancellous structured bony ingrowth layer. Loading the porous layer with osteo-inductive agents can enhance this ingrowth.
- Safety and Versatility the entire procedure is performed under direct vision and with complete visualization of the adjacent vital structures (e.g., organs, neural structures and blood vessels).
- the implant also lends itself to a variety of implantation techniques such as minimally invasive surgery, anterior, posterior, lateral or extreme lateral approaches.
- FIGS. 7-9 show an alternate TDI design for lumbar spine.
- the design features an upper end plate 30 and a lower end plate 32 formed respectively with upper and lower surfaces that engage with the adjacent vertebral bodies (not shown).
- Each end plate 30, 32 includes a solid rim 34 substantially circumscribing the respective upper and lower surface to rest on the cortex of the adjacent vertebral body.
- Fixation elements such as fins, teeth or pins 36 protrude axially from the respective upper and lower surfaces of the end plates 30, 32 to provide anchoring and immediate stability with the adjacent vertebral bodies.
- These upper and lower surfaces include or are surface-coated each to define a porous in-growth surface 38 to permit and accommodate rapid bone in-growth and osteo- integration for long term stability.
- the A-P and M-L dimensions of the upper and lower end plates 30, 32 are chosen to suit typical lumbar/cervical spinal body dimensions.
- the illustrative end plates 30, 32 further include an anterior to posterior lordotic taper to better restore the natural curvature of spine, as viewed in FIG. 9.
- the articulating lower surface of the upper end plate 30, and the articulating upper surface of the lower end plate 32 each include a unique bearing component defining a unique bearing surface or contour that permits a substantially normal range flexion in the A-P direction in combination with extension in the M-L direction, while additional accommodating a limited range of axial rotation. These articulating surfaces of the upper and lower end plates 30, 32 respectively engage and articulate with each other.
- the articulating surface of the upper end plate 30 comprises a part-cylindrical, downwardly concave bearing component or member 42 with its axis extending generally perpendicular to the M-L direction.
- the articulating surface of the lower end plate 32 comprises a similarly sized and shaped, part-cylindrical and upwardly convex elongated bearing component or strip 44 oriented to extend generally in the A-P direction.
- the two bearing surfaces 42, 44 are oriented generally on orthogonal axes relative to each other.
- the articulating geometry between the upper bearing surface 42 on the upper end plate 30, accommodates A-P rotation or flexion (as viewed in FIG. 10), with a preferred range of A-P flexion on the order of about 12-15°.
- the articulating geometry between the lower bearing strip 44 on the lower end plate 30, accommodates M-L rotation or extension (as viewed in FIG. 11 ), with a preferred range of M-L extension on the order of about 12-15° of lateral bending.
- each bearing surface 42, 44 formed on the upper and lower end plates 30 and 32 each have a part- cylindrical contour defined by offset radii, similar to those shown best in FIG. 3.
- each bearing surface 42, 44 is defined by curving sides to be formed as arcs of a circle, but wherein the centers of these arcs are spaced apart or laterally offset by a small increment to provide a relatively flattened rotational platform interposed between the curving radiuses sides.
- the part-cylindrical bearing surfaces 42, 44, and the flattened rotational platform defined by offset radii provide a platform permitting a limited amount of axial rotation and translation. That is, the effect of this special asymmetric articulating geometry with offset radii is to accommodate a substantially natural range of anatomic rotational motion on the order of about plus/minus 5° as viewed in FIG. 12, while at the same time providing a limit to extreme rotation motion and restoring a "neutral" position following a rotation motion. In such rotation, beyond a certain limit imposed by the offset amount, the radiused sides of the curved bearing surface 42 of the top end plate 30 slide along the articulating surface 44 of the bottom end plate 32 effectively distracting the intervertebral disc space. This distraction increases axial loading on the TDI. In turn, the increased axial loading naturally results in a counteracting force tending to resist the distraction, forcing the two vertebral bodies back to the "neutral" position.
- this alternate two piece unique TDI articulation geometry as shown in FIGS. 7-9 functions like the natural disc, by limiting axial rotation while permitting normal anatomic flexion-extension and lateral bending motions. No other features such as positive stops or grooves or additional components such as elastomeric materials are necessary.
- Another unique advantage of this design is that it does not require an insert, thus avoiding any risk of the insert from being dislodged or otherwise impinging on the spine.
- the implant design can be flexible enough to permit a higher range of motion - up to about 20° for flexion-extension and lateral bending for cervical spine disc replacements.
- the ROM for the proposed lumbar and cervical spines are in accord with those reported by Wilke et al xv "' xv ⁇ " and
- FIGS. 16-21 illustrate a further alternative preferred form of the TDI of the present invention, based again on principles of maintaining natural spinal anatomy, restoring function by preserving segmental motion, providing immediate implantation stability, withstanding normal spinal loads in a safe and stable manner, and providing relatively rapid and improved osteo-integration between TDI surface and host bone.
- FIGS. 16-17 illustrate an upper end plate 60 and a lower end plate 62 similar to those shown and described in FIGS. 1-9, but respectively including convex or domed upper and lower surfaces for engaging adjacent vertebral bodies having an overall size and shape suitable for implantation into the lumbar spinal region. These domed surfaces are surface-coated with or otherwise define porous bone in-growth surfaces 68 for relatively rapid osteo-integration with porous or cancellous interior structure of prepared adjacent vertebral bodies.
- a solid rim 64 on each end plate is provided for stable seated engagement with the circumferential or cortical rim of the prepared adjacent vertebral bodies, so that center loading and potential subsidence is substantially eliminated or avoided.
- Protruding fixation elements 66 such as the illustrative fins are also provided for anchoring the end plates 60, 62, and to provide substantial immediate stability.
- the illustrative drawings show these fins 66 to have a generally curved posterior edge and a generally vertical anterior edge suitable for anterior placement.
- a modified fin shape of generally pyramidal configuration with a triangular base may be used.
- FIGS. 16-21 may incorporate anterior- posterior and medial-lateral dimensions suitable for specific lumbar or cervical spinal body dimensions.
- the end plates 60, 62 have an anterior to posterior lordotic taper (FIG. 17), similar that shown in FIGS. 2 and 9, for better fit and restoration of the natural spinal curvature.
- upper end plate 60 includes a depending, part-cylindrical bearing strip 72 which is elongated in the anterior-posterior (sagital) direction, wherein this bearing strip 72 incorporates generally convex opposite end segments separated by a centrally positioned and generally concave segment defining a concave bearing seat 76.
- the lower end plate 62 includes an upwardly projecting, part-cylindrical bearing strip 74 which is elongated along an axis generally orthogonal to the upper bearing strip 72.
- each bearing strip 72, 74 is shaped with generally convex opposite end segments, preferably to expand or taper with increasing diametric size (FIGS. 16 and 18) from the opposite ends thereof in a direction toward the associated central concave bearing seat 76, 78. As illustrated in inverted configuration in FIG.
- both concave bearing seats 76, 78 which are also oriented on generally orthogonal axes relative to each other are desirably formed on offset radii as previously shown and described relative to FIGS. 1-9, to define upwardly curving opposed sides with a relatively flattened base segment interposed therebetween.
- the above described articulating geometry accommodates limited relative rotation (FIG. 19) within a limited range of about plus/minus 5°, medial-lateral flexion-extension (FIG. 20) within a limited range of up to about 12-15°, and anterior-posterior lateral bending (FIG. 21 ) within a limited range of up to about 10-12°.
- the effect of this articulating geometry including the above-described concave surfaces formed on offset radii functions to limit extreme motion and correspondingly to provide an inherent tendency to return to or restore a neutral or substantially centered position between the articulating components.
- the combination of the offset radii for the concave bearing seats 76, 78 and their engagement on orthogonal axes results in sliding of the upper end plate 60 along the lower end plate 62 for distracting the intervertebral disc space.
- This distraction increases loading in the cranial-caudal direction on the TDI, which in turn naturally results in a counteracting force tending to resist the distraction, thereby urging the components and the vertebral bodies affixed thereto back toward a neutral position.
- the TDI articulation geometry functions like the natural disc, by limiting axial rotation while permitting normal anatomic flexion-extension and lateral bending motions. No other features such as positive stops or grooves or additional components such as elastomeric materials are necessary.
- FIGS. 20 and 21 respectively show the TDI in extreme flexion- extension and extreme lateral bending positions for the illustrative lumbar implant, it is noted the ROM permitted for a cervical implant can be varied typically within a wider range of motion.
- the proposed TDI is a motion preserving prosthetic disc for replacing a damaged disc, which restores anatomic motion and function, provides immediate and long term stability and virtually eliminates risk from wear particles.
- the TDI end plates and/or the insert are constructed from rigid-on- rigid materials, such as by use of a selected ceramic material, or a selected biocompatible metal, or combinations thereof.
- ultra-low wear bearing materials such as enhanced Si 3 N 4 ceramic is used, as shown and described in copending U.S. Serial No. 10/171 ,376, filed June 13, 2002, which is incorporated by reference herein.
- Si N cups/ Si N heads have demonstrated high safety and reliability in laboratory hip simulator and mechanical tests, and are cost competitive compared to conventional ceramic-on-ceramic bearings.
- Si 3 N 4 ceramics have 100% higher fracture toughness than alumina and 50% higher fracture toughness than zirconia, a 50% increase in fracture strength over alumina and no issues with phase transformation or aging like zirconia. They also have very favorable wear performance as determined over a 3 million cycle test.
- These properties of Si 3 N 4 allowed THA implants with significantly higher safety and reliability to be manufactured. Wear performance of these bearings indicates that they are better than metal-on- metal bearings by over one order of magnitude, 2 orders of magnitude better than metal-PE and 20 times lower than metal -XPE bearings.
- bearing materials are preferred for use in the TDI of the present invention.
- CSC bio-mimetic, bioactive, cancellous structured ceramics
- CSC ceramics possess [a] high load bearing capability, [b] strong bio-mimetic scaffold necessary for ingrowth and rapid integration with host bone, [cj a bio-active coating comprising of calcium phosphate (Ca-P), which like hydroxy-apatite (HAP) or tri-calcium phosphate (TCP) is similar to bone mineral, a Ca deficient, carbonate containing apatite similar to Ca ⁇ o(PO 4 ) 6 (OH) 2 and capable of binding to osteo-inductive factors such as autogenous cells, and [d] good imaging characteristics unlike metals.
- Ca-P calcium phosphate
- HAP hydroxy-apatite
- TCP tri-calcium phosphate
- the porosity and pore size of these CSC ceramics can be tailored to allow for [a] optimal ingress of vascularization, [b] ease of carrying/delivering ex-vivo expanded viable hMSCs within the cancellous core, and [c] mechanical property match with bone to allow optimal stress transmission.
- the porosity/pore size structure for a load bearing CSC have been selected using previous reports on the optimal structure for grafts by Robey and co-workers.
- the optimal pore size for achieving bone ingrowth ranged between 100 to 530 ⁇ m, with up to 55% porosity.
- the resultant porous structure 50 of the CSC ceramic closely resembles the porous structure 52 of trabecular bone, as viewed in FIG. 13.
- FIGS. 14 and 15 show a typical section, with a CSC plug 54 implanted with condylar bone 56.
- the CSC plugs were coated with a uniform amorphous Ca-P coating and pores filled with host bone marrow aspirate. The combination of the Ca-P coating and host osteo-inductive factors resulted in favorable osteoinductive activity.
- the implant/bone interface is depicted in FIG. 15 by reference numeral 58.
- Reference numeral 61 refers to a region of bone apposition
- reference numeral 63 indicates bone ingrowth.
- Histologic evaluation (Giemsa stain) of thin sections revealed vigorous bone formation both at the implant/host bone interface and within the pores of the scaffold, indicative of the interconnection between pores.
- new bone formed at the surface.
- Complete interconnection of the pores allowed osteoblastic activity to penetrate deeper into the implant and complete vascular penetration was observed in the histology evaluation..
- evidence of woven bone was observed.
- the bone was viable as detected by osteocytes in the lacunae. Little fibrous encapsulation, presence of macrophage or giant cells was detected.
- the CSC structure will be used to fabricate the porous in-growth surface 18 integrally with the dense bearing surface end plates of the TDI implant as shown in FIG. 1. Excellent short/long term stability and imaging characteristics will be obtained.
- the instant TDI is an ideal prosthetic inter-vertebral disc implant.
- the design maintains intervertebral anatomy.
- the TDI design restores spinal segmental motion and provides a resistance to extreme rotation of the spine as is desired.
- the bi-concave insert 20, with its thicker rim 14 will naturally prevent protrusion and resist dislocation. This will minimize risk of pinching nerves or the spinal cord.
- the ceramic disc insert material offers unprecedented biomechanical safety in carrying and transmitting loads between the vertebrae.
- the insert is both biocompatible and bio-stable: the disc or any of its wear by-products, are highly unlikely to cause adverse tissue reactions. These attributes if demonstrated, will enable the proposed TDI to leapfrog the present generation of disc implants undergoing clinical testing.
- Bloebaum RD Mihalopoulous NL, Jensen JW and Dorr LD
- Postmortem analysis of bone ingrowth into porous acetabular components JBJS, Vol 79-A, No 7, 1013, July 1997 Bloebaum RD, Bachus KA, Jensen JW, Scott DF, and Hofmann AA
- Porous coated metal- backed patellar components in total knee replacements JBJS, Vol 80-A, no 4, 518, April 1998
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004563624A JP2006510452A (ja) | 2002-12-17 | 2003-12-15 | 総椎間板インプラント |
| AU2003297195A AU2003297195A1 (en) | 2002-12-17 | 2003-12-15 | Total disc implant |
| EP03814052A EP1572042A4 (en) | 2002-12-17 | 2003-12-15 | PROTHESIS DISCALE COMPLETE |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US43409202P | 2002-12-17 | 2002-12-17 | |
| US60/434,092 | 2002-12-17 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2004058098A2 true WO2004058098A2 (en) | 2004-07-15 |
| WO2004058098A3 WO2004058098A3 (en) | 2004-08-26 |
Family
ID=32681994
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2003/040086 Ceased WO2004058098A2 (en) | 2002-12-17 | 2003-12-15 | Total disc implant |
Country Status (5)
| Country | Link |
|---|---|
| US (6) | US6994727B2 (enExample) |
| EP (1) | EP1572042A4 (enExample) |
| JP (2) | JP2006510452A (enExample) |
| AU (1) | AU2003297195A1 (enExample) |
| WO (1) | WO2004058098A2 (enExample) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007003439A3 (en) * | 2005-07-06 | 2007-08-23 | Franz Jun Copf | Device for preparing an intervertebral disc compartment |
| EP1986576A4 (en) * | 2006-02-23 | 2009-11-18 | Faneuil Innovations Invest Ltd | BAND DISC REPLACEMENT PROSTHESIS |
| EP1890654A4 (en) * | 2005-05-27 | 2012-06-27 | Amedica Corp | KNEE PROSTHESIS WITH TIBIAC COMPONENTS OF CERAMIC |
| WO2016012361A1 (en) * | 2014-07-19 | 2016-01-28 | Manfred Mühlbauer | Intervertebral disc implant and method for restoring function to a damaged functional spinal unit using such an intervertebral disc implant |
Families Citing this family (234)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2897259B1 (fr) * | 2006-02-15 | 2008-05-09 | Ldr Medical Soc Par Actions Si | Cage intersomatique transforaminale a greffon de fusion intervetebrale et instrument d'implantation de la cage |
| US6673113B2 (en) | 2001-10-18 | 2004-01-06 | Spinecore, Inc. | Intervertebral spacer device having arch shaped spring elements |
| US7169182B2 (en) | 2001-07-16 | 2007-01-30 | Spinecore, Inc. | Implanting an artificial intervertebral disc |
| WO2002087475A1 (en) * | 2001-05-01 | 2002-11-07 | Amedica Corporation | Radiolucent bone graft |
| US7695521B2 (en) * | 2001-05-01 | 2010-04-13 | Amedica Corporation | Hip prosthesis with monoblock ceramic acetabular cup |
| US20050177238A1 (en) * | 2001-05-01 | 2005-08-11 | Khandkar Ashok C. | Radiolucent bone graft |
| FR2824261B1 (fr) * | 2001-05-04 | 2004-05-28 | Ldr Medical | Prothese de disque intervertebral et procede et outils de mise en place |
| AU2002324443A1 (en) * | 2001-06-14 | 2003-01-02 | Amedica Corporation | Metal-ceramic composite articulation |
| FR2827156B1 (fr) | 2001-07-13 | 2003-11-14 | Ldr Medical | Dispositif de cage vertebrale avec fixation modulaire |
| US7713302B2 (en) | 2001-10-01 | 2010-05-11 | Spinecore, Inc. | Intervertebral spacer device utilizing a spirally slotted belleville washer having radially spaced concentric grooves |
| US7771477B2 (en) | 2001-10-01 | 2010-08-10 | Spinecore, Inc. | Intervertebral spacer device utilizing a belleville washer having radially spaced concentric grooves |
| FR2831049B1 (fr) * | 2001-10-18 | 2004-08-13 | Ldr Medical | Plaque pour dispositif d'osteosynthese et procede de premontage |
| FR2831048B1 (fr) | 2001-10-18 | 2004-09-17 | Ldr Medical | Dispositif d'osteosynthese a approche progressive et procede de premontage |
| ATE363878T1 (de) | 2002-03-12 | 2007-06-15 | Cervitech Inc | Zwischenwirbelprothese, insbesondere für die halswirbelsäule |
| US6824278B2 (en) * | 2002-03-15 | 2004-11-30 | Memx, Inc. | Self-shadowing MEM structures |
| CA2749503C (en) * | 2002-04-05 | 2014-10-14 | Nippon Steel Corporation | Pearlitic steel rail excellent in wear resistance and ductility and method for producing the same |
| US8038713B2 (en) | 2002-04-23 | 2011-10-18 | Spinecore, Inc. | Two-component artificial disc replacements |
| US20080027548A9 (en) * | 2002-04-12 | 2008-01-31 | Ferree Bret A | Spacerless artificial disc replacements |
| US6706068B2 (en) | 2002-04-23 | 2004-03-16 | Bret A. Ferree | Artificial disc replacements with natural kinematics |
| WO2004002291A2 (en) * | 2002-06-26 | 2004-01-08 | Nuvasive, Inc. | Total disc replacement system and related methods |
| BR0313499A (pt) | 2002-08-15 | 2005-07-05 | David Gerber | Disco intervertebral |
| EP2002805A3 (en) | 2002-09-19 | 2009-01-07 | Malan De Villiers | Intervertebral prosthesis |
| FR2846550B1 (fr) * | 2002-11-05 | 2006-01-13 | Ldr Medical | Prothese de disque intervertebral |
| US6994727B2 (en) * | 2002-12-17 | 2006-02-07 | Amedica Corporation | Total disc implant |
| US7815679B2 (en) * | 2003-01-06 | 2010-10-19 | Cardo Medical, Inc. | Modular motion preservation artificial spinal joint assembly |
| GB0301085D0 (en) * | 2003-01-17 | 2003-02-19 | Krishna Manoj | Articulating spinal disc prosthesis |
| EP2329778A3 (en) * | 2003-01-31 | 2012-06-20 | Spinalmotion, Inc. | Spinal midline indicator |
| ZA200506026B (en) * | 2003-01-31 | 2006-11-29 | Spinalmotion Inc | Intervertebral prosthesis placement instrument |
| US20040158254A1 (en) * | 2003-02-12 | 2004-08-12 | Sdgi Holdings, Inc. | Instrument and method for milling a path into bone |
| CA2518096C (en) * | 2003-03-06 | 2009-05-12 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
| US6908484B2 (en) * | 2003-03-06 | 2005-06-21 | Spinecore, Inc. | Cervical disc replacement |
| WO2004089258A1 (de) * | 2003-04-07 | 2004-10-21 | Cervitech, Inc. | Zwischenwirbel-gelenkprothese für die halswirbelsäule |
| US8012212B2 (en) * | 2003-04-07 | 2011-09-06 | Nuvasive, Inc. | Cervical intervertebral disk prosthesis |
| US7105024B2 (en) | 2003-05-06 | 2006-09-12 | Aesculap Ii, Inc. | Artificial intervertebral disc |
| US7291173B2 (en) | 2003-05-06 | 2007-11-06 | Aesculap Ii, Inc. | Artificial intervertebral disc |
| US7575599B2 (en) | 2004-07-30 | 2009-08-18 | Spinalmotion, Inc. | Intervertebral prosthetic disc with metallic core |
| ZA200509644B (en) * | 2003-05-27 | 2007-03-28 | Spinalmotion Inc | Prosthetic disc for intervertebral insertion |
| US10052211B2 (en) | 2003-05-27 | 2018-08-21 | Simplify Medical Pty Ltd. | Prosthetic disc for intervertebral insertion |
| US20090076614A1 (en) * | 2007-09-17 | 2009-03-19 | Spinalmotion, Inc. | Intervertebral Prosthetic Disc with Shock Absorption Core |
| DE20310433U1 (de) | 2003-07-08 | 2003-09-04 | Aesculap AG & Co. KG, 78532 Tuttlingen | Chirurgisches Instrument zum Handhaben eines Implantats |
| DE10330698B4 (de) | 2003-07-08 | 2005-05-25 | Aesculap Ag & Co. Kg | Zwischenwirbelimplantat |
| US7621956B2 (en) * | 2003-07-31 | 2009-11-24 | Globus Medical, Inc. | Prosthetic spinal disc replacement |
| FR2858546B1 (fr) * | 2003-08-04 | 2006-04-28 | Spine Next Sa | Prothese de disque intervertebral |
| US7753958B2 (en) | 2003-08-05 | 2010-07-13 | Gordon Charles R | Expandable intervertebral implant |
| US7909869B2 (en) | 2003-08-05 | 2011-03-22 | Flexuspine, Inc. | Artificial spinal unit assemblies |
| US7785351B2 (en) | 2003-08-05 | 2010-08-31 | Flexuspine, Inc. | Artificial functional spinal implant unit system and method for use |
| DE10339170B4 (de) * | 2003-08-22 | 2009-10-15 | Aesculap Ag | Zwischenwirbelimplantat |
| US7794465B2 (en) * | 2003-09-10 | 2010-09-14 | Warsaw Orthopedic, Inc. | Artificial spinal discs and associated implantation instruments and methods |
| JP4567686B2 (ja) * | 2003-10-14 | 2010-10-20 | ザ ユニバーシティ オブ アイオワ リサーチ ファウンデーション | くるぶし用補綴及びくるぶし用補綴の移植方法 |
| EP1541096B1 (de) * | 2003-12-09 | 2010-02-10 | BIEDERMANN MOTECH GmbH | Höheneinstellbares Zwischenwirbelimplantat |
| DE10361772B4 (de) * | 2003-12-31 | 2006-10-12 | Henning Kloss | Bandscheibenimplantat |
| US20050171608A1 (en) * | 2004-01-09 | 2005-08-04 | Sdgi Holdings, Inc. | Centrally articulating spinal device and method |
| US7875077B2 (en) * | 2004-01-09 | 2011-01-25 | Warsaw Orthopedic, Inc. | Support structure device and method |
| US7901459B2 (en) * | 2004-01-09 | 2011-03-08 | Warsaw Orthopedic, Inc. | Split spinal device and method |
| US7771479B2 (en) | 2004-01-09 | 2010-08-10 | Warsaw Orthopedic, Inc. | Dual articulating spinal device and method |
| US20050171610A1 (en) * | 2004-01-09 | 2005-08-04 | Sdgi Holdings, Inc. | Mobile bearing spinal device and method |
| US20050154467A1 (en) * | 2004-01-09 | 2005-07-14 | Sdgi Holdings, Inc. | Interconnected spinal device and method |
| ES2547532T3 (es) | 2004-02-04 | 2015-10-07 | Ldr Medical | Prótesis de disco intervertebral |
| FR2865629B1 (fr) * | 2004-02-04 | 2007-01-26 | Ldr Medical | Prothese de disque intervertebral |
| US7485146B1 (en) * | 2004-03-08 | 2009-02-03 | Nuvasive, Inc. | Total disc replacement system and related methods |
| US20050216092A1 (en) * | 2004-03-23 | 2005-09-29 | Sdgi Holdings, Inc. | Constrained artificial implant for orthopaedic applications |
| US7637955B2 (en) * | 2004-03-23 | 2009-12-29 | Warsaw Orthopedic, Inc. | Constrained artificial spinal disc |
| FR2869528B1 (fr) * | 2004-04-28 | 2007-02-02 | Ldr Medical | Prothese de disque intervertebral |
| US20050251167A1 (en) * | 2004-05-07 | 2005-11-10 | Ethicon Endo-Surgery, Inc. | Instrument for effecting anastomosis of respective tissues defining two body lumens |
| DE202004009542U1 (de) | 2004-06-16 | 2004-08-12 | Aesculap Ag & Co. Kg | Zwischenwirbelimplantat |
| US8172904B2 (en) * | 2004-06-30 | 2012-05-08 | Synergy Disc Replacement, Inc. | Artificial spinal disc |
| US8021428B2 (en) * | 2004-06-30 | 2011-09-20 | Depuy Spine, Inc. | Ceramic disc prosthesis |
| US9237958B2 (en) * | 2004-06-30 | 2016-01-19 | Synergy Disc Replacement Inc. | Joint prostheses |
| JP4917027B2 (ja) * | 2004-06-30 | 2012-04-18 | シナジー ディスク リプレイスメント, インコーポレイテッド | 人工椎間板 |
| US7585326B2 (en) | 2004-08-06 | 2009-09-08 | Spinalmotion, Inc. | Methods and apparatus for intervertebral disc prosthesis insertion |
| US20180228621A1 (en) | 2004-08-09 | 2018-08-16 | Mark A. Reiley | Apparatus, systems, and methods for the fixation or fusion of bone |
| US20060036251A1 (en) * | 2004-08-09 | 2006-02-16 | Reiley Mark A | Systems and methods for the fixation or fusion of bone |
| US20070156241A1 (en) | 2004-08-09 | 2007-07-05 | Reiley Mark A | Systems and methods for the fixation or fusion of bone |
| US8414648B2 (en) | 2004-08-09 | 2013-04-09 | Si-Bone Inc. | Apparatus, systems, and methods for achieving trans-iliac lumbar fusion |
| US9949843B2 (en) | 2004-08-09 | 2018-04-24 | Si-Bone Inc. | Apparatus, systems, and methods for the fixation or fusion of bone |
| US8425570B2 (en) | 2004-08-09 | 2013-04-23 | Si-Bone Inc. | Apparatus, systems, and methods for achieving anterior lumbar interbody fusion |
| US8444693B2 (en) | 2004-08-09 | 2013-05-21 | Si-Bone Inc. | Apparatus, systems, and methods for achieving lumbar facet fusion |
| US8470004B2 (en) | 2004-08-09 | 2013-06-25 | Si-Bone Inc. | Apparatus, systems, and methods for stabilizing a spondylolisthesis |
| US9662158B2 (en) | 2004-08-09 | 2017-05-30 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint |
| US8388667B2 (en) | 2004-08-09 | 2013-03-05 | Si-Bone, Inc. | Systems and methods for the fixation or fusion of bone using compressive implants |
| US7780731B2 (en) * | 2004-11-26 | 2010-08-24 | Spine Solutions, Inc. | Intervertebral implant |
| US7763024B2 (en) * | 2004-09-23 | 2010-07-27 | Spine Solutions, Inc. | Adjustable cutting of cutout in vertebral bone |
| US7575600B2 (en) | 2004-09-29 | 2009-08-18 | Kyphon Sarl | Artificial vertebral disk replacement implant with translating articulation contact surface and method |
| US20060085076A1 (en) * | 2004-10-15 | 2006-04-20 | Manoj Krishna | Posterior spinal arthroplasty-development of a new posteriorly inserted artificial disc and an artificial facet joint |
| USD598105S1 (en) | 2004-10-21 | 2009-08-11 | Disc Motion Technologies, Inc. | Convex intervertebral disc prosthesis |
| USD597674S1 (en) | 2004-10-21 | 2009-08-04 | Disc Motion Technologies, Inc. | Concave intervertebral disc prosthesis |
| US20060265074A1 (en) | 2004-10-21 | 2006-11-23 | Manoj Krishna | Posterior spinal arthroplasty-development of a new posteriorly inserted artificial disc, a new anteriorly inserted artifical disc and an artificial facet joint |
| EP1814474B1 (en) | 2004-11-24 | 2011-09-14 | Samy Abdou | Devices for inter-vertebral orthopedic device placement |
| US20060149372A1 (en) * | 2004-12-17 | 2006-07-06 | Paxson Robert D | Artificial spinal disc |
| FR2879436B1 (fr) | 2004-12-22 | 2007-03-09 | Ldr Medical | Prothese de disque intervertebral |
| US8083797B2 (en) | 2005-02-04 | 2011-12-27 | Spinalmotion, Inc. | Intervertebral prosthetic disc with shock absorption |
| US8911498B2 (en) * | 2005-02-10 | 2014-12-16 | DePuy Synthes Products, LLC | Intervertebral prosthetic disc |
| US7753957B2 (en) * | 2005-03-24 | 2010-07-13 | Accelerated Innovation, Llc | Ball and Socket intervertebral disc replacement device with keyed surfaces assembly |
| US7632312B2 (en) * | 2005-03-24 | 2009-12-15 | Neurocare International, Inc. | Artifical lumbar disc |
| US8257438B2 (en) * | 2005-04-12 | 2012-09-04 | Warsaw Orthopedic, Inc. | Methods and devices for preserving motion in an articulating prosthetic disc |
| GB0508678D0 (en) | 2005-04-28 | 2005-06-08 | Cope Aiden | Motion segment intervertebral disc prosthesis |
| CA2607316A1 (en) * | 2005-05-02 | 2006-11-09 | Kinetic Spine Technologies Inc. | Spinal stabilisation implant |
| DE102005025685B4 (de) * | 2005-06-03 | 2015-05-21 | Mathys Ag Bettlach | Bandscheibenimplantat |
| FR2887762B1 (fr) | 2005-06-29 | 2007-10-12 | Ldr Medical Soc Par Actions Si | Instrumentation d'insertion de prothese de disque intervertebral entre des vertebres |
| GB0516034D0 (en) * | 2005-08-04 | 2005-09-14 | Blacklock T | Orthopaedic medical device |
| FR2891135B1 (fr) | 2005-09-23 | 2008-09-12 | Ldr Medical Sarl | Prothese de disque intervertebral |
| FR2893838B1 (fr) * | 2005-11-30 | 2008-08-08 | Ldr Medical Soc Par Actions Si | Prothese de disque intervertebral et instrumentation d'insertion de la prothese entre les vertebres |
| US20070179611A1 (en) * | 2005-12-22 | 2007-08-02 | Dipoto Gene P | Methods and devices for replacement of intervertebral discs |
| US7635389B2 (en) * | 2006-01-30 | 2009-12-22 | Warsaw Orthopedic, Inc. | Posterior joint replacement device |
| US7811326B2 (en) * | 2006-01-30 | 2010-10-12 | Warsaw Orthopedic Inc. | Posterior joint replacement device |
| US20070179618A1 (en) * | 2006-01-31 | 2007-08-02 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc |
| US20070179615A1 (en) * | 2006-01-31 | 2007-08-02 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc |
| US7708777B2 (en) * | 2006-02-03 | 2010-05-04 | Depuy Spine, Inc. | Modular intervertebral disc replacements |
| EP1988854A2 (en) * | 2006-02-15 | 2008-11-12 | M. S. Abdou | Devices and methods for inter-vertebral orthopedic device placement |
| US8252058B2 (en) | 2006-02-16 | 2012-08-28 | Amedica Corporation | Spinal implant with elliptical articulatory interface |
| US20070198093A1 (en) * | 2006-02-17 | 2007-08-23 | Amedica Corporation | Spinal implant with offset keels |
| US8118869B2 (en) | 2006-03-08 | 2012-02-21 | Flexuspine, Inc. | Dynamic interbody device |
| AU2007238092A1 (en) | 2006-04-12 | 2007-10-25 | Spinalmotion, Inc. | Posterior spinal device and method |
| US20070270959A1 (en) * | 2006-04-18 | 2007-11-22 | Sdgi Holdings, Inc. | Arthroplasty device |
| US8246684B2 (en) * | 2006-04-20 | 2012-08-21 | RE-Spine LLC. | Intervertebral disc and facet joint prosthesis |
| US8790403B2 (en) * | 2006-04-20 | 2014-07-29 | K2M, Inc. | Monorail system |
| US8303660B1 (en) | 2006-04-22 | 2012-11-06 | Samy Abdou | Inter-vertebral disc prosthesis with variable rotational stop and methods of use |
| US8771355B2 (en) * | 2006-05-26 | 2014-07-08 | M. S. Abdou | Inter-vertebral disc motion devices and methods of use |
| US7905906B2 (en) * | 2006-06-08 | 2011-03-15 | Disc Motion Technologies, Inc. | System and method for lumbar arthroplasty |
| US8016886B2 (en) * | 2006-07-18 | 2011-09-13 | Altus Partners, Llc | Intervertebral disc replacement device |
| US20080027547A1 (en) * | 2006-07-27 | 2008-01-31 | Warsaw Orthopedic Inc. | Prosthetic device for spinal joint reconstruction |
| US20080051901A1 (en) * | 2006-07-28 | 2008-02-28 | Spinalmotion, Inc. | Spinal Prosthesis with Multiple Pillar Anchors |
| US20080045968A1 (en) * | 2006-08-18 | 2008-02-21 | Warsaw Orthopedic, Inc. | Instruments and Methods for Spinal Surgery |
| US8275594B2 (en) * | 2006-10-30 | 2012-09-25 | The Regents Of The University Of Michigan | Engineered scaffolds for intervertebral disc repair and regeneration and for articulating joint repair and regeneration |
| US8057481B2 (en) | 2006-11-03 | 2011-11-15 | Innovative Spine, Llc | System and method for providing surgical access to a spine |
| US20080138781A1 (en) * | 2006-12-08 | 2008-06-12 | Warsaw Orthopedic, Inc. | Surgical training model and method for use in facilitating training of a surgical procedure |
| US8715352B2 (en) | 2006-12-14 | 2014-05-06 | Depuy Spine, Inc. | Buckling disc replacement |
| US8075596B2 (en) * | 2007-01-12 | 2011-12-13 | Warsaw Orthopedic, Inc. | Spinal prosthesis systems |
| US8597358B2 (en) | 2007-01-19 | 2013-12-03 | Flexuspine, Inc. | Dynamic interbody devices |
| US8034081B2 (en) | 2007-02-06 | 2011-10-11 | CollabComl, LLC | Interspinous dynamic stabilization implant and method of implanting |
| EP3130317B1 (en) | 2007-02-09 | 2021-11-10 | Dimicron, Inc. | Multi-lobe artificial spine joint |
| US8465546B2 (en) | 2007-02-16 | 2013-06-18 | Ldr Medical | Intervertebral disc prosthesis insertion assemblies |
| BRPI0808018A2 (pt) * | 2007-03-07 | 2014-06-17 | Ulrich Gmbh & Co Kg | Implante intervertebral com um componente elástico |
| US10335288B2 (en) | 2007-03-10 | 2019-07-02 | Spinesmith Partners, L.P. | Surgical implant secured by pegs and associated methods |
| US9289310B2 (en) | 2007-03-10 | 2016-03-22 | Spinesmith Partners, L.P. | Artificial disc with post and modular collar |
| US9358121B2 (en) * | 2007-03-10 | 2016-06-07 | Spinesmith Partners, L.P. | Artificial disc with unique articulating geometry and associated methods |
| US8147558B2 (en) * | 2007-03-30 | 2012-04-03 | Depuy Products, Inc. | Mobile bearing assembly having multiple articulation interfaces |
| US8764841B2 (en) | 2007-03-30 | 2014-07-01 | DePuy Synthes Products, LLC | Mobile bearing assembly having a closed track |
| US8142510B2 (en) | 2007-03-30 | 2012-03-27 | Depuy Products, Inc. | Mobile bearing assembly having a non-planar interface |
| US8328874B2 (en) | 2007-03-30 | 2012-12-11 | Depuy Products, Inc. | Mobile bearing assembly |
| US8147557B2 (en) | 2007-03-30 | 2012-04-03 | Depuy Products, Inc. | Mobile bearing insert having offset dwell point |
| US8864832B2 (en) | 2007-06-20 | 2014-10-21 | Hh Spinal Llc | Posterior total joint replacement |
| FR2916956B1 (fr) | 2007-06-08 | 2012-12-14 | Ldr Medical | Cage intersomatique,prothese intervertebrale,dispositif d'ancrage et instrumentation d'implantation |
| US10821003B2 (en) | 2007-06-20 | 2020-11-03 | 3Spline Sezc | Spinal osteotomy |
| US8956412B2 (en) * | 2007-06-22 | 2015-02-17 | Axiomed, LLC | Artificial disc |
| US20090043391A1 (en) | 2007-08-09 | 2009-02-12 | Spinalmotion, Inc. | Customized Intervertebral Prosthetic Disc with Shock Absorption |
| EP2209444A4 (en) * | 2007-10-22 | 2013-03-27 | Spinalmotion Inc | DYNAMIC DISTANCE ELEMENT AND METHOD FOR LOADING A ROUND SHAPED AFTER REMOVING A BELT |
| US8267965B2 (en) | 2007-10-22 | 2012-09-18 | Flexuspine, Inc. | Spinal stabilization systems with dynamic interbody devices |
| US8162994B2 (en) | 2007-10-22 | 2012-04-24 | Flexuspine, Inc. | Posterior stabilization system with isolated, dual dampener systems |
| US8157844B2 (en) | 2007-10-22 | 2012-04-17 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
| US8523912B2 (en) | 2007-10-22 | 2013-09-03 | Flexuspine, Inc. | Posterior stabilization systems with shared, dual dampener systems |
| US8182514B2 (en) | 2007-10-22 | 2012-05-22 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a fixed length elongated member |
| US8187330B2 (en) | 2007-10-22 | 2012-05-29 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
| EP2211785B1 (en) | 2007-10-25 | 2016-01-27 | Synergy Disc Replacement, Inc. | Systems for vertebral disc replacement |
| WO2009094477A1 (en) * | 2008-01-25 | 2009-07-30 | Spinalmotion, Inc. | Compliant implantable prosthetic joint with preloaded spring |
| US20090204213A1 (en) * | 2008-02-13 | 2009-08-13 | Depuy Products, Inc. | Metallic implants |
| US8764833B2 (en) * | 2008-03-11 | 2014-07-01 | Spinalmotion, Inc. | Artificial intervertebral disc with lower height |
| US20090248161A1 (en) | 2008-03-20 | 2009-10-01 | K2M, Inc. | Artificial disc replacement device |
| US9034038B2 (en) * | 2008-04-11 | 2015-05-19 | Spinalmotion, Inc. | Motion limiting insert for an artificial intervertebral disc |
| JP2011519637A (ja) | 2008-05-05 | 2011-07-14 | スパイナルモーション, インコーポレイテッド | ポリアリールエーテルケトン人工椎間板 |
| US9220603B2 (en) * | 2008-07-02 | 2015-12-29 | Simplify Medical, Inc. | Limited motion prosthetic intervertebral disc |
| WO2010009151A2 (en) * | 2008-07-17 | 2010-01-21 | Spinalmotion, Inc. | Artificial intervertebral disc placement system |
| WO2010009153A1 (en) | 2008-07-18 | 2010-01-21 | Spinalmotion, Inc. | Posterior prosthetic intervertebral disc |
| US20100030337A1 (en) * | 2008-08-04 | 2010-02-04 | Nasser Ani | Spine Surgery Technique And System |
| US7927375B2 (en) | 2008-09-12 | 2011-04-19 | Doty Keith L | Dynamic six-degrees-of-freedom intervertebral spinal disc prosthesis |
| WO2010045255A1 (en) * | 2008-10-14 | 2010-04-22 | Praxis Powder Technology, Inc. | Hybrid intervertebral spinal implant |
| US20100241231A1 (en) * | 2009-02-20 | 2010-09-23 | Marino James F | Intervertebral fixation device |
| US20110040331A1 (en) * | 2009-05-20 | 2011-02-17 | Jose Fernandez | Posterior stabilizer |
| US8226724B2 (en) * | 2009-06-18 | 2012-07-24 | Doty Keith L | Intervertebral spinal disc prosthesis |
| US8419739B2 (en) * | 2009-08-24 | 2013-04-16 | Amir A. Jamali | Method and apparatus for allograft disc transplantation |
| BR112012005663A2 (pt) | 2009-09-17 | 2021-07-27 | Synthes Gmbh | implante intervertebral com membros de fixação óssea expansíveis |
| US9180017B2 (en) * | 2009-10-13 | 2015-11-10 | Nicholas Poulos | Lumbar implant |
| US9078766B2 (en) | 2012-07-06 | 2015-07-14 | Intel Corporation | Device and method with power efficient location notification function by periodically deactivating signal-based location service during travel until a wake trigger condition is met |
| US8906099B2 (en) | 2009-10-13 | 2014-12-09 | Nicholas Poulos | Expandable interbody implant and method |
| US8764806B2 (en) | 2009-12-07 | 2014-07-01 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
| RU2573945C2 (ru) | 2009-12-31 | 2016-01-27 | Лдр Медикал | Крепежное устройство, межпозвонковый имплантат и приспособление для имплантирования |
| US8858636B2 (en) | 2010-04-09 | 2014-10-14 | DePuy Synthes Products, LLC | Intervertebral implant |
| US9301853B2 (en) | 2010-04-09 | 2016-04-05 | DePuy Synthes Products, Inc. | Holder for implantation and extraction of prosthesis |
| US8454692B2 (en) * | 2010-04-18 | 2013-06-04 | F.I.S.H., Llc | Systems and devices having hydromagnetic joints and hydromagnetic springs |
| US8449615B2 (en) | 2010-04-18 | 2013-05-28 | F.I.S.H., Llc | Intervertebral implants having hydromagnetic joints |
| US8353964B2 (en) | 2010-11-04 | 2013-01-15 | Carpenter Clyde T | Anatomic total disc replacement |
| EP2452641A1 (en) * | 2010-11-12 | 2012-05-16 | Kyon AG | Patellar ligament spacer for ACL injuries |
| US9084683B2 (en) | 2011-01-07 | 2015-07-21 | Pbn Spinal Implants, Llc | Spinal implant system and method |
| EP2608749B1 (en) | 2011-03-11 | 2016-08-10 | FBC Device Aps | Spinal implant |
| US8388687B2 (en) | 2011-03-25 | 2013-03-05 | Flexuspine, Inc. | Interbody device insertion systems and methods |
| US8747479B2 (en) | 2011-04-26 | 2014-06-10 | Michael A. McShane | Tibial component |
| US8277505B1 (en) | 2011-06-10 | 2012-10-02 | Doty Keith L | Devices for providing up to six-degrees of motion having kinematically-linked components and methods of use |
| KR20140075736A (ko) | 2011-09-15 | 2014-06-19 | 아메디카 코포레이션 | 코팅된 임플란트 및 관련 방법 |
| US8845728B1 (en) | 2011-09-23 | 2014-09-30 | Samy Abdou | Spinal fixation devices and methods of use |
| CN102319129B (zh) * | 2011-10-24 | 2015-05-20 | 北京爱康宜诚医疗器材股份有限公司 | 融合假体 |
| US9526627B2 (en) | 2011-11-17 | 2016-12-27 | Exactech, Inc. | Expandable interbody device system and method |
| US8287598B1 (en) | 2011-12-05 | 2012-10-16 | TrueMotion Spine, Inc. | True spinal motion preserving, shock absorbing, intervertebral spinal disc prosthesis |
| CN103239305A (zh) * | 2012-02-10 | 2013-08-14 | 北京爱康宜诚医疗器材股份有限公司 | 自稳定人工椎体 |
| US20130226240A1 (en) | 2012-02-22 | 2013-08-29 | Samy Abdou | Spinous process fixation devices and methods of use |
| FR2987256B1 (fr) | 2012-02-24 | 2014-08-08 | Ldr Medical | Dispositif d'ancrage pour implant intervertebral, implant intervertebral et instrumentation d'implantation |
| WO2013134670A1 (en) | 2012-03-09 | 2013-09-12 | Si-Bone Inc. | Integrated implant |
| US10363140B2 (en) | 2012-03-09 | 2019-07-30 | Si-Bone Inc. | Systems, device, and methods for joint fusion |
| WO2013134682A1 (en) * | 2012-03-09 | 2013-09-12 | Si-Bone Inc. | Artificial si joint |
| EP4275618A3 (en) | 2012-05-04 | 2024-01-10 | SI-Bone, Inc. | Fenestrated implant |
| US10806831B2 (en) | 2012-05-09 | 2020-10-20 | Sintx Technologies, Inc. | Antibacterial biomedical implants and associated materials, apparatus, and methods |
| US9925295B2 (en) | 2012-05-09 | 2018-03-27 | Amedica Corporation | Ceramic and/or glass materials and related methods |
| US9198767B2 (en) | 2012-08-28 | 2015-12-01 | Samy Abdou | Devices and methods for spinal stabilization and instrumentation |
| US9320617B2 (en) | 2012-10-22 | 2016-04-26 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
| EP2943163A4 (en) | 2013-01-08 | 2016-09-07 | Praxis Powder Technology Inc | HIGH RESISTANCE INJECTION MOLDED ORTHOPEDIC DEVICES |
| US9492288B2 (en) | 2013-02-20 | 2016-11-15 | Flexuspine, Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
| US9936983B2 (en) | 2013-03-15 | 2018-04-10 | Si-Bone Inc. | Implants for spinal fixation or fusion |
| US9693874B2 (en) | 2013-03-15 | 2017-07-04 | Blackstone Medical, Inc. | Composite spinal interbody device and method |
| FR3005569B1 (fr) | 2013-05-16 | 2021-09-03 | Ldr Medical | Implant vertebral, dispositif de fixation vertebrale d'implant et instrumentation d'implantation |
| US9839448B2 (en) | 2013-10-15 | 2017-12-12 | Si-Bone Inc. | Implant placement |
| US11147688B2 (en) | 2013-10-15 | 2021-10-19 | Si-Bone Inc. | Implant placement |
| US10398565B2 (en) | 2014-04-24 | 2019-09-03 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
| US9517144B2 (en) | 2014-04-24 | 2016-12-13 | Exactech, Inc. | Limited profile intervertebral implant with incorporated fastening mechanism |
| FR3020756B1 (fr) | 2014-05-06 | 2022-03-11 | Ldr Medical | Implant vertebral, dispositif de fixation vertebrale d'implant et instrumentation d'implantation |
| US10166033B2 (en) | 2014-09-18 | 2019-01-01 | Si-Bone Inc. | Implants for bone fixation or fusion |
| EP4599780A3 (en) | 2014-09-18 | 2025-10-29 | SI-Bone, Inc. | Matrix implant |
| US10376206B2 (en) | 2015-04-01 | 2019-08-13 | Si-Bone Inc. | Neuromonitoring systems and methods for bone fixation or fusion procedures |
| US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
| US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
| US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
| CN106963523B (zh) * | 2017-04-28 | 2018-11-09 | 北京爱康宜诚医疗器材有限公司 | 椎体假体 |
| EP3687422A4 (en) | 2017-09-26 | 2021-09-22 | SI-Bone, Inc. | SYSTEMS AND PROCESSES FOR DECORTICATION OF THE SACROILIAC JOINT |
| US20190298528A1 (en) | 2018-03-28 | 2019-10-03 | Derek P. LINDSEY | Threaded implants and methods of use across bone segments |
| US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
| US11369419B2 (en) | 2019-02-14 | 2022-06-28 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
| WO2020168269A1 (en) | 2019-02-14 | 2020-08-20 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
| US11452618B2 (en) | 2019-09-23 | 2022-09-27 | Dimicron, Inc | Spinal artificial disc removal tool |
| JP7646654B2 (ja) | 2019-11-21 | 2025-03-17 | エスアイ-ボーン・インコーポレイテッド | 骨安定化構造用のロッドカップリングアセンブリ |
| ES3042147T3 (en) | 2019-11-27 | 2025-11-18 | Si Bone Inc | Bone stabilizing implants across si joints |
| AU2020402850A1 (en) | 2019-12-09 | 2022-06-09 | Si-Bone Inc. | Sacro-iliac joint stabilizing implants and methods of implantation |
| CN111281611B (zh) * | 2019-12-30 | 2022-05-24 | 雅博尼西医疗科技(苏州)有限公司 | 多孔性结构和基底的连接方法 |
| AU2021397743A1 (en) | 2020-12-09 | 2023-06-22 | Si-Bone Inc. | Sacro-iliac joint stabilizing implants and methods of implantation |
| US12458413B2 (en) | 2021-12-03 | 2025-11-04 | Si-Bone Inc. | Fusion cages and methods for sacro-iliac joint stabilization |
| US12409046B2 (en) | 2022-04-12 | 2025-09-09 | 3Spine, Inc. | Total spinal joint systems with motion moderators |
| US12433733B2 (en) | 2023-08-15 | 2025-10-07 | Si-Bone Inc. | Pelvic stabilization implants, methods of use and manufacture |
Family Cites Families (143)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE391122B (sv) * | 1971-01-25 | 1977-02-07 | Cutter Lab | Protes i form av en ryggradsbroskskiva och forfarande for framstellning derav |
| US4072532A (en) * | 1975-11-20 | 1978-02-07 | Nasa | High temperature resistant cermet and ceramic compositions |
| SE449048B (sv) * | 1979-07-10 | 1987-04-06 | Charnley Surgical Inventions | Hoftledsprotes av plastmaterial avsedd for implantation i en hoftledpanna |
| EP0176728B1 (de) * | 1984-09-04 | 1989-07-26 | Humboldt-Universität zu Berlin | Bandscheibenendoprothese |
| US4743256A (en) * | 1985-10-04 | 1988-05-10 | Brantigan John W | Surgical prosthetic implant facilitating vertebral interbody fusion and method |
| US4695282A (en) * | 1986-01-23 | 1987-09-22 | Osteonics Corp. | Acetabular cup assembly with selective bearing face orientation |
| JPS63182274A (ja) * | 1987-01-20 | 1988-07-27 | 住友化学工業株式会社 | 表面に粒子層を有するセラミツク成形体の製造方法 |
| US5118645A (en) * | 1988-01-27 | 1992-06-02 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic of high fracture toughness and a method of preparing the same |
| US5266683A (en) * | 1988-04-08 | 1993-11-30 | Stryker Corporation | Osteogenic proteins |
| US5593409A (en) * | 1988-06-13 | 1997-01-14 | Sofamor Danek Group, Inc. | Interbody spinal fusion implants |
| US5609635A (en) * | 1988-06-28 | 1997-03-11 | Michelson; Gary K. | Lordotic interbody spinal fusion implants |
| CA1333209C (en) * | 1988-06-28 | 1994-11-29 | Gary Karlin Michelson | Artificial spinal fusion implants |
| US5458638A (en) | 1989-07-06 | 1995-10-17 | Spine-Tech, Inc. | Non-threaded spinal implant |
| US5152791A (en) * | 1989-12-07 | 1992-10-06 | Olympus Optical Co., Ltd. | Prosthetic artificial bone having ceramic layers of different porosity |
| FR2659226B1 (fr) | 1990-03-07 | 1992-05-29 | Jbs Sa | Prothese pour disques intervertebraux et ses instruments d'implantation. |
| GB2251795B (en) | 1991-01-17 | 1995-02-08 | Minnesota Mining & Mfg | Orthopaedic implant |
| GB9102348D0 (en) | 1991-02-04 | 1991-03-20 | Inst Of Orthopaedics The | Prosthesis for knee replacement |
| US5314487A (en) | 1991-02-14 | 1994-05-24 | Smith & Nephew Richards Inc. | Acetabular prosthesis with anchoring pegs |
| US5192327A (en) * | 1991-03-22 | 1993-03-09 | Brantigan John W | Surgical prosthetic implant for vertebrae |
| JP3064470B2 (ja) | 1991-04-19 | 2000-07-12 | 杉郎 大谷 | 人工補填補綴材料 |
| US5425773A (en) * | 1992-01-06 | 1995-06-20 | Danek Medical, Inc. | Intervertebral disk arthroplasty device |
| SE469653B (sv) | 1992-01-13 | 1993-08-16 | Lucocer Ab | Poroest implantat |
| DE4208116C2 (de) * | 1992-03-13 | 1995-08-03 | Link Waldemar Gmbh Co | Bandscheibenendoprothese |
| ATE164371T1 (de) * | 1992-12-23 | 1998-04-15 | Hoechst Ag | Hochtemperaturfeste siliziumnitridkeramik und verfahren zu ihrer herstellung |
| US5312571A (en) | 1993-01-07 | 1994-05-17 | Norton Company | Shaped bodies and the production thereof |
| US5534001A (en) | 1993-05-11 | 1996-07-09 | Synthes (U.S.A.) | Osteosynthetic fixation element and manipulation device |
| US5414049A (en) | 1993-06-01 | 1995-05-09 | Howmedica Inc. | Non-oxidizing polymeric medical implant |
| US5425772A (en) | 1993-09-20 | 1995-06-20 | Brantigan; John W. | Prosthetic implant for intervertebral spinal fusion |
| CA2142634C (en) | 1994-02-18 | 2005-09-20 | Salvatore Caldarise | Self-lubricating implantable articulation member |
| AU694943B2 (en) | 1994-05-24 | 1998-08-06 | Technology Finance Corporation (Proprietary) Limited | A biomaterial and bone implant for bone repair and replacement |
| CH689725A5 (de) * | 1994-09-08 | 1999-09-30 | Franz Dr Sutter | Gelenkkopf-Prothese. |
| AU4372596A (en) | 1994-12-09 | 1996-06-26 | Sofamor Danek Group, Inc. | Adjustable vertebral body replacement |
| US5702458A (en) | 1994-12-09 | 1997-12-30 | New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery | Joint prosthesis |
| US6376573B1 (en) * | 1994-12-21 | 2002-04-23 | Interpore International | Porous biomaterials and methods for their manufacture |
| CA2166450C (en) * | 1995-01-20 | 2008-03-25 | Ronald Salovey | Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints |
| US6758849B1 (en) | 1995-02-17 | 2004-07-06 | Sdgi Holdings, Inc. | Interbody spinal fusion implants |
| WO1996029030A1 (en) | 1995-03-17 | 1996-09-26 | Smith & Nephew Richards Inc. | Medical implants |
| EP0888099B1 (en) | 1995-03-27 | 2005-01-12 | SDGI Holdings, Inc. | Spinal fusion implants and tools for insertion and revision |
| US6039762A (en) * | 1995-06-07 | 2000-03-21 | Sdgi Holdings, Inc. | Reinforced bone graft substitutes |
| US6149688A (en) | 1995-06-07 | 2000-11-21 | Surgical Dynamics, Inc. | Artificial bone graft implant |
| US5702449A (en) | 1995-06-07 | 1997-12-30 | Danek Medical, Inc. | Reinforced porous spinal implants |
| GB9611437D0 (en) | 1995-08-03 | 1996-08-07 | Secr Defence | Biomaterial |
| US5871546A (en) | 1995-09-29 | 1999-02-16 | Johnson & Johnson Professional, Inc. | Femoral component condyle design for knee prosthesis |
| US5888222A (en) * | 1995-10-16 | 1999-03-30 | Sdgi Holding, Inc. | Intervertebral spacers |
| AU705598B2 (en) * | 1995-12-08 | 1999-05-27 | Robert S. Bray Jr. | Anterior stabilization device |
| EP0881919B1 (en) | 1996-02-13 | 2005-08-03 | Massachusetts Institute Of Technology | Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices |
| US5871547A (en) * | 1996-03-01 | 1999-02-16 | Saint-Gobain/Norton Industrial Ceramics Corp. | Hip joint prosthesis having a zirconia head and a ceramic cup |
| ATE282376T1 (de) * | 1996-04-23 | 2004-12-15 | Biomet Ltd | Verfahren zum herstellen einer hüftgelenkpfanne |
| US6069295A (en) * | 1996-05-10 | 2000-05-30 | Isotis B.V. | Implant material |
| US6143948A (en) * | 1996-05-10 | 2000-11-07 | Isotis B.V. | Device for incorporation and release of biologically active agents |
| FR2751526B1 (fr) | 1996-07-29 | 1999-01-08 | Claude Hubin | Partie articulaire d'une prothese de hanche avec piege a particules |
| US5782832A (en) * | 1996-10-01 | 1998-07-21 | Surgical Dynamics, Inc. | Spinal fusion implant and method of insertion thereof |
| EP1028760B1 (en) | 1996-10-15 | 2004-04-14 | Orthopaedic Hospital | Wear resistant surface-gradient cross-linked polyethylene |
| EP0955961B1 (en) * | 1996-10-23 | 2004-03-31 | SDGI Holdings, Inc. | Spinal spacer |
| US6037519A (en) * | 1997-10-20 | 2000-03-14 | Sdgi Holdings, Inc. | Ceramic fusion implants and compositions |
| US5824100A (en) | 1996-10-30 | 1998-10-20 | Osteonics Corp. | Knee prosthesis with increased balance and reduced bearing stress |
| GB9623540D0 (en) * | 1996-11-12 | 1997-01-08 | Johnson & Johnson Professional | Hip joint prosthesis |
| US6013591A (en) * | 1997-01-16 | 2000-01-11 | Massachusetts Institute Of Technology | Nanocrystalline apatites and composites, prostheses incorporating them, and method for their production |
| US6210612B1 (en) * | 1997-03-31 | 2001-04-03 | Pouvair Corporation | Method for the manufacture of porous ceramic articles |
| US5861041A (en) * | 1997-04-07 | 1999-01-19 | Arthit Sitiso | Intervertebral disk prosthesis and method of making the same |
| FR2762986B1 (fr) | 1997-05-07 | 1999-09-24 | Aesculap Jbs | Systeme d'osteosynthese pour arthrodese vertebrale |
| US6033438A (en) | 1997-06-03 | 2000-03-07 | Sdgi Holdings, Inc. | Open intervertebral spacer |
| US5972368A (en) * | 1997-06-11 | 1999-10-26 | Sdgi Holdings, Inc. | Bone graft composites and spacers |
| DE19726412A1 (de) * | 1997-06-21 | 1998-12-24 | Merck Patent Gmbh | Implantatmaterial mit einer Träger-Wirkstoff-Kombination |
| US5879407A (en) * | 1997-07-17 | 1999-03-09 | Waggener; Herbert A. | Wear resistant ball and socket joint |
| JPH1149572A (ja) | 1997-08-01 | 1999-02-23 | Honda Motor Co Ltd | セラミックス複合粒子及びその製造方法 |
| US6296667B1 (en) * | 1997-10-01 | 2001-10-02 | Phillips-Origen Ceramic Technology, Llc | Bone substitutes |
| US6136029A (en) | 1997-10-01 | 2000-10-24 | Phillips-Origen Ceramic Technology, Llc | Bone substitute materials |
| US5888226A (en) | 1997-11-12 | 1999-03-30 | Rogozinski; Chaim | Intervertebral prosthetic disc |
| DE29720022U1 (de) | 1997-11-12 | 1998-01-15 | SCHÄFER micomed GmbH, 73035 Göppingen | Zwischenwirbelimplantat |
| DE19750121C1 (de) * | 1997-11-13 | 1999-04-08 | Eska Implants Gmbh & Co | Gleitpartner |
| US5899939A (en) * | 1998-01-21 | 1999-05-04 | Osteotech, Inc. | Bone-derived implant for load-supporting applications |
| US6123729A (en) | 1998-03-10 | 2000-09-26 | Bristol-Myers Squibb Company | Four compartment knee |
| US6736849B2 (en) * | 1998-03-11 | 2004-05-18 | Depuy Products, Inc. | Surface-mineralized spinal implants |
| US6139585A (en) | 1998-03-11 | 2000-10-31 | Depuy Orthopaedics, Inc. | Bioactive ceramic coating and method |
| SE517365C2 (sv) * | 1998-03-19 | 2002-05-28 | Biomat System Ab | Keramiskt biomaterial av kiselnitrid samt metod för dess tillverkning |
| US6179874B1 (en) | 1998-04-23 | 2001-01-30 | Cauthen Research Group, Inc. | Articulating spinal implant |
| US5908796A (en) * | 1998-05-01 | 1999-06-01 | Saint-Gobain Industrial Ceramics, Inc. | Dense silicon nitride ceramic having fine grained titanium carbide |
| US6090144A (en) * | 1998-05-12 | 2000-07-18 | Letot; Patrick | Synthetic knee system |
| US6261322B1 (en) * | 1998-05-14 | 2001-07-17 | Hayes Medical, Inc. | Implant with composite coating |
| US6251140B1 (en) * | 1998-05-27 | 2001-06-26 | Nuvasive, Inc. | Interlocking spinal inserts |
| US6187701B1 (en) * | 1998-05-29 | 2001-02-13 | Tokuyama Corporation | Dental porcelain |
| AU5341999A (en) * | 1998-08-06 | 2000-02-28 | Sdgi Holdings, Inc. | Composited intervertebral bone spacers |
| AU766735B2 (en) * | 1998-09-15 | 2003-10-23 | Isotis N.V. | Osteoinduction |
| ATE266976T1 (de) | 1998-09-29 | 2004-06-15 | Synthes Ag | Vorrichtung zur verbindung eines längsträgers mit einem knochenfixationsmittel |
| US6152960A (en) | 1998-10-13 | 2000-11-28 | Biomedical Engineering Trust I | Femoral component for knee endoprosthesis |
| US6113637A (en) * | 1998-10-22 | 2000-09-05 | Sofamor Danek Holdings, Inc. | Artificial intervertebral joint permitting translational and rotational motion |
| US6039763A (en) * | 1998-10-27 | 2000-03-21 | Disc Replacement Technologies, Inc. | Articulating spinal disc prosthesis |
| ES2144974B1 (es) | 1998-11-19 | 2001-01-01 | Levante Ind Quirurgicas | Protesis de rodilla con inserto congruente movil. |
| DE59914200D1 (de) * | 1999-01-12 | 2007-03-29 | Lipat Consulting Ag | Oberflächenstruktur für ein enossales implantat |
| US6156069A (en) | 1999-02-04 | 2000-12-05 | Amstutz; Harlan C. | Precision hip joint replacement method |
| US6245108B1 (en) * | 1999-02-25 | 2001-06-12 | Spineco | Spinal fusion implant |
| US6113638A (en) | 1999-02-26 | 2000-09-05 | Williams; Lytton A. | Method and apparatus for intervertebral implant anchorage |
| US6368350B1 (en) * | 1999-03-11 | 2002-04-09 | Sulzer Spine-Tech Inc. | Intervertebral disc prosthesis and method |
| US6277149B1 (en) * | 1999-06-08 | 2001-08-21 | Osteotech, Inc. | Ramp-shaped intervertebral implant |
| US20050033442A1 (en) | 1999-09-08 | 2005-02-10 | John Fisher | Combination of material for joint prothesis |
| US6494883B1 (en) | 2000-05-26 | 2002-12-17 | Bret A. Ferree | Bone reinforcers |
| WO2001034218A1 (en) * | 1999-11-11 | 2001-05-17 | Japan Tissue Engineering Co., Ltd. | Transplant material and process for producing the same |
| US7115143B1 (en) | 1999-12-08 | 2006-10-03 | Sdgi Holdings, Inc. | Orthopedic implant surface configuration |
| US6827740B1 (en) | 1999-12-08 | 2004-12-07 | Gary K. Michelson | Spinal implant surface configuration |
| DE60024871T2 (de) | 1999-12-24 | 2006-07-27 | Société de Fabrication de Matériel Orthopédique Sofamor | Pedikelschrauben mit schrägen ausnehmungen für stützstäbe |
| FR2805455B1 (fr) | 2000-02-24 | 2002-04-19 | Aesculap Sa | Composant femoral d'une prothese du genou a trois rayons de courbure |
| US6414086B1 (en) * | 2000-02-29 | 2002-07-02 | Howmedica Osteonics Corp. | Compositions, processes and methods of improving the wear resistance of prosthetic medical devices |
| FR2805733B1 (fr) * | 2000-03-03 | 2002-06-07 | Scient X | Prothese discale pour vertebre cervicale |
| AU783205C (en) * | 2000-03-15 | 2006-08-17 | Depuy Orthopaedics, Inc. | Prosthetic cup assembly which includes components possessing self-locking taper |
| US20020111680A1 (en) * | 2000-06-13 | 2002-08-15 | Michelson Gary K. | Ratcheted bone dowel |
| US6587788B1 (en) * | 2000-07-12 | 2003-07-01 | Trimble Navigation Limited | Integrated position and direction system with radio communication for updating data |
| US20020062154A1 (en) * | 2000-09-22 | 2002-05-23 | Ayers Reed A. | Non-uniform porosity tissue implant |
| JP4472925B2 (ja) | 2000-10-11 | 2010-06-02 | メイスン、マイケル・ディ | 骨移植を要しない脊椎固定機器 |
| EP1357863B1 (en) | 2001-01-02 | 2010-11-10 | Advanced Ceramics Research, Inc. | Compositions and methods for biomedical applications |
| US20030050709A1 (en) * | 2001-02-23 | 2003-03-13 | Ulrich Noth | Trabecular bone-derived human mesenchymal stem cells |
| US6673075B2 (en) * | 2001-02-23 | 2004-01-06 | Albert N. Santilli | Porous intervertebral spacer |
| US7776085B2 (en) * | 2001-05-01 | 2010-08-17 | Amedica Corporation | Knee prosthesis with ceramic tibial component |
| US20050177238A1 (en) * | 2001-05-01 | 2005-08-11 | Khandkar Ashok C. | Radiolucent bone graft |
| US7695521B2 (en) | 2001-05-01 | 2010-04-13 | Amedica Corporation | Hip prosthesis with monoblock ceramic acetabular cup |
| WO2002087475A1 (en) * | 2001-05-01 | 2002-11-07 | Amedica Corporation | Radiolucent bone graft |
| US6719794B2 (en) * | 2001-05-03 | 2004-04-13 | Synthes (U.S.A.) | Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure |
| AU2002324443A1 (en) * | 2001-06-14 | 2003-01-02 | Amedica Corporation | Metal-ceramic composite articulation |
| US6974460B2 (en) | 2001-09-14 | 2005-12-13 | Stryker Spine | Biased angulation bone fixation assembly |
| US6569201B2 (en) * | 2001-09-28 | 2003-05-27 | Depuy Acromed, Inc. | Hybrid composite interbody fusion device |
| US6740118B2 (en) * | 2002-01-09 | 2004-05-25 | Sdgi Holdings, Inc. | Intervertebral prosthetic joint |
| US20080027548A9 (en) * | 2002-04-12 | 2008-01-31 | Ferree Bret A | Spacerless artificial disc replacements |
| US6706068B2 (en) * | 2002-04-23 | 2004-03-16 | Bret A. Ferree | Artificial disc replacements with natural kinematics |
| US6770095B2 (en) | 2002-06-18 | 2004-08-03 | Depuy Acroned, Inc. | Intervertebral disc |
| WO2004002291A2 (en) * | 2002-06-26 | 2004-01-08 | Nuvasive, Inc. | Total disc replacement system and related methods |
| US6723097B2 (en) * | 2002-07-23 | 2004-04-20 | Depuy Spine, Inc. | Surgical trial implant |
| US7597713B2 (en) * | 2002-09-02 | 2009-10-06 | Synthes Usa, Llc | Intervertebral implant comprising a three-part articulation |
| CA2497623C (en) * | 2002-09-18 | 2011-05-17 | Mathys Medizinaltechnik Ag | Implant comprising a two-piece joint |
| US7273496B2 (en) * | 2002-10-29 | 2007-09-25 | St. Francis Medical Technologies, Inc. | Artificial vertebral disk replacement implant with crossbar spacer and method |
| JP2006504492A (ja) * | 2002-10-31 | 2006-02-09 | スパイナル・コンセプツ・インコーポレーテッド | 可動椎間板インプラント |
| US6994727B2 (en) * | 2002-12-17 | 2006-02-07 | Amedica Corporation | Total disc implant |
| KR101004464B1 (ko) * | 2002-12-17 | 2010-12-31 | 신세스 게엠바하 | 추간판 이식물 |
| US20040158254A1 (en) | 2003-02-12 | 2004-08-12 | Sdgi Holdings, Inc. | Instrument and method for milling a path into bone |
| US6908484B2 (en) * | 2003-03-06 | 2005-06-21 | Spinecore, Inc. | Cervical disc replacement |
| US20040220679A1 (en) | 2003-05-01 | 2004-11-04 | Diaz Robert L. | Hybrid ceramic composite implants |
| BRPI0410377A (pt) * | 2003-05-16 | 2006-06-13 | Blue Membranes Gmbh | implantes medicinais revestidos bio-compatìveis |
| US7270679B2 (en) | 2003-05-30 | 2007-09-18 | Warsaw Orthopedic, Inc. | Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance |
| US7794465B2 (en) * | 2003-09-10 | 2010-09-14 | Warsaw Orthopedic, Inc. | Artificial spinal discs and associated implantation instruments and methods |
| GB0321582D0 (en) * | 2003-09-15 | 2003-10-15 | Benoist Girard Sas | Prosthetic acetabular cup and prosthetic femoral joint incorporating such a cup |
| US7846183B2 (en) * | 2004-02-06 | 2010-12-07 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
| US7195644B2 (en) * | 2004-03-02 | 2007-03-27 | Joint Synergy, Llc | Ball and dual socket joint |
| US20050216092A1 (en) * | 2004-03-23 | 2005-09-29 | Sdgi Holdings, Inc. | Constrained artificial implant for orthopaedic applications |
| US20050228382A1 (en) | 2004-04-12 | 2005-10-13 | Marc Richelsoph | Screw and rod fixation assembly and device |
-
2003
- 2003-12-15 US US10/737,108 patent/US6994727B2/en not_active Expired - Fee Related
- 2003-12-15 AU AU2003297195A patent/AU2003297195A1/en not_active Abandoned
- 2003-12-15 JP JP2004563624A patent/JP2006510452A/ja active Pending
- 2003-12-15 EP EP03814052A patent/EP1572042A4/en not_active Withdrawn
- 2003-12-15 WO PCT/US2003/040086 patent/WO2004058098A2/en not_active Ceased
-
2005
- 2005-06-09 US US11/149,627 patent/US7758646B2/en not_active Expired - Fee Related
-
2007
- 2007-09-19 US US11/858,016 patent/US7771481B2/en not_active Expired - Fee Related
-
2009
- 2009-09-30 JP JP2009226518A patent/JP2009297562A/ja active Pending
-
2010
- 2010-07-07 US US12/803,889 patent/US8016890B2/en not_active Expired - Fee Related
-
2011
- 2011-08-11 US US13/136,886 patent/US8377134B2/en not_active Expired - Fee Related
-
2013
- 2013-02-11 US US13/764,022 patent/US20130304210A1/en not_active Abandoned
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1890654A4 (en) * | 2005-05-27 | 2012-06-27 | Amedica Corp | KNEE PROSTHESIS WITH TIBIAC COMPONENTS OF CERAMIC |
| WO2007003439A3 (en) * | 2005-07-06 | 2007-08-23 | Franz Jun Copf | Device for preparing an intervertebral disc compartment |
| US8366718B2 (en) | 2005-07-06 | 2013-02-05 | Copf Jr Franz | Preparation device for preparing an intervertebral disc compartment |
| EP1986576A4 (en) * | 2006-02-23 | 2009-11-18 | Faneuil Innovations Invest Ltd | BAND DISC REPLACEMENT PROSTHESIS |
| AU2007219085B2 (en) * | 2006-02-23 | 2012-02-16 | Faneuil Innovations Investment Ltd. | Intervertebral disc replacement |
| US8142505B2 (en) | 2006-02-23 | 2012-03-27 | Faneuil Innovations Investment Ltd. | Intervertebral disc replacement |
| KR101337707B1 (ko) | 2006-02-23 | 2013-12-06 | 퍼네윌 이노베이션스 인베스트먼트 엘티디. | 추간판 치환물 |
| WO2016012361A1 (en) * | 2014-07-19 | 2016-01-28 | Manfred Mühlbauer | Intervertebral disc implant and method for restoring function to a damaged functional spinal unit using such an intervertebral disc implant |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2006510452A (ja) | 2006-03-30 |
| AU2003297195A1 (en) | 2004-07-22 |
| US8016890B2 (en) | 2011-09-13 |
| EP1572042A4 (en) | 2010-12-08 |
| US20130304210A1 (en) | 2013-11-14 |
| US20120123545A1 (en) | 2012-05-17 |
| US7771481B2 (en) | 2010-08-10 |
| US6994727B2 (en) | 2006-02-07 |
| WO2004058098A3 (en) | 2004-08-26 |
| JP2009297562A (ja) | 2009-12-24 |
| US20050240273A1 (en) | 2005-10-27 |
| US8377134B2 (en) | 2013-02-19 |
| EP1572042A2 (en) | 2005-09-14 |
| US20110046741A1 (en) | 2011-02-24 |
| US7758646B2 (en) | 2010-07-20 |
| AU2003297195A8 (en) | 2004-07-22 |
| US20080033563A1 (en) | 2008-02-07 |
| US20040133281A1 (en) | 2004-07-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8016890B2 (en) | Total disc implant | |
| US10105233B2 (en) | Anterior prosthetic spinal disc replacement | |
| US10369005B2 (en) | Cervical disc replacement | |
| JP4456481B2 (ja) | 制御された人工椎間板インプラント | |
| CA2468300A1 (en) | Implantable joint prosthesis and associated instrumentation | |
| ZA200501542B (en) | Controlled artificial intervertebral disc implant | |
| US20060247777A1 (en) | Multiple bearing implant | |
| Eijkelkamp et al. | Improving the fixation of an artificial intervertebral disc | |
| AU2004220630B2 (en) | Cervical disc replacement | |
| Tropiano et al. | Intervertebral Disk Prosthesis | |
| Büttner-Janz et al. | Future Innovations | |
| AU2015200028A1 (en) | Cervical disc replacement |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2003814052 Country of ref document: EP Ref document number: 2004563624 Country of ref document: JP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2003814052 Country of ref document: EP |