WO2004056553A1 - Procede de production d'un arbre et arbre obtenu selon ledit procede - Google Patents

Procede de production d'un arbre et arbre obtenu selon ledit procede Download PDF

Info

Publication number
WO2004056553A1
WO2004056553A1 PCT/EP2003/012979 EP0312979W WO2004056553A1 WO 2004056553 A1 WO2004056553 A1 WO 2004056553A1 EP 0312979 W EP0312979 W EP 0312979W WO 2004056553 A1 WO2004056553 A1 WO 2004056553A1
Authority
WO
WIPO (PCT)
Prior art keywords
base body
shaft
metal sleeve
laminated
fibers
Prior art date
Application number
PCT/EP2003/012979
Other languages
German (de)
English (en)
Inventor
Helmut Kirmsze
Peter Meusburger
Original Assignee
Thyssenkrupp Automotive Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Automotive Ag filed Critical Thyssenkrupp Automotive Ag
Priority to AU2003283416A priority Critical patent/AU2003283416A1/en
Publication of WO2004056553A1 publication Critical patent/WO2004056553A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/82Forcing wires, nets or the like partially or completely into the surface of an article, e.g. by cutting and pressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H53/00Cams ; Non-rotary cams; or cam-followers, e.g. rollers for gearing mechanisms
    • F16H53/02Single-track cams for single-revolution cycles; Camshafts with such cams
    • F16H53/025Single-track cams for single-revolution cycles; Camshafts with such cams characterised by their construction, e.g. assembling or manufacturing features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/18Camshafts

Definitions

  • the invention relates to a method for producing a shaft with torque-transmitting structural elements, in particular a camshaft, crankshaft or transmission shaft.
  • EP-B 0 290 758 shows a hollow shaft with torque-transmitting structural elements, such as gear wheels, curves, cams or the like, of which at least one structural element has a non-circular opening for placement on an output pipe with essentially the same wall thickness and each with at least one support body between the output tube and each construction element with a non-circular opening, the output tube being expanded for internal and non-positive connection to the construction elements by internal pressure such that the output tube with a portion of its circumference on the inner wall of the construction elements with at least another portion of its circumference the outer wall of the support body rests.
  • the output pipe can be a metallic or non-metallic material, possibly a laminate material or a fiber-reinforced material made of different materials.
  • EP-B 0 303 845 shows a hollow shaft, consisting of a tube and of torque-transmitting construction elements, with a Opening for placement on the tube and support bodies, the connection between tube, construction element and support bodies being produced by reducing the space between the tube and construction element, the construction element and tube being connected to one another in a force-fitting and / or form-fitting manner and also at least in the opening of the construction element a support body is arranged and the tubular part partially abuts the support body.
  • the tube can be formed from a metallic or non-metallic material, a laminate material or a fiber-reinforced material from various materials.
  • EP-B 0 826 476 shows a process for producing a plastic camshaft with a tubular metal insert, a tube made of steel being encased in plastic.
  • the covering also includes the finished cams.
  • the requirements for wear resistance and strength of the cams can hardly be met with conventional plastics.
  • plastics have to be found which on the one hand can be thermoformed / injection molded and on the other hand meet the high demands on the cams over a wide temperature range.
  • a built shaft in particular camshaft, crankshaft or transmission shaft, is known, formed by a pipe body and individually pushed-on drive elements, which are essentially non-positively fixed, wherein a sleeve with a larger diameter than the tubular body and guided on the tubular body, reduced diameter collar regions is pushed between two drive elements, the collar regions extending under the drive elements and between the tubular body and drive elements are clamped essentially non-positively.
  • the tubular body and possibly also the support sleeves can be made of steel.
  • the drive elements, in particular control cams, should be made of cast material.
  • the intermediate sleeve can be formed from steel, aluminum, titanium or carbon fiber composite materials, in each case exclusively or in combination with one another or in combination with plastic.
  • the invention is based, to further reduce the weight of built shafts, in particular camshafts, crankshafts or gear shafts, to provide a manufacturing method and a shaft produced thereafter, which is simple in design and, moreover, the greatest possible freedom in the selection the connection of the functional elements with the shaft.
  • a metal sleeve or, if necessary, the same is inserted at predeterminable locations on the tube Functional element, such as a cam, is provided.
  • the fixation of the functional elements when using a metal sleeve can be produced by manufacturing techniques such as pipe widening, for example by internal high-pressure forming, or rolling / knurling or pressing, welding, in particular laser beam welding, or the like.
  • the lamination is carried out either by pultrusion (strand drawing process) for fiber directions in the longitudinal direction or by winding techniques for fiber directions in the circumferential direction.
  • the winding techniques can be program-controlled, so that different angles and fiber densities can be set.
  • the sleeves can be attached by lamination. There are various aspects to consider when laminating:
  • the notch effect on the CFRP tube can be kept low by appropriately designing the metal sleeve (rounding off the peripheral edge at the base of the sleeve).
  • the tube is laminated gradually in the longitudinal and circumferential directions.
  • specific angles of the fibers to the tube axis are also optionally set.
  • the various loads acting on the shaft from different directions can be optimally absorbed.
  • the tube is laminated lengthways. If required, one or two layers with a fiber direction of, for example, 45 ° to the tube axis are then laminated on.
  • the necessary number of metal sleeves is pushed over the pipe and positioned at the points necessary for fastening.
  • the second or simply a further layer is laminated in the circumferential direction, with the sleeves being quasi partially wrapped.
  • circumferential and diagonally extending depressions / grooves are provided in the sleeves.
  • the lamination takes place in the recesses of the sleeve in such a way that the fibers do not protrude beyond the circumference of the metal sleeve, so that the surface of the sleeve is available for joining operations, for example for receiving cams. It is particularly important to ensure that the fibers are not damaged during the entire subsequent joining process.
  • the sleeve can then be widened by rolling or knurling. In this case, the fibers must be embedded so deeply in the recesses of the sleeve that they are not damaged by the roller rollers.
  • the lamination is done as indicated above.
  • the tube is laminated lengthways.
  • one or two layers are then laminated on, with a fiber direction of, for example, 45 ° to the tube axis.
  • the outside of the tube on which the sleeves are to be attached is laminated in the circumferential direction. Otherwise the fibers could be cut, which would reduce the strength of the shaft.
  • the pressing can take place, for example, by magnetic forming. At least one magnetic coil is pushed over the sleeve (possibly several at the same time) and activated for a predefinable period.
  • the pressing can alternatively be carried out directly by rolling / rolling the sleeve, for example at the edge area or even at the edge area of the cam.
  • the respective finished functional element for example a cam
  • the respective finished functional element can be directly applied to the fiber composite technology provided tube pushed and attached to it, for example, by magnetic forming.
  • the fibers of the tube can optionally be wound in the circumferential direction in such a way that a surface profile is created in the longitudinal direction, which improves the shaping of the metal sleeve.
  • a contour / engraving can be worked into the inside of the metal sleeve. Possibly only on the sides protruding frets of the components are attached to the tube by the magnetic forming.
  • Figure 1 shaft with laminated metal sleeve
  • Figure 2 shaft with laminated metal sleeve and applied
  • Figure 3 shaft with a laminated metal sleeve and joined functional element
  • FIGS. 4 and 5 basic sketches for producing a CFRP base body with a laminated metal sleeve
  • FIG. 6 basic sketch of a CFRP base body with a slid-on
  • FIG. 7 basic sketch of a joining process between a CFRP
  • Base body and a metal sleeve
  • FIGS 8 and 9 alternative connection method between a CFRP base body and a metal sleeve.
  • Figures 1, 2 and 3 show the assembly sequence for a preferred embodiment of the invention using the example of the assembly of camshafts.
  • FIG. 1 shows a metal sleeve 2 which is laminated in a tubular base body 1 formed from a carbon fiber composite material (CFRP). So that the carbon fiber is not damaged during the subsequent operation, the sleeve in the joining area 3 for the functional element is free of the carbon fiber. The remaining areas, at least the collar areas 4 and 5, are surrounded by laminate.
  • CFRP carbon fiber composite material
  • the curling 6 applied to the metal sleeve 2 can be seen in FIG.
  • the curling 6 partially expands the metal sleeve 2 to such an extent that it projects beyond the inner opening of a functional element to be joined.
  • a functional element here a cam 7 is pressed over the metal sleeve 2, which was designed to be rolled in the joining area 3.
  • the material displacement caused by the rolling process causes the metal sleeve 2 to expand.
  • the diameter of the metal sleeve 2 expanded in the joining area 3 projects beyond the inner diameter. Knife of the opening in the cam 7.
  • By pushing the cam 7 is pressed with the metal sleeve 2. This creates a force and - depending on the shape of the opening - a positive connection between the metal sleeve 2 and cam 7 and thus with the base body 1st
  • the cams 7 can be pushed over the entire pipe length and over several metal sleeves without problems before they are pressed at the actual joining point. If several widened metal sleeves 2 were already used, the cam 7 would not be able to be pushed so easily to the intended joint.
  • the rolling process can also be dispensed with.
  • the cam 7 is then pushed over the metal sleeve 2 and fixed by another known joining method.
  • welding with laser welding can also be used here.
  • FIG. 3 shows a possibility for increasing the connection strength between the metal sleeve 2 and the base body 1.
  • the collar 4, 5 of the metal sleeve 2 can be provided on its end face 8 with tongues 9, 10 bent in opposite directions in the circumferential direction.
  • FIG. 4 shows a basic sketch of a basic body 1, in this example formed by carbon fibers 11 running in the longitudinal direction and formed by pulling, and in the circumferential direction running if necessary under a predetermined Narrow angle wound fibers 12, which are covered by a cover layer 1 3 if necessary.
  • FIG. 5 shows the base body 1 together with fibers 1 1, 1 2. Also shown is a metallic metal sleeve 2 which has circumferential and diagonally extending depressions 14, 1 5 and the fibers 1 2 the metal sleeve 2 in these areas 14, 1 5 wrap. The fibers 1 2 should not protrude beyond the peripheral surface 1 6 of the metal sleeve 2. If necessary, further layers in the form of fibers 17 can be provided. Rolling 6 for joining the functional element, for example the cam 7 (FIG. 3), is subsequently applied to the peripheral surface 16 of the metal sleeve 2.
  • the cam 7 FIG. 3
  • FIG. 6 shows the CFRP base body with the metal sleeve 2 pushed on as an example for two further joining methods.
  • the metal sleeve 2 is pressed onto the carrier tube 1 by external force.
  • the external force can be generated by rolling, rolling or magnetic forming.
  • the direction of the force is indicated by the arrows.
  • the upper part of the picture shows how the metal sleeve 2 is fixed by rolling or rolling in the direction of force shown by the arrows.
  • the joining operation can be carried out along the entire surface or along parts of the surface, for example on the collar regions 4 and 5 and the joining region 3, by rolling or rolling.
  • Figure 7 shows an arrangement of the magnetic coils 1 8, in which only the collars 4 and 5 of the metal sleeve 2 are shrunk onto the base body 1.
  • Figure 8 shows an embodiment of the metal sleeve 2 without frets 4 and 5.
  • a profile 19 is incorporated in the longitudinal body 1 to increase the connection strength.
  • the metal sleeve 2 is then fixed on the base body 1 by magnetic shaping with the magnet coil 18.
  • FIG. 9 shows the state after the joining operation of the metal sleeve 2 on the base body 1.
  • the profile 1 9 is pressed flat and thus forms an additional voltage reservoir for the non-positive connection between the base body 1 and the metal sleeve 2.
  • FIGS. 8 and 9 can also be carried out using rollers or roller burners as a substitute for magnetic forming.
  • the functional components such as cams 7, can be fixed directly onto the base body 1 by means of magnetic forming without using a metal sleeve 2.
  • the advantage here is obvious in the simple production sequence. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

L'invention concerne un procédé permettant d produire un arbre, notamment un arbre à cames, un vilebrequin ou un arbre de transmission. Selon ledit procédé, il est prévu de produire un corps de base (1) tubulaire en matériau composite à base de fibres de carbone (CFK) et de le mettre en interaction, de manière indirecte ou directe, avec au moins un élément fonctionnel, notamment des cames (7) ou un élément d'entraînement. L'invention concerne également un arbre, notamment un arbre à cames, un vilebrequin ou un arbre de transmission, comprenant un corps de base (1) tubulaire en matériau composite à base de fibres de carbone, ainsi qu'au moins un élément fonctionnel, notamment des cames ou un élément d'entraînement, relié(es) indirectement ou directement à lui.
PCT/EP2003/012979 2002-12-19 2003-11-20 Procede de production d'un arbre et arbre obtenu selon ledit procede WO2004056553A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003283416A AU2003283416A1 (en) 2002-12-19 2003-11-20 Method for producing a shaft and a shaft produced according to this production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10260115.1 2002-12-19
DE10260115A DE10260115B4 (de) 2002-12-19 2002-12-19 Nockenwelle aus Kohlenfaserverbundwerkstoff (CFK)

Publications (1)

Publication Number Publication Date
WO2004056553A1 true WO2004056553A1 (fr) 2004-07-08

Family

ID=32519222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/012979 WO2004056553A1 (fr) 2002-12-19 2003-11-20 Procede de production d'un arbre et arbre obtenu selon ledit procede

Country Status (3)

Country Link
AU (1) AU2003283416A1 (fr)
DE (1) DE10260115B4 (fr)
WO (1) WO2004056553A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077091B2 (en) 2004-09-24 2006-07-18 3M Innovative Properties Company Polymer matrix composite pushrod
JP2011504989A (ja) * 2007-11-28 2011-02-17 ダイムラー・アクチェンゲゼルシャフト トランスミッションメインシャフトまたはトランスミッションカウンタシャフト
US20150114169A1 (en) * 2013-10-28 2015-04-30 Thyssenkrupp Presta Teccenter Ag Lightweight camshaft and method for producing the same
US20160356307A1 (en) * 2015-05-09 2016-12-08 James Walter Linck Carbon Composite Piston Engine Crankshaft
CN109072723A (zh) * 2016-04-20 2018-12-21 蒂森克虏伯普利斯坦技术中心股份公司 凸轮轴的具有变化的壁厚的支承管
US10184510B2 (en) 2015-05-09 2019-01-22 James Walter Linck Method of making a carbon composite piston engine crankshaft

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006022401A1 (de) * 2006-05-13 2007-11-15 Schaeffler Kg Verfahren zur Verbindung einer Nockenwelle mit einem Nockenwellenversteller
DE102009024973B4 (de) * 2009-06-16 2013-07-25 Egon Frank Verfahren zum Herstellen eines schalenförmigen Bauteils
DE102009037128A1 (de) * 2009-08-11 2011-02-17 Neumayer Tekfor Holding Gmbh Verfahren zur Herstellung einer Nockenwelle und Nockenwelle
DE102014224772A1 (de) 2013-12-04 2015-06-11 Magna Powertrain Ag & Co Kg Ausgleichswelle
DE102014012562B3 (de) * 2014-08-29 2015-10-08 Technische Universität München Verfahren zum Herstellen einer Fügestelle an einem Bauteil aus einem Faserverbundwerkstoff
WO2018026934A1 (fr) 2016-08-03 2018-02-08 Branson Ultrasonics Corporation Procédé de fabrication d'arbres à cames composites

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279275A (en) * 1979-08-06 1981-07-21 Ford Aerospace & Communications Corporation Mechanical joinder of composite shaft to metallic end members
JPS58211513A (ja) * 1982-06-02 1983-12-09 Toyota Central Res & Dev Lab Inc 内燃機関のカムシヤフト
US4421497A (en) * 1979-11-17 1983-12-20 Felten & Guilleaume Energietechnik Gmbh Fiber-reinforced drive shaft
DE3540979A1 (de) * 1985-03-06 1986-09-11 Georg Fischer AG, Schaffhausen, CH, Niederlassung: Georg Fischer AG, 7700 Singen Verfahren zur herstellung einer verbundnockenwelle
US4903543A (en) * 1987-05-22 1990-02-27 Etablissement Supervis Camshaft for controlling valves in internal combustion engines and method of manufacturing the camshaft
EP1048442A1 (fr) * 1999-03-31 2000-11-02 Alusuisse Technology & Management AG Element de construction en matière plastique avec des pièces d'insertion
DE10065219C1 (de) * 2000-12-27 2002-07-18 Basf Ag Verfahren zur Herstellung eines Verbundbauteils aus einer Kunststoffstruktur und einem metallischen Körper und Verbundbauteil
WO2003008842A1 (fr) * 2001-07-20 2003-01-30 Thyssenkrupp Presta Ag Cames avec ouvertures de reception pour un arbre et procede de fabrication d'un arbre a cames presentant lesdites cames

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554710A (en) * 1978-10-19 1980-04-22 Toho Rayon Co Ltd Drive shaft and its manufacturing method
JPS5891311A (ja) * 1981-11-24 1983-05-31 Toyota Motor Corp カムシヤフト
DE8222839U1 (de) * 1982-08-13 1983-05-05 Arendts, Franz Joseph, Prof., 8000 München Anschlußverbindung für treibende oder angetriebene Hohlwellen aus Faserverbundwerkstoff
DE3606111A1 (de) * 1986-02-26 1987-08-27 Supervis Ets Nockenwelle
JPS62199910A (ja) * 1986-02-28 1987-09-03 Mazda Motor Corp エンジンのカムシヤフト
JPS63139733A (ja) * 1986-12-02 1988-06-11 Hitachi Chem Co Ltd Frp製ドライブシヤフトの製造法
DE19964105C1 (de) * 1999-10-29 2001-08-23 Duerlich Claus Peter Preßhülse zur Übertragung höchster statischer und dynamischer Belastungen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279275A (en) * 1979-08-06 1981-07-21 Ford Aerospace & Communications Corporation Mechanical joinder of composite shaft to metallic end members
US4421497A (en) * 1979-11-17 1983-12-20 Felten & Guilleaume Energietechnik Gmbh Fiber-reinforced drive shaft
JPS58211513A (ja) * 1982-06-02 1983-12-09 Toyota Central Res & Dev Lab Inc 内燃機関のカムシヤフト
DE3540979A1 (de) * 1985-03-06 1986-09-11 Georg Fischer AG, Schaffhausen, CH, Niederlassung: Georg Fischer AG, 7700 Singen Verfahren zur herstellung einer verbundnockenwelle
US4903543A (en) * 1987-05-22 1990-02-27 Etablissement Supervis Camshaft for controlling valves in internal combustion engines and method of manufacturing the camshaft
EP1048442A1 (fr) * 1999-03-31 2000-11-02 Alusuisse Technology & Management AG Element de construction en matière plastique avec des pièces d'insertion
DE10065219C1 (de) * 2000-12-27 2002-07-18 Basf Ag Verfahren zur Herstellung eines Verbundbauteils aus einer Kunststoffstruktur und einem metallischen Körper und Verbundbauteil
WO2003008842A1 (fr) * 2001-07-20 2003-01-30 Thyssenkrupp Presta Ag Cames avec ouvertures de reception pour un arbre et procede de fabrication d'un arbre a cames presentant lesdites cames

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 061 (M - 284) 23 March 1984 (1984-03-23) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077091B2 (en) 2004-09-24 2006-07-18 3M Innovative Properties Company Polymer matrix composite pushrod
JP2011504989A (ja) * 2007-11-28 2011-02-17 ダイムラー・アクチェンゲゼルシャフト トランスミッションメインシャフトまたはトランスミッションカウンタシャフト
US8556739B2 (en) 2007-11-28 2013-10-15 Daimler Ag Main shaft for a transmission or countershaft for a transmission
US20150114169A1 (en) * 2013-10-28 2015-04-30 Thyssenkrupp Presta Teccenter Ag Lightweight camshaft and method for producing the same
CN104791457A (zh) * 2013-10-28 2015-07-22 蒂森克虏伯普利斯坦技术中心股份公司 用于生产轻量化设计的凸轮轴的方法
CN104791457B (zh) * 2013-10-28 2018-04-17 蒂森克虏伯普利斯坦技术中心股份公司 用于生产轻量化设计的凸轮轴的方法
US20160356307A1 (en) * 2015-05-09 2016-12-08 James Walter Linck Carbon Composite Piston Engine Crankshaft
US10184510B2 (en) 2015-05-09 2019-01-22 James Walter Linck Method of making a carbon composite piston engine crankshaft
CN109072723A (zh) * 2016-04-20 2018-12-21 蒂森克虏伯普利斯坦技术中心股份公司 凸轮轴的具有变化的壁厚的支承管
US20190118240A1 (en) * 2016-04-20 2019-04-25 Thyssenkrupp Presta Teccenter Ag Support tube of a camshaft with varying wall thickness

Also Published As

Publication number Publication date
DE10260115A1 (de) 2004-07-15
DE10260115B4 (de) 2005-01-27
AU2003283416A1 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
EP0265663B2 (fr) Méthode de fabrication d'un arbre à cames ainsi qu'arbre à cames fabriqué d'un tube et d'éléments mis sur ce tube
EP1721066B1 (fr) Came multiple
EP0812379B1 (fr) Arbres a plusieurs couches assembles
EP2286067B1 (fr) Système d'arbre à cames ajustable
DE2946530A1 (de) Antriebswelle aus faserverstaerktem kunststoff, mit festgewickelten endstuecken
EP1292423B1 (fr) Procede de production d'une came d'un arbre a cames
DE7737438U1 (de) Zahnrad
DE10024553A1 (de) Zusammenfügen einer Nockenwelle
WO1995014851A1 (fr) Arbre a cames creux en une seule piece et son procede de fabrication
WO2004056553A1 (fr) Procede de production d'un arbre et arbre obtenu selon ledit procede
WO2007014537A1 (fr) Transmission, notamment pour automobiles, arbre ou arbres correspondants et procede pour produire de tels arbres
WO2005075279A1 (fr) Element de construction a zone d'assemblage, procede et outil pour la fabrication dudit element
WO2010066328A1 (fr) Ensemble arbre à cames réglable
DE102013107284A1 (de) Verfahren zum Zusammenbau eines Motormoduls
DE10312475B4 (de) Nockenwelle
DE3227693A1 (de) Nockenwelle und verfahren zu ihrer herstellung
DE3737600A1 (de) Verfahren zur herstellung von aufgebauten kurbelwellen durch aufweiten von in geteilten zapfen angeordneten huelsen
WO2005061150A1 (fr) Procede de production d'un boitier en forme de manchon, a partir de plusieurs toles plates
DE102004062518B4 (de) Nocken für gebaute Nockenwellen
WO2001079661A1 (fr) Arbre a cames et procede et dispositif permettant de produire ledit arbre a cames
WO2003027446A1 (fr) Arbre a cames et procede de fabrication
DE3744886C2 (en) Mfg. composite crankshafts from sleeves widened in split pins
DE8626272U1 (de) Gebaute Nockenwelle aus einem Wellenrohr und aufgeschobenen Elementen
WO2003012262A1 (fr) Procede de production de cames et d'arbres a cames
DE102018127489A1 (de) Baugruppe für ein Planetengetriebe, Verfahren zur Herstellung der Baugruppe und Planetengetriebe mit einer solchen Baugruppe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP