WO2004049769A1 - Unite commerciale de generation de decharge plasma continue aleatoire et son utilisation - Google Patents

Unite commerciale de generation de decharge plasma continue aleatoire et son utilisation Download PDF

Info

Publication number
WO2004049769A1
WO2004049769A1 PCT/CN2003/000189 CN0300189W WO2004049769A1 WO 2004049769 A1 WO2004049769 A1 WO 2004049769A1 CN 0300189 W CN0300189 W CN 0300189W WO 2004049769 A1 WO2004049769 A1 WO 2004049769A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
plasma
voltage
random
streamer discharge
Prior art date
Application number
PCT/CN2003/000189
Other languages
English (en)
French (fr)
Inventor
Ke Ping Yan
Rui Nian Li
Hong Di Zhang
Original Assignee
Guangdong J-Tech Science Development Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong J-Tech Science Development Co. Ltd. filed Critical Guangdong J-Tech Science Development Co. Ltd.
Priority to AU2003227161A priority Critical patent/AU2003227161A1/en
Priority to CA2506787A priority patent/CA2506787C/en
Publication of WO2004049769A1 publication Critical patent/WO2004049769A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • H05H1/475Filamentary electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/15Ambient air; Ozonisers

Definitions

  • the invention belongs to the field of plasma generation technology, and particularly relates to a random plasma generation technology and its application in the field of environmental protection. Background technique
  • the current streamer discharge plasma generation technology reported by the public is a synchronous plasma generation technology.
  • the main feature of the technology is that the high voltage narrow pulse power supply is used to supply power to the reactor. When the applied voltage is at the corona onset voltage, the pulse Streamer discharge is formed, and a plasma is generated in the reactor.
  • the types of reactors used were wired one-tube type, one-plate type, one-plate type and one line type.
  • the streamer discharge is successively generated, and the delay ⁇ generated by the first streamer at different positions is generally: AT / AL 5 ns / m, where is the two-point pitch.
  • the effective length of the discharge electrode of the plasma reactor is generally 1 to 6 meters, and the streamer discharge in the reactor is generated almost simultaneously, so it is called synchronous streamer discharge plasma.
  • the streamer discharge produces a narrower pulse discharge current.
  • the above pulse voltage can also be superimposed on the DC base voltage, and the generated pulse discharge current and streamer discharge have the same characteristics.
  • the pulsed power supply with synchronous plasma is a narrow pulse power supply with a voltage rise time of 10 - 100 ns, a pulse width of 50 - 500 ns, and a repetition rate of 1 - 2 kHz. Due to its high cost and technical difficulty, it is difficult to obtain a wide range of industrial applications, and high-voltage and high-current fast switching also needs further development.
  • the DC positive high voltage discharge mode increases with voltage, and the plasma can be started to stream, glow, pre-breakdown, spark discharge.
  • the DC voltage produces a narrow range of currents for streamer discharge.
  • the use of DC voltage to generate a streamer discharge plasma in many industrial reactors results in large dead zones and instability. Summary of the invention
  • An object of the present invention is to provide an industrial device in which a random streamer discharge plasma is generated, which has a low power supply, a wide voltage range of streamer discharge, a high repetition frequency, a large power, and random occurrence of streamer.
  • a streamer discharge with stable and spatio-temporal distribution can be produced in an industrial reactor to achieve various chemical treatment effects.
  • the technical solution adopted by the present invention is: An industrial device in which a random streamer discharge plasma occurs, comprising an electrode system composed of a discharge electrode and a ground electrode, which is composed of an absorbent, a neutralizing agent, an oxidant, and a catalyst. Chemical, physical processing equipment, reactors and power supplies.
  • the power supply is composed of a high voltage direct current power source, a high frequency alternating current or a pulse power source, and an LR matching network for coupling a direct current with an alternating current or a pulse power source.
  • the power source is simply referred to as an AC/DC power source;
  • the discharge electrode and the grounding pole are disposed at In the reactor, the discharge electrode is connected to a power supply disposed outside the reactor;
  • the chemical and physical treatment process device is composed of an atomizer, a chemical tank, a product tank and a storage tank (pool), wherein the atomizer respectively
  • the inlet and the top of the main reaction zone are disposed in the reactor, and the atomizer is respectively connected to the chemical tank and the product tank through the pipeline and the pump, and the product tank is also separately connected to the reactor and the tank (pool) through the pipeline connection.
  • the atomizer is replaced by a granulator.
  • the network When the LR matching network adopts capacitive coupling, the network may be composed of 1-3 groups of LR buffer circuits and a coupling capacitor. When the LR matching network is directly coupled, the network may be composed of 1 to 2 groups of LR buffer circuits and an isolation transformer. Composition.
  • the inductor L in the LR matching network is a fixed inductor, or a variable inductor, or a combination thereof, and an auxiliary device capable of realizing alternating (or pulse) DC coupling in the matching network is a diode, a capacitor, a transformer, etc. .
  • the power supply is a positive high voltage power supply, and the voltage peak value is less than 200 kV, wherein the high voltage DC power supply voltage is less than 100 kV, wherein the periodic voltage frequency is between 1 and 100 kHz, and the peak-to-peak half or the pulse peak voltage is less than 100 kV.
  • the voltage applied to the discharge electrode is a superposition of a DC base voltage and a high frequency alternating voltage having a sine wave or a triangular wave or a square wave or a pulse wave.
  • the reactor of an industrial plant in which a random streamer discharge plasma occurs may be vertical or horizontal; it may be wet or dry; the wet reactor may be partitioned or non-partitioned, and the zoned wet reactor is provided with heat in series.
  • the contaminated gas first passes through the thermochemical reaction zone, and the chemical agent is used to treat the pollutants in the gas, and is concentrated in the liquid phase, and then sent to one or two gas and liquid are distributed.
  • Different plasma reaction zones are subjected to streamer discharge treatment to further remove gaseous contaminants and oxidize or degrade the solute.
  • Non-partitioned wet reactors perform thermochemical reactions and plasma chemical reactions in the same space.
  • the industrial apparatus for generating random streamer discharge plasma provided by the present invention can be applied to air purification, flue gas purification, water purification, and soil purification.
  • the industrial device for generating random streamer discharge plasma provided by the present invention has the following beneficial effects as compared with the synchronous streamer discharge plasma generator;
  • a wide range of streamer discharge voltages are generated by superimposing an appropriate AC or pulse voltage on the DC base voltage, and a streamer discharge with stable and spatio-temporal distribution can be generated in the industrial reactor, and a positive high voltage of a suitable AC or pulse voltage is applied by DC.
  • the discharge mode of the pole to the grounding pole rises with the voltage, and the plasma only shows the streamer discharge and the spark discharge.
  • the voltage waveform generated by the AC/DC power supply has a wide pulse, such as a sine wave voltage, a triangular wave voltage, a square wave voltage or a streamer discharge pulse generated by a wide pulse voltage, and a synchronous streamer generated by using a narrow pulse voltage.
  • a wide pulse such as a sine wave voltage, a triangular wave voltage, a square wave voltage or a streamer discharge pulse generated by a wide pulse voltage, and a synchronous streamer generated by using a narrow pulse voltage.
  • the streamer discharge pulse When the streamer discharge pulse appears, the voltage on the reactor decreases due to the occurrence of streamer, and the voltage pulse applied to the electrode lasts for a long time, due to AC/
  • the DC power supply voltage is low, and the streamer generation can be distributed over a delay range of tens to hundreds of microseconds ( ⁇ 3), with randomness, and high power, and the repetition frequency is 1 to 100 kHz.
  • the AC/DC power supply used in the present invention is only one-tenth the cost of a narrow pulse squeezing power supply, which opens up new development space for industrial applications of random streamer discharge.
  • the zone type wet reactor has a thermochemical reaction zone, and the chemical agent is used to treat the pollutants in the contaminated gas to concentrate in the liquid phase, and the solution and the gas after the decontamination treatment by the thermochemical reaction zone are used. Feeding one or distributing gas and liquid to two different plasma reaction zones subjected to streamer discharge treatment, increasing the reaction rate due to higher solution concentration, oxidizing or degrading pollutants at a lower energy consumption, and further removing Gas Contaminants; Partitioned wet reactors have a 30%-50% reduction in power consumption compared to non-partitioned wet reactors that perform thermochemical reactions and plasma reactions in the same space.
  • Figure 1 is a schematic view of the electrode structure
  • FIG. 3 directly coupled LR matching network
  • Fig. 4 The different modes of the discharge mode of the plate-type electrode structure with the AC/DC supply voltage
  • Figure 5 The streamer discharge pulse generated by the DC base voltage superimposed with the sine wave voltage
  • FIG. 6 The streamer discharge pulse generated by the DC base voltage superimposed triangular wave voltage generation
  • Figure 7 The streamer discharge pulse generated by the DC base voltage superimposed by the square wave voltage
  • FIG. 9 Schematic diagram of the process flow of highway tunnel air purification
  • FIG. 10 Schematic diagram of the process flow of V0C purification in air
  • FIG. 11 Schematic diagram of the deodorization and sterilization process in the air
  • Figure 12 Schematic diagram of the streamlined discharge flue gas desulfurization and semi-wet process
  • FIG. 13 Schematic diagram of the process flow of swimming pool water purification treatment
  • FIG 14 Schematic diagram of the sludge or soil treatment process. Detailed ways
  • the NOx in highway tunnels can reach about 10 ppm, and there are certain concentrations of hydrocarbons, sulfides and black smoke, which not only reduces visibility, but also causes various diseases.
  • the present embodiment utilizes the present invention to simultaneously treat and collect various harmful gases and particulate matter in a tunnel.
  • an ozone decomposer is added at the end of the reactor.
  • the wastewater is treated separately.
  • the active radicals generated by the discharge plasma are 0H, 0 and H0 2 .
  • NOx and S0 2 are respectively oxidized to ⁇ 3 3 and 11 2 30 4 dissolved in water, and the hydrocarbon is oxidized.
  • the soot and the formed aerosol particles are forced to be charged and collected under the action of Coulomb force.
  • Figure 2 is a schematic diagram of the process flow, the polluted air from the non-zoned horizontal reactor 6 inlet through the gas flow uniform plate into the main reaction zone, the effective field length of the reactor is 2. 0in, the width is 1. 2m, the height is 1. 2m, a line-type ( Figure lb) six-unit wet reactor with a plate spacing and line spacing of 200.
  • the discharge system is connected to the AC/DC power supply 8 using a cross-shaped serrated electrode 1 and is controlled by a common supply. At a lower than spark discharge voltage, a streamer discharge is generated over a wide range of voltages (see Figure 4), and the grounding electrode 1 is a smooth surface plate.
  • the treated gas is discharged into or out of the highway tunnel via the exit of 6.
  • the polluted gas enters 6, first humidified by the lateral atomizer 9a, and thermochemically reacts with the polluted air.
  • the liquid is injected by the generator tank 11 disposed at the bottom of the 6th, and the top spray is set by 6
  • the upper atomizer 9b is completed, thermochemical reaction
  • the tank 10 is supplied to the circulation system with a chemical agent. When the liquid product reaches the discharge concentration, it is discharged into the storage tank (pool) 12 by 11.
  • the present embodiment utilizes the present invention to effectively oxidize V0C into aerosol particles for purification purposes through a wet reactor. Plasma purification air V0C system parameters
  • the wet vertical two-body series treatment is used.
  • the reactor has 46 lines and one barrel type (Fig. la), and the unit has a diameter of 200 ram and a length of 2000 ram.
  • the contaminated air containing V0C enters from the top of the first body 6a of the reactor, and the chemical agent is injected from the tank 10 through the atomizer 9b into a thermal reaction with the intake gas, and then flows into the plasma reaction zone, using the zigzag electrode 1 and the light.
  • Face tube grounding pole 2. 1 is connected to the AC/DC power supply 8a via a through-wall insulator.
  • the gas enters the bottom of the second body reactor 6b from the bottom of the 6a through the passage connecting the two-body reactor, and the gas first acts with the generating liquid pumped from the product tank 1 ib through the pipeline into the atomizer 9b, and then flows into the plasma of 6b.
  • the reaction zone, its structure and power supply are the same as the first body.
  • the inner discharge electrode 1 is connected to the AC/DC power supply 8b, and the two bodies are separately supplied with power, and the distributed control method is adopted. Before the gas is discharged 6b, the generated liquid sprayed by 9b is rinsed. The production liquid is discharged from the tank 11.
  • This embodiment can also be used to purify other harmful gases such as S, NH 3 , phenol, HF, NF 3 , C 2 F 6 , CC1 4 , SiF 4 , CFC-112, CFC-113 and the like.
  • the present embodiment can achieve deodorization and sterilization very effectively by the present invention.
  • the plasma is used to oxidize various harmful gases into water; under the action of plasma, various bacteria and microorganisms are oxidized and killed to achieve the purpose of deodorization sterilization.
  • OWh/m 3 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the food workshop can be used with 0.2 Wh/m 3
  • the chimney can be used with 1.0 Wh/ra.
  • the detailed parameters are as follows: Plasma purification of odor and bacterial system parameters in the air
  • the vertical reactor consists of 23 lines and one tube unit in parallel.
  • the unit has a diameter of 200 legs and a length of 2 m.
  • the polluting gas flows in from the bottom inlet of the line-and-tube type wet reactor 6, and first reacts with the chemical agent to generate a thermochemical reaction.
  • the chemical agent is injected from the chemical agent tank 10 by the atomizer 9b, and the pollutant gas is discharged from the bottom.
  • the upper portion flows into the plasma reaction zone, and the region is composed of a cross-shaped zigzag type discharge electrode 1 and a smooth cylindrical ground electrode 2 to constitute a discharge system. 1 pass
  • the through-wall insulator is connected to the AC/DC power supply 8 outside the device.
  • the gas to be treated is discharged after being rinsed at the top of the reactor.
  • the eluent is injected from the tank 11 through the pipe and valve into the 9b.
  • the production liquid is discharged from the tank 11.
  • a 150 ton/day municipal waste incinerator produces approximately 4000 GNmVh of flue gas to be treated.
  • Current incinerators generate large amounts of polluting gases such as NOx, S0 2 , H 2 S, HC1, dioxins, heavy metals (such as mercury).
  • the present embodiment can realize the comprehensive purification treatment of the tail gas of the incinerator by using the invention, and the main parameters thereof are listed in Table 4. Operating parameters of plasma purification incinerator exhaust system
  • the present invention discloses the following general technical scheme: A semi-wet method for streamer discharge flue gas desulfurization, which adopts a partitioned wet reaction system, the product of which is a normal salt solution, and the solution is dehydrated by the heat of the flue gas to be treated to generate a positive
  • the salty powder by-product, the waste heat of the flue gas to be treated can also be used to raise the temperature of the exhaust gas of the wet reaction system, so that the process is optimized, continuous and stable, and industrialized; the high voltage power source with the DC voltage superimposed with the periodic voltage is used in this embodiment. , that is, AC/DC power supply, a streamer discharge plasma occurs.
  • the optimized structure and configuration of the discharge electrode and the grounding electrode are used to generate space-time and space in the large-volume reactor used in industry.
  • the cloth has excellent streamer discharge plasma; this embodiment adopts a partitioned wet reaction system, which has a thermochemical reaction zone, so that the absorption liquid absorbs so 2 in the flue gas, and the tetravalent sulfur is concentrated in the liquid phase, and the solution is concentrated.
  • the flue gas after desulfurization in the thermochemical reaction zone is sent to the plasma reaction zone in series with the thermochemical reaction zone to be subjected to streamer discharge treatment. Under lower energy consumption conditions, the subsalt is oxidized to a positive salt to make a positive salt.
  • the power consumption of the partitioned wet reaction system is reduced by 30% to 50% compared to the non-partitioned wet reaction system.
  • the semi-wet process of the streamer discharge flue gas desulfurization has the advantages of short, continuous, stable and complete process; the recovered resource is a dry powder of sulfate and nitrate; the production line has a small footprint, low overall energy consumption, and low equipment investment and operating cost. .
  • the flue gas passes through the dust remover 16, and the hot flue gas to be desulfurized is firstly raised in the heat exchanger 18 to appropriately raise the temperature of the exhaust gas 20 of the wet reaction system, and then enters the dryer 19 to make the pipeline.
  • the positive salt solution generated by the partition type wet reactor 6 is dehydrated into a dry powder, falls into the storage tank 21, and is outputted and packaged.
  • Select the dryer flue gas inlet temperature so that the dryer outlet is higher than 7 (TC) to ensure dehydration effect.
  • TC 7
  • thermochemical reaction zone 27 of the 6-zone partitioned wet reaction system After cooling, S0 2 is absorbed, and the thermochemical reaction zone 27 of the 6-zone partitioned wet reaction system is introduced, and the reaction liquid enters the tank l la.
  • the absorption liquid in the thermochemical reaction zone is pumped into the atomizer by the tank 11a through the pipeline. Absorbing S0 2 in the flue gas, the sub-salt in the absorption liquid reaches a relatively high concentration, and is sprayed into the plasma reaction zone 28 by the tank l ib through a proper amount of the pipeline and the pump.
  • the power source 8 is connected to the discharge electrode 1, and the grounding pole 2 is In the porous electrode, the discharge system generates a streamer discharge, oxidizes the tetravalent sulfur in the solution to hexavalent, and makes the normal salt reach a higher concentration, further removes S0 2 in the gas, and removes N0x.
  • the tank 23 of the device 23 maintains the balance of the liquid storage, and the transport solution is dehydrated by 19, in which the pH detecting device 24 is provided, and the generating liquid is adjusted to be neutral according to it.
  • the outlet is sent to 18, after raising the temperature of the flue gas, 25 is a flow into the exhaust gas discharge chimney.
  • Ammonia sensing means is provided in the flue 26 in order to control the amount of the ammonia injection process, preventing ammonia slip.
  • This embodiment utilizes the present invention to perform a flue gas desulfurization denitration and semi-wet process.
  • LR matching network uses capacitively coupled LR matching network, the network consists of three sets of LR buffer circuit and one coupling capacitor Composition: gas flow rate 2m / s, residence time 2 seconds, desulfurization rate n S0 z 95%, denitration rate ⁇ ⁇ ⁇ 50%, ammonia absorbent injection amount is controlled by its leakage signal.
  • thermochemical reaction zone is one segment, and the plasma reaction is divided into a gas treatment section and a liquid treatment section. Two paragraphs. Other alkaline solutions can also be used as the absorbent. 6. Waste water and drinking water purification
  • Waste water often contains organic and inorganic pollutants, which are converted into non-toxic substances by oxidation.
  • oxidants at present are ozone, hydrogen peroxide, chlorine dioxide and potassium permanganate.
  • the oxidant can also be used in combination with a catalyst such as Ti0 2 or UV uv to achieve a hydrazine oxidation treatment.
  • the present embodiment utilizes the present invention to perform advanced oxidation treatment on various waste waters, drinking water, and the like, and has simple equipment and low operating cost.
  • the reactor 6 is composed of three wire-and-tube type units having a diameter of 12? ⁇ and a length of 1000 mm, and the water to be treated is sprayed from the top end atomizer 9b and discharged from the bottom.
  • Figure 17 is a schematic diagram of a process flow for purifying swimming pool water through a plasma reactor.
  • the plasma reactor not only deodorizes, but also sterilizes (for example, coliform, >95%).
  • a capacitively coupled LR is used to match the AC/DC power supply of the network 5a. 12 is the pool.
  • the vertical reactor consists of 15 wire-and-cylinder units with a diameter of 100 mm and a height of 2000 mm.
  • the discharge is extremely knife-edge type.
  • the ozone production can reach 71g/kWh.
  • This embodiment can also be used for the oxidation treatment of liquids, such as the oxidation of tetravalent sulfur to hexavalent sulfur.
  • sludge which may contain various pollutants such as organic, inorganic, microbial, pathogenic, and viral.
  • pollutants such as organic, inorganic, microbial, pathogenic, and viral.
  • organic and inorganic substances can be oxidized, but also various microorganisms, germs and viruses can be purified.
  • the main parameters are listed in Table 7. Plasma purification sludge and soil system parameters
  • the reactor 6 is composed of 10 vertical line one-tube units having a diameter of 120 mm and a length of 2000 mm, and the sludge to be treated is sprayed from the granulation device 7 through the top of the reactor 6, sludge or The soil is fluidized in 6 and the plasma occurs not only in the gas but also on the surface of the sludge. After one treatment, the purification rate of coliforms and general bacteria is above 95%.
  • An AC/DC power supply that directly couples the LR matching network 5b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
  • Plasma Technology (AREA)

Description

发生随机性流光放电等离子体的工业装置及其应用 技术领域
本发明属于等离子体发生技术领域, 特别涉及随机性等离子体发生技术及其 在环境保护领域的应用。 背景技术
众所周知, 有效引发化学效应的放电模式是正极性流光放电等离子体。 目前 公幵报道的流光放电等离子体发生技术皆属于同步性等离子体发生技术, 其技术的 主要特征是:利用高压窄脉冲电源向反应器供电, 当所加电压髙于电暈起始电压时, 脉冲流光放电形成, 在反应器中产生等离子体。 所用的反应器种类有线一筒型、 线 一板型、 点一板型和线一线型。 当髙压脉冲电压从反应器的一端向另一端传播时, 流光放电相继产生, 不同位置的第一次流光产生的时延 ΔΤ —般为: AT / AL 5ns/m, 其中 为两点间距。
实际上, 在脉冲供电情况下, 等离子体反应器的放电极有效长度一般为 1一 6 米, 反应器中的流光放电几乎同时产生, 故称同步性流光放电等离子体。 伴随脉冲 电压, 流光放电产生一较窄的脉冲放电电流。 上述脉冲电压也可叠加一直流基压, 所产生的脉冲放电电流及流光放电有相同的特征。
发生同步性等离子体的脉冲电源为窄脉冲电源, 电压上升时间为 10— 100ns , 脉宽 50— 500ns, 重复频率为 1一 2kHz。 由于它成本高、 技术难度大, 很难得到广 泛的工业应用, 而且高电压大电流快速开关也还需要进一步开发研制。
直流正高压放电模式随电压升高, 等离子体可呈起始流光,辉光,预击穿流光, 火花放电。 直流电压产生流光放电的电压范围窄, 使用直流电压在许多工业反应器 内发生流光放电等离子体, 会出现较大死区和不稳定等现象。 发明内容
本发明的目的是提供一种发生随机性流光放电等离子体的工业装置, 该发生 装置所采用的电源价格低廉, 流光放电的电压范围宽, 重复频率高, 功率大, 流光 的发生具有随机性, 可以在工业反应器内发生稳定且时空分布良好的流光放电, 实 现多种化工处理效果。 为达到上述目的, 本发明采用的技术方案是: 一种发生随机性流光放电等离 子体的工业装置, 包括由放电极和接地极构成的电极系统, 由吸收剂、 中和剂、 氧 化剂、 催化剂构成的化学、 物理处理工艺装置, 反应器和供电电源。 所述供电电源 由高压直流电源、 高频交流或脉冲电源及用于耦合直流与交流或脉冲电源的 LR匹 配网构成, 这种电源简称为 AC/DC电源; 所述放电极和接地极安置在反应器内, 放 电极与安置在反应器外的供电电源连接; 所述化学、 物理处理工艺装置由雾化器、 化学剂罐、 生成物罐及储槽 (池)构成, 其中雾化器分别安置在反应器内主反应区 的入口和顶部, 该雾化器通过管道和泵分别与化学剂罐、 生成物罐连接, 所述生成 物罐还通过管道分别与反应器及储槽(池)连接。 在处理固体物情形, 用造粒装置 取代雾化器。
所述 LR匹配网采用电容耦合时,该网可由 1-3组 LR缓冲电路和一个耦合电容 构成, 所述 LR匹配网采用直接耦合时, 该网可由 1一 2组 LR缓冲电路和一个隔离 变压器构成。
所述 LR匹配网中的电感 L为固定电感, 或可变电感, 或它们的组合, 匹配网 中可设置实现交 (或脉冲)直流耦合的辅助器件, 该器件为二极管、 电容、 变压器 等。
所述供电电源为正极性高压电源, 电压峰值小于 200kV, 其中高压直流电源 电压小于 100kV, 其中周期性电压频率在 1一 100kHz之间, 峰一峰值之半或脉冲峰 值电压小于 100kV。
所述施加在放电极上的电压为直流基压与具有正弦波或三角形波或方形波或 脉冲波的高频交流电压的叠加。
发生随机性流光放电等离子体的工业装置的反应器可为立式或卧式; 可为湿 式或干式; 湿式反应器可为分区型或非分区型,分区型湿式反应器设有串联的热化 学反应区和等离子体反应区, 含污气体先通过热化学反应区, 用化学剂处理气体中 的污染物, 并使之在液相中浓集, 再送入一个或将气液分送两个不同的等离子体反 应区, 经受流光放电处理, 进一步脱除气体污染物和使溶质氧化或降解。 非分区型 湿式反应器是在同一空间进行热化学反应和等离子体化学反应的。
等离子体反应区的电极结构可为线一筒型或线一板型; 放电极可为锯齿线或 刀棱线; 接地极表面可为多孔的或光滑的; 反应器可为一个单元, 也可为数个单元 并联, 每个单元可由一段或数段串联组成; 根据单元和段的组合特征, 可单独供电 或共同供电, 实现集散控制。
本发明提供的发生随机性流光放电等离子体的工业装置能够应用于空气净 化、 烟气净化、 水净化及土壤净化。
本发明提供的发生随机性流光放电等离子体的工业装置与同步性流光放电等 离子体发生装置相比, 有如下的有益效果:
1、 在直流基压上叠加适当的交流或脉冲电压发生的流光放电电压范围宽, 可 以在工业反应器内发生稳定且时空分布良好的流光放电, 施加直流叠加适当交流或 脉冲电压的正高压, 点极对接地极的放电模式随电压升髙、 等离子体只出现流光放 电及火花放电两种形态。
1、 AC/DC 电源所发生的电压波形具有较宽的脉冲, 如正弦波电压、 三角形波 电压、 方形波电压或较宽脉冲电压产生的流光放电脉冲, 与采用窄脉冲电压发生的 同步性流光放电等离子体相比, 其放电的伏安特性有根本区别, 当其流光放电脉冲 出现时, 反应器上的电压由于流光的发生而降低, 且作用在电极的电压脉冲持续时 间长, 由于 AC/DC电源电压较低, 流光发生可分布在几十至几百微秒 (μ3 ) 的时延 范围内, 具有随机性, 而且功率大, 重复频率为 1一 100kHz。本发明所使用的 AC/DC 电源造价只有窄脉冲髙压电源的十分之一, 这为随机性流光放电的工业应用开辟了 新的发展空间。
3、 分区型湿式反应器具有热化学反应区, 使用化学剂处理含污气体中的污染 物, 使之在液相中浓集, 并将此溶液和经过热化学反应区脱污处理后的气体送入一 个或将气液分送两个不同的等离子体反应区经受流光放电处理, 由于溶液浓度较 高, 提高了反应速度, 在较低能耗下使污染物氧化或降解, 并进一步脱除气体污染 物; 分区型湿式反应器与在同一空间进行热化学反应和等离子体反应的非分区型湿 式反应器相比, 电耗降低 30%- 50%。
4、 接地极表面为多孔形时, 增加了比表面积, 提高了传质系数, 使流光放电 反应速率增加。 附图说明
图 1 电极结构的示意图;
图 2 电容耦合 LR匹配网;
图 3 直接耦合 LR匹配网; 图 4 点一板型电极结构放电模式随 AC/DC供电电压变化的不同形态; 图 5 直流基压叠加正弦波电压产生的流光放电脉冲;
图 6 直流基压叠加三角形波电压产生.的流光放电脉冲;
图 7 直流基压叠加方形波电压产生的流光放电脉冲;
图 S 直流基压叠加脉冲电压产生的流光放电脉冲;
图 9 高速公路隧道空气净化工艺流程示意图;
图 10 空气中 V0C的净化工艺流程示意图;
图 11 空气中除臭及灭菌工艺流程示意图;
图 12 流光放电烟气脱硫半湿法流程示意图;
图 13 游泳池用水净化处理工艺流程示意图;
图 14 污泥或土壤处理工艺流程示意图。 具体实施方式
一、 高速公路隧道空气净化
由于机动车的尾气污染, 高速公路隧道中的 NOx可达 l Oppm左右, 且有一定 浓度的碳氢化合物、 硫化物和黑烟, 不仅降低了能见度, 而且可引发多种疾病。 本 实施方式利用本发明可对隧道中各种有害气体及颗粒物进行同时处理和收集。
等离子体净化高速公路隧道空气系统参数
Figure imgf000007_0001
为防止 o3泄漏,在反应器的末端增加一臭氧分解器.废水另处理。
在隧道中, 放电等离子体所产生的活性自由基有 0H, 0及 H02, 在等离子体的 作用下 NOx和 S02分别氧化为 ^03及 112304溶于水, 碳氢化合物氧化为相关的气溶 胶。 烟尘及所形成的气溶胶粒子被强制荷电, 在库仑力作用下得到收集。
图 9为工艺流程示意图, 污染的空气从非分区型卧式反应器 6入口经气流均 布板进入主反应区, 反应器电场有效长度为 2. 0in、 宽度为 1. 2m、 高度为 1. 2m, 为 线一板型(如图 lb )六单元湿式反应器, 板距和线距均为 200 , 放电系统使用十 字锯齿形放电极 1连接至 AC/DC电源 8, 采用共同供电的集散控制, 在低于火花放 电电压下, 在电压较宽范围内产生流光放电(如图 4), 接地极 1 为光滑表面的型 板。 被处理的气体经 6的出口排入高速公路隧道中或外。 污染气进入 6, 首先经过 侧向雾化器 9a加湿, 且与污染空气发生热化学反应, 用液是由设置在 6底部的生 成物罐 11经泵注入的, 顶喷则是由设置在 6上部的雾化器 9b完成的, 热化学反应 用化学剂由罐 10加到循环系统中。 当液体生成物达到排放浓度时, 由 11泄出进入 储槽(池) 12。
二、 空气中有机挥发气体 V0C净化处理
对低浓度大量挥发性气体引起的空气污染, 传统技术如活性炭吸附、 催化氧 化、 燃烧、 臭氧氧化、 紫外线 UV分解及高级氧化技术(UV+03+H202)等, 在工业应 用中, 主要的问题是成本高、 系统寿命短。 本实施方式利用本发明有效地将 V0C氧 化成气溶胶粒子, 经湿式反应器达到净化的目的。 等离子体净化空气中 V0C系统参数
Figure imgf000008_0001
采用湿式立式二体串联处理, 如图 10所示, 反应器每体有 46个线一筒型(如 图 la )单元并联, 单元直径为 200ram, 长度为 2000ram。 含有 V0C污染空气由反应 器第一体 6a的顶部进入, 化学剂从罐 10经雾化器 9b喷入与进气发生热化学反应 后, 流入等离子体反应区, 使用锯齿形放电极 1与光面筒形接地极 2。 1经穿壁绝 缘子与 AC/DC电源 8a相接。 气体由 6a底部经连接两体反应器的通道进入第二体反 应器 6b底部, 该气体首先与从生成物罐 l ib经管道泵入雾化器 9b的生成液作用, 随后流入 6b的等离子体反应区, 它的结构与供电等均与第一体相同。 只是该体 6b 内的放电极 1与 AC/DC电源 8b相接, 两体分别单独供电, 采用集散控制方式, 气 体排出 6b前, 再得 9b喷出的生成液淋洗。 生成液从罐 11中排出。
本实施方式也可用于净化其它有害气体, 如 S、 NH3、 苯酚、 HF、 NF3、 C2F6、 CC14、 SiF4、 CFC-112, CFC- 113等。
三、 空气中除臭及灭菌
目前, 在食品加工、 医药、 畜牧业等急需髙效除臭灭菌净化器。 由于污染气 体成分复杂, 有害气体浓度低、 处理量大, 目前釆用的活性炭吸附使用寿命短、 运 行费用高, 很难广范应用。
本实施方式利用本发明可非常有效地实现除臭、 灭菌。 利用等离子体将各种 有害气体氧化溶于水; 在等离子体作用下, 各种细菌及微生物被氧化致死, 达到除 臭灭菌的目的。根据场地不同,除臭灭菌所需的等离子体能量密度在 0. 2— l. OWh/m3 之间。 食品车间可用 0. 2 Wh/m3, 而烟囱处可用 1. 0 Wh/ra 详细参数如下: 等离子体净化空气中臭气及细菌系统参数
Figure imgf000009_0001
立式反应器由 23个线一筒型单元并联组成, 单元直径 200腿, 长 2m。 如图 11 所示, 污染气体从线 -筒型湿式反应器 6底部进口流入, 首先与化学剂作用发生热 化学反应, 化学剂由化学剂罐 10用雾化器 9b喷入, 污染气体自下而上流入等离子 体反应区, 该区由十字形锯齿型放电极 1与光面筒形接地极 2组成放电系统。 1通 过穿壁绝缘子和器外的 AC/DC电源 8相连。被处理气体经在反应器顶部淋洗后排出。 淋洗液是从罐 11经管道及阀门泵入 9b喷入的。 生成液从罐 11排出。
四、 垃圾焚烧炉尾气净化
一台 150吨 /日城市垃圾焚烧炉约产生 4000GNmVh待处理烟气。 目前运行中 的焚烧炉产生大量的污染气体, 如 NOx, S02, H2S, HC1,二恶茵、 重金属 (如汞)等。 本实施方式利用本发明可实现对焚烧炉尾气的综合净化处理, 其主要参数列入表 4。 等离子体净化焚烧炉尾气系统工作参数
Figure imgf000010_0001
五、 烟气脱硫脱硝
本实施公开了如下的总体技术方案: 一种流光放电烟气脱硫的半湿法, 采用 分区湿式反应系统, 其生成物为正盐溶液, 该溶液利用待处理烟气的热量脱水后, 生成正盐粉状副产物, 待处理烟气的余热还可用于抬升湿式反应系统尾气温度, 使 流程优化、 连续和稳定, 实现产业化; 本实施例所釆用直流基压叠加周期性电压的 高压电源, 即 AC/DC电源, 发生流光放电等离子体。 为了提高流程的效率, 采用放 电极与接地极的优化结构和配置, 以便在工业上使用的大容积反应器内产生时空分 布优良的流光放电等离子体; 本实施例采用分区湿式反应系统, 它具有热化学反应 区, 使吸收液吸收烟气中的 so2,将四价硫在液相中浓集, 并将此溶液和经过热化学 反应区脱硫处理后的烟气, 送入与热化学反应区相串联的等离子体反应区经受流光 放电处理, 在较低能耗条件下, 亚盐氧化为正盐, 使正盐达到较高浓度, 并进一步 脱除烟气中的 302和 N0x。 分区湿式反应系统电耗较非分区湿式反应系统降低 30% 一 50%。 本流光放电烟气脱硫的半湿法工艺流程的优点在于流程简短、 连续、 稳定、 完整; 回收资源为硫酸盐硝酸盐干粉; 生产线占地面积小、 总体能耗低、 设备投资 和运行费用少。
本实施方式如图 12所示:烟气经过除尘器 16,待脱硫处理的热烟气 1 7首先在 热交换器 18适当抬升湿式反应系统尾气 20的温度,然后进入干燥器 19,使经管道 及泵送来分区型湿式反应器 6生成的正盐溶液脱水为干粉,落入储槽 21,输出包装。 选择干燥器烟气入口温度,使干燥器出口高于 7 (TC ,以保证脱水效果.烟气在 19 内 增湿降温后,再由水或水溶液罐 22和化学剂罐 10注入,进一步增湿降温后吸收 S02, 进入 6内分区湿式反应系统的热化学反应区 27, 反应生成液进入罐 l la。 热化学反 应区中的吸收液是由罐 11a经管道泵入雾化器喷入的, 吸收烟气中的 S02, 待吸收 液中亚盐达到较髙浓度, 由罐 l ib经管道及泵适量输送喷入等离子体反应区 28。 电源 8与放电极 1连接, 接地极 2为多孔电极, 放电系统发生流光放电, 将溶液中 的四价硫氧化为六价, 并使正盐达到较高浓度, 同时进一步脱除气体中的 S02, 并 脱除 N0x。 输送液体到除雾器 23的罐 l ie , 保持储液平衡, 输送溶液给 19脱水, 在此输液管线中, 设有 pH值检测装置 24, 并根据它将生成液调为中性。 烟气经 23 从 6的出口送入 18, 抬升烟气温度后, 作为流程尾气进入烟囱 25排出。 在烟道中 设有测氨装置 26, 以控制流程中的氨注入量, 防止氨泄漏。
本实施方式利用本发明进行烟气脱硫脱硝半湿法处理。 分区湿式反应系统温 度 T«60 °C, S02初始浓度《100(^ 111, NOx初始浓度《Ι ΟΟρρηι, 风量 F«100000ra3/h,电 源额定功率为 P«200kW, 其中直流: 15kV, l OOkW; 高频交流: 30— 40kV, 100kW, 频 率 f = 20kHz, 能耗 E=2 Wh/ m3, LR匹配网采用电容耦合的 LR匹配网, 该网由三组 LR缓冲电路和一个耦合电容构成。 气体流速 2m/s, 停留时间 2秒, 脱硫率 n S0z 95% , 脱硝率 η ΝΟχ ^ 50 % , 氨吸收剂注入量由其泄露信号控制。 此外, 烟气中的 氯化物, 汞, 二恶茵, 碳氢化合物的脱除率, 均大于 95 %。 若采用三段式反应系 统, 则其中热化学反应区为一段, 等离子体反应区分为气体处理段和生成液处理段 两段。 吸收剂也可采用其它碱性溶液。 六、 废水和饮用水净化
废水常含有机和无机污染物, 利用氧化反应使污染物转化为无毒物质。 目前 最常用的氧化剂为臭氧、 过氧化氢、 二氧化氯及高锰酸钾等。 氧化剂也可同催化剂 如 Ti02、 紫外线 uv联合使用实现髙级氧化处理。
本实施方式利用本发明对各种废水、 饮用水等进行高级氧化处理, 设备简单, 运行费低。 等离子体净化废水、 饮用水系统参数
Figure imgf000012_0001
如图 13所示, 反应器 6由三个直径为 12θ!Μ, 长 1000mm的线一筒型单元并 联组成, 待处理水从 6顶端雾化器 9b喷入, 从底部排出。 图 17是针对游泳池用水 经等离子体反应器净化的工艺流程示意图。 等离子体反应器不仅可除臭, 而且灭菌 (以大肠菌为例, >95 % )。 采用电容耦合 LR匹配网 5a的 AC/DC电源。 12为水池。
釆用随机性流光放电等离子体发生装置净化废水或饮用水情形, 也可先用该 装置发生臭氧, 再用臭氧净化废水或饮用水。
用空气制造臭氧的过程首先对空气进行降温除湿处理。 主要参数示如表 6。 表 6 等离子体发生臭氧系统参数
干空气流量 lOOOmVh
臭氧浓度 l OOOppm
臭氧产额 71g/kWh
等离子体放电功率 30kW
直流电源 20kV, 15kW
高频高压交流电源 20-30kV, 15 kW, 30kHz, 正弦波
反应器 线-筒型, 立式, 干式 立式反应器由直径为 100mm, 高 2000mm的 15个线-筒型单元并联组成。 放电极为 刀棱型。 臭氧产额可达 71g/kWh。
本实施方式也可用于液体的氧化处理, 比如将四价硫氧化为六价硫。
七、 污泥和土壤净化
污泥种类很多, 可能含有机、 无机、 微生物、 病菌、 病毒等多种污染物。 本 实施方式利用本发明不仅可对各种有机及无机物作氧化处理, 而且对各种微生物、 病菌、 病毒作净化处理, 其主要参数列入表 7。 等离子体净化污泥和土壤系统参数
Figure imgf000013_0001
如图 14所示, 反应器 6由 10个直径 120mm, 长 2000mm的立式线一筒型单元 并联组成, 待处理的污泥从其成粒装置 7经反应器 6顶端喷入, 污泥或土壤在 6中 呈流态化颗粒状, 等离子体不仅发生在气体中, 而且也可发生在污泥的表面上。 经 一次处理, 大肠菌及一般菌的净化率都在 95 %以上。 采用直接耦合 LR 匹配网 5b 的 AC/DC电源。

Claims

权 利 要 求
1、 一种发生随机性流光放电等离子体的工业装置, 其特征在于, 该装置包括 由放电极(1) 和接地极(2)构成的电极系统, 由吸收剂、 中和剂、 氧化剂、 催化 剂构成的化学、 物理处理工艺装置, 反应器(6) 和供电电源 (8); 所述供电电源 (8) 由高压直流电源 (3)、 髙频交流或脉冲电源(4)及用于耦合直流与交流或脉 冲电源的 LR匹配网 (5)构成; 所述放电极(1)和接地极 (2) 安置在反应器(6) 内, 放电极 (1) 与安置在反应器(6) 外的供电电源 (8)连接; 所述化学、 物理 处理工艺装置由雾化器(9)、 化学剂罐 (10)、 生成物罐(11)及储槽(12) 构成, 其中雾化器(9)分别安置在反应器(6) 内主反应区的入口和顶部, 该雾化器(9) 通过管道和泵分别与化学剂罐 (10)、 生成物罐 (11) 连接, 所述生成物罐 (11) 还通过管道分别与反应器(6)及储槽(12)连接。
2、 如权利要求 1所述的发生随机性流光放电等离子体的工业装置, 其特征在 于, 所述 LR匹配网 (5)采用电容耦合时,该网 (5a) 由 1-3组 LR缓冲电路(13) 和一个耦合电容(14)构成; 所述 LR匹配网 (5)釆用直接耦合时, 该网 (5b) 由 1一 2组 LR缓冲电路 (13) 和一个隔离变压器(15)构成。
3、 如权利要求 1所述的发生随机性流光放电等离子体的工业装置, 其特征在 于, 所述 LR匹配网 (5) 中的电感 L为固定电感, 或可变电感, 或它们的组合, 匹 配网 (5) 中可设置实现交直流耦合的辅助器件, 该器件为二极管、 电容、 变压器 等。
4、 如权利要求 1所述的发生随机性流光放电等离子体的工业装置, 其特征在 于, 所述高压直流电源 (3) 电压小于 100kV, 所述高频交流或脉冲电源 (4)频率 在 1一 100kHz之间, 峰一峰电压之半或脉冲峰值电压小于 100kV。
5、 如权利要求 1所述的发生随机性流光放电等离子体的工业装置, 其特征在 于, 所述施加在放电极(1) 上的电压为具有正弦波、 或三角形波、 或方形波、 或 脉冲波的高频交流电压与直流基压的叠加。
6、 如权利要求 1 所述的发生随机性流光放电等离子体的工业装置, 其特征在 于, 所述反应器 (6) 可为立式或卧式; 可为湿式或干式; 湿式反应器可为分区型 或非分区型,分区型湿式反应器设有串联的热化学反应区 (27) 和等离子体反应区 (28); 反应器(6) 的电极结构可为线一筒型或线一板型; 放电极可为锯齿线或刀 棱线; 接地极表面可为多孔的或光滑的; 反应器(6 ) 可为一个单元, 也可为数个 单元并联, 每个单元可由一段或数段串联组成; 根据单元和段的组合特征, 可单独 供电或共同供电。
7、 如权利要求 1一 6 所述的发生随机性流光放电等离子体的工业装置, 其特 征在于, 可用于空气净化、 烟气净化、 水净化及土壤净化。
PCT/CN2003/000189 2002-11-26 2003-03-17 Unite commerciale de generation de decharge plasma continue aleatoire et son utilisation WO2004049769A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003227161A AU2003227161A1 (en) 2002-11-26 2003-03-17 A commercial unit for generating random streamer discharge plasma and its use
CA2506787A CA2506787C (en) 2002-11-26 2003-03-17 Industrial equipment for environmental protection by random streamer discharge plasmas and its applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB02153179XA CN1266988C (zh) 2002-11-26 2002-11-26 发生随机性流光放电等离子体的工业装置及其应用
CN02153179.X 2002-11-26

Publications (1)

Publication Number Publication Date
WO2004049769A1 true WO2004049769A1 (fr) 2004-06-10

Family

ID=32331918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000189 WO2004049769A1 (fr) 2002-11-26 2003-03-17 Unite commerciale de generation de decharge plasma continue aleatoire et son utilisation

Country Status (4)

Country Link
CN (1) CN1266988C (zh)
AU (1) AU2003227161A1 (zh)
CA (1) CA2506787C (zh)
WO (1) WO2004049769A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437040A (zh) * 2014-12-16 2015-03-25 江苏淞瀚新能源有限公司 基于介质阻挡放电反应器的氮氧化物脱除装置及其脱除方法
WO2020018327A1 (en) 2018-07-17 2020-01-23 Transient Plasma Systems, Inc. Method and system for treating cooking smoke emissions using a transient pulsed plasma
US11629860B2 (en) 2018-07-17 2023-04-18 Transient Plasma Systems, Inc. Method and system for treating emissions using a transient pulsed plasma
US11696388B2 (en) 2019-05-07 2023-07-04 Transient Plasma Systems, Inc. Pulsed non-thermal atmospheric pressure plasma processing system
US11811199B2 (en) 2021-03-03 2023-11-07 Transient Plasma Systems, Inc. Apparatus and methods of detecting transient discharge modes and/or closed loop control of pulsed systems and method employing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316857C (zh) * 2004-09-08 2007-05-16 大连理工大学 介质阻挡放电诱导半导体光催化处理有机废水方法及设备
DE102005028024A1 (de) * 2005-06-16 2006-12-28 Siemens Ag Verfahren und Vorrichtung zur Erzeugung großflächiger Atmosphärendruck-Plasmen
EP2326151A1 (fr) 2009-11-24 2011-05-25 AGC Glass Europe Procédé et dispositif de polarisation d'une électrode DBD
CN101716451B (zh) * 2009-12-29 2012-12-19 北京航空航天大学 放电等离子体与吸收相结合脱除烟气中多种污染物的方法
CN102969886A (zh) * 2012-11-25 2013-03-13 沈阳一特电工有限公司 等离子体制粉弧源
CN110124480A (zh) * 2019-05-13 2019-08-16 山西晋浙环保科技有限公司 一种基于燃煤电厂的流光放电等离子电除尘改造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515737A (ja) * 1991-07-16 1993-01-26 Akira Mizuno Noの酸化除去方法
CN1175475A (zh) * 1996-04-04 1998-03-11 三菱重工业株式会社 处理废气的装置及方法和其中应用的脉冲发生器
JP2000126542A (ja) * 1998-10-22 2000-05-09 Mitsubishi Heavy Ind Ltd プラズマ排ガス処理設備及びガス反応促進設備
CN2405398Y (zh) * 2000-01-26 2000-11-08 朱益民 正高压直流流光放电等离子体源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515737A (ja) * 1991-07-16 1993-01-26 Akira Mizuno Noの酸化除去方法
CN1175475A (zh) * 1996-04-04 1998-03-11 三菱重工业株式会社 处理废气的装置及方法和其中应用的脉冲发生器
JP2000126542A (ja) * 1998-10-22 2000-05-09 Mitsubishi Heavy Ind Ltd プラズマ排ガス処理設備及びガス反応促進設備
CN2405398Y (zh) * 2000-01-26 2000-11-08 朱益民 正高压直流流光放电等离子体源装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437040A (zh) * 2014-12-16 2015-03-25 江苏淞瀚新能源有限公司 基于介质阻挡放电反应器的氮氧化物脱除装置及其脱除方法
WO2020018327A1 (en) 2018-07-17 2020-01-23 Transient Plasma Systems, Inc. Method and system for treating cooking smoke emissions using a transient pulsed plasma
EP3824223A4 (en) * 2018-07-17 2021-08-18 Transient Plasma Systems, Inc. METHOD AND SYSTEM FOR TREATMENT OF COOKING SMOKE EMISSIONS USING A TRANSIENT PULSED PLASMA
US11478746B2 (en) 2018-07-17 2022-10-25 Transient Plasma Systems, Inc. Method and system for treating emissions using a transient pulsed plasma
US11629860B2 (en) 2018-07-17 2023-04-18 Transient Plasma Systems, Inc. Method and system for treating emissions using a transient pulsed plasma
US11696388B2 (en) 2019-05-07 2023-07-04 Transient Plasma Systems, Inc. Pulsed non-thermal atmospheric pressure plasma processing system
US11811199B2 (en) 2021-03-03 2023-11-07 Transient Plasma Systems, Inc. Apparatus and methods of detecting transient discharge modes and/or closed loop control of pulsed systems and method employing same

Also Published As

Publication number Publication date
CN1502402A (zh) 2004-06-09
CN1266988C (zh) 2006-07-26
CA2506787A1 (en) 2004-06-10
CA2506787C (en) 2012-02-21
AU2003227161A1 (en) 2004-06-18

Similar Documents

Publication Publication Date Title
JP6004613B2 (ja) 均一電場誘電体放電反応器
CN101884868B (zh) 低温等离子体工业废气净化方法及成套设备
CN100446849C (zh) 一种高压直流/脉冲放电同步净化气液的方法及装置
CN102553406B (zh) 直流电晕放电协同催化氧化脱硝方法及其装置
WO2004049769A1 (fr) Unite commerciale de generation de decharge plasma continue aleatoire et son utilisation
CA2634661C (en) Method for oxidation of volatile organic compounds contained in gaseous effluents and device thereof
WO2021203709A1 (zh) 一种低温等离子体除臭系统
CN104096460A (zh) 一种等离子废气处理装置
Liang et al. Using dielectric barrier discharge and rotating packed bed reactor for NOx removal
CN110935299A (zh) 低温等离子体耦合催化分解焚烧烟气二噁英的方法与装置
Ghasemi et al. A review of pulsed power systems for degrading water pollutants ranging from microorganisms to organic compounds
CN202893170U (zh) 塑料废气低温等离子体复合净化装置
CN101148285A (zh) 高压脉冲气相增湿放电处理废水的方法
CN205252897U (zh) Uv光解及低温等离子一体化设备
CN105833674A (zh) 热电晕放电与高温裂解联合处理喷涂废气的装置与方法
CN108675388A (zh) 一种难降解废水的净化装置及净化方法
CN110227338B (zh) 一种湿式低温等离子体处理污泥干化废气的系统
CN210385474U (zh) 一种高效净化垃圾源废气的装置
JP2002177734A (ja) 極短パルス高電圧加電式ガス浄化装置
CN107344779A (zh) 一种滑动弧放电低温等离子污水处理反应器
CN214345475U (zh) 一种低温等离子体和湿式洗涤联合去除VOCs的实验装置
CN108970363B (zh) 一种填充臭氧分解剂的间隔式低温等离子发生器
CN107081036B (zh) 一种紫外活化臭氧氧化VOCs除尘净化装置及方法
JP2006247522A (ja) 放電ガス処理装置
CN106914111B (zh) 一种有害物去除装置及其去除气流中有害物的方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2506787

Country of ref document: CA

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP