WO2004048863A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2004048863A1
WO2004048863A1 PCT/JP2003/014601 JP0314601W WO2004048863A1 WO 2004048863 A1 WO2004048863 A1 WO 2004048863A1 JP 0314601 W JP0314601 W JP 0314601W WO 2004048863 A1 WO2004048863 A1 WO 2004048863A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat source
pipe
liquid
unit
Prior art date
Application number
PCT/JP2003/014601
Other languages
English (en)
French (fr)
Inventor
Shinya Matsuoka
Yasushi Hori
Shinri Sada
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US10/503,214 priority Critical patent/US7140198B2/en
Priority to EP03772833A priority patent/EP1564505A4/en
Priority to KR1020047013217A priority patent/KR100629554B1/ko
Priority to AU2003284698A priority patent/AU2003284698B2/en
Publication of WO2004048863A1 publication Critical patent/WO2004048863A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02344Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • F25B2400/161Receivers arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Definitions

  • the present invention relates to an air conditioner, particularly to an air conditioner provided with a plurality of heat source units.
  • a heat source side branch liquid pipe and a heat source side branch gas pipe of a plurality of heat source units are connected to a separately provided pipe unit, and these heat source side branch liquid pipes are connected.
  • the branch gas pipe on the heat source side is joined as a refrigerant liquid communication pipe and a refrigerant gas communication pipe in a pipe unit and connected to a utilization unit.
  • This piping unit not only has the function of combining the heat source side branch liquid pipe and the heat source side branch gas pipe as a refrigerant liquid communication pipe and a refrigerant gas communication pipe as described above, but also has a plurality of heat sources depending on the operating load of the utilization unit. Prevents a shortage of refrigerant from accumulating in the stopped heat source unit when the unit is partially stopped and operating, resulting in a shortage of refrigerant flowing between the used unit and the operating heat source unit. It has a function (refrigerant volume adjustment function).
  • An object of the present invention is to eliminate the piping unit in an air conditioner having a plurality of heat source units and to make it possible to adjust the amount of refrigerant while minimizing an increase in piping work on site. .
  • the air conditioner according to claim 1 includes a plurality of heat source units, a refrigerant liquid communication pipe and a refrigerant gas communication pipe, a utilization unit, and a refrigerant supply circuit.
  • the heat source unit has a compression mechanism and a heat source side heat exchanger.
  • Refrigerant liquid connection pipe and refrigerant gas connection pipe connect each heat source unit in parallel.
  • the usage unit has a usage-side heat exchanger and is connected to the refrigerant liquid communication pipe and the refrigerant gas communication pipe.
  • the refrigerant supply circuit is used to remove the refrigerant remaining inside the stopped heat source unit to the outside when a part of the plurality of heat source units is stopped according to the operating load of the used unit and operated.
  • Each of the heat source units has a refrigerant take-out pipe, and a communication pipe connecting the refrigerant take-out pipe to the suction side of the compression mechanism of the operating heat source unit.
  • the number of units is controlled, for example, by stopping and operating some of the heat source units according to the operating load of the utilization unit. For this reason, in the heat source unit during operation, during the cooling operation, the refrigerant gas discharged from the compression mechanism is condensed in the heat source side heat exchanger to become a refrigerant liquid and joins the refrigerant liquid communication pipe, and is used.
  • the refrigerant evaporates in the heat exchanger on the utilization side of the unit to become refrigerant gas, and is sucked into the compression mechanism of the operating heat source unit via the refrigerant gas communication pipe. Also, during the heating operation, the refrigerant gas discharged from the compressor unit merges into the refrigerant gas communication pipe, is condensed in the use side heat exchanger of the utilization unit to become a refrigerant liquid, and passes through the refrigerant liquid communication pipe. It is sent to the operating heat source unit, evaporated in the heat source side heat exchanger to become refrigerant gas, and sucked into the compression mechanism of the operating heat source unit.
  • the refrigerant staying inside the unit is supplied to the suction side of the operating heat source unit compression mechanism using the refrigerant supply circuit, and the used unit and the operated heat source unit are supplied. So that the amount of refrigerant flowing between them is not short.
  • the refrigerant supply circuit communicates between the refrigerant take-out pipe for taking out the refrigerant staying in the heat source unit to the outside, and the refrigerant take-out pipe and the suction side of the compression mechanism of the operating heat source unit. And a tube. That is, in this air conditioner, the heat source
  • the main part that constitutes the refrigerant supply circuit is provided inside the unit, and the function of adjusting the amount of refrigerant so as not to run short is realized only by providing a communication pipe between the heat source units. As a result, it is possible to eliminate the existing piping unit and to minimize the amount of refrigerant while minimizing the increase in on-site piping work.
  • An air conditioner according to a second aspect is the air conditioner according to the first aspect, wherein the heat source side heat exchanger is connected to a discharge side of the compression mechanism.
  • Each heat source unit includes a heat source side branch liquid pipe connected to the liquid side and refrigerant liquid communication pipe of the heat source side heat exchanger, a receiver provided in the heat source side branch liquid pipe, a suction side of the compression mechanism, and a refrigerant. And a heat source side branch gas pipe connected to the gas communication pipe.
  • the refrigerant outlet pipe is provided so as to extract the refrigerant from between the discharge side of the compression mechanism and the gas side of the heat source side heat exchanger.
  • the refrigerant outlet pipe is provided between the discharge side of the compression mechanism and the gas side of the heat source side heat exchanger.
  • the refrigerant accumulated in the portion from the discharge side of the compression mechanism to the heat-source-side branch liquid pipe including the receiver is supplied to the operating heat-source unit via the refrigerant-liquid take-out pipe.
  • the refrigerant liquid accumulated in the receiver is evaporated in the heat source side heat exchanger and then supplied to the operating heat source unit via the refrigerant outlet pipe.
  • the air conditioner according to claim 3 is the air conditioner according to claim 2, wherein the heat-source-side branch liquid pipe is connected to a refrigerant outlet pipe through which a refrigerant staying inside the stopped heat source unit is taken out. It has a refrigerant opening / closing mechanism that shuts off the refrigerant from flowing into the stopped heat source unit from the liquid communication pipe.
  • the refrigerant opening / closing mechanism can shut off the refrigerant from flowing into the inside of the stopped heat source unit from the refrigerant liquid communication pipe, so that the refrigerant accumulated in the stopped heat source unit can be efficiently removed. Can be taken out well.
  • the air conditioner according to claim 4 is the air conditioner according to claim 3, wherein the refrigerant opening / closing mechanism is configured to communicate with the refrigerant liquid when the amount of refrigerant flowing between the utilization unit and the operating heat source unit becomes excessive.
  • the refrigerant liquid flowing through the pipe can flow into the stopped heat source unit.
  • the refrigerant opening / closing mechanism is operated to remove the refrigerant liquid flowing through the refrigerant liquid communication pipe. By allowing the refrigerant to flow into the stopped heat source unit and storing it in the receiver, the amount of refrigerant in the operating heat source unit can be reduced. Thereby, in this air conditioner, the amount of refrigerant can be adjusted.
  • the air conditioner according to claim 5 is the air conditioner according to claim 1, wherein the heat source side heat exchanger is connected to a suction side of the compression mechanism.
  • Each heat source unit has a heat source side branch liquid pipe connected to the liquid side of the heat source side heat exchanger and the refrigerant liquid communication pipe, and a heat source side branch gas pipe connected to the discharge side of the compression mechanism and the refrigerant gas communication pipe.
  • a receiver provided in the heat-source-side branch liquid pipe.
  • the refrigerant outlet pipe is provided so as to extract the refrigerant from between the suction side of the compression mechanism and the gas side of the heat source side heat exchanger.
  • the refrigerant outlet pipe is provided between the suction side of the compression mechanism and the gas side of the heat source side heat exchanger.
  • the refrigerant accumulated in the portion from the suction side of the compression mechanism to the heat source side branch liquid pipe including the receiver is supplied to the operating heat source unit via the refrigerant liquid outlet pipe.
  • the refrigerant liquid accumulated in the receiver is evaporated by the heat source side heat exchanger and then supplied to the operating heat source unit via the refrigerant outlet pipe.
  • the air conditioner according to claim 6 is the air conditioner according to claim 5, wherein the heat-source-side branch liquid pipe is configured to remove the refrigerant remaining inside the stopped heat source unit to the outside via the refrigerant discharge pipe. It has a refrigerant opening / closing mechanism that shuts off the refrigerant from flowing into the stopped heat source unit from the communication pipe.
  • the refrigerant opening / closing mechanism can shut off the refrigerant from flowing into the inside of the stopped heat source unit from the refrigerant liquid communication pipe, so that the refrigerant accumulated in the stopped heat source unit can be efficiently removed. Can be taken out well.
  • the air conditioner according to claim 7 is the receiver according to claim 6, wherein the stopped heat source unit is configured to allow a part of the refrigerant flowing through the refrigerant gas communication pipe to flow into the receiver via the heat source side branch gas pipe.
  • a pressurizing circuit is further provided.
  • the receiver can be pressurized by the receiver pressurization circuit. Therefore, the refrigerant liquid accumulated in the receiver can be discharged to the heat source side branch liquid pipe with the refrigerant opening / closing mechanism shut off.
  • the air conditioner according to claim 8 is the air conditioner according to claim 6 or 7, wherein the refrigerant opening / closing mechanism operates when the amount of refrigerant flowing between the utilization unit and the operating heat source unit becomes excessive.
  • the refrigerant liquid flowing through the liquid communication pipe can flow into the stopped heat source unit.
  • the refrigerant opening / closing mechanism is operated to remove the refrigerant liquid flowing through the refrigerant liquid communication pipe.
  • the amount of refrigerant flowing between the used unit and the operating heat source unit can be reduced.
  • the refrigerant amount can be adjusted.
  • An air conditioner according to a ninth aspect is the air conditioner according to any one of the first to eighth aspects, wherein the communication pipe is an oil equalization pipe that equalizes oil between the compression mechanisms of the heat source units.
  • the communication pipe is also used as the oil equalization pipe, so that the piping work on site can be further reduced.
  • An air conditioner includes a plurality of heat source units, a refrigerant liquid communication pipe and a refrigerant gas communication pipe, a use unit, and a receiver pressure reducing circuit.
  • the heat source unit has a compression mechanism, a heat source side heat exchanger connected to the suction side of the compression mechanism, and a receiver connected to the liquid side of the heat source side heat exchanger.
  • the refrigerant liquid connection pipe and the refrigerant gas connection pipe connect each heat source unit in parallel.
  • the utilization unit has a utilization-side heat exchanger and is connected to the refrigerant liquid communication pipe and the refrigerant gas communication pipe.
  • the receiver pressure reducing circuit causes the refrigerant to flow out from the receiver of the heat source unit in which the amount of refrigerant is insufficient to the suction side of the compression mechanism when the amount of refrigerant in the plurality of heat source units becomes insufficient.
  • the refrigerant gas discharged from the compression mechanism joins the refrigerant gas communication pipe, is condensed in the use side heat exchanger of the use unit to become a refrigerant liquid, and passes through the refrigerant liquid connection pipe. Then, it is sent to the operating heat source unit and evaporated in the heat source side heat exchanger to become a refrigerant gas, which is sucked into the compression mechanism of the operating heat source unit.
  • the refrigerant flowing through the refrigerant liquid communication pipe is in a gas-liquid two-phase flow under the condition that all the heat source units are operated, the refrigerant liquid sent to each heat source unit is deflected. Sometimes. In such a case, the amount of the refrigerant liquid supplied to a certain heat source unit may be small, and the amount of the refrigerant may be insufficient.
  • FIG. 1 is a block diagram showing a configuration of an air conditioner according to one embodiment of the present invention.
  • FIG. 2 is a schematic refrigerant circuit diagram of a heat source unit of the air conditioner according to the present invention.
  • FIG. 3 is a schematic refrigerant circuit diagram of the heat source unit when all the heat source units are in a cooling operation.
  • FIG. 4 is a schematic refrigerant circuit diagram of the heat source unit when only a part of the plurality of heat source units is performing a cooling operation and other heat source units are stopped.
  • FIG. 5 is a schematic refrigerant circuit diagram of the heat source unit when only a part of the plurality of heat source units is performing a cooling operation and other heat source units are stopped.
  • FIG. 6 is a schematic refrigerant circuit diagram of the heat source units when all the heat source units are in the heating operation.
  • FIG. 7 is a schematic refrigerant circuit diagram of the heat source unit when only a part of the plurality of heat source units is in the heating operation and the other heat source units are stopped.
  • FIG. 4 is a schematic refrigerant circuit diagram of the heat source unit when the unit is stopped.
  • FIG. 9 is a block diagram showing a configuration of a conventional air conditioner. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing a configuration of an air conditioner 1 according to one embodiment of the present invention.
  • the air conditioner 1 includes a plurality of (three in this embodiment) first, second, and third heat source units 102 a to 102 c and heat source units 102 a to 102 G arranged in parallel.
  • the refrigerant liquid connecting pipe 4 and the refrigerant gas connecting pipe 5 for connection, and the plural (two in the present embodiment) use units 3 connected in parallel to the refrigerant liquid connecting pipe 4 and the refrigerant gas connecting pipe 5 a, 3b.
  • the heat source side branch liquid pipes 11a to 11c of the heat source units 102a to 102G are respectively connected to the refrigerant liquid communication pipe 4, and the heat source units 102a to 1c.
  • the heat source side branch gas pipes 12a to 12G of 02c are connected to the refrigerant gas communication pipes 5, respectively.
  • the heat source units 102a to 102c include compression mechanisms 13a to 13c including one or more compressors.
  • An oil equalizing pipe 6 is provided between these compression mechanisms 13a to 13c so that oil can be exchanged between the heat source units 102a to 102c.
  • the number of heat source units 102a to 102g is increased or decreased according to the operating load of the units 3a and 3b. It is possible to perform control.
  • the utilization unit 3a mainly includes a utilization-side expansion valve 61a, a utilization-side heat exchanger 62a, and a pipe connecting these.
  • the user side expansion The valve 61 a is an electric expansion valve connected to the liquid side of the use-side heat exchanger 62 a for adjusting the flow rate of the refrigerant and the like.
  • the use side heat exchanger 62 a is a cross fin tube type heat exchanger, and is a device for performing heat exchange with indoor air.
  • the use unit 3a includes an indoor fan (not shown) for taking in and sending out indoor air into the unit, and uses the indoor air and the refrigerant flowing through the use side heat exchanger 62a. Can be subjected to heat exchange.
  • the use unit 3a is provided with various sensors.
  • a liquid-side temperature sensor 63a for detecting the refrigerant liquid temperature is provided on the liquid side of the use-side heat exchanger 62a, and the refrigerant gas temperature is provided on the gas side of the use-side heat exchanger 62a.
  • a gas side temperature sensor 64a to be detected is provided.
  • the use unit 3a is provided with a room temperature sensor 65a for detecting the temperature of indoor air.
  • FIG. 2 is a schematic refrigerant circuit diagram of the first heat source unit 102a. Since the second and third heat source units 102 b and 102 c have the same configuration as the first heat source unit 102 a, in the following description, the first heat source unit 102 will be described. Only the details of a will be described, and the description of the second and third heat source units 102 b and 102 c will be omitted.
  • the heat source unit 102a mainly includes a compression mechanism 13a, a four-way switching valve 14a, a heat source side heat exchanger 15a, a bridge circuit 16a, and a receiver 17a. , Liquid-side gate valve 18a, gas-side gate valve 19a, oil outlet pipe 20a, refrigerant outlet pipe 21a, receiver pressurizing circuit 22a, and receiver pressure reducing circuit 23a And a pipe connecting them.
  • the compression mechanism 13a mainly includes a compressor 31a, an oil separator (not shown), and a check valve 32a provided on the discharge side of the compressor 31a. I have.
  • the compressor 31 a is a scroll compressor driven by an electric motor, and is a device for compressing the sucked refrigerant gas.
  • the four-way switching valve 14a is a valve for switching the direction of the refrigerant flow when switching between the cooling operation and the heating operation.
  • the discharge side of the compression mechanism 13a and the heat source are switched.
  • Connect the gas side of the side heat exchanger 15a and the suction side of the compression mechanism 13a to the branch gas pipe 12a of the heat source side (the solid line of the four-way switching valve 14a in Fig. 2).
  • the discharge side of the compression mechanism 13a to the branch pipe 11a on the heat source side and connect the suction side of the compression mechanism 13a and the gas from the heat exchanger 15a on the heat source side. (See the broken line of the four-way switching valve 14a in FIG. 2).
  • the heat source side heat exchanger 15a is a cross fin tube type heat exchanger in the present embodiment, and is a device for performing heat exchange with a refrigerant using air as a heat source.
  • the heat source unit 102a includes an outdoor fan (not shown) for taking in and sending out outdoor air into the unit, and the outdoor air and the heat source side heat exchanger 15a. Can be exchanged with the refrigerant flowing through the heat exchanger.
  • the receiver 17a is a container for temporarily storing the refrigerant flowing between the heat source side heat exchanger 15a and the use units 3a and 3b use side heat exchangers 62a and 62b. is there.
  • the receiver 17a has an inlet at the upper part of the container and an outlet at the lower part of the container.
  • the inlet and outlet of the receiver 17a are connected to the heat-source-side branch liquid piping 11a via a bridge circuit 16a, respectively.
  • the bridge circuit 16a includes three check valves 33a to 35a connected to the heat source side branch liquid piping 11a, a heat source side expansion valve 36a, and a first opening / closing mechanism 37a.
  • the refrigerant flowing in the refrigerant circuit between the heat source side heat exchanger 15a and the use side heat exchangers 62a and 62b flows from the heat source side heat exchanger 15a side. Regardless of whether it flows into the receiver 17a or flows into the receiver 17a from the use-side heat exchangers 62a and 62b, the receiver 1 starts from the inlet of the receiver 17a.
  • the check valve 33a is configured to guide the refrigerant flowing from the use side heat exchangers 62a and 62b to the heat source side heat exchanger 15a to the inlet of the receiver 17a. It is connected.
  • the check valve 34a is connected to guide the refrigerant flowing from the heat source side heat exchanger 15a to the use side heat exchangers 62a and 62b to the inlet of the receiver 17a.
  • the check valve 35a is connected so that the refrigerant can flow from the outlet of the receiver 17a to the use-side heat exchangers 62a and 62b.
  • the heat source side expansion valve 36a allows the refrigerant to flow from the outlet of the receiver 17a to the heat source side heat exchanger 15a side. Connected so that you can In this embodiment, the heat-source-side expansion valve 36a controls the flow rate of the coolant between the heat-source-side heat exchanger 15a and the use-side heat exchangers 62, 62b. Is an electric expansion valve.
  • the first opening / closing mechanism 37a is a mechanism provided so as to block the flow of the refrigerant from the liquid-side gate valve 18a toward the receiver 17a.
  • the first opening / closing mechanism 37a is an electromagnetic valve provided on the liquid-side partition valve 18a side of the check valve 33a.
  • the oil take-out pipe 20a is an oil pipe for performing oil exchange between the compression mechanism 13a, the second heat source unit 102b, and the third heat source unit 102c.
  • the oil discharge pipe 38a that discharges oil to the outside of the compressor 31a when the amount of oil in the oil reservoir of the machine 31a exceeds a predetermined amount, and the compression mechanism that branches off from the oil discharge pipe 38a
  • An oil return pipe 39a capable of returning oil to the suction side of 13a.
  • the oil discharge pipe 38a includes a check valve 40a, a capillary 41a, an oil gate valve 42a, and an oil pipe connecting these.
  • the oil return pipe 39a is composed of an oil return valve 43a composed of a solenoid valve, a check valve 44a, and an oil pipe connecting these.
  • each heat source unit 102 a to 102 c is formed by the oil extraction pipe 20 a and the oil equalizing pipe 6 for connecting the compression mechanism of the heat source unit 102 a to 102 c.
  • the refrigerant take-out pipe 21a is a refrigerant pipe provided so that refrigerant can be taken out of the unit from between the four-way switching valve 14a and the heat source side heat exchanger 15a. It comprises a second opening / closing mechanism 45 a composed of a solenoid valve, a check valve 46 a, and a refrigerant pipe connecting these.
  • the refrigerant take-out pipe 21a is connected to the oil take-out pipe 20a, and the oil take-out pipe 6 for connecting between the compression mechanisms of the heat source units 102a to 102c is connected.
  • the refrigerant can be taken out of the unit via the unit.
  • a refrigerant supply circuit for exchanging refrigerant between the heat source units 102a to 102c is constituted by the refrigerant extraction pipe 21a, the oil extraction pipe 20a, and the oil equalizing pipe 6.
  • the receiver pressurizing circuit 22a is a refrigerant provided so that refrigerant can be directly sent to the inlet of the receiver 17a from between the discharge side of the compression mechanism 13a and the four-way switching valve 14a.
  • the pipe is a third opening / closing mechanism 47a composed of an electromagnetic valve, a check valve 48a, a capillary 49a, and a refrigerant pipe connecting these.
  • the receiver pressure reducing circuit 23 a is a refrigerant pipe provided to allow the refrigerant to flow from the upper part of the receiver 17 a to the suction side of the compression mechanism 13 a, and includes a fourth opening / closing mechanism 5 including an electromagnetic valve. 0a and a refrigerant pipe connecting these.
  • various sensors are provided in the heat source unit 102a.
  • a discharge temperature sensor 51a for detecting the temperature of the refrigerant discharged from the compression mechanism 13a and a discharge pressure sensor 52a are provided on the discharge side of the compression mechanism 13a.
  • a suction temperature sensor 53a for detecting a suction refrigerant temperature of the compression mechanism 13a and a suction pressure sensor 54a are provided on the suction side of the compression mechanism 13a.
  • a suction temperature sensor 53a for detecting a suction refrigerant temperature of the compression mechanism 13a and a suction pressure sensor 54a.
  • a heat exchange temperature sensor 55a for detecting a refrigerant temperature is provided on the liquid side of the heat source side heat exchanger 15a.
  • An outdoor air temperature sensor 56a for detecting the temperature of outdoor air is provided near the heat source side heat exchanger 15a.
  • the usage-side expansion valves 61a and 61b and the heat-source-side expansion valve 36a are used.
  • the opening of the heat source side expansion valve 36 b, 36 c) and the compression mechanism 13 a is controlled.
  • the heat source side branch gas pipes 2 1 2 a to 2 12 G are connected to the refrigerant liquid connection pipe 4 and the refrigerant gas connection pipe 5, and the heat source side branch liquid pipes 1 1 a to 11 G and
  • the heat source side branch gas pipes 12a to 12G are connected directly to the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5, and a communication pipe for exchanging refrigerant between the heat source units (in this embodiment, It is necessary to perform the work of connecting the oil pipe 6), but the advantage that the piping unit 7 can be eliminated is obtained.
  • Fig. 3 is a schematic refrigerant circuit diagram of the heat source units 102a to 102c when all the heat source units 102a to 102c are operating in the cooling mode (the arrows in the figure indicate the flow of refrigerant and oil). Indicating the direction).
  • Figs. 4 and 5 are schematic refrigerant circuit diagrams of the heat source units 102a to 102c when the heat source units 102a and 102G are in the cooling operation and the heat source units 102b are stopped. (The arrows in the figure indicate the flow directions of the refrigerant and oil).
  • Fig. 3 is a schematic refrigerant circuit diagram of the heat source units 102a to 102c when all the heat source units 102a to 102c are operating in the cooling mode (the arrows in the figure indicate the flow of refrigerant and oil). Indicating the direction).
  • Figs. 4 and 5 are schematic refrigerant circuit diagrams of the heat source units 102a to 102c when the heat
  • FIGS. 7 and 8 show schematic refrigerant circuit diagrams of the heat source units 102 a to 102 c when the heat source units 102 a and 102 G are in the heating operation and the heat source unit 102 b is stopped. Arrows in the figure indicate the flow directions of the refrigerant and the oil).
  • the four-way switching valves 14a to 14c of each heat source unit 102a to 102G are shown by solid lines in FIG. 3, that is, the discharge of the compression mechanisms 13a to 13G Side is connected to the gas side of the heat source side heat exchanger 15a to 15c, respectively, and the suction side of the compression mechanism 13a to 13c is connected to the heat source side branch gas pipe 12a to 12c, respectively. It is in a state where it has been done.
  • the liquid-side gate valves 18a to 18c, the gas-side gate valves 19a to 19c, the oil gate valves 42a to 42G, and the first opening / closing mechanism 37a to 37G of each heat source unit are It is open.
  • the oil return pipe 39a is in a usable state, and the refrigerant discharge pipe 21a, the receiver pressurizing circuit 22a, and the receiver pressure reducing circuit 23a are not used. That is, the oil return valves 43a to 43c are fully opened, and the second opening and closing mechanisms 45a to 45G, the third opening and closing mechanisms 47a to 47c, and the fourth opening and closing mechanisms 50a to 50c are closed. Have been. Further, the use side expansion valves 61a and 61b of the use units 3a and 3b shown in FIG. 1 are adjusted in opening so as to reduce the pressure of the refrigerant. The heat source side expansion valves 36 a to 36 G are in a closed state.
  • the compression mechanisms 13a to 13c of the heat source units 102a to 102c are activated. Then, the high-pressure refrigerant gas discharged from each compression mechanism 13 a to 13 c is condensed in each heat source side heat exchanger 15 a to 15 c to become a refrigerant liquid, and this refrigerant liquid is 6 a to 16 G (Specifically, reverse Stop valve 34a to 34G), receiver 17a to 17c, bridge circuit 16a to 16c (specifically, check valve 35a to 35c) and heat source side branch Merges with the refrigerant liquid communication pipe 4 via the liquid pipes 11a to 11G.
  • reverse Stop valve 34a to 34G reverse Stop valve 34a to 34G
  • receiver 17a to 17c receiver 17a to 17c
  • bridge circuit 16a to 16c specifically, check valve 35a to 35c
  • heat source side branch Merges with the refrigerant liquid communication pipe 4 via the liquid pipes 11a to 11G.
  • the refrigerant liquid is decompressed by the use side expansion valves 6 1a and 6 1b of the use units 3a and 3b, and then evaporated by the use side heat exchangers 6 2a and 6 2b to be a low pressure refrigerant. It becomes gas.
  • This refrigerant gas is branched from the refrigerant gas communication pipe 5 to each of the heat source side branch gas pipes 12a to 12G, and the compression mechanisms 13a to 1c of the heat source units 102a to 102c are formed.
  • this cyclic operation is repeated.
  • the oil discharged from the oil reservoirs of the compression mechanisms 13a to 13c to the oil discharge pipes 38a to 38G is compressed by the oil return pipes 39a to 39c. It is returned to the suction side of 3a to 13G, and is sucked into each compression mechanism 13a to 13G together with the low-pressure refrigerant gas.
  • the compression mechanism 13 b of the heat source unit 102 b is stopped, and the first opening / closing mechanism 37 b and the oil return valve 43 b are closed. Then, the refrigerant pressure from the discharge side of the compression mechanism 13 b of the heat source unit 102 b to the heat source side branch liquid pipe 11 b decreases. At this time, since the first opening / closing mechanism 37 b is closed, the refrigerant liquid does not flow from the refrigerant liquid communication pipe 4 into the heat source unit 102 b.
  • the oil discharged from the oil sump of the compressor 31a of the compression mechanism 13b to the oil discharge pipe 38b flows through the oil equalizing pipe 6 and the oil return pipes 39a, 39c to the heat source unit. It is sent to the suction side of the compression mechanism 13a, 13c of 102a, 102c.
  • the refrigerant is accumulated inside the stopped heat source units 102 b and the use units 3 a and 3
  • the amount of refrigerant circulating between b and the heat source units 102 a and 102 G during operation may be reduced (a state of insufficient refrigerant).
  • the temperature is detected by the temperature sensors 63a, 64a63b, 64b of the units 3a, 3b. It is possible to determine whether or not the refrigerant amount is insufficient based on the obtained refrigerant temperature and the degree of opening of the use side expansion valves 61a and 61b. When it is determined that the refrigerant amount is insufficient, as shown in FIG.
  • the second opening / closing mechanism 45 b of the stopped heat source unit 102 b is opened for a predetermined time, so that the heat source unit is opened.
  • the refrigerant remaining between the check valve 32b provided on the discharge side of the 102b compressor 31b and the receiver 17b is passed through the refrigerant outlet pipe 21a and the oil equalizing pipe 6.
  • Heat is supplied to the heat source units 102 a and 102 c during operation.
  • the refrigerant liquid accumulated in the receiver 17a of the heat source unit 102b is evaporated by the heat source side heat exchanger 15b, and then evaporated to the suction sides of the compression mechanisms 13a and 13c. Is supplied.
  • the refrigerant gas is supplied to the suction sides of the compression mechanisms 13a and 13c through the oil return pipes 39a and 39c of the heat source units 102a and 102G.
  • the second opening / closing mechanism 45b is closed after a lapse of a predetermined period of time. This allows the amount of refrigerant circulating between the use units 3a and 3b and the operating heat source units 102a and 102c to increase, thereby increasing the amount of refrigerant.
  • the shortage condition is resolved.
  • the refrigerant accumulated inside the heat source unit 102b may be excessively supplied to the operating heat source units 102a and 102G, resulting in an excess refrigerant state.
  • the second opening / closing mechanism 45b of the stopped heat source unit 102b is closed to prevent the refrigerant from being discharged from the inside of the heat source unit 102b.
  • the first opening / closing mechanism 37b the refrigerant liquid flows from the refrigerant liquid communication pipe 4 into the receiver 17b via the heat source side branch liquid pipe 11b, and the excess refrigerant state Let go.
  • the first opening / closing mechanism 37b is operated so as to be closed once after being opened for a predetermined time, and to be opened only for a predetermined time when the refrigerant amount becomes excessive again.
  • the four-way switching valves 14a to 14c of the heat source units 102a to 102c are in the state shown by the broken lines in FIG. 6, that is, the discharge of the compression mechanisms 13a to 13mm. Side is connected to the heat source side branch gas pipes 12a to 12c, respectively, and the suction side of the compression mechanism 13a to 13c is connected to the gas side of the heat source side heat exchanger 15a to 15c, respectively. It is in a state where it has been done.
  • liquid-side gate valves 18a to 18c, the gas-side gate valves 19a to 19c, the oil gate valves 42a to 42c, and the first opening / closing mechanisms 37a to 37c of each heat source unit are It is open.
  • the oil return pipe 39a is in a usable state, and the refrigerant discharge pipe 21a, the receiver pressurizing circuit 22a, and the receiver pressure reducing circuit 23a are not used. That is, the oil return valves 43a to 43c are fully opened, and the second opening / closing mechanisms 45a to 45c, the third opening / closing mechanisms 47a to 47c, and the fourth opening / closing mechanisms 503 to 500 are closed. I have.
  • the opening of the use-side expansion valves 61a and 61b of the use units 3a and 3 is adjusted according to the heating load of the use units 3a and 3b.
  • the opening of each of the heat source side expansion valves 36a to 36c is adjusted based on the degree of superheat of the refrigerant gas calculated from the refrigerant temperature and pressure detected by the temperature sensor 53a and the pressure sensor 54a.
  • the compression mechanisms 13a to 13c of the heat source units 102a to 102c are activated. Then, the high-pressure refrigerant gas discharged from each of the compression mechanisms 13a to 13c joins the refrigerant gas communication pipe 5 via each heat source side branch gas pipe 12a to 12c. Thereafter, the refrigerant gas is condensed in the use side heat exchangers 62a and 62b of the use units 3a and 3b to become a refrigerant liquid, and the pressure is reduced by the use side expansion valves 61a and 61b.
  • This refrigerant liquid is branched from the refrigerant liquid communication pipe 4 to each of the heat source side branch liquid pipes 11 a to 11 c, and bridge circuits 16 a to 16 G (specifically, the first opening / closing mechanism 37 a ⁇ 37c and check valve 33a ⁇ 33c), via receiver 17a ⁇ 17c and bridge circuit 16a ⁇ 16G (specifically, heat source side expansion valve 36a ⁇ 36G)
  • receiver 17a ⁇ 17c and bridge circuit 16a ⁇ 16G specifically, heat source side expansion valve 36a ⁇ 36G
  • the oil discharged from the oil reservoirs of the compression mechanisms 13a to 13c to the oil discharge pipes 38a to 38c passes through the oil return pipes 39a to 39G, and the compression mechanisms 13a to 13c. Inhalation And is sucked into each of the compression mechanisms 13a to 13c together with the low-pressure refrigerant gas.
  • the heat source unit 102 a to 102 c via the medium communication pipe 4. Since the refrigerant sent to the refrigerant is in a gas-liquid two-phase flow, when the refrigerant is branched from the refrigerant liquid connection pipe 4 to the heat source side branch liquid pipes 11a to 11b of each heat source unit, a drift is generated. Often occurs. In such a state, the air-conditioning apparatus 1 of the present embodiment can perform an operation for eliminating the drift.
  • the operation will be described.
  • the heat-source-side expansion valve 36 b is overheated by the refrigerant gas calculated from the refrigerant temperature and pressure detected by the temperature sensor 53 b and the pressure sensor 54 b.
  • the opening is adjusted based on the degree. For this reason, as the amount of the refrigerant supplied into the unit decreases, the degree of superheat of the refrigerant gas increases, and the opening of the heat-source-side expansion valve 36b increases.
  • the fourth opening / closing mechanism 5 Open 0b for a predetermined time. Then, the refrigerant in the receiver 17b is discharged to the suction side of the compression mechanism 13b through the receiver pressure reducing circuit 23b, and the pressure in the receiver 17b is reduced. As a result, the amount of the refrigerant supplied from the refrigerant liquid communication pipe 4 into the heat source unit 102 b increases.
  • the fourth opening / closing mechanism 50b When the time during which the fourth opening / closing mechanism 50b is opened reaches a predetermined time, when the degree of superheat of the refrigerant gas decreases, or when the heat source side expansion valve 36b starts to close, The fourth opening / closing mechanism 50b is closed. Such operation of the fourth opening / closing mechanism 50b eliminates the shortage of the refrigerant amount in the heat source unit 102b. The same amount of refrigerant can be adjusted in the other heat source units 102a and 102c, so that the amount of refrigerant sent from the refrigerant liquid communication pipe 4 to each heat source unit is maintained at an appropriate flow rate balance. Dripping.
  • the compression mechanism 13 b of the heat source unit 102 b is stopped, and the first opening / closing mechanism 37 b and the oil return valve 43 b are closed.
  • the refrigerant liquid does not flow from the refrigerant liquid communication pipe 4 into the heat source unit 102 b.
  • the oil discharged from the oil reservoir of the compressor 3a of the compression mechanism 13b to the oil discharge pipe 38b passes through the oil leveling pipe 6 and the compression mechanism 1 of the heat source units 102a and 102c. It is sent to the suction side of 3a, 13c.
  • the refrigerant temperature detected by the temperature sensors 63a, 64a, 63b, 64b of the use units 3a, 3b and the temperature of the use-side expansion valves 61a, 61b It is possible to determine from the opening degree whether or not the refrigerant amount is insufficient. If it is determined that the refrigerant amount is insufficient, the refrigerant staying in the stopped heat source unit 102b is supplied to the operating heat source units 102a and 102c.
  • the speed at which the refrigerant liquid accumulates in the receiver 17b may be high.
  • the speed at which the refrigerant liquid accumulates in the receiver 17b may be high.
  • the third opening / closing mechanism 47 b by opening the third opening / closing mechanism 47 b, the refrigerant flows through the heat source side branch gas pipe 12 b, the four-way switching valve 14 b, and the receiver pressurizing circuit 22 b.
  • a high-pressure refrigerant gas is supplied from the gas communication pipe 5 to the receiver 17 b.
  • the pressure of the receiver 17 b is increased to be higher than the pressure of the refrigerant liquid communication pipe 4, so that the refrigerant liquid in the receiver 17 b is discharged to the outside of the unit through the heat source side branch liquid pipe 11 b. You. As a result, the refrigerant shortage state is eliminated.
  • the refrigerant staying in the heat source unit 102b may be excessively supplied to the operating heat source unit 102a.102c, resulting in an excess refrigerant state.
  • the third opening / closing mechanism 4 7 of the stopped heat source unit 102 b Close b to prevent the refrigerant from being discharged from inside heat source unit 102 b.
  • the refrigerant liquid flows from the refrigerant liquid communication pipe 4 into the receiver 17b via the heat source side branch liquid pipe 11b, and the excess refrigerant state To eliminate.
  • an air-cooled heat source unit using outside air as a heat source unit is used as a heat source unit of an air conditioner, but a water-cooled or ice storage type heat source unit may be used.
  • the refrigerant supply circuit is configured using the oil equalization circuit including the oil extraction pipe and the oil equalization pipe provided for equalizing the pressure between the compression mechanisms of the heat source units.
  • the oil equalizing circuit has another circuit configuration, a configuration may be adopted in which a communication pipe for communicating the refrigerant extraction pipe with the suction side of the compression mechanism of each heat source unit is separately provided.
  • a piping unit is eliminated, and the amount of refrigerant can be adjusted while minimizing an increase in on-site piping work. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

明 細 書 空気調和装置 技術分野
本発明は、 空気調和装置、 特に、 複数の熱源ユニットを備えた空気調和装置に 関する。 背景技術
従来の複数の熱源ュニットを備えた空気調和装置として、 複数の熱源ュニット の熱源側分岐液配管及び熱源側分岐ガス配管が別途設けられた配管ュニッ卜に接 続され、 これらの熱源側分岐液配管及び熱源側分岐ガス配管が配管ュニット内で 冷媒液連絡配管及び冷媒ガス連絡配管として合流されて利用ュニッ卜に接続され ているものがある。
この配管ュニットは、 上記のような熱源側分岐液配管及び熱源側分岐ガス配管 を冷媒液連絡配管及び冷媒ガス連絡配管としてまとめる機能だけでなく、 利用ュ ニッ卜の運転負荷に応じて複数の熱源ュニッ卜の一部を停止して運転する際に、 停止中の熱源ュニット内に冷媒が溜まり込んで、 利用ュニッ卜と運転中の熱源ュ ニットとの間を流れる冷媒量が不足するのを防ぐ機能 (冷媒量調節機能) を有し ている。
このような空気調和装置では、 各熱源ュニッ卜の勢源側分岐液配管及び熱源側 分岐ガス配管を配管ュニッ卜に接続するだけで、 冷媒液連絡配管及ぴ冷媒ガス連 絡配管として合流させることができるため、 現地での施工性を向上させることが できるとされている (例えば、 特開平 6— 2 4 9 5 2 7号公報参照。') 。
しかし、 上記従来の空気調和装置では、 製造上の観点からすると、 熱源ュニッ 卜の他に、 配管ユニットを製造し、 在庫として保管しておかなければならず、 コ ストアップの原因となっている。 このため、 これらのユニットを製造する側から 見ると、 配管ュニットを削除したいというニーズがある。 発明の開示
本発明の課題は、 複数の熱源ユニットを備えた空気調和装置において、 配管ュ ニットを削除するとともに、 現地における配管工事の増加を最小限に抑えつつ、 冷媒量調節ができるようにすることにある。
請求項 1に記載の空気調和装置は、 複数の熱源ュニッ卜と、 冷媒液連絡配管及 び冷媒ガス連絡配管と、 利用ユニットと、 冷媒供給回路とを備えている。 熱源ュ ニットは、 圧縮機構と、 熱源側熱交換器とを有している。 冷媒液連絡配管及び冷 媒ガス連絡配管は、 各熱源ユニットを並列に接続している。 利用ユニットは、 利 用側熱交換器を有し、 冷媒液連絡配管及び冷媒ガス連絡配管に接続されている。 冷媒供給回路は、 利用ュニッ卜の運転負荷に応じて複数の熱源ュニッ卜の一部を 停止して運転する際に、 停止中の熱源ュニッ卜の内部に滞留する冷媒を外部に取 リ出すために各熱源ュニッ卜に設けられた冷媒取リ出し管と、 冷媒取り出し管と 運転中の熱源ュニッ卜の圧縮機構の吸入側とを接続する連通管とを有している。 この空気調和装置では、 利用ユニットの運転負荷に応じて、 複数の熱源ュニッ 卜の一部を停止して運転する等の台数制御を行っている。 このため、 運転中の熱 源ユニットにおいては、 冷房運転時には、 圧縮機構から吐出された冷媒ガスは、 熱源側熱交換器で凝縮されて冷媒液となって冷媒液連絡配管に合流し、 利用ュニ ッ卜の利用側熱交換器で蒸発して冷媒ガスとなり、 冷媒ガス連絡配管を経由して、 運転中の熱源ュニッ卜の圧縮機構に吸入される。 また、 暖房運転時には、 圧縮機 構から吐出された冷媒ガスは、 冷媒ガス連絡配管に合流し、 利用ユニットの利用 側熱交換器で凝縮して冷媒液となり、 冷媒液連絡配管を経由して、 運転中の熱源 ユニットに送られて、 熱源側熱交換器で蒸発されて冷媒ガスとなり、 運転中の熱 源ユニットの圧縮機構に吸入される。 一方、 停止中の熱源ユニットにおいては、 ュニット内部に滞留する冷媒を冷媒供給回路を用いて運転中の熱源ュニッ卜の圧 縮機構の吸入側に供給して、 利用ュニッ卜と運転中の熱源ュニッ卜との間を流れ る冷媒量が不足しないようにしている。
ここで、 冷媒供給回路は、 熱源ユニットの内部に滞留する冷媒を外部に取り出 す冷媒取り出し管と、 冷媒取リ出し管と運転中の熱源ュニッ卜の圧縮機構の吸入 側とを接続する連通管とを有している。 すなわち、 この空気調和装置では、 熱源 ュニッ卜の内部に冷媒供給回路を構成する主要な部分が設けられており、 熱源ュ ニット間に連通管を設けるだけで、 冷媒量が不足しないように調節する機能が実 現されている。 これにより、 従来設けられていた配管ユニットを削除するととも に、 現地における配管工事の増加を最小限に抑えつつ、 冷媒量不足を防ぐことが できる。
請求項 2に記載の空気調和装置は、 請求項 1において、 熱源側熱交換器は、 圧 縮機構の吐出側に接続されている。 各熱源ユニットは、 熱源側熱交換器の液側及 び冷媒液連絡配管に接続された熱源側分岐液配管と、 熱源側分岐液配管に設けら れたレシーバと、 圧縮機構の吸入側及び冷媒ガス連絡配管に接続された熱源側分 岐ガス配管とをさらに有している。 冷媒取り出し管は、 圧縮機構の吐出側と熱源 側熱交換器のガス側との間から冷媒を取り出すように設けられている。
この空気調和装置では、 冷媒取リ出し管が圧縮機構の吐出側と熱源側熱交換器 のガス側との間に設けられているため、 冷房運転時において、 停止中の熱源ュニ ッ卜の内部に滞留する冷媒のうち、 圧縮機構の吐出側からレシーバを含む熱源側 分岐液配管までの部分に溜まった冷媒は、 冷媒液取り出し管を介して運転中の熱 源ユニットに供給される。 このとき、 レシーバ内に溜まった冷媒液は、 熱源側熱 交換器で蒸発された後、 冷媒取り出し管を介して運転中の熱源ュニッ卜に供給さ れる。
請求項 3に記載の空気調和装置は、 請求項 2において、 熱源側分岐液配管は、 冷媒取り出し管を介して、 停止中の熱源ュニッ卜の内部に滞留する冷媒を外部に 取り出す際に、 冷媒液連絡配管から停止中の熱源ュニッ卜の内部に冷媒が流入し ないように遮断する冷媒開閉機構を有している。
この空気調和装置では、 冷媒開閉機構によって、 冷媒液連絡配管から停止中の 熱源ュニッ卜の内部に冷媒が流入しないように遮断することができるため、 停止 中の熱源ュニッ卜に滞留した冷媒を効率よく外部に取り出すことができる。
請求項 4に記載の空気調和装置は、 請求項 3において、 冷媒開閉機構は、 利用 ュニッ卜と運転中の熱源ュニッ卜との間を流れる冷媒量が過剰状態になった際に、 冷媒液連絡配管を流れる冷媒液を停止中の熱源ュニッ卜の内部に流入させること が可能である。 この空気調和装置では、 利用ュニッ卜と運転中の熱源ュニッ卜との間を流れる 冷媒量が過剰状態になった際に、 冷媒開閉機構を操作して、 冷媒液連絡配管を流 れる冷媒液を停止中の熱源ュニッ卜の内部に冷媒を流入させてレシーバに溜める ことによって、 運転中の熱源ユニットの冷媒量を減らすことができる。 これによ リ、 この空気調和装置では、 冷媒量調節を行うことが可能である。
請求項 5に記載の空気調和装置は、 請求項 1において、 熱源側熱交換器は、 圧 縮機構の吸入側に接続されている。 各熱源ユニットは、 熱源側熱交換器の液側及 ぴ冷媒液連絡配管に接続された熱源側分岐液配管と、 圧縮機構の吐出側及び冷媒 ガス連絡配管に接続された熱源側分岐ガス配管と、 熱源側分岐液配管に設けられ たレシーバをさらに有している。 冷媒取り出し管は、 圧縮機構の吸入側と熱源側 熱交換器のガス側との間から冷媒を取り出すように設けられている。
この空気調和装置では、 冷媒取り出し管が圧縮機構の吸入側と熱源側熱交換器 のガス側との間に設けられているため、 暖房運転時において、 停止中の熱源ュニ ッ卜の内部に滞留する冷媒のうち、 圧縮機構の吸入側からレシーバを含む熱源側 分岐液配管までの部分に溜まった冷媒は、 冷媒液取り出し管を介して運転中の熱 源ユニットに供給される。 このとき、 レシーバ内に溜まった冷媒液は、 熱源側熱 交換器で蒸発された後、 冷媒取リ出し管を介して運転中の熱源ュニッ卜に供給さ れる。
請求項 6に記載の空気調和装置は、 請求項 5において、 熱源側分岐液配管は、 冷媒取り出し管を介して、 停止中の熱源ユニットの内部に滞留する冷媒を外部に 取り出す際に、 冷媒液連絡配管から停止中の熱源ュニッ卜の内部に冷媒が流入し ないように遮断する冷媒開閉機構を有している。
この空気調和装置では、 冷媒開閉機構によって、 冷媒液連絡配管から停止中の 熱源ュニッ卜の内部に冷媒が流入しないように遮断することができるため、 停止 中の熱源ュニッ卜に滞留した冷媒を効率よく外部に取り出すことができる。 請求項 7に記載の空気調和装置は、 請求項 6において、 停止中の熱源ユニット は、 熱源側分岐ガス配管を介して、 冷媒ガス連絡配管を流れる冷媒の一部をレシ ーバに流入させるレシーバ加圧回路をさらに備えている。
この空気調和装置では、 レシーバ加圧回路によりレシーバを加圧することが可 能であるため、 冷媒開閉機構を遮断した状態で、 レシーバに溜まった冷媒液を熱 源側分岐液配管に排出することが可能である。
請求項 8に記載の空気調和装置は、 請求項 6又は 7において、 冷媒開閉機構は、 利用ュニッ卜と運転中の熱源ュニッ卜との間を流れる冷媒量が過剰状態になった 際に、 冷媒液連絡配管を流れる冷媒液を停止中の熱源ュニッ卜の内部に流入させ ることが可能である。
この空気調和装置では、 利用ュニッ卜と運転中の熱源ュニッ卜の間を流れる冷 媒量が過剰状態になった際に、 冷媒開閉機構を操作して、 冷媒液連絡配管を流れ る冷媒液を停止中の熱源ュニッ卜の内部に冷媒を流入させてレシーバに溜めるこ とによって、 利用ュニッ卜と運転中の熱源ュニッ卜との間を流れる冷媒量を減ら すことができる。 これにより、 この空気調和装置では、 冷媒量調節を行うことが 可能である。
請求項 9に記載の空気調和装置は、 請求項 1 〜 8のいずれかにおいて、 連通管 は、 各熱源ュニッ卜の圧縮機構間の均油を行う均油管である。
この空気調和装置では、 連通管が均油管と兼用されているため、 現地における 配管工事をさらに減らすことができる。
請求項 1 0に記載の空気調和装置は、 複数の熱源ュニッ卜と、 冷媒液連絡配管 及び冷媒ガス連絡配管と、 利用ユニットと、 レシーバ減圧回路とを備えている。 熱源ユニットは、 圧縮機構と、 圧縮機構の吸入側に接続された熱源側熱交換器と、 熱源側熱交換器の液側に接続されたレシーバとを有している。 冷媒液連絡配管及 ぴ冷媒ガス連絡配管は、 各熱源ュニットを並列に接続している。 利用ュニットは、 利用側熱交換器を有し、 冷媒液連絡配管及び冷媒ガス連絡配管に接続されている。 レシーバ減圧回路は、 複数の熱源ュニッ卜の一部において冷媒量が不足状態にな つた際に、 冷媒量が不足状態になった熱源ュニッ卜のレシーバから圧縮機構の吸 入側へ冷媒を流出させる。
この空気調和装置では、 圧縮機構から吐出された冷媒ガスは、 冷媒ガス連絡配 管に合流し、 利用ユニットの利用側熱交換器で凝縮して冷媒液となり、 冷媒液連 絡配管を経由して、 運転中の熱源ユニットに送られて、 熱源側熱交換器で蒸発さ れて冷媒ガスとなり、 運転中の熱源ュニッ卜の圧縮機構に吸入される。 ここで、 全ての熱源ユニットが運転されている条件において、 冷媒液連絡配管 を流れる冷媒が気液二相流になっている場合には、 各熱源ュニッ卜に送られる冷 媒液が偏流してしまうことがある。 このような場合、 ある熱源ユニットに供給さ れる冷媒液量が少なくなリ、 冷媒量不足を生じることがある。
しかし、 この空気調和装置では、 熱源ユニットがレシーバ減圧回路を有してい るため、 冷媒量が不足状態になった熱源ュニッ卜のレシーバから圧縮機構の吸入 側に冷媒を流出させることによって、 冷媒液連絡配管から冷媒量が不足状態にな つた熱源ユニットに流入する冷媒量を増加させることができる。 これにより、 冷 媒量不足の状態が解消されるとともに、 冷媒液連絡配管から各熱源ュニッ卜に送 られる冷媒量が適切な流量バランスに保たれることとなる。 以上より、 従来設け られていた配管ュニッ卜を削除するとともに、 現地における配管工事の増加を最 小限に抑えつつ、 冷媒量不足を防ぐことができる。 図面の簡単な説明
第 1図は、 本発明の一実施形態にかかる空気調和装置の構成を示すブロック図 である。
第 2図は、 本発明にかかる空気調和装置の熱源ュニッ卜の概略冷媒回路図であ る。
第 3図は、 全ての熱源ュニッ卜が冷房運転されている場合の熱源ュニットの概 略冷媒回路図である。
第 4図は、 複数の熱源ユニットの一部のみが冷房運転されており、 他の熱源ュ ニッ卜が停止されている場合の熱源ュニッ卜の概略冷媒回路図である。
第 5図は、 複数の熱源ユニットの一部のみが冷房運転されており、 他の熱源ュ ニッ卜が停止されている場合の熱源ュニッ卜の概略冷媒回路図である。
第 6図は、 全ての熱源ユニットが暖房運転されている場合の熱源ユニットの概 略冷媒回路図である。
第 7図は、 複数の熱源ユニットの一部のみが暖房運転されており、 他の熱源ュ ニッ卜が停止されている場合の熱源ュニッ卜の概略冷媒回路図である。
第 8図は、 複数の熱源ユニットの一部のみが暖房運転されており、 他の熱源ュ ニッ卜が停止されている場合の熱源ュニッ卜の概略冷媒回路図である。
第 9図は、 従来例の空気調和装置の構成を示すブロック図である。 発明を実施するための最良の形態
以下に、 本発明の一実施形態にかかる空気調和装置について、 図面に基づいて 説明する。
( 1 ) 空気調和装置の全体構成
図 1は、 本発明の一実施形態にかかる空気調和装置 1の構成を示すブロック図 である。 空気調和装置 1は、 複数台 (本実施形態では、 3台) の第 1、 第 2及び 第 3熱源ュニット 1 02 a〜1 02 cと、 熱源ュニット 1 02 a〜1 02 Gを並 列に接続するための冷媒液連絡配管 4及び冷媒ガス連絡配管 5と、 冷媒液連絡配 管 4及び冷媒ガス連絡配管 5に並列に接続された複数台 (本実施形態では、 2 台) の利用ユニット 3 a、 3 bとを備えている。 詳細には、 熱源ユニット 1 02 a~1 02 Gの熱源側分岐液配管 1 1 a〜1 1 cは、 冷媒液連絡配管 4にそれぞ れ接続されておリ、 熱源ュニット 1 02 a〜1 02 cの熱源側分岐ガス配管 1 2 a〜1 2 Gは、 冷媒ガス連絡配管 5にそれぞれ接続されている。
また、 熱源ュニット 1 02 a〜 1 02 cは、 1台以上の圧縮機を含む圧縮機構 1 3 a〜1 3 cを備えている。 これらの圧縮機構 1 3 a〜1 3 c間には、 均油管 6が設けられており、 熱源ユニット 1 02 a~1 02 c間において、 油のやりと りができるようになつている。
この空気調和装置では、 熱源ュニッ卜 1 02 a〜1 02 Gは、 利用ュニット 3 a、 3 bの運転負荷に応じて、 熱源ュニッ卜 1 02 a〜1 02 cの運転台数を増 減させる台数制御を行うことが可能になっている。
(2) 利用ュニッ卜の構成
次に、 利用ユニット 3 a、 3 bについて説明する。 尚、 利用ユニット 3及び利 用ュニット 3 bの構成は同じであるため、 利用ュニット 3 aの詳細についてのみ 記載し、 利用ユニット 3 bの説明を省略する。
利用ュニッ卜 3 aは、 主に、 利用側膨張弁 61 aと、 利用側熱交換器 62 aと、 これらを接続する配管とから構成されている。 本実施形態において、 利用側膨張 弁 6 1 aは、 冷媒流量の調節等を行うために、 利用側熱交換器 6 2 aの液側に接 続された電動膨張弁である。 本実施形態において、 利用側熱交換器 6 2 aは、 ク ロスフィンチューブ式の熱交換器であり、 室内の空気と熱交換を行うための機器 である。 本実施形態において、 利用ュニット 3 aは、 ュニット内に室内の空気を 取り込み、 送り出すための室内ファン (図示せず) を備えており、 室内の空気と 利用側熱交換器 6 2 aを流れる冷媒とを熱交換を行わせることが可能である。 また、 利用ユニット 3 aには、 各種のセンサが設けられている。 利用側熱交換 器 6 2 aの液側には冷媒液温度を検出する液側温度センサ 6 3 aが設けられてお リ、 利用側熱交換器 6 2 aのガス側には冷媒ガス温度を検出するガス側温度セン サ 6 4 aが設けられている。 さらに、 利用ユニット 3 aには、 室内空気の温度を 検出する室温センサ 6 5 aが設けられている。
( 3 ) 熱源ュニッ卜の構成
次に、 第 1、 第 2及び第 3熱源ュニッ卜 1 0 2 a〜1 0 2 Gについて、 図 2に 基づいて説明する。 ここで、 図 2は、 第 1熱源ユニット 1 0 2 aの概略冷媒回路 図である。 尚、 第 2及び第 3熱源ユニット 1 0 2 b、 1 0 2 cは、 第 1熱源ュニ ット 1 0 2 aと同じ構成であるため、 以下の説明では、 第 1熱源ュニット 1 0 2 aの詳細についてのみ記載し、 第 2及び第 3熱源ユニット 1 0 2 b、 1 0 2 cの 説明を省略する。
熱源ュニット 1 0 2 aは、 主に、 圧縮機構 1 3 aと、 四路切換弁 1 4 aと、 熱 源側熱交換器 1 5 aと、 プリッジ回路 1 6 aと、 レシーバ 1 7 aと、 液側仕切弁 1 8 aと、 ガス側仕切弁 1 9 aと、 油取り出し管 2 0 aと、 冷媒取り出し管 2 1 aと、 レシーバ加圧回路 2 2 aと、 レシーバ減圧回路 2 3 aと、 これらを接続す る配管とから構成されている。
圧縮機構 1 3 aは、 主に、 圧縮機 3 1 aと、 油分離器 (図示せず) と、 圧縮機 3 1 aの吐出側に設けられた逆止弁 3 2 aとから構成されている。 圧縮機 3 1 a は、 本実施形態において、 電動機駆動のスクロール式の圧縮機であり、 吸入した 冷媒ガスを圧縮するための機器である。
四路切換弁 1 4 aは、 冷房運転と暖房運転との切り換え時に、 冷媒の流れの方 向を切り換えるための弁であり、 冷房運転時には圧縮機構 1 3 aの吐出側と熱源 側熱交換器 1 5 aのガス側とを接続するとともに圧縮機構 1 3 aの吸入側と熱源 側分岐ガス配管 1 2 a側とを接続し (図 2の四路切換弁 1 4 aの実線を参照) 、 暖房運転時には圧縮機構 1 3 aの吐出側と熱源側分岐液配管 1 1 a側とを接続す るとともに圧縮機構 1 3 aの吸入側と熱源側熱交換器 1 5 aのガス側とを接続す ることが可能である (図 2の四路切換弁 1 4 aの破線を参照) 。
熱源側熱交換器 1 5 aは、 本実施形態において、 クロスフィンチューブ式の熱 交換器であり、 空気を熱源として冷媒と熱交換を行うための機器である。 本実施 形態において、 熱源ユニット 1 0 2 aは、 ユニット内に屋外の空気を取り込み、 送り出すための室外ファン (図示せず) を備えており、 屋外の空気と熱源側熱交 換器 1 5 aを流れる冷媒とを熱交換を行わせることが可能である。
レシーバ 1 7 aは、 熱源側熱交換器 1 5 aと利用ュニット 3 a、 3 bの利用側 熱交換器 6 2 a、 6 2 bとの間を流れる冷媒を一時的に溜めるための容器である。 レシーバ 1 7 aは、 容器上部に入口を有しており、 容器下部に出口を有している。 レシーバ 1 7 aの入口及び出口は、 ブリッジ回路 1 6 aを介して、 熱源側分岐液 配管 1 1 aにそれぞれ接続されている。
ブリッジ回路 1 6 aは、 熱源側分岐液配管 1 1 aに接続された 3つの逆止弁 3 3 a〜3 5 aと、 熱源側膨張弁 3 6 aと、 第 1開閉機構 3 7 aとから構成された 回路であり、 熱源側熱交換器 1 5 aと利用側熱交換器 6 2 a、 6 2 bとの間の冷 媒回路を流れる冷媒が熱源側熱交換器 1 5 a側からレシーバ 1 7 aに流入する場 合及び利用側熱交換器 6 2 a、 6 2 b側からレシーバ 1 7 aに流入する場合のい ずれの場合においても、 レシーバ 1 7 aの入口側からレシーバ 1 7 a内に冷媒を 流入させ、 かつ、 レシーバ 1 7 aの出口から熱源側分岐液配管 1 1 aに冷媒液を 戻す機能を有している。 具体的には、 逆止弁 3 3 aは、 利用側熱交換器 6 2 a、 6 2 bから熱源側熱交換器 1 5 aへ向かって流れる冷媒をレシーバ 1 7 aの入口 に導くように接続されている。 逆止弁 3 4 aは、 熱源側熱交換器 1 5 aから利用 側熱交換器 6 2 a、 6 2 bへ向かって流れる冷媒をレシーバ 1 7 aの入口に導く ように接続されている。 逆止弁 3 5 aは、 冷媒をレシーバ 1 7 aの出口から利用 側熱交換器 6 2 a、 6 2 b側に流すことができるように接続されている。 熱源側 膨張弁 3 6 aは、 冷媒をレシーバ 1 7 aの出口から熱源側熱交換器 1 5 a側に流 すことができるように接続されている。 また、 熱源側膨張弁 3 6 aは、 本実施形 態において、 熱源側熱交換器 1 5 aと利用側熱交換器 6 2 a、 6 2 bとの間の冷 媒流量の調節等を行うための電動膨張弁である。 第 1開閉機構 3 7 aは、 冷媒が 液側仕切弁 1 8 a側からレシーバ 1 7 aに向かって流れるのを流通 遮断可能に 設けられた機構である。 第 1開閉機構 3 7 aは、 本実施形態において、 逆止弁 3 3 aの液側仕切弁 1 8 a側に設けられた電磁弁である。 これにより、 熱源側分岐 液配管 1 1 aからレシーバ 1 7 aに流入する冷媒は、 常に、 レシーバ 1 7 aの入 口から流入し、 レシーバ 1 7 aの出口から冷媒が熱源側分岐液配管 1 1 aに戻さ れるようになっている。
油取り出し管 2 0 aは、 圧縮機構 1 3 aと第 2熱源ユニット 1 0 2 b及び第 3 熱源ュニット 1 0 2 cとの間で油のやりとリを行うための油配管であり、 圧縮機 3 1 aの油溜まり部における油量が所定量を超える場合に圧縮機 3 1 aの外部に 油を排出する油排出管 3 8 aと、 油排出管 3 8 aから分岐されて圧縮機構 1 3 a の吸入側に油を戻すことが可能な油戻し管 3 9 aとから構成されている。 油排出 管 3 8 aは、 逆止弁 4 0 aと、 キヤビラリ 4 1 aと、 油仕切弁 4 2 aと、 これら を接続する油配管とから構成されている。 油戻し管 3 9 aは、 電磁弁からなる油 戻し弁 4 3 aと、 逆止弁 4 4 aと、 これらを接続する油配管とから構成されてい る。 そして、 油取り出し管 2 0 aと熱源ユニット 1 0 2 a ~ 1 0 2 cの圧縮機構 間を接続するための均油管 6とによって、 各熱源ユニット 1 0 2 a〜 1 0 2 cの 圧縮機構の油をやりとりするための均油回路が構成されている
冷媒取リ出し管 2 1 aは、 四路切換弁 1 4 aと熱源側熱交換器 1 5 aとの間か ら冷媒をユニット外部に取り出すことができるように設けられた冷媒配管であリ、 電磁弁からなる第 2開閉機構 4 5 aと、 逆止弁 4 6 aと、 これらを接続する冷媒 配管とから構成されている。 本実施形態において、 冷媒取り出し管 2 1 aは、 油 取り出し管 2 0 aに接続されており、 各熱源ユニット 1 0 2 a〜 1 0 2 cの圧縮 機構間を接続するための均油管 6を介して冷媒をュニット外部に取り出せるよう になっている。 つまり、 冷媒取り出し管 2 1 a、 油取り出し管 2 0 a及び均油管 6とによって、 各熱源ュニット 1 0 2 a〜 1 0 2 c間で冷媒をやりとりするため の冷媒供給回路が構成されている。 レシーバ加圧回路 2 2 aは、 圧縮機構 1 3 aの吐出側と四路切換弁 1 4 aとの 間から冷媒をレシーバ 1 7 aの入口に直接送ることができるように設けられた冷 媒配管であり、 電磁弁からなる第 3開閉機構 4 7 aと、 逆止弁 4 8 aと、 キヤピ ラリ 4 9 aと、 これらを接続する冷媒配管とから構成されている。
レシーバ減圧回路 2 3 aは、 レシーバ 1 7 aの上部から冷媒を圧縮機構 1 3 a の吸入側に流すことができるように設けられた冷媒配管であリ、 電磁弁からなる 第 4開閉機構 5 0 aと、 これらを接続する冷媒配管とから構成されている。
また、 熱源ュニッ卜 1 0 2 aには、 各種のセンサが設けられている。 具体的に は、 圧縮機構 1 3 aの吐出側には、 圧縮機構 1 3 aの吐出冷媒温度を検出する吐 出温度センサ 5 1 aと、 吐出圧力センサ 5 2 aとが設けられている。 圧縮機構 1 3 aの吸入側には、 圧縮機構 1 3 aの吸入冷媒温度を検出する吸入温度センサ 5 3 aと、 吸入圧力センサ 5 4 aとが設けられている。 熱源側熱交換器 1 5 aの液 側には、 冷媒温度を検出する熱交温度センサ 5 5 aが設けられている。 熱源側熱 交換器 1 5 aの近傍には、 室外空気の温度を検出する外気温度センサ 5 6 aが設 けられている。 そして、 利用ユニット 3 a、 3 bに設けられた各種センサの検出 信号に基づいて利用側膨張弁 6 1 a、 6 1 bや熱源側膨張弁 3 6 a (熱源ュニッ ト 1 0 2 b、 1 0 2 cの場合は、 熱源側膨張弁 3 6 b、 3 6 c ) の開度及び圧縮 機構 1 3 a (熱源ユニット 1 0 2 b、 1 0 2 cの場合は、 圧縮機構 1 3 b、 1 3 c ) の容量が制御されるようになっている。
このように、 空気調和装置 1では、 図 9に示すような従来の配管ユニット 7を 介して熱源ュニット 2 0 2 a〜2 0 2 cの熱源側分岐液配管 2 1 1 a〜 2 1 1 G 及び熱源側分岐ガス配管 2 1 2 a〜2 1 2 Gを冷媒液連絡配管 4及ぴ冷媒ガス連 絡配管 5に接続した構成と比べて、 熱源側分岐液配管 1 1 a〜1 1 G及び熱源側 分岐ガス配管 1 2 a ~ 1 2 Gを冷媒液連絡配管 4及ぴ冷媒ガス連絡配管 5に直接 接続するとともに、 熱源ュニット間で冷媒をやりとりするための連通管 (本実施 形態では、 均油管 6と兼用) を接続する作業を行う必要があるが、 その分、 配管 ュニット 7を削除できるというメリツ卜が得られる。
( 4 ) 空気調和装置の動作
次に、 空気調和装置 1の動作について、 図 3〜図 8を用いて説明する。 ここで、 図 3は、 全ての熱源ユニット 1 02 a〜1 02 cが冷房運転されている場合の熱 源ュニット 1 02 a〜 1 02 cの概略冷媒回路図 (図中の矢印は、 冷媒及び油の 流れ方向を示す) である。 図 4及び 5は、 熱源ユニット 1 02 a、 1 02 Gが冷 房運転されており、 熱源ュニット 1 02 bが停止されている場合の熱源ュニッ卜 1 02 a〜 1 02 cの概略冷媒回路図 (図中の矢印は、 冷媒及び油の流れ方向を 示す) である。 図 6は、 全ての熱源ユニット 1 02 a~1 02 Gが暖房運転され ている場合の熱源ユニット 1 02 a〜1 02 cの概略冷媒回路図 (図中の矢印は、 冷媒及ぴ油の流れ方向を示す) である。 図 7及び 8は、 熱源ユニット 1 02 a、 1 02 Gが暖房運転されており、 熱源ユニット 1 02 bが停止されている場合の 熱源ュニッ卜 1 02 a〜1 02 cの概略冷媒回路図 (図中の矢印は、 冷媒及び油 の流れ方向を示す) である。
①冷房運転 (すべての熱源ュニッ卜が運転されている場合)
冷房運転時は、 各熱源ュニット 1 02 a〜1 02 Gの四路切換弁 1 4 a ~ 1 4 cが図 3の実線で示される状態、 すなわち、 圧縮機構 1 3 a~1 3 Gの吐出側が 熱源側熱交換器 1 5 a〜1 5 cのガス側にそれぞれ接続され、 かつ、 圧縮機構 1 3 a〜 1 3 cの吸入側が熱源側分岐ガス配管 1 2 a〜 1 2 cにそれぞれ接続され た状態となっている。 また、 各熱源ユニットの液側仕切弁 1 8 a~1 8 c、 ガス 側仕切弁 1 9 a〜 1 9 c、 油仕切弁 42 a〜 42 G及び第 1開閉機構 37 a〜 3 7 Gは、 開けられている。 また、 油戻し管 39 aは使用可能な状態になっており、 冷媒取り出し管 21 a、 レシーバ加圧回路 22 a及びレシーバ減圧回路 23 aは 使用しない状態になっている。 すなわち、 油戻し弁 43 a ~43 cは、 全開され ており、 第 2開閉機構 45 a〜45 G、 第 3開閉機構 47 a〜47 c及び第 4開 閉機構 50 a〜50 cは、 閉止されている。 さらに、 図 1に示される利用ュニッ ト 3 a、 3 bの利用側膨張弁 61 a、 61 bは、 冷媒を減圧するように開度調節 されている。 熱源側膨張弁 36 a〜36 Gは閉められた状態にある。
このような熱源ユニット冷媒回路の状態において、 各熱源ユニット 1 02 a〜 1 02 cの圧縮機構 1 3 a~1 3 cを起動する。 すると、 各圧縮機構 1 3 a〜1 3 cから吐出した高圧の冷媒ガスは、 各熱源側熱交換器 1 5 a〜1 5 cで凝縮し て冷媒液となり、 この冷媒液は、 ブリッジ回路 1 6 a〜1 6 G (具体的には、 逆 止弁 3 4 a ~ 3 4 G ) 、 レシーバ 1 7 a〜 1 7 c、 ブリツジ回路 1 6 a ~ 1 6 c (具体的には、 逆止弁 3 5 a〜 3 5 c ) 及び熱源側分岐液配管 1 1 a ~ 1 1 Gを 経由して、 冷媒液連絡配管 4に合流する。 その後、 冷媒液は、 利用ユニット 3 a、 3 bの利用側膨張弁 6 1 a、 6 1 bで減圧された後、 利用側熱交換器 6 2 a、 6 2 bで蒸発して低圧の冷媒ガスとなる。 この冷媒ガスは、 冷媒ガス連絡配管 5か ら各熱源側分岐ガス配管 1 2 a〜 1 2 Gに分岐されて、 各熱源ュニット 1 0 2 a 〜1 0 2 cの圧縮機構 1 3 a〜1 3 cに戻り、 この循環動作を繰返すことになる。 尚、 各圧縮機構 1 3 a〜1 3 cの油溜まり部から各油排出管 3 8 a〜3 8 Gに 排出された油は、 各油戻し管 3 9 a〜3 9 cによって圧縮機構 1 3 a〜1 3 Gの 吸入側に戻されて、 低圧の冷媒ガスとともに、 各圧縮機構 1 3 a〜1 3 Gに吸入 されるようになつている。
②冷房運転 (停止中の熱源ュニッ卜が存在する場合)
利用ユニット 3 a、 3 bの冷房運転負荷が小さくなると、 それに対応するよう に、 熱源ユニット 1 0 2 a〜1 0 2 Gの運転台数を減らす台数制御を行う。 以下 に、 熱源ユニット 1 0 2 bのみを停止して、 他の熱源ユニット 1 0 2 a、 1 0 2 cの 2台運転にした場合の動作について、 図 4及び図 5を用いて説明する。
まず、 熱源ユニット 1 0 2 bの圧縮機構 1 3 bを停止し、 第 1開閉機構 3 7 b 及び油戻し弁 4 3 bを閉止する。 すると、 熱源ユニット 1 0 2 bの圧縮機構 1 3 bの吐出側から熱源側分岐液配管 1 1 bまでの間の冷媒圧力が低下する。 このと き、 第 1開閉機構 3 7 bが閉止されるため、 冷媒液連絡配管 4から熱源ュニッ卜 1 0 2 b内に冷媒液が流れ込むことがないようになつている。 また、 圧縮機構 1 3 bの圧縮機 3 1 aの油溜まり部から油排出管 3 8 bに排出された油は、 均油管 6及び油戻し管 3 9 a、 3 9 cを通じて、 熱源ュニッ卜 1 0 2 a、 1 0 2 cの圧 縮機構 1 3 a、 1 3 cの吸入側に送られる。
この状態において、 熱源ユニット 1 0 2 a、 1 0 2 Gの運転を継続していると、 停止中の熱源ユニット 1 0 2 bの内部に冷媒が溜まった状態となり、 利用ュニッ ト 3 a、 3 bと運転中の熱源ユニット 1 0 2 a、 1 0 2 Gとの間を循環する冷媒 量が減少した状態 (冷媒量不足状態) になることがある。 空気調和装置 1では、 利用ユニット 3 a、 3 bの温度センサ 6 3 a、 6 4 a 6 3 b , 6 4 bで検出さ れた冷媒温度及び利用側膨張弁 6 1 a、 6 1 bの開度から冷媒量不足状態である かどうかを判断できるようになつている。 そして、 冷媒量不足状態であると判断 された場合には、 図 4に示すように、 停止中の熱源ユニット 1 0 2 bの第 2開閉 機構 4 5 bを所定時間だけ開けることによって、 熱源ユニット 1 0 2 bの圧縮機 3 1 bの吐出側に設けられた逆止弁 3 2 bとレシーバ 1 7 bとの間に滞留した冷 媒を、 冷媒取り出し管 2 1 a及び均油管 6を通じて、 運転中の熱源ュニット 1 0 2 a、 1 0 2 cに供給するようにしている。 ここで、 熱源ユニット 1 0 2 bのレ シーバ 1 7 aに溜まった冷媒液は、 熱源側熱交換器 1 5 bによって蒸発された後 に、 圧縮機構 1 3 a、 1 3 cの吸入側に供給されるようになっている。 そして、 この冷媒ガスは、 熱源ユニット 1 0 2 a、 1 0 2 Gの油戻し管 3 9 a、 3 9 cを 通じて、 圧縮機構 1 3 a、 1 3 cの吸入側に供給される。 尚、 第 2開閉機構 4 5 bは、 所定時間経過後に閉止されるが、 閉止後に、 冷媒量不足状態が解消されず に冷媒量不足状態であると判断された場合には、 再び、 所定時間だけ開けられる ようになつている、 これにより、 利用ユニット 3 a、 3 bと運転中の熱源ュニッ 卜 1 0 2 a、 1 0 2 cとの間を循環する冷媒量が増加されて、 冷媒量不足状態が 解消される。
次に、 熱源ユニット 1 0 2 bの内部に滞留した冷媒を運転中の熱源ユニ ト 1 0 2 a、 1 0 2 Gに供給しすぎて、 冷媒量過剰状態になる場合がある。 このよう な場合、 図 5に示すように、 停止中の熱源ユニット 1 0 2 bの第 2開閉機構 4 5 bを閉止して、 熱源ユニット 1 0 2 bの内部から冷媒が排出されないようにする。 その後、 第 1開閉機構 3 7 bを開けることによって、 冷媒液を冷媒液連絡配管 4 から熱源側分岐液配管 1 1 bを経由して、 レシーバ 1 7 bに流入させて、 冷媒量 過剰状態を解消させる。 この際にも、 第 1開閉機構 3 7 bは、 所定時間だけ開け た後に、 一旦閉止し、 再び、 冷媒量過剰状態になった場合に、 所定時間だけ開け るように操作される。
このように、 停止中の熱源ュニット 1 0 2 bの第 1及び第 2開閉機構 3 7 b、 4 5 bの開閉操作によって、 台数制御により熱源ュニッ卜の一部が停止している 場合にも、 適切な冷媒循環量を保つことができるようになつている。
③暖房運転 (すべての熱源ュニッ卜が運転されている場合) 暖房運転時は、 各熱源ュニット 1 02 a〜 1 02 cの四路切換弁 1 4 a〜 1 4 cが図 6の破線で示される状態、 すなわち、 圧縮機構 1 3 a〜1 3 όの吐出側が 熱源側分岐ガス配管 1 2 a~1 2 cにそれぞれ接続され、 かつ、 圧縮機構 1 3 a 〜1 3 cの吸入側が熱源側熱交換器 1 5 a~1 5 cのガス側にそれぞれ接続され た状態となっている。 また、 各熱源ユニットの液側仕切弁 1 8 a〜1 8 c、 ガス 側仕切弁 1 9 a〜 1 9 c、 油仕切弁 42 a〜 42 c及び第 1開閉機構 37 a〜 3 7 cは、 開けられている。 また、 油戻し管 39 aは使用可能な状態になっており、 冷媒取り出し管 21 a、 レシーバ加圧回路 22 a及びレシーバ減圧回路 23 aは 使用しない状態になっている。 すなわち、 油戻し弁 43 a〜43 cは、 全開され ており、 第 2開閉機構 45 a〜45 c、 第 3開閉機構 47 a〜 47 c及び第 4開 閉機構503〜500は、 閉止されている。 さらに、 利用ユニット 3 a、 3 の 利用側膨張弁 61 a、 61 bは、 利用ユニット 3 a、 3 bの暖房負荷に応じて、 開度調節されている。 熱源側膨張弁 36 a〜36 cは、 温度センサ 53 a及び圧 力センサ 54 aによって検知される冷媒温度及び圧力から算出される冷媒ガスの 過熱度に基づいて、 それぞれ開度調節されている。
このような熱源ユニット冷媒回路の状態において、 各熱源ユニット 1 02 a〜 1 02 cの圧縮機構 1 3 a〜1 3 cを起動する。 すると、 各圧縮機構 1 3 a〜1 3 cから吐出した高圧の冷媒ガスは、 各熱源側分岐ガス配管 1 2 a〜1 2 cを経 由して、 冷媒ガス連絡配管 5に合流する。 その後、 冷媒ガスは、 利用ユニット 3 a、 3 bの利用側熱交換器 62 a、 62 bで凝縮して冷媒液となり、 利用側膨張 弁 61 a、 61 bで減圧される。 この冷媒液は、 冷媒液連絡配管 4から各熱源側 分岐液配管 1 1 a〜1 1 cに分岐されて、 ブリッジ回路 1 6 a〜1 6 G (具体的 には、 第 1開閉機構 37 a〜37 c及び逆止弁 33 a〜33 c) 、 レシーバ 1 7 a〜1 7 c及びブリッジ回路 1 6 a〜1 6 G (具体的には、 熱源側膨張弁 36 a ~36 G) を経由して、 各熱源ュニット 1 02 a〜 1 02 cの熱源側熱交換器 1 5 a~1 5 Gで蒸発された後、 圧縮機構 1 3 a〜1 3 Gに戻り、 この循環動作を 繰返すことになる。
尚、 圧縮機構 1 3 a〜1 3 cの油溜まり部から油排出管 38 a〜38 cに排出 された油は、 油戻し管 39 a〜39 Gを通じて、 圧縮機構 1 3 a〜1 3 cの吸入 側に戻されて、 低圧の冷媒ガスとともに、 各圧縮機構 1 3 a〜1 3 cに吸入され るようになっている。
しかし、 暖房運転時においては、 利用ユニット 3 a、 3 bの利用側熱交換器 6 2 a、 6 2 bから;令媒液連絡配管 4を介して熱源ュニット 1 0 2 a〜1 0 2 cに 送られる冷媒は、 気液二相流になっているため、 冷媒が冷媒液連絡配管 4から各 熱源ユニットの熱源側分岐液配管 1 1 a ~ 1 1 bに分岐される際に、 偏流が生じ ることが多い。 本実施形態の空気調和装置 1では、 このような状態になった場合 に、 偏流を解消する動作を行うことが可能である。 以下に、 冷媒液連絡配管 4か ら熱源ュニット 1 0 2 bに送られる冷媒の量が他の熱源ュニット 1 0 2 a、 1 0 2 cよりも少なくなつた場合の熱源ユニット 1 0 2 bの動作について説明する。 暖房運転時 ίこおいては、 上記のように、 熱源側膨張弁 3 6 bは、 温度センサ 5 3 b及び圧力センサ 5 4 bによって検知される冷媒温度及び圧力から算出される 冷媒ガスの過熱度に基づいて、 開度調節されている。 このため、 ユニット内に供 給される冷媒量が減少するにつれて、 冷媒ガスの過熱度が大きくなリ、 熱源側膨 張弁 3 6 bの開度が大きくなる。 しかし、 熱源側膨張弁 3 6 bが全開になっても、 冷媒ガスの過熱度が大きくなる場合には、 ュニット内に供給されている冷媒量不 測状態と判断して、 第 4開閉機構 5 0 bを所定時間だけ開ける。 すると、 レシ一 バ 1 7 b内の冷媒は、 レシーバ減圧回路 2 3 bを介して、 圧縮機構 1 3 bの吸入 側に排出されて、 レシーバ 1 7 b内の圧力が低下する。 これにより、 冷媒液連絡 配管 4から熱源ュニット 1 0 2 b内に供給される冷媒量が増加する。 そして、 第 4開閉機構 5 0 bを開けている時間が所定時間に達した場合や、 冷媒ガスの過熱 度が小さくなつた場合や、 熱源側膨張弁 3 6 bが閉まり始めた場合には、 第 4開 閉機構 5 0 bを閉止する。 このような第 4開閉機構 5 0 bの操作により、 熱源ュ ニット 1 0 2 bの冷媒量不足が解消される。 他の熱源ュニット 1 0 2 a、 1 0 2 cにおいても同様な冷媒量調節が可能になっているため、 冷媒液連絡配管 4から 各熱源ュニッ卜に送られる冷媒量が適切な流量バランスに保たれる。
④暖房運転 (停止中の熱源ュニッ卜が存在する場合)
利用ユニット 3 a、 3 bの暖房負荷が小さくなると、 それに対応するように、 熱源ユニット 1 0 2 a〜1 0 2 cの運転台数を減らす台数制御を行う。 以下に、 熱源ュニッ卜 1 0 2 bのみを停止して、 他の熱源ュニット 1 0 2 a、 1 0 2 Gの 2台運転にした場合の動作について、 図 7及び図 8を用いて説明する。
まず、 熱源ュニット 1 0 2 bの圧縮機構 1 3 bを停止し、 第 1開閉機構 3 7 b 及び油戻し弁 4 3 bを閉止する。 このとき、 第 1開閉機構 3 7 bが閉止されてい るため、 冷媒液連絡配管 4から熱源ュニット 1 0 2 b内に冷媒液が流れ込むこと がないようになつている。 また、 圧縮機構 1 3 bの圧縮機 3 aの油溜まり部から 油排出管 3 8 bに排出された油は、 均油管 6を通じて、 熱源ユニット 1 0 2 a、 1 0 2 cの圧縮機構 1 3 a、 1 3 cの吸入側に送られる。
この状態において、 熱源ユニット 1 0 2 a、 1 0 2 cの運転を継続していると、 停止中の熱源ュニット 1 0 2 bの内部に冷媒が溜まった状態となり、 冷媒回路を 循環する冷媒量が減少した状態 (冷媒量不足状態) になることがある。 空気調和 装置 1では、 利用ユニット 3 a、 3 bの温度センサ 6 3 a、 6 4 a , 6 3 b、 6 4 bで検出された冷媒温度及び利用側膨張弁 6 1 a、 6 1 bの開度から冷媒量不 足状態であるかどうかを判断できるようになつている。 そして、 冷媒量不足状態 であると判断された場合には、 停止中の熱源ュニット 1 0 2 bに滞留する冷媒を 運転中の熱源ュニット 1 0 2 a、 1 0 2 cに供給する。
ここで、 暖房運転している熱源ユニットを停止した直後においては、 レシーバ 1 7 bに冷媒液が溜まる速度が大きい場合がある。 このような場合、 冷房運転時 のように、 第 2開閉機構 4 5 bを開けるだけでは、 十分な冷媒の排出速度を得る ことができない場合ことがある。 このため、 図 7に示すように、 第 3開閉機構 4 7 bを開けることによって、 熱源側分岐ガス配管 1 2 b、 四路切換弁 1 4 b及び レシーバ加圧回路 2 2 bを介して冷媒ガス連絡配管 5から高圧の冷媒ガスをレシ ーバ 1 7 bへ供給する。 すると、 レシーバ 1 7 bが加圧されて冷媒液連絡配管 4 の圧力よりも高くなるため、 レシーバ 1 7 b内の冷媒液は、 熱源側分岐液配管 1 1 bを介してユニット外部に排出される。 これにより、 冷媒量不足状態が解消さ れる。
次に、 熱源ュニット 1 0 2 bの内部に滞留した冷媒を運転中の熱源ュニッ卜 1 0 2 a . 1 0 2 cに供給しすぎて、 冷媒量過剰状態になる場合がある。 このよう な場合、 図 8に示すように、 停止中の熱源ユニット 1 0 2 bの第 3開閉機構 4 7 bを閉止して、 熱源ユニット 1 0 2 bの内部から冷媒が排出されないようにする。 その後、 第 1開閉機構 3 7 bを開けることによって、 冷媒液を冷媒液連絡配管 4 から熱源側分岐液配管 1 1 bを経由して、 レシーバ 1 7 bに流入させて、 冷媒量 過剰状態を解消する。
このように、 停止中の熱源ユニット 1 0 2 bの第 1及び第 3開閉機構 3 7 b、 4 7 bの開閉操作によって、 台数制御により熱源ュニッ卜の一部が停止している 場合にも、 適切な冷媒循環量を保つことができるようになつている。
( 5 ) 他の実施形態
以上、 本発明の実施形態について図面に基づいて説明したが、 具体的な構成は、 これらの実施形態に限られるものではなく、 発明の要旨を逸脱しない範囲で変更 可能である。
①前記実施形態においては、 空気調和装置の熱源ュニットとして外気を熱源と した空冷式の熱源ュニットを使用したが、 水冷式や氷蓄熱式の熱源ュニットを使 用してもよい。
②前記実施形態においては、 圧縮機構を構成する圧縮機が 1台のみであつたが 複数台の圧縮機を備えたものであってもよい。
③前記実施形態においては、 各熱源ュニッ卜の圧縮機構間を均油するために設 けられた油取り出し管及び均油管からなる均油回路を利用して冷媒供給回路を構 成しているが、 均油回路が別の回路構成である場合には、 冷媒取り出し管と各熱 源ュニッ卜の圧縮機構の吸入側とを連通させる連通管を別途設けた構成であって もよい。 産業上の利用可能性
本発明を利用すれば、 複数の熱源ユニットを備えた空気調和装置において、 配 管ュニッ卜を削除するとともに、 現地における配管工事の増加を最小限に抑えつ つ、 冷媒量調節ができるようにすることができる。

Claims

請 求 の 範 囲
1. 圧縮機構 ( 1 3 a〜 1 3 G ) と、 熱源側熱交換器 ( 1 5 a〜 1 5 c ) とを 有する複数の熱源ュニット (1 02 a〜1 02 c) と、
前記各熱源ュ ットを並列に接続する冷媒液連絡配管 (4) 及ぴ冷媒ガス連絡 配管 (5) と、 ,
利用側熱交換器 (62 a、 62 b) を有し、 前記冷媒液連絡配管及び前記冷媒 ガス連絡配管に接続された利用ユニット (3 a、 3 b) と、
前記利用ュニッ卜の運転負荷に応じて前記複数の熱源ュニッ卜の一部を停止し て運転する際に、 停止中の熱源ュニッ卜の内部に滞留する冷媒を外部に取り出す ために前記各熱源ユニットに設けられた冷媒取り出し管 (21 a〜21 c) と、 前記冷媒取り出し管と運転中の熱源ュニッ卜の圧縮機構の吸入側とを接続する連 通管 (6、 20 a〜20 c) とを有する冷媒供給回路と、
を備えた空気調和装置 (1 ) 。
2. 前記熱源側熱交換器 ( 1 5 a〜 1 5 c ) は、 前記圧縮機構 ( 1 3 a〜 1 3 c) の吐出側に接続されており、
前記各熱源ュニット (1 02 a〜1 02 c) は、 前記熱源側熱交換器の液側及 び前記冷媒液連絡配管 (4) に接続された熱源側分岐液配管 (1 1 a〜1 1 c) と、 前記熱源側分岐液配管に設けられたレシーバ (1 7 a〜1 7 c) と、 前記圧 縮機構の吸入側及び前記冷媒ガス連絡配管 (5) に接続された熱源側分岐ガス配 管 (1 2 a~1 2 c) とをさらに有しており、
前記冷媒取り出し管 (21 a〜21 c) は、 前記圧縮機構の吐出側と前記熱源 側熱交換器のガス側との間から冷媒を取り出すように設けられている、 請求項 1に記載の空気調和装置 ( 1 ) 。
3. 前記熱源側分岐液配管 (1 1 a〜1 1 c) は、 前記冷媒取り出し管 (21 a〜21 c) を介して、 停止中の熱源ユニットの内部に滞留する冷媒を外部に取 リ出す際に、 前記冷媒液連絡配管 (4) から停止中の熱源ユニットの内部に冷媒 が流入しないように遮断する冷媒開閉機構 (37 a〜37 c) を有している、 請 求項 2に記載の空気調和装置 (1 ) 。
4. 前記冷媒開閉機構 (37 a〜37 c) は、 利用ュニッ卜と運転中の熱源ュ ニッ 卜との間を流れる冷媒量が過剰状態になった際に、 前記冷媒液連絡配管 (4) を流れる冷媒液を停止中の熱源ュニッ卜の内部に流入させることが可能で ある、 請求項 3に記載の空気調和装置 (1 )。
5. 前記熱源側熱交換器 ( 1 5 a〜 1 5 c ) は、 前記圧縮機構 ( 1 3 a〜 1 3 c) の吸入側に接続されており、
前記各熱源ュニット (1 02 a~1 02 c) は、 前記熱源側熱交換器の液側及 び前記冷媒液連絡配管 (4) に接続された熱源側分岐液配管 (1 1 a〜1 1 c) と、 前記圧縮機構の吐出側及び前記冷媒ガス連絡配管 (5) に接続された熱源側 分岐ガス配管 (1 2 a〜1 2 c) と、 前記熱源側分岐液配管に設けられたレシ一 ノ (1 7 a〜1 7 G) をさらに有しており、
前記冷媒取り出し管 (21 a〜21 c) は、 前記圧縮機構の吸入側と前記熱源 側熱交換器のガス側との間から冷媒を取り出すように設けられている、 請求項 1に記載の空気調和装置 ( 1 )。
6. 前記熱源側分岐液配管 (1 1 a~1 1 c) は、 前記冷媒取り出し管 (21 a〜21 c) を介して、 停止中の熱源ユニットの内部に滞留する冷媒を外部に取 リ出す際に、 前記冷媒液連絡配管 (4) から停止中の熱源ュニッ卜の内部に冷媒 が流入しないように遮断する冷媒開閉機構 (37 a~37 c) を有している、 請 求項 5に記載の空気調和装置 (1 )。
7. 前記停止中の熱源ュニットは、 前記熱源側分岐ガス配管 (1 2 a~1 2 c) を介して、 前記冷媒ガス連絡配管 (5) を流れる冷媒の一部を前記レシーバ (1 フ a〜1 7 c) に流入させるレシーバ加圧回路 (22 a~22 G ) をさらに 備えている、 請求項 6に記載の空気調和装置 (1 )。
8. 前記冷媒開閉機構 (37 a〜37 G) は、 利用ュニッ卜と運転中の熱源ュ ニッ 卜との間を流れる冷媒量が過剰状態になった際に、 前記冷媒液連絡配管
(4) を流れる冷媒液を停止中の熱源ュニッ卜の内部に流入させることが可能で ある、 請求項 6又は 7に記載の空気調和装置 (1 )。
9. 前記連通管 (6、 20 a〜 20 c) は、 前記各熱源ユニットの圧縮機構 (1 3 a〜1 3 c) 間の均油を行う均油管 (6、 20 a〜 20 c) である、 請求 項 1〜 8のいずれかに記載の空気調和装置 (1 ) 。
1 0. 圧縮機構 (1 3 a〜1 3 c) と、 前記圧縮機構の吸入側に接続された熱 源側熱交換器 (1 5 a〜1 5 c) と、 前記熱源側熱交換器の液側に接続されたレ シーバ (1 7 a~1 7 c) とを有する複数の熱源ュニッ卜 ( 1 02 a〜 1 02 c) と、
前記各熱源ユニットを並列に接続する冷媒液連絡配管 (4) 及ぴ冷媒ガス連絡 配管 (5) と、
利用側熱交換器 (62 a、 62 b) を有し、 前記冷媒液連絡配管及び前記冷媒 ガス連絡配管に接続された利用ユニット (3 a、 3 b) と、
前記複数の熱源ュニッ卜の一部において冷媒量が不足状態になった際に、 冷媒 量が不足状態になった熱源ュニッ卜のレシーバから圧縮機構の吸入側へ冷媒を流 出させるレシーバ減圧回路 (23 a〜23 c) と、
を備えた空気調和装置 (1 ) 。
PCT/JP2003/014601 2002-11-22 2003-11-17 空気調和装置 WO2004048863A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/503,214 US7140198B2 (en) 2002-11-22 2003-11-17 Air conditioner
EP03772833A EP1564505A4 (en) 2002-11-22 2003-11-17 AIR CONDITIONER
KR1020047013217A KR100629554B1 (ko) 2002-11-22 2003-11-17 공기 조화 장치
AU2003284698A AU2003284698B2 (en) 2002-11-22 2003-11-17 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002339697A JP3940840B2 (ja) 2002-11-22 2002-11-22 空気調和装置
JP2002-339697 2002-11-22

Publications (1)

Publication Number Publication Date
WO2004048863A1 true WO2004048863A1 (ja) 2004-06-10

Family

ID=32375783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014601 WO2004048863A1 (ja) 2002-11-22 2003-11-17 空気調和装置

Country Status (8)

Country Link
US (1) US7140198B2 (ja)
EP (2) EP2320161B1 (ja)
JP (1) JP3940840B2 (ja)
KR (1) KR100629554B1 (ja)
CN (3) CN100380068C (ja)
AU (1) AU2003284698B2 (ja)
ES (1) ES2441583T3 (ja)
WO (1) WO2004048863A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2542037A (en) * 2014-05-20 2017-03-08 Halliburton Energy Services Inc Improving well survey performance

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120682B2 (ja) * 2006-02-20 2008-07-16 ダイキン工業株式会社 空気調和装置および熱源ユニット
KR101266657B1 (ko) * 2006-10-17 2013-05-28 엘지전자 주식회사 공기조화기
JP2008128498A (ja) * 2006-11-16 2008-06-05 Hitachi Appliances Inc マルチ型空気調和機
JP5125116B2 (ja) * 2007-01-26 2013-01-23 ダイキン工業株式会社 冷凍装置
JP5263522B2 (ja) * 2008-12-11 2013-08-14 株式会社富士通ゼネラル 冷凍装置
JP5236080B2 (ja) * 2009-09-09 2013-07-17 三菱電機株式会社 空気調和装置
CN102734989B (zh) * 2011-04-08 2014-05-07 约克广州空调冷冻设备有限公司 一种快速排出气液分离器中积存的液体的热泵空调系统及方法
KR20120129111A (ko) * 2011-05-19 2012-11-28 엘지전자 주식회사 공기조화기
AU2012265763B2 (en) * 2011-06-09 2015-07-09 Mitsubishi Electric Corporation Air-conditioning-apparatus indoor unit
JP5288020B1 (ja) * 2012-03-30 2013-09-11 ダイキン工業株式会社 冷凍装置
JP6293647B2 (ja) * 2014-11-21 2018-03-14 ヤンマー株式会社 ヒートポンプ
CN104764192A (zh) * 2015-03-27 2015-07-08 宁波奥克斯电气有限公司 模块式风冷热泵热水机组
JP2018013286A (ja) * 2016-07-20 2018-01-25 三菱重工サーマルシステムズ株式会社 制御装置、空気調和機及び制御方法
CN111271892B (zh) * 2018-12-05 2021-11-05 约克广州空调冷冻设备有限公司 制冷系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324069A (ja) * 1991-04-23 1992-11-13 Sanyo Electric Co Ltd 冷凍装置
JPH10238879A (ja) * 1997-02-21 1998-09-08 Mitsubishi Heavy Ind Ltd マルチ型ヒートポンプ式空気調和機及びその運転方法
JPH10281578A (ja) * 1997-04-02 1998-10-23 Mitsubishi Heavy Ind Ltd マルチ型空気調和機
JP2002195705A (ja) * 2000-12-28 2002-07-10 Tgk Co Ltd 超臨界冷凍サイクル

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055963A (en) * 1975-06-25 1977-11-01 Daikin Kogyo Co., Ltd. Heating system
US4259848A (en) * 1979-06-15 1981-04-07 Voigt Carl A Refrigeration system
JP3208151B2 (ja) * 1991-05-28 2001-09-10 三洋電機株式会社 冷凍装置
JP3164626B2 (ja) * 1992-01-27 2001-05-08 松下電器産業株式会社 二段圧縮式冷凍サイクル装置
TW212224B (ja) * 1992-02-28 1993-09-01 Sanyo Denki Kk
JP2966641B2 (ja) 1992-04-09 1999-10-25 三洋電機株式会社 空気調和装置
JP3060770B2 (ja) 1993-02-26 2000-07-10 ダイキン工業株式会社 冷凍装置
TW299393B (ja) * 1995-03-09 1997-03-01 Sanyo Electric Co
US5894735A (en) * 1996-09-05 1999-04-20 Yamaha Hatsudoki Kabushiki Kaisha Heat pump system using energy-supplying mechanism to control refrigerant pressure
EP0838640A3 (en) * 1996-10-28 1998-06-17 Matsushita Refrigeration Company Oil level equalizing system for plural compressors
JP4035871B2 (ja) * 1997-10-21 2008-01-23 ダイキン工業株式会社 冷媒回路
JPH11142010A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 冷凍空気調和装置
JP3085296B2 (ja) * 1998-12-25 2000-09-04 ダイキン工業株式会社 冷凍装置
US6385980B1 (en) * 2000-11-15 2002-05-14 Carrier Corporation High pressure regulation in economized vapor compression cycles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324069A (ja) * 1991-04-23 1992-11-13 Sanyo Electric Co Ltd 冷凍装置
JPH10238879A (ja) * 1997-02-21 1998-09-08 Mitsubishi Heavy Ind Ltd マルチ型ヒートポンプ式空気調和機及びその運転方法
JPH10281578A (ja) * 1997-04-02 1998-10-23 Mitsubishi Heavy Ind Ltd マルチ型空気調和機
JP2002195705A (ja) * 2000-12-28 2002-07-10 Tgk Co Ltd 超臨界冷凍サイクル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2542037A (en) * 2014-05-20 2017-03-08 Halliburton Energy Services Inc Improving well survey performance
GB2542037B (en) * 2014-05-20 2020-12-16 Halliburton Energy Services Inc Improving well survey performance

Also Published As

Publication number Publication date
EP2320161A1 (en) 2011-05-11
AU2003284698B2 (en) 2005-11-24
CN100520223C (zh) 2009-07-29
CN1692259A (zh) 2005-11-02
EP2320161B1 (en) 2013-10-16
CN100380068C (zh) 2008-04-09
CN101126559A (zh) 2008-02-20
JP3940840B2 (ja) 2007-07-04
KR100629554B1 (ko) 2006-09-27
AU2003284698A1 (en) 2004-06-18
EP1564505A4 (en) 2010-09-22
CN101153751A (zh) 2008-04-02
KR20040081805A (ko) 2004-09-22
US7140198B2 (en) 2006-11-28
US20050103045A1 (en) 2005-05-19
JP2004170047A (ja) 2004-06-17
EP1564505A1 (en) 2005-08-17
CN100541049C (zh) 2009-09-16
ES2441583T3 (es) 2014-02-05

Similar Documents

Publication Publication Date Title
JP4888500B2 (ja) 冷凍装置
JP4475278B2 (ja) 冷凍装置及び空気調和装置
JP5072121B2 (ja) 空気調和システム
WO2013099047A1 (ja) 空気調和装置
JP4001171B2 (ja) 冷凍装置
JP4013261B2 (ja) 冷凍装置
AU749518B2 (en) Refrigerating device
JP5263522B2 (ja) 冷凍装置
WO2004048863A1 (ja) 空気調和装置
WO2006003967A1 (ja) 空気調和装置
AU2003246249A1 (en) Refrigeration equipment
EP1669695A2 (en) Air conditioner
JP3575484B2 (ja) 空気調和装置の熱源ユニット及び空気調和装置
JP2010139155A (ja) 冷凍装置
EP2963359A1 (en) Air conditioning device
JP2008170063A (ja) マルチ型空気調和機
JP2007101127A (ja) 空気調和装置
JP5152116B2 (ja) 冷凍装置
JP5186398B2 (ja) 空気調和機
JPWO2004013550A1 (ja) 冷凍装置
JP4981411B2 (ja) 空気調和機
KR20130134347A (ko) 공기조화기 및 그 냉매량 검지 방법
JP3138031B2 (ja) 冷凍装置
JP2006125738A (ja) 冷凍装置
CN114076346B (zh) 一拖多空调机

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2003772833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10503214

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047013217

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047013217

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003284698

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 20038A04758

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003772833

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003284698

Country of ref document: AU