WO2004047496A1 - 誘導加熱装置 - Google Patents

誘導加熱装置 Download PDF

Info

Publication number
WO2004047496A1
WO2004047496A1 PCT/JP2003/014630 JP0314630W WO2004047496A1 WO 2004047496 A1 WO2004047496 A1 WO 2004047496A1 JP 0314630 W JP0314630 W JP 0314630W WO 2004047496 A1 WO2004047496 A1 WO 2004047496A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
output
induction heating
switching element
correction
Prior art date
Application number
PCT/JP2003/014630
Other languages
English (en)
French (fr)
Inventor
Koji Niiyama
Takahiro Miyauchi
Yuji Fujii
Atsushi Fujita
Izuo Hirota
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2003280841A priority Critical patent/AU2003280841A1/en
Priority to JP2004553185A priority patent/JP3900183B2/ja
Publication of WO2004047496A1 publication Critical patent/WO2004047496A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like

Definitions

  • the fourth embodiment has the same configuration as the first embodiment, and will be described with reference to an evening timing chart in FIG.
  • This embodiment shows a method for storing data in the storage means 18.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

アルミニウム等の負荷を加熱でき、加熱できる鍋と径が小さいため加熱できない鍋とを精度よく判定でき、安全でかつ使用できる鍋の種類が増え、使用者の使い勝手が向上する誘導加熱装置が提供される。この誘導加熱装置は、少なくとも、加熱コイルと共振コンデンサとインバータと出力制御手段と電流検知手段と小物検知手段と補正手段と記憶手段とを有する。

Description

明細書
技術分野
本発明は、 一般家庭やオフィスやレス卜ランや工場などで使用され る誘導加熱装置に関するものであり、 さらに詳しくはアルミニウムや 銅といった低透磁率で高電気伝導率な材料の被加熱物を電磁誘導の原 理を利用して加熱ずる調理器や加熱装置などの誘導加熱装置に関する。 背景技術
以下、 従来の誘導加熱装置の例として、 誘導加熱コイルから高周波 磁界を発生し、 電磁誘導による渦電流によってアルミニウム鍋等の被 加熱物を加熱する誘導加熱調理器について説明する。
図 8は従来の誘導加熱装置の例として誘導加熱調理器を示している。 図 8に基づいて従来の誘導加熱装置を説明する。 図 8において、 電源 5 1は低周波交流電源である 2 0 0 V商用電源であり、 ブリッジダイ ォ一ドで構成される整流回路 5 2の入力端に接続される。 整流回路 5 2の出力端間に第 1の平滑コンデンサ 5 3が接続される。 整流回路 5 2の出力端間には、 さらに、 チョークコイル 5 5と第 2のスィッチン グ素子 5 7の直列接続体が接続される。 加熱コイル 6 2は被加熱物で あるアルミニウム製の鍋 6 3と対向して配置されている。
ィンバータ 5 4は、 チョークコイル 5 5、 第 1のスィツチング素子 5 6、 第 2のスイッチング素子 5 7、 第 1のダイオード 5 8、 第 2の ダイォード 5 9、 第 2の平滑コンデンサ 6 1、 共振コンデンサ 6 0で 構成されている。 第 2の平滑コンデンサ 6 1の低電位側端子及び第 2 のスイッチング素子 5 7の低電位側端子 (ェミツ夕) は整流回路 5 2 の負極端子に接続され、 第 2の平滑コンデンサ 6 1の高電位側端子は 第 1のスィツチング素子 5 6の高電位側端子 (コレクタ) に接続され る。 第 1のスイッチング素子 5 6の低電位側端子 (ェミッタ) はチヨ ークコイル 5 5と第 2のスィツチング素子 5 7の高電位側端子 (コレ クタ) との接続点に接続される。 加熱コイル 6 2と共振コンデンサ 6 0の直列接続体は第 2のスィツチング素子 5 7に並列に接続される。 第 1のダイオード 5 8 (第 1の逆導通素子) は索 1のスイッチング 素子 5 6に逆並列に接続される。 即ち、 第 1のダイオード 5 8のカソ 一ドと第 1のスイッチング素子 5 6のコレクタとが接続されている。 第 2のダイオード 5 9 (第 2の逆導通素子) は第 2のスイッチング素 子 5 7に逆並列に接続される。
電流検知手段 6 4は、 電源 5 1から流れる入力電流を検知する。 出 力制御手段 6 5は、 電流検知手段 6 4の出力に応じて、 第 1のスイツ チング素子 5 6と第 2のスィツチング素子 5 7のゲ一トに信号を出力 する。 小物検知手段 6 6は、 第 1のスイッチング素子 5 6と第 2のス イッチング素子 5 7の駆動周波数と電流検知手段 6 4の出力を基にし て、 鍋 6 3の径が小さく加熱できないことを検知して、 インバー夕 5 4の動作を停止させる。
以上のように構成された誘導加熱装置において、 第 1のスィッチン グ素子 5 6と第 2のスィツチング素子 5 7の駆動周波数に比べて共振 電流の周波数を 2倍以上に設定することにより、 第 1のスイッチング 素子 5 6と第 2のスィツチング素子 5 7の損失は両者を同一周波数と するのに比べて増えない。 かつ、 チョークコイル 5 5により第 2の平 滑コンデンサが昇圧されるので、 アルミ等の低抵抗で低透磁率の負荷 を高出力で誘導加熱できる。
また、 直径が小さくて加熱できない負荷であることを検知したり、 加熱中の負荷が取られたことを検知する小物検知手段 6 6は、 第 1の スイッチング素子 5 6と第 2のスイッチング素子 5 7の駆動周波数と、 電流検知手段 6 4の出力を基にしてその検知が行われる。
図 9は、 インバー夕 5 4が起動されてから、 負荷は小物であること が検知されてィンバ一夕 5 4が停止されるまでを示している。 横軸は 時間を、 縦軸は電流検知手段 6 4で検知される入力電流が A D変換 (アナログ · デジタル変換) された値をそれぞれ表している。 直線 6 7は、 加熱できる鍋 6 3を加熱している場合の電流検知手段 6 4の出 力を示し、 直線 6 8は、 径が小さく加熱できない鍋 6 3を加熱してい る場合の電流検知手段 6 4の出力を示している。 直線 6 8は、 第 1の スィツチング素子 5 6と第 2のスィツチング素子 5 7の駆動周波数が 3 0 k H zに到達しても、 電流検知手段 6 4の出力が所定の値に到達 していないことを示している。 そのため、 鍋 6 3は小物であると判定 され、 インバ一タ 5 4は動作を停止される。
尚、 このような従来技術は、 特開 2 0 0 2— 7 5 6 2 0号公報に開 示されている, .
従来の誘導加熱調理器では、 アルミ等の低抵抗で低透磁率の負荷を 加熱するィンバー夕の第 1のスィツチング素子と第 2のスイッチング 素子の駆動周波数に対し、 共振電流の周波数が約 3倍になっている。 そのため、 ィンバ一夕を構成する共振コンデンサと加熱コイルの特性 の差及び加熱コイルと負荷との距離の差により、 共振周波数が変化す る。 その結果、 小物と判別すべき鍋 (径が小さいため加熱停止とすべ き鍋) を正確に判定できないという課題がある。 発明の開示
誘導加熱装置は、
負荷を誘導加熱する加熱コイルと、
共振コンデンサと、
スィツチング素子とを有し、 加熱コイル電流の共振周波数の 1 0
4
/ 2倍以下の駆動周波数で前記スイッチング素子を駆動可能なィンバ 一夕と、
駆動周波数を可変して出力制御を行う出力制御手段と、
インバ一夕の入力電流を検知する電流検知手段と、
出力制御手段が駆動周波数を共振周波数より低い第. 1の周波数 で動作を開始して第 1の周波数より低い第 2の周波数まで低下させる 間に、 電流検知手段が検知する入力電流値が所定の値に到達しないと 負荷は小物であると判定する小物検知手段と、
第 2の周波数を補正する補正手段と、
所定の条件下でィンバ一夕を動作させて得られた補正データを、 電源をオフしても保持する記憶手段と
を有し、
補正手段は補正データを用いて第 2の周波数を補正する。 図面の簡単な説明
図 1は本発明の第 1の実施の形態における誘導加熱装置の構成を示 す回路ブロック図である。
図 2は第 1の実施の形態の誘導加熱装置における駆動周波数と入力 電流の関係を示す図である。
図 3は第 1の実施の形態の誘導加熱装置における小物検知のタイミ ングを示す図である。
図 4は本発明の第 2の実施の形態における誘導加熱装置の小物検知 のタイミングを示す図である。
図 5は本発明の第 3の実施の形態における誘導加熱装置の出力抑制 モードへの移行タイミングを示す図である。
図 6は本発明の第 4の実施の形態における誘導加熱装置の駆動周波 数測定夕イミングを示す図である。 03014630
5 図 7は本発明の第 5の実施の形態における誘導加熱装置の駆動周波 数測定タイミングを示す図である。
図 8は従来例の誘導加熱調理器の構成を示す回路ブロック図である。 図 9は従来例の誘導加熱調理器における小物検知の夕イミングを示 す図である。 発明を実施するための最良の形態
以下本発明の各実施の形態について図面を参照しながら説明する。 • (実施の形態 1)
図 1は本実施の形態の誘導加熱装置の回路構成を示す図である。 電 源 1は低周波交流電源である 2 0 0 V商用電源であり、 ブリッジダイ ォードで構成された整流回路 2の入力端に接続される。 整流回路 2の 出力端間に第 1の平滑'コンデンサ 3が接続される。 整流回路 2の出力 端間には、 さらに、 チヨ一クコイル 5と第 2のスイッチング素子 7の 直列接続体が接続される。 加熱コイル 1 2は被加熱物であるアルミ二 ゥム製の鍋 1 3と対向して配置されている。
インバー夕 4は、 チョークコイル 5、 第 1のスイッチング素子 ( I GB T : I n s u l a t e d G a t e B i p o l a r T r a η s i s t o r s ) .6、 第 2のスィッチング素子 ( I G B T ) 7、 第 1のダイオード 8、 第 2のダイオード 9、 第 2の平滑コンデンサ 1 1、 共振コンデンサ 1 0で構成される。 尚、 第 1のスイッチング素子 6と第 2のスィツチング素子 7を総称してスィツチング素子と呼ぶ。 第 2の平滑コンデンサ 1 1の低電位側端子及び第 2のスィツチング素 子 7の低電位側端子 (ェミツ夕) は整流回路 2の負極端子に接続され、 第 2の平滑コンデンサ 1 1の高電位側端子は第 1のスィツチング素子 6の高電位側端子 (コレクタ) に接続されている。 第 1のスィッチン グ素子 6の低電位側端子 (ェミツ夕) はチヨ一クコイル 5と第 2のス イッチング素子 7の高電位側端子 (コレクタ) との接続点に接続され る。 加熱コイル 1 2と共振コンデンサ 1 0の直列接続体が第 2のスィ ツチング素子 7に並列に接続される。
第 1のダイオード 8 (第 1の逆導通素子) は第 1のスイッチング素 子 6に逆並列に接続されている。 即ち、 第 1のダイオード 8のカソー ドと第 1のスィツチング素子 6のコレクタとが接続されている。 第 2 のダイォ一ド 9 (第 2の逆導通素子) は第 2のスイッチング素子 7に 逆並列に接続される。
電流検知手段 1 4は、 電源 1から流れる入力電流を検知する。 出力 制御手段 1 5は、 電流検知手段 1 4の出力に応じて、 第 1のスィッチ ング素子 6と第 2のスィツチング素子 7のゲートに信号を出力する。 設定手段 1 9は、 インバータ 4の出力を設定する手段であり、 複数 キ一スィツチにより構成される。
以上のように構成された誘導加熱装置において、 以下に動作を説明 する。 電源 1からの交流電源は整流回路 2により全波整流され、 整流 回路 2の出力端に接続された第 1の平滑コンデンサ 3に供給される。 この第 1の平滑コンデンサ 3はィンバ一夕 4に高周波電流を供給する 供給源として働く。
第 1のスィツチング素子 6と第 2のスィツチング素子 7は、 同時に オンしないように排他的に繰り返し駆動される。 第 1のスイッチング 素子 6がオフ状態で、 第 2のスィツチング素子 7が駆動されている間 (第 2のスイッチング素子 7がオン状態である間) に、 第 2のスイツ チング素子 7と第 2のダイオード 9と加熱コイル 1 2と共振コンデン サ 1 0で形成される閉回路において電流が共振して流れる。 第 2のス イッチング素子 7がオフ状態で、 第 1のスイッチング素子 6が駆動さ れている間 (第 1のスイッチング素子 6がオン状態である間) に、 第 1のスィツチング素子 6と第 1のダイオード 8と加熱コイル 1 2と共 振コンデンサ 1 0で形成される閉回路において共振電流が流れる。 第 2のスイッチング素子 7がオフされると、 第 2のスィツチング素子は 加熱コイル 1 2が流出させようとしている高周波電流を阻止する。 加 熱コイル 1 2が流出させようとしている高周波電流の極性は第 2のダ ィオード 9の導通方向と逆であるため、 第 2のダイオード 9も加熱コ ィル 1 2が流出させようとしている高周波電流を阻止する。 一方、 加 熱コイル 1 2が流出させようとしている高周波電流の極性は第 1のダ ィォード 8の導通方向と同じである。 従って、 加熱コイル 1 2が流出 させようとしている高周波電流は第 1のダイォ一ド 8を通って第 2の コンデンサ 1 1に流れ込む。
第 2のスィツチング素子 7がオンすると、 チョークコイル 5に磁気 エネルギーが蓄積され、 第 2のスィツチング素子 7がオフすることに より、 第 2の平滑コンデンサ 1 1にこの蓄積された磁気エネルギーが 第 1のダイオードを経由して放出され、 第 2の平滑コンデンサ 1 1が 昇圧される。 第 2の平滑コンデンサ 1 1の電圧の大きさにより加熱コ ィル 1 2に発生する共振電流の大きさが決まるので、 アルミニウム等 の低抵抗で低透磁率の負荷である鍋 1 3を高出力で誘導加熱できる。 本実施の形態では、 加熱コイル 1 2のインダク夕ンスと共振コンデ ンサ 1 0の容量と第 1のスイッチング素子 6の駆動時間 (オン時間) と第 2のスイッチング素子 7の駆動時間 (オン時間) は、 各スィッチ ング素子の駆動時間が、 それぞれ、 加熱コイル 1 2及び共振コンデン サ 1 0に流れる共振電流の共振周期の 3 Z 2になるように設定されて いる。 そのため、 第 1のスイッチング素子 6と第 2のスイッチング素 子 7の駆動周波数 (以下駆動周波数と呼ぶ) が約 2 0 k H zであれば、 共振電流の周波数は約 3倍の周波数である約 6 0 k H zになる。
図 2は、 上述の駆動周波数と電源 1からの入力電力の特性を示す図 である。 横軸は駆動周波数を、 縦軸は入力電力をそれぞれ表している。 曲線 2 0は、 駆動周波数と入力電力との関係を示す。 曲線 2 0で示さ れるように、 加熱コイル 1 2と共振コンデンサ 1 0の共振周波数を f c 1 (以下基本共振周波数と呼ぶ) とすると、 駆動周波数が f c 2 (以下 2次共振周波数と呼ぶ) と f c 3 (以下 3次共振周波数と呼 ぶ) の時にそれぞれ入力電力対駆動周波数特性が極大となる。 入力電 力特性は図 2の曲線 2 0で示されるような特性になる。 . 本実施の形態では、 負荷であるアルミニウム製の鍋 1 3を加熱する 際には、 加熱コイル 1 2の駆動周波数 (加熱コイルに流れる電流の周 波数) を 3次共振周波数 f c 3近傍にして動作させ、 加熱コイル 1 2 に高周波数の共振電流を供給しながら、 基本共振周波数 f c 1の約 3 分の 1程度にスィツチング素子の駆動周波数を低くして定常動作させ る。 こうすることにより、 スイッチング素子 6、 7のスイッチング損 失を低減した加熱効率の良い誘導加熱を実現している。
本実施の形態では、 第 1 のスィツチング素子 6と第 2のスィッチン グ素子 7の駆動周波数は、 マイクロコンピュー夕に内蔵されている P WM ( P u l s e W i d t h M o d u 1 a t i o n ) 機能を使い、 駆動周期をマイクロコンピュー夕内部で設定することにより実現して いる。 また、 電流検知手段 1 4の出力は、 マイクロコンピュータに内 蔵されている A D変換機能を使い、 カレン卜卜ランスの出力を直流電 圧に変換し、 マイクロコンピュータに入力される。
本実施の形態では、 スイッチング素子 6と 7の駆動時間比 (オン時 間の比) を約 1 として、 標準の大きさのアルミニウム製鍋を加熱した 時の加熱コイル 1 2に流れる電流の共振周波数が約 6 0 k H zになる ように、 加熱コイル 1 2、 共振コンデンサ 1 0および加熱コイル 1 2 と負荷 1 3の間の距離 (ギャップ) が設定されている。 このとき、 図 2の 2次共振周波数 f c 2は約 2 9 k H z 、 3次共振周波数 ί c 3は 約 1 8 k H zとなっている。 第 1の周波数 f l ( 3 6 kH z ) は、 図 2において、 基本共振周波 数 f c l (約 6 0 kH z ) と 2次共振周波数 f c 2 (約 2 9 kH z ) の間の周波数であって、 入力電力対周波数特性が極小となる周波数近 傍の周波数である。 出力制御手段 1 5は、 本誘導加熱装置がこの第 1 の周波数 f 1 ( 3 6 kH z ) で起動するように制御する。 そして、 出 力制御手段 1 5は、 徐々に駆動周波数を低下させ加熱コイル 1 2への 出力を増加させる。 尚、 第 2の周波数 f 2と第 3の周波数 f 3と第 4 の周波数 f 4については後程説明する。
図 3は、 加熱できない鍋を加熱しょうとした場合に、 インバータ 4 が起動した後、 小物検知手段 1 6が加熱できる鍋と加熱できない鍋の 判定を行い、 加熱できない負荷であると判定して、 その判定結果に基 づき出力制御手段 1 5が加熱を停止するまでの入力電流の変化を示す 図である。 図 3において、 横軸は駆動周波数を、 縦軸は入力電流を A D変換 (アナログデジタル変換) した値をそれぞれ表している。 尚、 駆動周波数は時間とともに第 1の周波数 f 1から低下して行くので、 横軸は時間の推移でもある。 また、 線 2 1は駆動周波数と入力電流と の関係を示している。
図 3に示すとおり、 起動後、 出力制御手段 1 5は第 1のスィッチン グ素子 6と第 2のスィツチング素子 7の駆動周波数を 3 6 kH z (第 1の周波数 f 1 ) から 3 0 KH z (第 2の周波数 f 2 ) まで徐々に周 波数を低下させる。 駆動周波数が、 3 0 kH z (第 2の周波数 f 2) に到達してもィンバ一夕の入力電流値に対応する電流検知手段 1 4の 出力が所定の値 (例えば、 「 3 0」) に到達しない場合、 小物検知手段 1 6は鍋 1 3が加熱できない負荷であると判定する。
上記のように、 小物検知手段 1 6は、 第 2の周波数 f 2と入力電流 値に対応した値により、 鍋 1 3が小物であるか否かの判定を行う。 こ の第 2の周波数 f 2は、 補正手段 1 7により初期値である 3 0 kH z を中心とした所定範囲の値補正される。 具体的には、 補正手段 1 7は、 初期値である 3 0 kH zを中心として、 記憶手段 1 8に記憶されてい る値を基にしてこの第 2の周波数 f 2を補正する。 図 3の場合には、 第 2の周波数 f 2の初期値である 3 0 kH zは 3 1. 9 2 kH zに補 正されている。 補正値 2 2はこの時の補正量を示している。 即ち、 駆 動周波数が補正された第 2の周波数 f 2に達した時に、 小物検知手段 1 6は負荷である鍋 1 3は小物であると判定し、 ィンバ一夕 4は動作 を停止させられる。
本実施の形態において、 記憶手段 1 8 には、 補正データとして 「4」 が記憶されている。 この補正データは後述のように製品として 工場出荷前にィンバ一夕を動作させることにより設定される。 あるい は、 この補正デ一夕は出荷後に使用者以外のものが補正可能としても よい。 補正手段 1 7は、 補正データ 「4」 を記憶手段 1 8から読み込 む。 補正値は PWMの分解能である 2 5 0ナノ秒を単位として、 この. 補正データを乗じて補正値 2 2を求められる。 この塲合、 補正値 2 2 は分解能である 2 5 0ナノ秒と補正デ一夕の 「4」 との積、 即ち 1マ イク口秒である。 中心周波数 ( 3 0 k H z ) での周期は、 その逆数 ( 1 / 3 0 k H z ) である。 この周期 ( l Z 3 0 kH z ) から上述の 補正値 2 2 ( 1マイクロ秒) が減算される。 この減算された後の値を 新たな周期とし、 その新たな周期の逆数である 3 0. 9 2 kH zが補 正後の第 2の周波数 f 2となる。
以上のように、 本実施の形態によれば、 アルミニウム等の低抵抗で 低透磁率の負荷を加熱するィンバ一夕において、 負荷の材質にかかわ らず、 出力の小さい周波数で起動し、 出力が小さい範囲で負荷の判別 をするとともに、 第 2の周波数を適切に補正する値を記憶手段 1 8に 記憶する。 従って、 加熱できない負荷と加熱できる負荷の判定を正確 に行うことができるので、 安全で使い勝手のよい誘導加熱装置が提供 できる。
また、 本実施の形態によれば、 小物と判定する間に負荷鍋を移動す る等で負荷条件が変わったときに、 駆動周波数に対して出力が極大と なる周波数を通過しないようにして、 急激な出力の増加によりスイツ チング素子が破壊するという不具合を防止することができる。
また、 本実施の形態によれば、 加熱コイルや共振コンデンサ、 ある いは加熱コイルと負荷間の距離のバラツキを吸収して、 加熱できない 負荷と加熱できる負荷を正確に判別できる。
更に、 本実施の形態によれば、 共振周波数の Ι Ζ η倍 (ILは 2以上 の整数) 周波数でスイッチング素子を駆動することにより、 アルミ二 ゥムなどの材質を誘導加熱してもスィツチング素子の駆動周波数を低 下させスィツチング損失を抑制することができる。
なお、 記憶手段は、 電源をオフしてもデ一夕保持される記憶素子で あればい。
(実施の形態 2 )
本発明の第 2の実施の形態は、 図 2と図 4を用いて動作を説明する。. 図 2におい 、 駆動周波数が第 2の周波数 f 2まで到達する間に所 定の出力に到達すると、 駆動周波数は 2次共振周波数 f c 2より低い 第 3の周波数 f 3 (約 2 6 k H z ) に変更される。 図 4は駆動周波数 が第 2の周波数 f 2から第 3の周波数 f 3へ離散的に低下した後の動 作を示している。
図 4において、 横軸は駆動周波数を、 縦軸は入力電流を A D変換し た値をそれぞれ表している。 尚、 駆動周波数は時間とともに第 3の周 波数 f 3から低下して行くので、 横軸は時間の推移でもある。 また、 線 2 3は駆動周波数と入力電流との関係を示している。 駆動周波数が 第 3の周波数 f 3 (約 2 6 k H z ) に変更され、 一度出力が低下させ られてから、 駆動周波数は更に低い第 4の周波数 f 4 (約 2 0 k H z ) にまで徐々に下げられ出力が増加される。 出力制御手段 1 5は設 定出力まで出力を増加しょうとして、 駆動周波数を低下させる。 一方、 小物検知手段 1 6は、 駆動周波数が第 4の周波数 f 4以下になると小 物であると判断し、 加熱は停止される。
この小物検知手段 1 6が加熱できない負荷であるか否かを判断する 基準となる駆動周波数 f 4の補正が行なわれる。 図 4はインバー夕 4 の起動に始まって加熱できる鍋と加熱できない鍋の判定を行うまでの 動作と、 小物検知の判定値の変更の様子を示している。 図 4に示され ているとおり、 第 4の周波数 f 4は 2 0 k H zを中心として、 記憶手 段 1 8に記憶されている値により、 1 91^^12から 2 21^112の間で 変動する。
本実施の形態では、 実施の形態 1 と同様、 記憶手段の値を 「4」 と 仮定している。 補正手段 1 7は、 補正データ 「4」 を記憶手段 1 8か ら読み込む。 補正値は PWMの分解能である 2 5 0ナノ秒を単位とし て、 この補正データを乗じて補正値 24を求められる。 この補正値 2 4は分解能である 2 5 0ナノ秒と補正データの 「4」 との積、 即ち 1 マイクロ秒である。 従って、 第 4の周波数 f 4の周期は 1マイクロ秒 間だけ長くなる。 中心周波数 ( 2 0 k H z ) での周期は、 その逆数 ( 1ノ 2 0 kH z ) である。 この周期 ( 1 2 0 kH z ) から上述の 補正値 24 ( 1マイクロ秒) が加算される。 この加算された後の値を 新たな周期とし、 その新たな周期の逆数である 1 9. 6 1 kH zが補 正後の第 4の周波数 f 4になる。 このようにして、 第 4の周波数 : f 4 の周期は 1 9. 6 1 kH zに補正され、 駆動周波数の下限が 2 0 k H zから 1 9. 6 1 kH zに補正される。
以上のように、 本実施の形態によれば、 駆動周波数が第 2の周波数 f 2から第 3の周波数 ί 3に切り替えられて移行した後においても、 加熱できない負荷と加熱できる負荷の判定を正確に行うことができる。 その結果、 安全性が向上する。
また、 本実施の形態によれば、 加熱コイルや共振コンデンサ、 ある いは加熱コイルと負荷間の距離のバラツキを吸収して、 第 4の周波数 以下で加熱中に負荷を変更した場合において、 加熱できない負荷と加 熱できる負荷を正確に判別できる。
(実施の形態 3 )
本発明の第 3の実施の形態を、 図 5を用いて動作を説明する。
図 5は、 設定電力より電力を低下させる出力抑制モードに移行する ことを示す図である。
図 5において、 横軸は駆動周波数を、 縦軸は入力電流のリミッ ト値 を A D変換した値をそれぞれ表している。 線 2 9は、 鍋 1 3の径が標 準のものより小さいものであるが極端に小さくないものである場合の、 駆動周波数と入力電流の A D変換値の特性を示す。 尚、 駆動周波数は 時間とともに第 3の周波数 f 3から低下して行くので、 横軸は時間の 推移でもある。 また、 線 2 5は駆動周波数と入力電流のリミット値と の関係を示している。
出力抑制モードとは、 駆動周波数が所定の周波数を下回ると、 出力 制御手段 1 5がィンバ一夕 4の設定電流に対応する入力電流検知手段 1 4の検知する入力電流のリミット値を低下させる制御状態である。 本実施の形態では、 インバー夕 4の設定電力が 2 k Wである場合、 入 力電流の A D変換値での 「2 1 0」 を目標として、 フィードパック制 御を行い、 鍋 1 3が線 2 9に示すようなものである場合に、 駆動周波 数が 2 1 k H zを下回ると出力抑制モードに移行する。 即ち, 入力電 流の A D変換値で 「 1 8 0」 を目標とするフィードバック制御に変更 される。 これにより、 駆動周波数の低下が止まるので、 小物検知手段 1 6は鍋 L 3が加熱できないとは判断せず、 低出力で加熱を継続する ことができる。 なお、 鍋 1 3が極端に小さな径のものである場合には f 4で示す第 4の周波数に到達するので小物と判新されィンバ一夕 4 の加熱動作が停止される。 この出力抑制モードに移行する駆動周波数 は、 記憶手段 18に記憶された補正値に応じて補正される。
補正手段 1 7は、 補正データ 「4」 を記憶手段 1 8から読み込む。 補正値は PWMの分解能である 2 50ナノ秒を単位として、 この補正 データを乗じて補正値 26が求められる。 この補正値 26は分解能で ある 250ナノ秒と補正デ一夕の 「4」 との積、 即ち 1マイクロ秒で ある。 従って、 第 4の周波数 f 4の周期は 1マイクロ秒間だけ長くな る。 周波数 2 1 kHzでの周期は、 その逆数 (lZ2 1 kHz) であ る。 この周期 (lZ2 1 kHz) から上述の補正値 26 ( 1マイクロ 秒) が加算される。 この加算された後の値を新たな周期とし、 その新 たな周期の逆数である 20. 56 kHzが得られる。 即ち、 出力抑制 モードに移行する駆動周波数は当初の 2 1 kHzから 20. 56 k H zに補正される。
以上のように、 本実施の形態によれば、 径の小さい鍋を精度よく判 定することができる。 そうして、 鍋の径が小さくても極端に小さくな い場合には、 加熱が停止せず電力が抑制され、 使い勝手がよくなると 同時に、 漏洩磁界も低減される。
また、 本実施の形態によれば、 加熱コイルや共振コンデンサ、 ある いは加熱コイルと負荷間の距離のバラツキを吸収して、 径の小さい負 荷を正確に判定でき、 径の小さい負荷では電力を抑えることができる ので、 使い勝手がよくなり、 また、 輻射ノイズも低減される。
(実施の形態 4)
実施の形態 4は、 第 1の実施の形態と同じ構成とし、 図 6の夕イミ ングチャートにより説明する。 本実施の形態は、 記憶手段 1 8にデー 夕を記憶させる方法を示す。
図 6において、 横軸は駆動周波数を、 縦軸は入力電流を AD変換し た値をそれぞれ表している。 尚、 駆動周波数は時間とともに低下して 行くので、 横軸は時間の推移でもある。 また、 線 2 7は駆動周波数と 入力電流の A D変換値との関係を示している。 図 6は、 所定の負荷で ある鍋 1 3を加熱しながら、 補正 Ϊ直を求めるタイミングを示している。 電流検知手段 1 4により検知された入力電流の A D変換値が所定の値 (例えば 「3 0」) に到達した時点における第 1のスイッチング素子 6 と第 2のスィツチング素子 7の駆動周波数を F d 1としている。 また、 入力電流の A D変換値が 「 2 1 0」 になった時の駆動周波数を F d 2 としている。 駆動周波数 F d 1と駆動周波数 F d 2を基にして、 イン バ一タ 4の起動時における小物判定周波数である第 2の周波数 f c 2 の補正値 2 2と、 第 3の周波数 f c 3に移行後の小物判定周波数であ る第 4の周波数 f c 4の補正値 2 4と、 出力抑制モードに移行する所 定の周波数の補正値 2 6が計算される.。 そうして、 これらの計算され た各補正値は記憶手段 1 8に記憶される。
以上によって、 スイッチング素子の駆動周波数と加熱コイル 1 2に 流れる共振電流の共振周波数の関係はィンパ一夕 4を動作させて測定 されることになるので、 精度よくまた容易に補正データを得ることが できる。
また、 加熱コイル 1 2や共振コンデンサ 1 0、 あるいは加熱コイル 1 2と負荷 1 3間の距離のバラツキを吸収できる補正値を得て小物検 知を精度よく行うことができる。
(実施の形態 5 )
実施の形態 5は、 第 1の実施の形態と同じ構成とし、 図 7の夕イミ ングチャートにより説明する。
図 7において、 横軸は駆動周波数を、 縦軸は入力電流を A D変換し た値.をそれぞれ表している。 尚、 駆動周波数は時間とともに低下して 行くので、 横軸は時間の推移でもある。 また、 線 2 8は駆動周波数と 入力電流の A D変換値との関係を示している。 図 7は、 無負荷状態で ィンバータ 4を起動し、 記憶手段 1 8に記憶する補正値を求めるタイ ミングを示している。 電流検知手段 1 4により検知された入力電流の A D変換値が所定の値 (例えば 「3 0」) に到達した時点における第 1 のスィツチング素子 6と第 2のスィツチング素子 7の駆動周波数を F d 3としている。 駆動周波数 F d 3を基にして、 インバ一タ 4の起動 時における小物判定用の駆動周波数の補正値 2 2と、 設定電力到達後 の小物判定用の駆動周波数の補正値 2 4と、 出力抑制モードに移行す る駆動周波数の補正値 2 6が計算される。 そうして、 これらの計算さ れた各補正値は記憶手段 1 8に記憶される。
以上によって、 所定の負荷を必要としないので、 簡単に各補正値を 得ることができる。 例えば、 工場出荷後に市場において簡易的に調整 することができる。 この調整モードに入るのは、 例えば入力キーが装 備されている設定手段 1 9を使用して所定の命令を入力することによ り実行することができる。 或いは、 使用者の触れることのできない場 所に特定のスィツチを設けて、 このスィツチを操作することで調整モ ―ドに入れるように設定しても良い。
なお、 記憶手段 1 8は、 出力制御手段 1 5に設けられた不揮発性の 記憶部により機能する記憶手段であってもよい。
また、 以上の説明では、 スイッチング素子 (第 1のスイッチング素 子 6と第 2のスィツチング素子 7 ) の駆動周波数が約 2 0 k H zであ つて、 共振電流の周波数は約 6 0 k H zの場合を挙げている。 即ち、 以上の説明では、 スィツチング素子の駆動周波数は共振電流の周波数 の約 1ノ 3倍である場合を挙げている。 しかしながら、 本発明では、 これに限られるものではない。 即ち、 共振周波数の 1 Z 2倍以下の駆 動周波数でスィツチング素子が駆動可能なィンバ一夕であれば、 上述 の各実施の形態と同様の機能と効果が得られる。 以上の説明から明らかなように、 本発明によれば、 アルミニウム等 の負荷を加熱するとともに、 径が小さいため加熱できない鍋と加熱で きる鍋を精度よく判定できるため、 安全でかつ使用できる鍋が増える ことから使用者の使い勝手がよくなる。 産業上の利用可能性
本発明による誘導加熱装置は、 アルミニウム等の負荷を加熱できる。 更に本発明による誘導加熱装置は、 加熱できる鍋と径が小さいため加 熱できない鍋とを精度よく判定できるため、 安全でかつ使用できる鍋 の種類が増える。 従って、 使用者の使い勝手が向上する。

Claims

請求の範囲
1 . 負荷を誘導加熱する加熱コイルと、
共振コンデンサと、
スィツチング素子とを有し、 前記加熱コイル電流の共振周波数 の 1 Z 2倍以下の駆動周波数で前記スィツチング素子を駆動可能なィ ンバ一夕と、
前記駆動周波数を可変して出力制御を行う出力制御手段と、 前記ィンバー夕の入力電流を検知する電流検知手段と、 前記出力制御手段が前記駆動周波数を前記共振周波数より低い 第 1の周波数で動作を開始して前記第 1の周波数より低い第 2の周波 数まで低下させる間に、 前記電流検知手段が検知する入力電流値が所 定の値に到達しないと前期負荷は小物であると判定する小物検知手段 と、
前記第 2の周波数を補正する補正手段と、
所定の条件下で前記ィンバ一夕を動作させて得られた補正デ一 夕を、 電源をオフしても保持する記憶手段と
を有し、
前記補正手段は前記補正データを用いて前記第 2の周波数を補 正する誘導加熱装置。
2 . 前記補正手段は、 マイクロコンピュータが内臓している P WM 機能の分解能と前記補正デ一夕との積を用いて前記第 2の周波数を補 正する請求項 1記載の誘導加熱装置。
3 . 前記出力制御手段は、
前記駆動周波数が前記第 2の周波数まで低下するまでに 前記電流検知手段の検知する入力電流値が所定の値にまで増加すると、 前記第 2の周波数より低くかつ入力電流値が周波数に対して極大とな る周波数よりさらに低い第 3の周波数まで前記駆動周波数を離散的に 低下させ、
前記小物検知手段は、 その後前記第 3の周波数より低い周波数 である第 4の周波数まで前記駆動周波数を低下させても前記電流検知 手段の出力が所定の値にまで増加しない場合に、 前記負荷は小物であ ると判定し、
前記補正手段は前記補正データを用いて前記第 4の周波数を補 正する
請求項 1記載の誘導加熱装置。
4 . 前記補正手段は、 マイクロコンピュータが内臓している P W M 機能の分解能と前記補正データとの積を用いて前記第 4の周波数を補 正する請求項 3記載の誘導加熱装置。
5 . 前記出力制御手段は、
前記駆動周波数が前記第 2の周波数まで低下するまでに 前記電流検知手段の検知する入力電流値が所定の値にまで増加すると、 入力電流値が周波数に対して極大となる周波数より低い第 3の周波数 までさらに前記駆動周波数を離散的に低下させ、
その後前記駆動周波数が所定の値を下回ると、 前記電流 検知手段の検知する入力電流のリミッ ト値を低下させる出力抑制モー ドを有し、
前記補正手段は前記出力制御手段が前記出力抑制モードに移行 する駆動周波数を前記補正デ一夕を用いて補正する
請求項 1〜 4のいずれか 1項に記載の誘導加熱装置。
6 . 前記補正手段は、 マイクロコンピュータが内臓している P WM機 能の分解能と前記補正データとの積を用いて前記出力抑制モードに移 行する駆動周波数を補正する請求項 5記載の誘導加熱装置。
7.. 前記出力制御手段は、 負荷を加熱して低出力から所定の出力ま で増加させ、 前記電流検知手段が所定の値に到達したことを検知する 時点の前記駆動周波数に基づくデータを前記記憶手段に記憶する請求 項 1〜 6のいずれか 1項に記載の誘導加熱装置。
8 . 前記出力制御手段は、 無負荷状態で、 低出力から所定の出力ま で増加させ、 前記電流検知手段が所定の値に到達したことを検知する 時点の前記駆動周波数に基づくデ一夕を前記記憶手段に記憶する請求 項 1〜 6のいずれか 1項に記載の誘導加熱装置。
PCT/JP2003/014630 2002-11-20 2003-11-18 誘導加熱装置 WO2004047496A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003280841A AU2003280841A1 (en) 2002-11-20 2003-11-18 Induction heating apparatus
JP2004553185A JP3900183B2 (ja) 2002-11-20 2003-11-18 誘導加熱装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-336444 2002-11-20
JP2002336444 2002-11-20

Publications (1)

Publication Number Publication Date
WO2004047496A1 true WO2004047496A1 (ja) 2004-06-03

Family

ID=32321806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014630 WO2004047496A1 (ja) 2002-11-20 2003-11-18 誘導加熱装置

Country Status (3)

Country Link
JP (1) JP3900183B2 (ja)
AU (1) AU2003280841A1 (ja)
WO (1) WO2004047496A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114310A (ja) * 2004-10-14 2006-04-27 Matsushita Electric Ind Co Ltd 誘導加熱装置
JP2006185752A (ja) * 2004-12-27 2006-07-13 Toyo Seikan Kaisha Ltd 電磁調理器用容器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148266A (ja) * 1994-11-22 1996-06-07 Sanyo Electric Co Ltd 電磁調理器
JPH08273820A (ja) * 1995-04-03 1996-10-18 Sharp Corp 誘導加熱調理器
JP2001068260A (ja) * 1999-08-27 2001-03-16 Matsushita Electric Ind Co Ltd 誘導加熱調理器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148266A (ja) * 1994-11-22 1996-06-07 Sanyo Electric Co Ltd 電磁調理器
JPH08273820A (ja) * 1995-04-03 1996-10-18 Sharp Corp 誘導加熱調理器
JP2001068260A (ja) * 1999-08-27 2001-03-16 Matsushita Electric Ind Co Ltd 誘導加熱調理器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114310A (ja) * 2004-10-14 2006-04-27 Matsushita Electric Ind Co Ltd 誘導加熱装置
JP4599978B2 (ja) * 2004-10-14 2010-12-15 パナソニック株式会社 誘導加熱装置
JP2006185752A (ja) * 2004-12-27 2006-07-13 Toyo Seikan Kaisha Ltd 電磁調理器用容器

Also Published As

Publication number Publication date
JP3900183B2 (ja) 2007-04-04
JPWO2004047496A1 (ja) 2006-03-23
AU2003280841A1 (en) 2004-06-15

Similar Documents

Publication Publication Date Title
JP4900248B2 (ja) 誘導加熱装置
KR101999511B1 (ko) 유도가열조리기 및 그의 동작 방법
JP4258737B2 (ja) 誘導加熱調理器及び誘導加熱調理方法
KR20190051726A (ko) 유도 가열 장치 및 유도 가열 장치의 용기 판별 방법
KR20190040843A (ko) 유도 가열 장치
US20170223780A1 (en) Induction cooking apparatus
JP4444243B2 (ja) 誘導加熱装置
JP4706307B2 (ja) 誘導加熱装置
WO2004047496A1 (ja) 誘導加熱装置
JP2007250503A (ja) 誘導加熱調理器
JP4289002B2 (ja) 誘導加熱装置
JP2007026906A (ja) 電磁調理器
JP3376227B2 (ja) インバータ装置
JP2019175691A (ja) 誘導加熱装置およびその駆動制御方法
JP3997896B2 (ja) 誘導加熱装置
JPWO2019039166A1 (ja) 誘導加熱調理器
JP4363355B2 (ja) 誘導加熱装置
JP3150541B2 (ja) インバータ装置
JP4887681B2 (ja) 誘導加熱装置
JP2010182561A (ja) 誘導加熱調理器
JP4613687B2 (ja) 誘導加熱装置
JP4970829B2 (ja) 電磁誘導加熱調理器
US11175429B2 (en) Method for detecting vessel of induction heating device to which three-phase power supply is applied
KR102261567B1 (ko) 스위칭 회로를 포함하는 가열 장치
KR102667600B1 (ko) 온도 감지 메커니즘이 개선된 유도 가열 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004553185

Country of ref document: JP

122 Ep: pct application non-entry in european phase