WO2004047337A1 - 無線基地局装置およびその折り返し試験方法 - Google Patents

無線基地局装置およびその折り返し試験方法 Download PDF

Info

Publication number
WO2004047337A1
WO2004047337A1 PCT/JP2003/014393 JP0314393W WO2004047337A1 WO 2004047337 A1 WO2004047337 A1 WO 2004047337A1 JP 0314393 W JP0314393 W JP 0314393W WO 2004047337 A1 WO2004047337 A1 WO 2004047337A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
signal
transmission
circuit
test
Prior art date
Application number
PCT/JP2003/014393
Other languages
English (en)
French (fr)
Inventor
Shinya Muraoka
Original Assignee
Nec Corporation
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation, Ntt Docomo, Inc. filed Critical Nec Corporation
Priority to EP03772721A priority Critical patent/EP1578034B1/en
Priority to CN2003801036566A priority patent/CN1714523B/zh
Priority to US10/534,710 priority patent/US7603116B2/en
Priority to BR0315947-7A priority patent/BR0315947A/pt
Publication of WO2004047337A1 publication Critical patent/WO2004047337A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level

Definitions

  • the present invention relates to a radio base station apparatus and a loopback test method, and more particularly to a radio base station apparatus that performs a loopback test for looping back and confirming a signal exchanged with a radio terminal in the apparatus and a loopback test method thereof.
  • Wireless base station devices used in mobile communications such as WC DMA (Wideband Code Division Multiple Access) have a loopback test function to test the transmission / reception function of signals exchanged with wireless terminals. .
  • WC DMA Wideband Code Division Multiple Access
  • the downlink signal output from the transmission function is looped back in the wireless base station apparatus, and the looped signal is returned. Is received by the receiving function for the uplink signal transmitted from the wireless terminal to the wireless base station apparatus, and the normality of the transmitting function is confirmed based on the reception result.
  • an uplink signal is output from a transmission function that transmits a downlink signal, and this signal is folded back in the radio base station apparatus, and the signal is received by the reception function.
  • the normality of the transmission function is confirmed based on the result.
  • a loopback signal returned in the wireless base station apparatus and an uplink signal actually received from a wireless terminal may interfere in a reception function. Therefore, it is necessary to reduce the level of the return signal to reduce the interference of the return signal with the uplink signal.
  • TTR Test Transmitter and Receiver
  • the test using the TTR means that a predetermined test signal transmitted from the TTR is received by the radio base station apparatus, the normality of the reception function of the radio base station apparatus is confirmed, and conversely, transmitted from the radio base station apparatus.
  • the received predetermined test signal is received by the TTR, and the transmission function of the radio base station device is received. Is to confirm the normality of
  • a relatively large level test signal transmitted from the TTR interferes with an uplink signal from another wireless terminal, or a relatively large level test signal transmitted from a wireless base station apparatus. Interferes with downstream signals to other wireless terminals. For this reason, the lowest bit rate used as an uplink signal or a downlink signal or a lower bit rate is used as a test signal transmitted from a TTR or a radio base station apparatus. As a result, the spread gain increases in the test signal at a low bit rate, so that the transmission quality, that is, the signal reception energy per bit, E b, and the power spectral density N o of the sum of noise and despread interference noise are Ratio
  • Eb / No (Eb / No) is improved. For this reason, when transmitting a test signal in a wireless base station apparatus or a TTR, the transmission power of the test signal can be reduced by the improved EbZNo, and interference with other uplink and downlink signals can be suppressed.
  • the transmission power of the TST signal must be set to a low value that does not normally affect calls. Also, when the number of ordinary calls increases, the quality of the TST signal deteriorates due to these interferences, and errors occur. Since the TST is for confirming the normality of the radio base station equipment, it is desirable that a system in which an error occurs only when the equipment is abnormal is avoided, and signal degradation due to such normal call interference is avoided. Must be turned on.
  • the TST transmission power is fixedly determined, so that the TST signal used in the loopback test interferes with the normal call, and the influence on the normal call and the decrease in TST accuracy are reduced. There was a problem that it would occur.
  • the SIR Signal to Interference Ratio: ratio of the desired signal to the sum of interference noise
  • the quality is not very good for passing signals.
  • the transmission power of the terminal is controlled to be high by the amount that SIR 1 (the ratio of the terminal transmission signal to the total interference noise) is less than 6 dB.
  • the signal quality of TST is improving better than necessary. Therefore, in the case of the loopback test, if the number of normal calls increases, the interference with the loopback signal increases, and an error occurs in the loopback signal, and the normality of the device cannot be confirmed well.
  • the present invention is intended to solve such a problem, and it is possible to suppress interference between a TST signal used in a loopback test and a radio terminal of a normal call, and to perform a good loopback test and a radio base station apparatus. Its purpose is to provide a test method for turning it back.
  • a wireless base station apparatus is used in a mobile wireless communication system in which a plurality of wireless terminals are simultaneously connected for call and the number of connectable wireless terminals fluctuates according to the amount of interference.
  • a radio base station apparatus for exchanging a baseband transmission / reception signal with an external radio apparatus for communication.
  • the radio base station apparatus is provided for each radio channel used in a mobile radio communication system, and is radio-connected via the radio channel.
  • the transmission data to the terminal is converted into a baseband transmission signal and output to an external wireless device with arbitrary transmission power, and the baseband received signal from the external wireless device is transmitted to the wireless terminal.
  • a plurality of channel circuits that output the received data from the end, and a predetermined test signal output from the transmission-side channel circuit that is the transmission side of the loop test in the channel circuit is looped back in the device, and the channel circuit is looped back
  • Receiving test means for testing the transmission function or receiving function of an arbitrary channel circuit by receiving a signal on a receiving side channel circuit serving as a receiving side of the test, and a wireless terminal which is call-connected to the device at the time of the return test.
  • a control unit for determining the transmission power of the test signal according to the number of call connections and instructing the transmission power to the transmission side channel circuit.
  • the transmission power of the test signal when the control unit determines the transmission power, the transmission power of the test signal may be increased or decreased according to the increase or decrease of the number of call connections.
  • the control section determines the transmission power of the test signal, the test power is obtained when the transmission power of the test signal is equal to the transmission power of the wireless terminal when the number of call connections is one.
  • the transmission power that satisfies the ratio of the signal to the interference noise sum (SIR: Signal to Interference Ratio) at least when the number of call connections may be selected.
  • a test data generation circuit that supplies test data used for loopback test to the transmission side channel circuit, and a test output from the transmission side channel circuit based on the test data
  • a selection circuit that returns the signal to the receiving channel circuit as a received signal
  • a test data comparing circuit that compares the test data supplied from the test data generating circuit with the received data of the test signal output from the receiving channel circuit. It may be provided.
  • a power control circuit that adjusts the transmission power of the transmission signal to the wireless terminal according to the request bits multiplexed in the reception data from the wireless terminal, and Based on the ratio of the received signal from the wireless terminal to the sum of interference noise (SIR: Signal to Interference Ratio), an instruction bit for instructing the wireless terminal to adjust the transmission power is transmitted to the wireless terminal.
  • SIR Signal to Interference Ratio
  • a test signal power control circuit that adjusts the transmission power of the test signal according to an instruction from the control circuit.
  • the loopback test method for a wireless base station apparatus is used in a mobile wireless communication system in which a plurality of wireless terminals are simultaneously call-connected and the number of connectable wireless terminals varies according to the amount of interference.
  • External wireless device that performs wireless communication with wireless terminals
  • a loopback test method for a radio base station apparatus that tests a transmission function or a reception function of a radio base station apparatus by transmitting and receiving a predetermined test signal in a radio base station apparatus that transmits and receives a baseband transmission / reception signal. Testing a transmission function or a reception function of the device by returning and transmitting a predetermined test signal within the device; and transmitting the test signal in accordance with the number of call connections of wireless terminals in the wireless base station device. It comprises a step of determining transmission power and a step of adjusting the transmission power of the test signal based on the transmission power.
  • a step of increasing or decreasing the transmission power of the test signal in accordance with the increase or decrease of the number of call connections may be provided. More specifically, the transmission power may be set such that the number of call connections is one. Sometimes the ratio of the test signal to the sum of interference noise (SIR), which is obtained when the transmission power of the test signal is made equal to the transmission power of the wireless terminal, is calculated at least for the number of call connections. A step of selecting a satisfactory transmission power may be provided.
  • SIR sum of interference noise
  • step of determining the transmission power when the number of call connections is less than 16, the transmission of the transmission signal transmitted to the wireless terminal when the number of call connections is 1 as the transmission power of the test signal
  • a step using power may be provided, or, when the number of call connections is 16 or more and less than 32, transmission of a transmission signal to be transmitted to a wireless terminal when the number of call connections is 1 as transmission power of a test signal.
  • a step of using power obtained by adding 1 dB to power may be provided.
  • 3 dB is added to the transmission power of the transmission signal transmitted to the wireless terminal when the number of call connections is 1 as the transmission power of the test signal.
  • the transmission power of the transmission signal transmitted to the wireless terminal when the number of call connections is 1 is used as the transmission power of the test signal.
  • a step of using 18 dB-added power may be provided.
  • FIG. 1 is a block diagram showing a configuration of a radio base station apparatus according to one embodiment of the present invention.
  • FIG. 2 is a block diagram showing the internal configuration of the channel circuit. Detailed description of the embodiment
  • FIG. 1 is a block diagram showing a configuration of a radio base station apparatus according to one embodiment of the present invention.
  • This wireless base station device transmits a transmission data T1 from an external data device (not shown) in which data for each user who performs data communication with each wireless terminal is multiplexed, and transmits a downlink signal to each wireless terminal.
  • This is a device that converts a multiplexed baseband transmission signal T2 and outputs it to an external wireless device (not shown).
  • the base station converts the spanned received signal R2 from the external wireless device in which the uplink signal from each wireless terminal is multiplexed into the received data R1 in which the data for each user is multiplexed, and converts the external data to R1. Output to the device.
  • the radio base station apparatus is provided with channel circuits 2l to 2n (n> 2) for a plurality of users, and can simultaneously make a call connection with n radio terminals. At the time of TST (return test), n ⁇ 2 Call connection with multiple wireless terminals.
  • the wireless base station apparatus includes a control circuit 1, a separation circuit 2, a TST data generation circuit 3, a delay circuit 4, a multiplex circuit 5, a SEL circuit 6, an adder circuit 7, and a multiplex circuit 8. , A SEL circuit 9, and a TST data comparison circuit 10.
  • the control circuit 1 includes a microprocessor such as a CPU, and controls each unit of the wireless base station device by executing a predetermined program.
  • mode signals S11, S12, S13 to Snl, Sn2, Sn2 for indicating the operation mode (normal / TST) of each channel circuit 21 to 2n.
  • the TST transmission power signals TSTP1 to TSTPn for indicating the optimal TST transmission power calculated from the current number of call connections to the channel circuit, and the reference for the transmission power control for normal calls.
  • Control signals such as uplink SIR 1 to SI Rn (hereinafter, target SIR: ratio of desired signal to total interference noise) are output to control each channel circuit 2 l to 2 n.
  • the radio base station apparatus is used in a mobile radio communication system in which a plurality of radio terminals are simultaneously call-connected and the number of connectable radio terminals varies according to the amount of interference, such as WCDMA. It is assumed that Therefore, between the wireless base station apparatus and the wireless terminal, the uplink reception SIR is always set to Target SI Since closed-loop transmission power control is performed to converge to R, the signal level from each wireless terminal included in the received signal at the wireless base station apparatus is constant.
  • the separation circuit 2 is a circuit unit that separates transmission data T1 multiplexed with data for a plurality of users sent from an external data device into data Tll to Tnl for each user and supplies the data to each channel circuit. It is.
  • the TST data generating circuit 3 is a circuit section for generating the data for the three clocks and the three data 01 for the three clocks and supplying the generated data to each channel circuit and the delay circuit 4.
  • the multiplexing circuit 5 is a circuit unit that encodes and multiplexes the spread downlink signals ⁇ 12 to ⁇ 2 from the channel circuits 21 to 2 ⁇ , and transmits the transmission signal ⁇ 2 to an external external wireless device.
  • the external wireless device converts the transmission signal ⁇ 2 into a wireless signal and transmits it to each terminal via an antenna.
  • the SEL circuit 6 operates in accordance with the selection signal S4 set from the control circuit 1 for each channel circuit 2 :! This is a circuit section that selects one of the ascending or descending signal signals 12 to ⁇ 2 from 22 ⁇ and outputs it to the addition circuit 7 as a return signal TSTD2.
  • the adding circuit 7 adds the return signal TSTD2 and the received signal R2 obtained by converting a signal obtained by spatially multiplexing the uplink signal transmitted from each wireless terminal into a baseband signal by an external wireless device.
  • This is a circuit section that supplies the received signal R3 to each of the channel circuits 21 to 2 ⁇ .
  • the channel circuit 21 normally operates in one of the modes of uplink TST transmission, downlink TST transmission, and downlink TST reception in accordance with the mode signals S11 to S13 from the control circuit 1. Department. In the normal operation, the channel circuit 21 transmits the downstream signal T12 obtained by encoding and spreading the data Tl1 to the subsequent multiplexing circuit 5, and despreads the reception signal R3 from the addition circuit 7. Then, the obtained data R 1 l to Rn 1 are output to the multiplexing circuit 8.
  • the TST data TSTD1 from the TST data generation circuit 3 is encoded as an uplink signal in a predetermined format, and the output is encoded with the power value TSTP1 set by the control circuit 1.
  • the channel circuit 21 operates in the downlink TST transmission mode in the same manner as the uplink TST transmission mode except that the signal format is different from that of the uplink TST. Furthermore, in the case of downlink TST reception, the input received signal R3 is despread and decoded by a predetermined method, and the obtained data Rll to Rn1 are output to the SEL circuit 9. Power.
  • the other channel circuits 22 to 2n perform the same operation as described above.
  • the SEL circuit 9 selects one of the data R11 to Rn1 according to the selection signal S5 from the control circuit 1 and transmits it to the TST data comparison circuit 10 as reception TST data R4. It is a circuit part.
  • the delay circuit 4 delays the TST data TSTD 1 by an amount of time corresponding to the turn of the TST data after the TST data is generated, and compares the obtained original data TSTD 3 with the TST 'data comparison circuit. It is a circuit unit for transmitting to 10.
  • the TST data comparison circuit 10 is a circuit unit that compares the original data TSTD3 with the received TST data R4, and transmits a result indicating whether or not they match to the control circuit 1.
  • FIG. 2 is a block diagram showing the internal configuration of the channel circuit 21.
  • the configuration of the other channel circuits 22 to 2n is the same as that of the channel circuit 21, and the detailed description is omitted here.
  • the channel circuit 21 includes a SEL circuit 31, an encoding circuit 32, a DLTPC bit multiplexing circuit 33, a DL power control circuit 34, a TSTDL power control circuit 35, a SEL circuit 36, a spreading circuit 37, a SEL circuit 38, and a TST code.
  • T ST UL power control circuit 40 TST spreading circuit 41, despreading circuit 42, ULTPC decoding circuit 43, ULS IR estimation circuit 44, decoding circuit 45, TST despreading circuit 46, TST decoding circuit 47, and A SEL circuit 48 is provided.
  • the SEL circuit 31 selects the data T11 in the normal mode according to the mode signal S11 from the control circuit 1, and selects the TST data TSTD1 in the uplink / downstream TST transmission mode, This is output to the encoding circuit 32 as data T100.
  • the encoding circuit 32 encodes the data T100 in a predetermined format for a downlink signal and outputs the encoded data as data 101.
  • the DLTPC pit multiplexing circuit 33 decodes a DLTPC bit indicating whether the uplink transmission power should be increased (1) or decreased (0) for the wireless terminal. Overnight multiplex on T101.
  • the DL power control circuit 34 controls the downlink transmission power according to the ULTPC bit indicating whether to increase (1) decrease or (0) the downlink transmission power of the wireless terminal described later.
  • the TSTDL power control circuit 35 transmits with the transmission power of TSTP1 set by the control circuit 1.
  • the SEL circuit 36 selects T103 in the normal mode, and selects T104 in the uplink Z-down TST transmission mode, and transmits the output to the spreading circuit 37. .
  • Spreading circuit 37 spreads T105 into a predetermined format as a downlink signal, and transmits the result to SEL circuit 38.
  • the SEL circuit 38 selects T107 described later in the case of uplink TST transmission, and selects T106 in the case of downlink normal transmission or uplink TST transmission mode. Send as 12.
  • the three-to-three encoding circuit 39 encodes TSTD1 as an upstream signal in a predetermined format.
  • the TST UL power control circuit 40 transmits T108 with the power set in TSTP1.
  • the TST spreading circuit 41 spreads the signal as an uplink signal in a predetermined format, and transmits T107 to the SEL circuit 38 as a result.
  • the despreading circuit 42 despreads R3 in a predetermined format as an uplink signal and extracts user data to be received.
  • the ULTPC decoding circuit 43 supplies the uplink TPC bit ULTPC transmitted from the terminal included in R101 to the DL power control circuit 34 described above.
  • the UL SIR estimating circuit 44 estimates the SIR of R101, compares the SIR with the Target SI Rl given from the control circuit 1 in FIG. 1, and uses the result as DLTPC as the DLTPC bit multiplexing circuit 33 described above. Send to.
  • the decoding circuit 45 decodes R101 as an upstream signal in a predetermined format.
  • the TST despreading circuit 46 despreads; 3 as a down signal with a predetermined format.
  • the TST decoding circuit 47 decodes R103 as a downlink signal in a predetermined format, and transmits R104 to the SEL circuit 48 as a result.
  • the SEL circuit 48 According to SI 3, R104 is selected in the downlink TST reception mode, and R102 is selected otherwise, and the result is transmitted as R11.
  • uplink TST loopback test
  • the purpose is to check the state of the receiving side of the channel circuit, and therefore, an uplink signal must be transmitted from any channel circuit. Therefore, in the following, the upstream TST signal transmission circuit: channel circuit 21
  • the channel circuit 21 performs the uplink TST operation, and the channel circuit 22 performs the normal operation.
  • the channel circuit 21 ignores the input signal Tl 1, encodes and spreads the TSTD 1, and transmits the result to the SEL circuit 6.
  • the transmission power at that time follows TSTP1.
  • the control circuit 1 sets in S4 such that T12 is selected in the SEL circuit 6.
  • the output TSTD2 of the SEL circuit 6 is added to R2 including the uplink signal transmitted from each terminal in the adding circuit 7, and is provided as a signal R3 to all channel circuits.
  • Channel circuit 22 despreads and decodes signal R 3 and outputs signal R 21 to SEL circuit 9.
  • the control circuit 1 gives a setting S5 in which R21 is selected in the SEL circuit 9, and outputs the rule 21 to the TST data comparison circuit 10 as R4 in the three-way circuit 9.
  • the TST data comparison circuit 10 compares TSTD 3 with R4 and notifies the control circuit 1 of the result of the data match, thereby confirming the normality of the receiving circuit of the channel circuit 22. It has been confirmed.
  • the uplink TST circuit is realized by channel circuits 21, 23-2n.
  • downlink TST a loopback test for the transmission function of the radio base station apparatus.
  • the purpose is to confirm the normality of the transmission side of the channel circuit 21, and both the channel circuits 21 and 22 perform the downlink TST operation.
  • Downstream TST circuit Channel circuit 21
  • Downstream T ST receiver circuit Channel circuit 22
  • the input signal TSTD1 is encoded and spread, and T12 is output.
  • This T12 is input to all the channel circuits through the SEL circuit 6 and the adder circuit 7, as in the case of the upstream TST.
  • the signal R3 is despread and decoded, and as a result R21 is output. Subsequent operations are the same as for the uplink TST. The same applies to the case where the downlink TST circuit is realized by the channel circuits 21, 23 to 2n.
  • CI (n) indicates the level of the signal power from wireless terminal # 1 included in signal R 2 when the number of call connections is -n, respectively
  • C tst (n) indicates the level of TST signal TST D 2
  • the power level is shown.
  • SF indicates the band expansion rate
  • NO indicates the level of noise generated in the radio base station apparatus.
  • the uplink SIR 1 by the signal transmitted from the radio terminal # 1 is obtained by the following equation (3).
  • the uplink TST transmission power TSTP 1 set by the control circuit 1 in the channel circuit 21 is set based on Table 1 below.
  • the channel circuit 21 encodes and spreads Tl1 input from the external data device, and outputs the output T12 to the multiplexing circuit 5 in FIG.
  • the transmission power at this time is controlled by the DL power control circuit 34, where closed-loop downlink transmission power control is performed.
  • the ULTPC decoding circuit 43 decodes the UL TPC bit in which the control information requested by the terminal is written, and outputs “1” when the terminal requests a transmission power increase, and receives a transmission power reduction request when the terminal requests a transmission power increase. If there is, “0” is given to the DL power control circuit 34. According to the ULTPC bit, the DL power control circuit 34 sets a higher power by a predetermined amount than the immediately preceding power in the case of the request for increasing the transmission power, and sets a lower power in the case of the request for reducing the transmission power. The receiving side despreads and decodes the signal R3 containing the uplink signal sent from the terminal, and then sends R11 to the external data terminal as a result 9 '.
  • the channel circuit 21 When the channel circuit 21 performs uplink TST transmission, the channel circuit 21 encodes and spreads the data TSTD 1 provided from the TST data generation circuit 3 and provides the output T 12 to the SEL circuit 6.
  • the transmission power control at this time is performed by the TSTUL power control circuit 40, and the power value set at this time is TST P1 given from the control circuit 1.
  • the case where the channel circuit 21 performs the downlink TST transmission is almost the same as the above-described uplink TST transmission. The difference is that the transmission power control is performed by the TSTDL power control circuit 35, and the power at this time is also TS TP1.
  • the channel circuit 21 When the channel circuit 21 performs downlink TST reception, the channel circuit 21 performs TST despreading and TST decoding on the signal R3 including the downlink TST signal transmitted by another channel circuit, and sets the result as Rl1 to TST. Pass to data comparison circuit 10.
  • the downlink transmission power from the radio base station apparatus to the radio terminal is controlled by the closed loop transmission control between the radio base station apparatus and the radio terminal, whereas in the case of TST, In the case of uplink and downlink TST transmission, it is controlled by the transmission power TSTP 1 determined by the control circuit 1.
  • the TS TDL power control circuit 35 and the TSTUL power control circuit 40 for adjusting the transmission power of the test signal are provided in each channel circuit.
  • the control circuit 1 determines the transmission power of the test signal according to the number of call connections of the wireless terminals connected to the device in the loopback test, and uses the transmission power for the TSTDL of the channel circuit used for the loopback test. This is to instruct the power control circuit 35 or the TSTUL power control circuit 40. Therefore, interference between the TST signal used for the loopback test and the normal call can be suppressed, and a good loopback test can be performed.
  • the transmission power of the test signal may be increased or decreased according to the increase or decrease in the number of call connections. More specifically, as the transmission power of the test signal, the ratio of the test signal to the total interference noise obtained when the transmission power of the test signal is made equal to the transmission power of the wireless terminal when the number of call connections is one. (SIR: Signal to Interference Ratio) may be selected so that transmission power that satisfies at least the number of call connections is selected. As a result, even when the amount of interference from the wireless terminal to the test signal changes according to the number of call connections, the amount of interference that the test signal gives to the uplink received signal of the normal call and the deterioration of the test signal quality due to the interference of the normal call are minimized.
  • SIR Signal to Interference Ratio
  • a transmission power adjustment unit that adjusts the transmission power of a test signal
  • a control unit controls the transmission power according to the number of call connections of wireless terminals connected to the device at the time of a loopback test.
  • the transmission power of the test signal is determined by using the TSTDL power control circuit or the TSTUL power control circuit of the channel circuit used for the loopback test. Interference with calls can be suppressed, and good turnaround tests can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

制御回路(1)で、折り返し試験の際に当該装置に呼接続されている無線端末の呼接続数に応じた試験信号の送信電力を求め、その送信電力TSTPを、折り返し試験信号の送信に用いているチャネル回路(21~2n)へ出力する。そのチャネル回路(21~2n)では、制御回路(1)からの送信電力TSTPに基づいて試験信号の送信電力を調整する。

Description

明 細 書 無線基地局装置およびその折り返し試験方法 発明の背景
本発明は、 無線基地局装置および折り返し試験方法に関し、 特に無線端末との 間でやり取りする信号を装置内で折り返して確認する折り返し試験する無線基地 局装置およびその折り返し試験方法に関するものである。
WC DMA (Wideband Code Divis ion Mul t iple Access) などの移動体通信で 用いられる無線基地局装置では、 無線端末との間でやり取りする信号の送受信機 能を試験する折り返し試験機能を有している。 例えば、 無線基地局装置から無線 端末に対して送儈する下り信号の送信機能を試験する場合には、 その送信機能か ら出力された下り信号を無線基地局装置内で折り返し、 この折り返した信号を、 無線端末から無線基地局装置に対して送信される上り信号のための受信機能で受 信し、 その受信結果に基づき送信機能の正常性を確認するものとなっている。 逆 に、 受信機能を試験する場合には、 通常、 下り信号を送信する送信機能から上り 信号を出力し、 これを無線基地局装置内で折り返した折り返した信号を受信機能 で受信し、 その受信結果に基づき送信機能の正常性を確認するものとなっている。 このような折り返し試験では、 無線基地局装置内で折り返した折り返し信号と 実際に無線端末から届いた上り信号とが受信機能において干渉する場合がある。 したがって、 折り返し信号のレベルを低くして上り信号に対する折り返し信号の 干渉を低減する必要がある。
従来、 試験用送受信機 (以下、 T T Rという : Test Transmi t ter and Receive r) を用いた無線基地局装置の試験方法として、 このような試験信号の干渉を低減 するための技術が提案されている (例えば、 特許文献 1など参照) 。 T T Rを用 いた試験とは、 T T Rから送信された所定の試験信号を無線基地局装置で受信し て、 その無線基地局装置の受信機能の正常性を確認し、 逆に無線基地局装置から 送信された所定の試験信号を T T Rで受信して、 その無線基地局装置の送信機能 の正常性を確認するものである。
このような TTRを用いた試験では、 TTRから送信した比較的大きなレベル の試験信号が他の無線端末からの上り信号と干渉し、 あるいは無線基地局装置か ら送信した比較的大きなレベルの試験信号が他の無線端末への下り信号と干渉す る。 このため、 TTRや無線基地局装置から送信する試験信号として、 上り信号 や下り信号として用いられる最低速ビットレートやさらに低いビットレートを用 いるようにしたものである。 これにより、 低いビットレートの試験信号では、 拡 散利得が増えることから、 伝送品質すなわち 1ビット当たりの信号受信エネルギ 一 E bと雑音および逆拡散した干渉雑音の和の電カスペクトル密度 N oとの比
(Eb/No) が改善される。 このため、 無線基地局装置や TTRで試験信号を 送信する際、 EbZNoが改善された分だけ試験信号の送信電力を低減でき、 他 の上り信号や下り信号への干渉を抑制できる。
ところで、 WCDMA方式のように、 複数の無線端末を同時に呼接続するとと もに、 干渉量に応じて接続可能な無線端末数が変動する移動無線通信システムで は、 干渉量が増えてしまうと基地局装置に接続できる端末の数が減つてしまうた め、 TST信号の送信電力は通常呼に影響を与えないような低い値にしなければ ならない。 また、 今度は通常呼の数が増えると、 これらの干渉により TST信号 の品質が劣化してしまいエラーが発生するようになる。 TSTは、 無線基地局装 置内の正常性を確認するためのものであるから、 装置異常の場合のみエラーが発 生するようなシステムが望ましく、 このような通常呼の干渉による信号劣化は避 けなければならない。
しかしながら、 前述した従来の技術では、 TST送信電力は固定的に決められ ていたため、 折り返し試験の際に用いる TST信号と通常呼との干渉が発生し、 通常呼への影響や TSTの精度低下が生ずるという問題点があった。 例えば、 T ST送信電力を固定にした場合の通常呼および TSTの S I R (Signal to Inte rference Ratio:希望信号と干渉雑音総和との比) は次のようになる。 例えば呼 接続数が 1および 64のときの TST信号電力 C t s t (1) =C t s t (6 4) =- 138 dBmとした場合の S I R t s t (試験信号と干渉雑音総和との 比) は、 SIRtst=Ctst(64)+10Xlog(SF)
-ioxiogaoNzio+ioc 10+10G2(64)/10+…十 10CW64)) =-12dB
となり、 とても信号が通るような品質ではない。
また、 呼接続数 =1、 C 1 (1) =- 138 dBm, C t s t (1) =C t s t (64) =- 120 dBmとした場合の S I R 1, S I R t s tは、
SIRl = Cl(l)+10Xlog (SF)— 10 X 1 og (10N 10 + 1 Oclsl(VlO)
= 3dB
SIRtst = Ctst(l)+10 log(SF)-10Xlog(10N0/10 + 10CI<1)/10)
=2權
となる。 この場合、 目標とする S I R値すなわち Ta r g e t S I R=6 dBで あるため、 S I R 1 (端末送信信号と干渉雑音総和との比) が 6 dBに満たない 分だけ端末の送信電力は高く制御されてしまうのに対し、 T S Tの信号品質は必 要以上によくなつている。 したがって、 折り返し試験の場合、 通常呼が増えると、 それにより折り返し信号に対する干渉が大きくなり、 折り返し信号にエラーが発 生してしまい、 装置の正常性を良好に確認できなくなる。 発明の概要
本発明はこのような課題を解決するためのものであり、 折り返し試験の際に用 いる TST信号と通常呼の無線端末との干渉を抑制でき、 良好な折り返し試験を 実施できる無線基地局装置およびその折り返し試験方法を提供することを目的と している。
本発明にかかる無線基地局装置は、 複数の無線端末を同時に呼接続するととも に干渉量に応じて接続可能な無線端末数が変動する移動無線通信システムで用い られ、 無線端末との間で無線通信を行う外部無線装置とベ一スパンドの送受信信 号をやり取りする無線基地局装置であって、 移動無線通信システムで用いる無線 チャンネルごとに設けられて、 当該無線チャンネルを介して呼接続された無線端 末への送信データをベースパンドの送信信号に変換するとともに任意の送信電力 で外部無線装置へ出力し、 外部無線装置からのベースバンドの受信信号を無線端 末からの受信デ一夕として出力する複数のチャネル回路と、 チヤネル回路のうち 折り返し試験の送信側となる送信側チャネル回路から出力した所定の試験信号を 当該装置内で折り返し、 チャネル回路のうち折り返し試験の受信側となる受信側 チャネル回路で受信することにより任意のチャネル回路の送信機能または受信機 能を試験する折り返し試験手段と、 折り返し試験の際に当該装置に呼接続されて いる無線端末の呼接続数に応じた試験信号の送信電力を決定し、 その送信電力を 送信側チャネル回路へ指示する制御部とを備えるものである。
この際、 送信電力については、 制御部で、 送信電力を決定する際、 呼接続数の 増減に応じて試験信号の送信電力を増減させるようにしてもよい。 また制御部で、 試験信号の送信電力を決定する際、 その送信電力として、 呼接続数が 1のときに 試験信号の送信電力を当該無線端末の送信電力と等しくした場合に得られる、 試 験信号と干渉雑音総和との比 (S I R : Signal to Interference Rat io) を、 少 なくとも呼接続数の際に満足する送信電力を選択するようにしてもよい。
また折り返し試験手段の具体的構成例として、 送信側チャネル回路に対して折 り返し試験に用いる試験データを供給する試験データ発生回路と、 試験デ一夕に 基づき送信側チヤネル回路から出力された試験信号を受信側チャネル回路へ受信 信号として折り返す選択回路と、 試験データ発生回路から供給した試験デー夕と 受信側チャネル回路から出力された試験信号の受信データとを比較する試験デー 夕比較回路とを設けてもよい。
またチャネル回路での送信電力制御の具体的構成例として、 無線端末からの受 信デ一夕に多重されている要求ビットに応じて無線端末への送信信号の送信電力 を調整するパワー制御回路と、 無線端末からの受信信号と干渉雑音総和との比 ( S I R : Signal to Interference Rat io) に基づき、 当該無線端末に対して送 信電力の調整を指示する指示ビットを当該無線端末への送信データへ多重するビ ット多重回路と、 制御回路からの指示に応じて試験信号の送信電力を調整する試 験信号パヮー制御回路とを設けてもよい。
また、 本発明にかかる無線基地局装置の折り返し試験方法は、 複数の無線端末 を同時に呼接続するとともに千渉量に応じて接続可能な無線端末数が変動する移 動無線通信システムで用いられ、 無線端末との間で無線通信を行う外部無線装置 とベースバンドの送受信信号をやり取りする無線基地局装置内で、 所定の試験信 号を折り返して送受信することにより当該装置の送信機能または受信機能を試験 する無線基地局装置の折り返し試験方法であつて、 所定の試験信号を当該装置内 で折り返して送受信することにより当該装置の送信機能または受信機能を試験す るステップと、 当該無線基地局装置での無線端末の呼接続数に応じて試験信号の 送信電力を決定するステップと、 その送信電力に基づき試験信号の送信電力を調 整するステップとを備えるものである。
送信電力を決定するステップについては、 呼接続数の増減に応じて試験信号の 送信電力を増減させるステップを設けてもよく、 より具体的にはその送信電力と して、 呼接続数が 1のときに試験信号の送信電力を当該無線端末の送信電力と等 しくした場合に得られる、 試験信号と干渉雑音総和との比 (S I R : Signal to Interference Rat io) を、 少なくとも呼接続数の際に満足する送信電力を選択す るステップを設けてもよい。
また、 送信電力を決定するステップの他の具体例として、 呼接続数が 1 6未満 の場合、 試験信号の送信電力として呼接続数が 1の際に無線端末へ送信される送 信信号の送信電力を用いるステップを設けてもよく、 あるいは呼接続数が 1 6以 上かつ 3 2未満の場合、 試験信号の送信電力として呼接続数が 1の際に無線端末 へ送信される送信信号の送信電力に 1 d Bを加えた電力を用いるステップを設け てもよい。 さらには、 呼接続数が 3 2以上かつ 6 4未満の場合は、 試験信号の送 信電力として呼接続数が 1の際に無線端末へ送信される送信信号の送信電力に 3 d Bを加えた電力を用いるステップを設けてもよく、 あるいは呼接続数が 6 4以 上の場合は、 試験信号の送信電力として呼接続数が 1の際に無線端末へ送信され る送信信号の送信電力に 1 8 d Bを加えた電力を用いるステップを設けてもよい。 図面の簡単な説明
図 1は、 本発明の一実施の形態にかかる無線基地局装置の構成を示すブロック 図である。
図 2は、 チャネル回路の内部構成を示すプロック図である。 実施例の詳細な説明
[無線基地局装置の構成]
図 1は本発明の一実施の形態にかかる無線基地局装置の構成を示すブロック図 である。 この無線基地局装置は、 各無線端末とデータ通信を行う各ユーザ分のデ 一夕が多重された外部データ装置 (図示せず) からの送信デ一夕 T1を、 各無線 端末への下り信号が多重されたベースバンドの送信信号 T 2へ変換して外部無線 装置 (図示せず) へ出力する装置である。 また、 これとともに、 各無線端末から の上り信号が多重された外部無線装置からのべ一スパンドの受信信号 R 2を、 各 ユーザ分のデータが多重された受信データ R 1へ変換して外部データ装置へ出力 する。
無線基地局装置には、 複数のユーザ分のチャネル回路 2 l〜2n (n>2) が 設けられており、 同時に n個の無線端末と呼接続でき、 TST (折り返し試験) 時には、 n— 2個の無線端末と呼接続できる。 これらチャネル回路 21〜2 nの ほか、 無線基地局装置には、 制御回路 1、 分離回路 2、 TSTデータ発生回路 3、 遅延回路 4、 多重回路 5、 SEL回路 6、 加算回路 7、 多重回路 8、 SEL回路 9、 および TSTデータ比較回路 10が設けられている。
制御回路 1は、 CPUなどのマイクロプロセッサからなり、 所定のプログラム を実行することにより無線基地局装置の各部を制御する。 ここでは、 各チャネル 回路 21〜2 nに対して、 当該チャネル回路の動作モード (通常/ TST) を指 示するためのモード信号 S 11, S 12, S 13〜Sn l, S n 2, Sn 3、 当 該チャネル回路に対して現在の呼接続数から算出した最適な TST送信電力を指 示するための TST送信電力信号 TSTP l〜TSTPn、 および通常呼での上 り送信電力制御の基準を示す上り S I R l〜S I Rn (以下、 T a r g e t S I R: Signal to Interference Rat ioZ希望信号と干渉雑音総和との比) などの制 御信号を出力して、 各チャネル回路 2 l〜2nを制御する。
なお、 本実施の形態にかかる無線基地局装置は、 WCDMAのように、 複数の 無線端末を同時に呼接続するとともに、 干渉量に応じて接続可能な無線端末数が 変動する移動無線通信システムで用いられることを前提としている。 したがって、 無線基地局装置と無線端末との間では、 常に上り受信 S I Rが T a r g e t S I Rに収束するような閉ループの送信電力制御が行われているため、 無線基地局装 置での受信信号に含まれる各無線端末からの信号レベルは一定である。
分離回路 2は、 外部データ装置から送られてきた複数ユーザ分のデータが多重 されている送信データ T1を、 各ユーザ毎のデータ T l l〜Tn lに分離し各チ ャネル回路に供給する回路部である。 TSTデータ発生回路 3は、 丁3丁時の丁 3丁用デー夕丁3丁01を発生させ、 それを各チャネル回路および遅延回路 4に 与える回路部である。 多重回路 5は、 チャネル回路 21〜2 ηからの拡散された 下り信号 Τ 12〜Τη 2を符号化多重し、 その送信信号 Τ 2を外部の外部無線装 置へ送信する回路部である。 外部無線装置では、 この送信信号 Τ 2を無線信号に 変換しアンテナ経由で各端末に送信する。 SEL回路 6は、 制御回路 1から設定 される選択信号 S 4に従い、 各チャネル回路 2:!〜 2 ηからの上りもしくは下り 丁 丁信号丁 12〜Τη 2のうちから 1つを選ぴ、 それを折り返し信号 TSTD 2として加算回路 7へ出力する回路部である。 加算回路 7は、 この折り返し信号 T S T D 2と、 各無線端末から送信された上り信号が空間多重された信号が外部 無線装置でベースバンド信号に変換された受信信号 R 2とを加算し、 得られた受 信信号 R 3を各チャネル回路 21〜 2 ηへ与える回路部である。
チャネル回路 21は、 制御回路 1からのモ一ド信号 S 1 1〜S 13に従い、 通 常、 上り TST送信、 下り TST送信、 下り TST受信のうちのどれか 1つのモ —ドで動作する回路部である。 このチャネル回路 21では、 通常動作の場合は、 データ Tl 1を符号化し拡散して得られた下り信号 T12を後段の多重回路 5へ 送信するとともに、 加算回路 7からの受信信号 R 3を逆拡散して復号し、 得られ たデータ R 1 l〜Rn 1を多重回路 8へ出力する。 上り T S T送信モードの場合 は、 TSTデータ発生回路 3からの TST用デ一タ TSTD 1を上り信号として 予め定められたフォーマツトで符号化し、 その出力を制御回路 1から設定された 電力値 TSTP 1で増幅または減衰させ、 拡散後その出力 T 12を SEL回路 6 に与える。 また、 チャネル回路 21では、 下り TST送信モードの場合も上り T S Tと信号フォーマットが異なる点以外は上り T S T送信モードと同じ動作をす る。 さらに、 下り TST受信の場合は、 入力された受信信号 R 3を予め定められ た方式で逆拡散して復号し、 得られたデータ R l l〜Rn 1を SEL回路 9へ出 力する。 なお、 他のチャネル回路 22〜2 nも上記と同様の動作を行う。
SEL回路 9は、 制御回路 1からの選択信号 S 5に従って、 デ一夕 R11〜R n 1のうちのどれか 1つを選び、 それを受信 TSTデータ R4として TSTデー 夕比較回路 10へ送信する回路部である。 遅延回路 4は、 TSTデータが発生さ れてからそのデータが折り返ってくるのに相当する時間の分だけ TST用データ TSTD 1を遅延させ、 得られた元データ TSTD 3を TST 'データ比較回路 1 0へ送信する回路部である。 TSTデータ比較回路 10は、 元データ TSTD3 と受信 T S Tデータ R 4を比較し、 一致しているか否かの結果を制御回路 1へ伝 える回路部である。
[チャネル回路の構成]
次に、 図 2を参照して、 チャネル回路 21の内部構成を説明する。 図 2はチヤ ネル回路 21の内部構成を示すブロック図である。 なお、 他のチャネル回路 22 〜 2 nの構成はチャネル回路 21と同様であり、 ここでの詳細な説明は省略する。 このチャネル回路 21には、 SEL回路 31, 符号化回路 32、 DLTPCビッ ト多重回路 33、 DLパワー制御回路 34、 TSTDLパワー制御回路 35、 S EL回路 36、 拡散回路 37、 SEL回路 38、 TST符号化回路 39、 T ST ULパワー制御回路 40、 TST拡散回路 41、 逆拡散回路 42、 ULTPC復 号回路 43、 ULS I R推定回路 44、 復号回路 45、 TST逆拡散回路 46、 TST復号回路 47、 および SEL回路 48が設けられている。
まず、 チャネル回路 21の送信側の構成および基本動作について説明する。 S EL回路 31は、 制御回路 1からのモード信号 S 1 1に従い、 通常モードの場合 はデータ T1 1を選択するとともに、 上り/下り TST送信モードの場合は TS T用データ TSTD 1を選択し、 これをデータ T 100として符号化回路 32に 出力する。 符号化回路 32は、 予め定められた下り信号用のフォーマットでデ一 夕 T 100を符号化しデータ 101として出力する。
この無線基地局装置では、 上り/下り方向とも、 閉ループの送信電力制御が行 われており、 無線基地局装置および無線端末での受信 S I Rが一定に保たれてい ることを前提とする。 DLTPCピット多重回路 33は、 無線端末に対して上り 送信電力を上げるべきか (1) 下げるべきか (0) を示す DLTPCビットをデ 一夕 T 101に多重する。 DLパワー制御回路 34は、 後述する無線端末の下り 送信電力を上げるべきか (1) 下げるべきか (0) を示す ULTPCビットに従 い下り送信電力を制御する。 これに対し、 TSTDLパワー制御回路 35は、 制 御回路 1から設定された TS TP 1の送信電力で送信する。 SEL回路 36は、 制御回路 1からのモード信号 S 1 1に従い、 通常モードの場合は T103を選択 するとともに、 上り Z下り TST送信モードの場合は T104を選択しその出力 を拡散回路 37へ送信する。 拡散回路 37は、 下り信号として予め定められたフ ォ一マットに T105を拡散し、 その結果を SEL回路 38へ送信する。 SEL 回路 38は、 制御回路 1からのモード信号 S 12に従い、 上り TST送信の場合 は後述の T 107を、 下り通常送信、 もしくは上り TST送信モードの場合は T 106を選択し、 その結果を T 12として送信する。 丁3丁符号化回路39は、 TSTD 1を上り信号として予め定められたフォーマツトで符号化する。 TST ULパワー制御回路 40は、 T 108を TSTP 1で設定された電力で送信する。 TST拡散回路 41は、 上り信号として予め定められたフォーマツトで拡散し、 その結果 T 107を前述の SEL回路 38へ送信する。
次に、 チャネル回路 21の受信側の構成および基本動作について説明する。 逆 拡散回路 42は、 上り信号として予め定められたフォーマツトで R3を逆拡散し、 受信すべきユーザデータを抽出する。 ULTPC復号回路 43は、 この R 101 に含まれている端末から送信された上り TPCビット ULTPCを前述の D Lパ ヮー制御回路 34へ与える。 UL S I R推定回路 44は、 R 101の S I Rを推 定し、 その S I Rを図 1中の制御回路 1から与えられた T a r g e t S I Rlと 比較し、 その結果を DLTPCとして前述の DLTPCビット多重回路 33へ送 信する。 DLTPCの極性は、 推定した S I Rが T a r g e t S I R lより大き ければ端末に対して上り電力を下げることを要求するため D LTPC=0とし, 推定した S I Rの方が小さい場合は逆に DLTPC=1とする。 復号回路 45は、 R 101を上り信号として予め定められたフォーマツトで復号する。 TST逆拡 散回路 46は、 ; 3を下り信号として予め定められたフォ一マツトで逆拡散する。 TST復号回路 47は、 R 103を下り信号として予め定められたフォーマツト で復号し、 その結果 R 104を SEL回路 48に送信する。 SEL回路 48は、 S I 3に従って、 下り T ST受信モードの時は R 104を、 それ以外の時は R 1 02を選択し、 その結果を R 11として送信する。
[無線基地局装置の動作】
次に、 図 1を参照して、 本実施の形態にかかる無線基地局装置の TST (折り 返し試験) 動作について説明する。 まず、 無線基地局装置の受信機能に対する折 り返し試験 (以下、 上り TSTという) について説明する。 上り TST時は、 チ ャネル回路の受信側の状態をチェックするのが目的であり、 そのために任意のチ ャネル回路から上り信号を送信しなければならない。 したがって、 以下では、 上り TST信号送信回路:チャネル回路 21
被上り TST回路 :チャネル回路 22
を用いる場合を例として具体的に説明する。 この場合は、 チャネル回路 22の受 信側の正常性を確認するのが目的であり、 チャネル回路 21は上り TST動作、 チャネル回路 22は通常動作になる。 チャネル回路 21は、 入力信号 Tl 1は無 視し、 TSTD 1を符号化して拡散し、 その結果を SEL回路 6に送信する。 そ の時の送信電力は TSTP 1に従う。 制御回路 1は SEL回路 6で T12が選択 されるような設定を S 4で行う。 これにより、 SEL回路 6の出力 TSTD2は、 加算回路 7において各端末から送信されてきた上り信号が含まれる R 2に加算さ れ、 信号 R 3として全チャネル回路に与えられる。
チャネル回路 22は信号 R 3を逆拡散および復号し、 信号 R21を SEL回路 9へ出力する。 制御回路 1は、 SEL回路 9で R21が選ばれる設定 S 5を与え、 3£し回路9では尺21を R4として TSTデータ比較回路 10へ出力する。 こ れにより、 TSTデータ比較回路 10では TSTD 3と R4が比較され、 デ一タ がー致したか否かの結果が制御回路 1に通知され、 これによりチャネル回路 22 の受信側回路の正常性が確認されたことになる。 被上り TST回路をチャネル回 路 21, 23〜2 nで実現した場合も同様である。
次に、 無線基地局装置の送信機能に対する折り返し試験 (以下、 下り TSTと いう) について説明する。 この場合は、 チャネル回路 21の送信側の正常性を確 認するのが目的であり、 チャネル回路 21, 22とも下り TST動作になる。
被下り TST回路 :チャネル回路 21 下り T ST受信回路 :チャネル回路 22
チャネル回路 21では、 入力信号 TSTD 1が符号化、 拡散され T12が出力 される。 上り TST時同様、 この T12は SEL回路 6、 加算回路 7を通って全 チャネル回路に入力される。 チャネル回路 22では、 信号 R 3が逆拡散、 復号さ れその結果 R 21が出力される。 この後の動作は上り TSTと同様である。 下り TST回路をチャネル回路 21, 23〜2 nで実現した場合も同様である。
次に、 制御回路 1での TST送信電力制御動作について説明する。 なお、 本実 施の形態では、 WC DMAのように、 複数の無線端末を同時に呼接続するととも に、 干渉量に応じて接続可能な無線端末数が変動する移動無線通信システムを前 提としている。 したがって、 無線基地局装置と無線端末との間では、 常に上り受 信 S I Rが Ta r g e t S I Rに収束するような閉ループの送信電力制御が行わ れているため、 R 2信号に含まれる各無線端末からの信号レベルは一定である。 また、 ここでは、 通常の呼接続中に平行して TSTを行う場合について説明する。 呼接続数 =1の場合、 その無線端末 #1から送信した信号による上り S I R 1 は、 次の式 (1) で求められる。
SIRl=Cl(l)+10Xlog(SF)-10Xlog(10N0//10+Ctst)…… (1)
ここで、 C I (n) は、 それぞれ呼接続数- nの時の信号 R 2に含まれる無線 端末 # 1からの信号電力のレベルを示し、 C t s t (n) は、 TST信号 TST D 2の電力レベルを示している。 また、 SFは帯域拡大率、 NOは当該無線基地 局装置内で生じた雑音のレベルを示す。 式 (1) からも分かるように、 呼接続数 =1の場合、 その無線端末 # 1からの上り信号に対して TST信号が千渉するた め、 その分、 信号電力 C I (1) は大きくしなければならない。 例えば、 Ta r g e t S I R = S I R=6 dB, N 0 =- 120 d Bm, SF = 256とし、 C I (1) =C t s t (1) とした場合、 C I (1) =C t s t (1) =— 13 8 dBm程度となる。 また、 チャネル回路 22の被上り TST信号 S I Rを S I R t s tとすると、 S I R t s t =S I R 1となる。
また、 無線端末 # 1〜無線端末 # 16が呼接続している状態 (呼接続数 = 1 6) の場合、 各無線端末同士で干渉する。 したがって、 Ta r g e t S I Rを保 持するためには、 式 (1) の雑音として更に、 式 (2) に示した他無線端末によ る干渉 Nを加え、 式 (3) で求める必要がある。 前述したように、 無線基地局装 置では送信電力制御を用いて全端末からの上り S I Rは同じ Ta r g e t S I R に収束するため、 式 (2) の C2 (16) , C 3 (16) , ···, C 16 (16) は全てほぼ同じ値になる。
Figure imgf000014_0001
このようにして求められた干渉 Nを用いれば、 呼接続数 =16の場合、 その無 線端末 # 1から送信した信号による上り S I R 1は、 次の式 (3) で求められる。
SIR1 = Cl(16)+10Xlog(SF)
-10Xlog(10N0/10+10N/10 + Ctst(16))…… (3)
S I R1は、 式 (1) の時と同じにしなければならないので、 干渉が増えた分 だけ、 式 (3) の信号電力 C 1 (16) を大きくする必要がある。 この場合各無 線端末からの上り信号電力 Cm (m= 1, 2, …, 16) が Cm (16) =- 1 37 dBm程度で、 S I Rm= 6 dBに収束する。 また、 上り信号電力 Cm (1 6) が大きくなり干渉量が増えるため、 TST信号の品質劣化を防ぐためには、 同様にして、 式 (4) に示すように、 C t s t (16) を C t s t (1) より 1 d B程度大きくする必要がある。
Ctst(16) = Ctst(l)+1 = -137dBm …… (4)
同様に呼接続数 n = 32、 64の場合を考えると、 C I (n) , C t s t (n) は以下の式 (5) , 式 (6) の様になる。
CK32) = -135dBm, Ctst (32) = -135dBm …… (5)
CI (64) = - 120dBin, Ctst (64) = -120dBm …… (6)
このとき、 T ST信号電力 C t s t (64) が、 C t s t (1) よりもかなり 大きくなつているが、 C t s t (64) は呼接続数 =64の時の電力であるため、 TST信号による通常呼の干渉の増大は 0. 1 dBなのでさほど問題にはならな い。
以上のように、 制御回路 1がチャネル回路 21に設定する上り TST送信電力 TSTP 1は以下の表 1に基づいて設定される。
[表 1] 呼接続数 TSTP1
nく 16 Cl(l)
16≤n<32 Cl(l)個
32≤n<64 Cl(l)l3dB
64≤n Cl(l)+18dB このように通常呼の呼接続数に応じて T S T送信電力を可変させることにより、 T S T信号の通常呼に対する干渉量を最低限にしながら、 かつ T S T信号の品質 劣化を防ぐことができる。 チャネル回路 22〜2 nを用いて TSTを行う場合も 前述したチャネル回路 21の場合と同様の送信電力制御となり、 また下り TST 信号についても前述した上り TSTと同様である。
次に、 図 2を用いて、 図 1中のチャネル回路 21の内部動作について説明する。 通常、 上り TST送信、 下り TST送信、 下り TST受信時の制御回路 1から 設定される S l l, S 12, S 13は表 2のような選択を行う。 なお、 「AN Y」 は任意の値をとる。
[¾2]
S11 S12 S12 通常 Τ11→Τ100 T106→T12 R102→R11 上り TST送信 TSTD1→T100 Τ106→Τ12 ANY 下り TST送信 ANY Τ107→Τ12 ANY 下り TST受信 I ANY I ANY R104→R11 通常の場合、 チャネル回路 21は外部データ装置から入力された Tl 1を符号 化して拡散し、 その出力 T 12を図 1中の多重回路 5へ出力する。 この時の送信 電力は DLパワー制御回路 34で制御され、 ここでは閉ループの下り送信電力制 御が行われる。 ULTPC復号回路 43は、 端末側が要求してくる制御情報が書 き込まれている UL T P Cビットをでデコードし、 端末から送信電力増大要求が あった場合は 「1」 を、 送信電力低減要求があった場合は 「0」 を DLパワー制 御回路 34へ与える。 DLパワー制御回路 34は、 上記 ULTPCビットに従い、 送信電力増大要求の場合は直前の電力より予め定められた分だけ高い電力を、 送 信電力低減要求の場合は低い電力を設定する。 受信側では、 端末から送られてき た上り信号が含まれる信号 R 3を逆拡散、 復号し、 その結果 R 1 1を外部データ 端末に送 1目 9'る。
チャネル回路 21が上り TST送信を行う場合、 チャネル回路 21は TSTデ 一夕発生回路 3から与えられるデータ TSTD 1を符号化、 拡散しその出力 T 1 2を SEL回路 6へ与える。 この時の送信電力制御は、 TSTULパワー制御回 路 40で行われ、 この時設定される電力値は、 制御回路 1から与えられる TST P 1である。 チャネル回路 21が下り TST送信を行う場合も上述の上り TST 送信とほぼ同様である。 異なるのは、 送信電力制御が TSTDLパワー制御回路 35で行われるという点で、 この時の電力も TS TP 1である。
チャネル回路 21が下り TST受信を行う場合、 チャネル回路 21は他のチヤ ネル回路が送信した下り T S T信号が含まれる信号 R 3を T S T逆拡散および T ST復号し、 その結果を R l 1として TSTデータ比較回路 10に渡す。 これに より、 通常呼の場合は当該無線基地局装置と無線端末との間での閉ループ送信制 御により、 無線基地局装置から無線端末への下り送信電力が制御されるのに対し、 T S T時には、 上りおよび下り T S T送信の場合は制御回路 1で決定した送信電 力 TSTP 1によって制御される。
このように、 本実施の形態では、 各チャネル回路に、 試験信号の送信電力を調 整する TS TDLパワー制御回路 35および TSTULパワー制御回路 40を設 け、 制御回路 1で、 折り返し試験の際に当該装置に呼接続されている無線端末の 呼接続数に応じて試験信号の送信電力を決定し、 その送信電力を折り返し試験に 用いるチャネル回路の TSTDLパワー制御回路 35または TSTULパワー制 御回路 40へ指示するようにしたものである。 したがって、 折り返し試験の際に 用いる TST信号と通常呼との干渉を抑制でき、 良好な折り返し試験を実施でき る。
また、 送信電力を決定する際、 呼接続数の増減に応じて試験信号の送信電力を 増減させるようにしてもよい。 より具体的には、 試験信号の送信電力として、 呼 接続数が 1のときに試験信号の送信電力を当該無線端末の送信電力と等しくした 場合に得られる、 試験信号と干渉雑音総和との比 (S I R : Signal to Interfer ence Ratio) を、 少なくとも呼接続数の際に満足する送信電力を選択するように してもよい。 これにより、 呼接続数に応じて無線端末から試験信号への干渉量が 変わる場合でも、 試験信号が通常呼の上り受信信号に与える干渉量、 および通常 呼の干渉による試験信号の品質劣化を最低限に抑えることができ、 精度よく折り 返し試験を行うことができる。 以上説明したように、 本発明は、 試験信号の送信電力を調整する送信電力調整 部を設け、 制御部で、 折り返し試験の際に当該装置に呼接続されている無線端末 の呼接続数に応じて試験信号の送信電力を決定し、 その送信電力を折り返し試験 に用いるチヤネル回路の T STDLパワー制御回路または T S T U Lパヮ一制御 回路へ指示するようにしたので、 折り返し試験の際に用いる TST信号と通常呼 との干渉を抑制でき、 良好な折り返し試験を実施できる。

Claims

請 求 の 範 囲
1 . 複数の無線端末を同時に呼接続するとともに干渉量に応じて接続可能な無線 端末数が変動する移動無線通信システムで用いられ、 前記無線端末との間で無線 通信を行う外部無線装置とベースバンドの送受信信号をやり取りする無線基地局 装置であって、
前記移動無線通信システムで用いる無線チャンネルごとに設けられて、 当該無 線チャンネルを介して呼接続された無線端末への送信データをベースバンドの送 信信号に変換するとともに任意の送信電力で前記外部無線装置へ出力し、 前記外 部無線装置からのベースバンドの受信信号を前記無線端末からの受信データとし て出力する複数のチャネル回路と、
前記チャネル回路のうち折り返し試験の送信側となる送信側チャネル回路から 出力した所定の試験信号を当該装置内で折り返し、 前記チャネル回路のうち折り 返し試験の受信側となる受信側チャネル回路で受信することにより任意のチヤネ ル回路の送信機能または受信機能を試験する折り返し試験手段と、
前記折り返し試験の際に当該装置に呼接続されている無線端末の呼接続数に応 じた前記試験信号の送信電力を決定し、 その送信電力を前記送信側チャネル回路 へ指示する制御部とを備えることを特徴とする無線基地局装置。
2 . 前記制御部は、 前記送信電力を決定する際、 前記呼接続数の増減に応じて前 記試験信号の送信電力を増減させることを特徴とする請求項 1に記載の無線基地 局装置。
3 . 前記制御部は、 前記試験信号の送信電力を決定する際、 その送信電力として、 前記呼接続数が 1のときに前記試験信号の送信電力を当該無線端末の送信電力と 等しくした場合に得られる、 前記試験信号と干渉雑音総和との比 (S I R : Sign al to Interference Rat io) を、 少なくとも前記呼接続数の際に満足する送信電 力を選択することを特徴とする請求項 1に記載の無線基地局装置。
4. 前記折り返し試験手段は、
前記送信側チャネル回路に対して折り返し試験に用いる試験データを供給する 試験データ発生回路と、
前記試験データに基づき前記送信側チャネル回路から出力された前記試験信号 を前記受信側チャネル回路へ受信信号として折り返す選択回路と、
前記試験データ発生回路から供給した試験データと前記受信側チャネル回路か ら出力された前記試験信号の受信デ一夕とを比較する試験デ一夕比較回路とを備 えることを特徴とする請求項 1に記載の無線基地局装置。
5 . 前記チャネル回路は、
前記無線端末からの受信データに多重されている要求ビットに応じて前記無線 端末への送信信号の送信電力を調整するパワー制御回路と、
前記無線端末からの受信信号と干渉雑音総和との比 (S I R : Signal to Inte rference Rat io) に基づき、 当該無線端末に対して送信電力の調整を指示する指 示ビットを当該無線端末への送信データへ多重するビット多重回路と、
前記制御回路からの指示に応じて前記試験信号の送信電力を調整する試験信号 パワー制御回路とを備えることを特徴とする請求項 1に記載の無線基地局装置。
6 . 複数の無線端末を同時に呼接続するとともに干渉量に応じて接続可能な無線 端末数が変動する移動無線通信システムで用いられ、 前記無線端末との間で無線 通信を行う外部無線装置とベースバンドの送受信信号をやり取りする無線基地局 装置内で、 所定の試験信号を折り返して送受信することにより当該装置の送信機 能または受信機能を試験する無線基地局装置の折り返し試験方法であって、 所定の試験信号を当該装置内で折り返して送受信することにより当該装置の送 信機能または受信機能を試験するステップと、
当該無線基地局装置での無線端末の呼接続数に応じて前記試験信号の送信電力 を決定するステップと、
その送信電力に基づき前記試験信号の送信電力を調整するステップとを備える ことを特徴とする無線基地局装置の折り返し試験方法。
7 . 前記送信電力を決定するステップは、 前記呼接続数の増減に応じて前記試験 信号の送信電力を増減させるステップを備えることを特徴とする請求項 6に記載 の無線基地局装置の折り返し試験方法。
8 . 前記送信電力を決定するステップは、 その送信電力として、 前記呼接続数が 1のときに前記試験信号の送信電力を当該無線端末の送信電力と等しくした場合 に得られる、 前記試験信号と干渉雑音総和との比 (S I R : Signal to Interfer ence Rat io) を、 少なくとも前記呼接続数の際に満足する送信電力を選択するス テツプを備えることを特徴とする請求項 6に記載の無線基地局装置の折り返し試 験方法。
9 . 前記送信電力を決定するステップは、 前記呼接続数が 1 6未満の場合、 前記 試験信号の送信電力として前記呼接続数が 1の際に無線端末へ送信される送信信 号の送信電力を用いるステップを備えることを特徴とする請求項 6に記載の無線 基地局装置の折り返し試験方法。
1 0 . 前記送信電力を決定するステップは、 前記呼接続数が 1 6以上かつ 3 2未 満の場合、 前記試験信号の送信電力として前記呼接続数が 1の際に無線端末へ送 信される送信信号の送信電力に 1 d Bを加えた電力を用いるステツプを備えるこ とを特徴とする請求項 6に記載の無線基地局装置の折り返し試験方法。
1 1 . 前記送信電力を決定するステップは、 前記呼接続数が 3 2以上かつ 6 4未 満の場合は、 前記試験信号の送信電力として前記呼接続数が 1の際に無線端末へ 送信される送信信号の送信電力に 3 d Bを加えた電力を用いるステップを備える ことを特徴とする請求項 6に記載の無線基地局装置の折り返し試験方法。
1 2 . 前記送信電力を決定するステップは、 前記呼接続数が 6 4以上の場合は、 前記試験信号の送信電力として前記呼接続数が 1の際に無線端末へ送信される送 信信号の送信電力に 1 8 d Bを加えた電力を用いるステップを備えることを特徴 とする請求項 6に記載の無線基地局装置の折り返し試験方法。
PCT/JP2003/014393 2002-11-20 2003-11-12 無線基地局装置およびその折り返し試験方法 WO2004047337A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03772721A EP1578034B1 (en) 2002-11-20 2003-11-12 Radio base station apparatus and its loopback test method
CN2003801036566A CN1714523B (zh) 2002-11-20 2003-11-12 无线电基站设备及其回送测试方法
US10/534,710 US7603116B2 (en) 2002-11-20 2003-11-12 Radio base station apparatus and its loopback test method
BR0315947-7A BR0315947A (pt) 2002-11-20 2003-11-12 Aparelho de estação rádio-base e método de teste de auto-retorno

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002336129A JP3976664B2 (ja) 2002-11-20 2002-11-20 無線基地局装置および折り返し試験方法
JP2002-336129 2002-11-20

Publications (1)

Publication Number Publication Date
WO2004047337A1 true WO2004047337A1 (ja) 2004-06-03

Family

ID=32321793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014393 WO2004047337A1 (ja) 2002-11-20 2003-11-12 無線基地局装置およびその折り返し試験方法

Country Status (7)

Country Link
US (1) US7603116B2 (ja)
EP (1) EP1578034B1 (ja)
JP (1) JP3976664B2 (ja)
KR (1) KR100657449B1 (ja)
CN (1) CN1714523B (ja)
BR (1) BR0315947A (ja)
WO (1) WO2004047337A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100604480B1 (ko) * 2004-03-22 2006-07-24 엘지전자 주식회사 이동 영상 전화에서 양방향 지연 시간 검증 방법 및 시스템
JP2007295538A (ja) * 2006-03-29 2007-11-08 Hitachi Kokusai Electric Inc 双方向信号伝送システム
US8103267B2 (en) * 2007-09-26 2012-01-24 Via Telecom, Inc. Femtocell base station with mobile station capability
JP2009171083A (ja) * 2008-01-15 2009-07-30 Nippon Telegr & Teleph Corp <Ntt> 無線パケット通信システム
CN102804836B (zh) * 2009-06-18 2017-07-18 富士通株式会社 中继站、无线通信系统以及无线通信方法
TW201240505A (en) * 2011-03-23 2012-10-01 Acer Inc Power management method for use in a wireless network system
US10365325B2 (en) 2017-08-22 2019-07-30 Micron Technology, Inc. Semiconductor memory device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738496A (ja) * 1993-07-23 1995-02-07 Hitachi Ltd スペクトル拡散通信システムおよび送信電力制御方法
JP2002084237A (ja) * 2000-09-08 2002-03-22 Nippon Telegr & Teleph Corp <Ntt> 回線試験方法と無線基地局装置及び無線装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3112858B2 (ja) * 1997-05-07 2000-11-27 埼玉日本電気株式会社 無線基地局装置の試験装置
US6466548B1 (en) * 1998-10-28 2002-10-15 Cisco Technology, Inc. Hop by hop quality of service measurement system
CN1285985A (zh) * 1998-11-30 2001-02-28 诺基亚网络有限公司 收发信站的测试设备
US6272322B1 (en) * 2000-02-04 2001-08-07 Atheros Communications, Inc. Real-time transceiver gain and path loss calibration for wireless systems
JP3952780B2 (ja) * 2002-01-09 2007-08-01 株式会社日立製作所 信号送受信装置、回路、およびループバックテスト方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738496A (ja) * 1993-07-23 1995-02-07 Hitachi Ltd スペクトル拡散通信システムおよび送信電力制御方法
JP2002084237A (ja) * 2000-09-08 2002-03-22 Nippon Telegr & Teleph Corp <Ntt> 回線試験方法と無線基地局装置及び無線装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1578034A4 *

Also Published As

Publication number Publication date
EP1578034A4 (en) 2010-03-24
US20060146741A1 (en) 2006-07-06
KR100657449B1 (ko) 2006-12-14
EP1578034B1 (en) 2012-10-24
CN1714523B (zh) 2012-05-16
KR20050075439A (ko) 2005-07-20
US7603116B2 (en) 2009-10-13
BR0315947A (pt) 2005-09-13
CN1714523A (zh) 2005-12-28
JP3976664B2 (ja) 2007-09-19
EP1578034A1 (en) 2005-09-21
JP2004172941A (ja) 2004-06-17

Similar Documents

Publication Publication Date Title
US8032172B2 (en) Method and apparatus for forward link gain control in a power controlled repeater
KR101428499B1 (ko) 지연에 민감한 트래픽 스트림 또는 오버헤드 채널로부터의 품질 피드백을 이용하여 무선 통신 시스템에서 역방향 링크 동적 전력 제어를 위한 방법
US7274947B2 (en) Bias error compensated initial transmission power control for data services
US7860042B2 (en) Reverse power control method and apparatus in a mobile communication system in which mobile station determines reverse data rate
KR100753376B1 (ko) 무선 통신시스템에서 역방향 링크 송신 레이트를 결정하는방법 및 장치
US7328019B2 (en) Communication environment measurement method for mobile station and the mobile station
KR101386497B1 (ko) 멀티-플로우 데이터 트래픽에 대해 플로우 당 품질피드백을 이용하여 무선 통신 시스템에서 역방향 링크 동적전력 제어를 위한 방법
US20080194286A1 (en) Systems and methods for performing outer loop power control in wireless communication systems
KR20000069042A (ko) 실행될 전력 제어 명령을 예측함으로서 수신 신호의 쓰레스홀드 및 측정을 조절하는 방법 및 장치
JP2003533935A (ja) 通信ネットワークにおける伝送レート変更
JP2004048784A (ja) 無線電話用電力制御装置及び方法
KR980013055A (ko) 사이트 다이버시티를 이용한 이동 통신 시스템에 있어서의 다운링크 송신 전력 제어 방법 및 장치
KR20000013025A (ko) 이동통신 시스템의 순방향 초기 송신전력 제어장치 및 방법
MX2007011922A (es) Procedimientos para ajustar a escala un canal e-dch.
WO2000038355A1 (fr) Procede de commande de la puissance de transmission dans un systeme de communication
WO2004047337A1 (ja) 無線基地局装置およびその折り返し試験方法
JP2004112625A (ja) Cdma方式移動通信端末
JP4665469B2 (ja) 携帯通信端末装置及び送信電力制御方法
JP2959624B2 (ja) ランダムアクセス制御方式
JP2005303670A (ja) 携帯通信端末装置及び送信電力制御方法
RU2347329C2 (ru) Системы и способы реализации внешнего контура управления мощностью в беспроводной коммуникационной системе
US20070287388A1 (en) Method for Adjusting the Output Power for a Radio Link Which Uses Two Different Channels, and Corresponding Radio Station

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003772721

Country of ref document: EP

Ref document number: 1020057009035

Country of ref document: KR

Ref document number: 20038A36566

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057009035

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0315947

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 2003772721

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006146741

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10534710

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10534710

Country of ref document: US