WO2004044108A1 - 潤滑油組成物および内燃機関用潤滑油 - Google Patents

潤滑油組成物および内燃機関用潤滑油 Download PDF

Info

Publication number
WO2004044108A1
WO2004044108A1 PCT/JP2003/014311 JP0314311W WO2004044108A1 WO 2004044108 A1 WO2004044108 A1 WO 2004044108A1 JP 0314311 W JP0314311 W JP 0314311W WO 2004044108 A1 WO2004044108 A1 WO 2004044108A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
weight
ethylene
viscosity
propylene copolymer
Prior art date
Application number
PCT/JP2003/014311
Other languages
English (en)
French (fr)
Inventor
Ryousuke Kaneshige
Keiji Okada
Masaaki Kawasaki
Satoshi Ikeda
Original Assignee
Mitsui Chemicals, Inc.
The Lubrizol Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc., The Lubrizol Corporation filed Critical Mitsui Chemicals, Inc.
Priority to EP03811110A priority Critical patent/EP1561798B1/en
Priority to US10/534,580 priority patent/US7622433B2/en
Priority to AU2003277670A priority patent/AU2003277670A1/en
Priority to JP2005505668A priority patent/JP4634300B2/ja
Publication of WO2004044108A1 publication Critical patent/WO2004044108A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/06Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to a lubricating oil composition containing a specific ethylene-propylene copolymer as a lubricating oil viscosity improver, and a lubricating oil containing the composition for an internal combustion engine.
  • viscosity In general, the viscosity of petroleum products changes greatly when the temperature changes, so-called viscosity has a temperature dependence.
  • lubricating oils and the like used in automobiles and the like preferably have low temperature dependence of viscosity.
  • certain polymers that are soluble in lubricating oil bases have been used as lubricating oils as viscosity index improvers.
  • ethylene ⁇ alpha-Orefin copolymer widely as a viscosity index improver
  • ethylene order to further improve the performance of lubricating oils alpha - For Orefin copolymer have been made various improvements (See International Publication No. WO 00/34420 pamphlet).
  • Viscosity index improvers are generally used to maintain proper viscosity of lubricating oils at high temperatures, but recently, as represented by engine oils, quality standards have advanced, especially at low temperatures. There is a need for a polymer for a viscosity index improver that also suppresses the rise in viscosity (excellent in low-temperature properties). In lubricating oil applications, to obtain better low-temperature properties, it is effective to keep the polymer concentration as low as possible, and because it is economically advantageous, use a polymer with the highest possible molecular weight. It has been known. However, when the molecular weight is increased and the amount added is reduced, there is a problem that shear stability deteriorates.
  • paraffinic mineral oil is used for general lubricating oil, and this paraffinic mineral oil contains 1 to 5% of a paraffin wax component.
  • This para Finwax forms plate-like crystals at low temperatures and further absorbs oil to form a three-dimensional network structure, which significantly reduces the fluidity of the entire lubricating oil.
  • a pour point depressant is used in combination to make the plate-like crystals amorphous and improve the flowability.
  • the effect of the pour point depressant greatly depends on the type of lubricating oil base, so it is necessary to select a suitable one for each base.
  • lubricating oil bases For applications such as automotive and industrial engine oils, gear oils (including ATFs), and hydraulic oils, lubricating oil bases have been used in order to respond to the sophistication of required performance and the tightening of environmental regulations accompanying the establishment of new standards.
  • highly refined lubricating oil bases such as Group 1 (ii) or (iii) oils, is replacing the widely used Group 1 (i) oils.
  • the rise of the mini-rotary low-temperature viscosity is a major problem.
  • the present inventors have found that high-molecular-weight ethylene / ⁇ -one-year-old olefin copolymer is suitable as a viscosity index improver for lubricating oils having excellent low-temperature characteristics and economical efficiency.
  • the solubility of the high-molecular-weight ethylene / one-strength olefin copolymer is further reduced by the use of highly refined lubricating oil base. I found that there was a tendency.
  • a viscosity index improver which is an ethylene-propylene copolymer having an ethylene content, a molecular weight, a molecular weight distribution, and a melting point within a specific range, and, if necessary, By using a pour point depressant, the inventors have found that the above problems can be solved, and have completed the present invention.
  • the present invention provides a lubricating oil composition excellent in low-temperature viscosity characteristics and thickening properties as an automotive / industrial engine oil, gear oil, shock absorber oil, hydraulic oil and the like, and a lubricating oil for an internal combustion engine comprising the composition.
  • the purpose is to provide oil You.
  • the lubricating oil composition (AA) according to the present invention has a kinematic viscosity at 100 ° C. of 1 to 50 mm 2 / s and a viscosity index of 80 or more. % By weight, and 1 to 20% by weight of an ethylene / propylene copolymer (B) having the following characteristics (B1) to (B4);
  • the lubricating oil composition (AA) according to the present invention is a mineral oil having the following characteristics (A1) to (A3), or poly- ⁇ -olefin, having the following properties: Is preferred;
  • the sulfur content is 0.03% by weight or less.
  • the lubricating oil composition ( ⁇ ) comprises a lubricating oil base (A) having a kinematic viscosity at 100 ° C. of 1 to 50 mmVs and a viscosity index of 80 or more, 92 to 99.85 wt. 0 , 0.1 to 5% by weight of ethylene-propylene copolymer (B) having the following characteristics (B1) to (B4), and 0.05 to 3% of pour point depressant (C). % By weight;
  • (B1) Ethylene content is in the range of 30 to 75% by weight
  • the pour point depressant (C) preferably has a melting point of 13 ° C. or less as measured by IDSC.
  • the lubricating oil for an internal combustion engine comprises the lubricating oil composition (BB).
  • the lubricating oil composition (AA) according to the present invention comprises a lubricating oil base (A) and an ethylene propylene copolymer (B), and the lubricating oil composition (BB) It is characterized by comprising an oil base (A), an ethylene / propylene copolymer (B), and a pour point depressant (C).
  • the lubricating oil base (A) used in the present invention includes mineral oils and synthetic oils such as poly- ⁇ -olefins, polyol esters, and diesters.
  • Mineral oil is generally used after a refining process such as dewaxing, and there are several grades depending on the refining method. This grade is specified by the API (American Petroleum Institute) classification. Table 1 shows the characteristics of lubricating oil bases classified into each group. 4311
  • the saturated hydrocarbon content is less than 90 (% by volume) and the sulfur content is less than 0.03 (% by weight) or the saturated hydrocarbon content is 90 (% by volume) or more and the sulfur content is 0. Included in mineral oil group (i) above 0 3 (% by weight).
  • Poly- ⁇ -olefin in Table 1 is a hydrocarbon polymer obtained by polymerizing at least a raw material monomer having 10 or more carbon atoms, such as polydecene obtained by polymerizing decene-11. Is done.
  • the mineral oil used as the lubricating oil base (II) used in the present invention is preferably a highly refined group (i) to group (iv), that is, a kinematic viscosity at 100 ° C of 1 Mineral oil or poly- ⁇ -olefin having a viscosity index of up to 50 mm 2 Zs and a viscosity index of 80 or more is preferred, and a mineral oil or group (iv) belonging to Group (ii) or Group (iii) which is a highly refined grade Poly ⁇ -olefins belonging to the above group are more preferred.
  • the mineral oil may contain another mineral oil, synthetic oil such as poly- ⁇ -olefin, polyol ester, diester or the like at a ratio of 20% by weight or less.
  • the lubricating oil base (II) is preferably a mineral oil or a poly- ⁇ -olefin having the following properties (A1) to (A3).
  • mineral oils having the following properties (A1) to (A3) are particularly preferred.
  • the viscosity index, the saturated hydrocarbon content, and the sulfur content are measured by the following methods.
  • Viscosity index Measured according to ASTM D445 (JIS K2283)
  • the ethylene / propylene copolymer (B) used in the present invention is a polymer for improving a viscosity index.
  • the ethylene / propylene copolymer (B) contains a repeating unit derived from at least one kind of monomer selected from a cyclic olefin and a polyene (hereinafter sometimes referred to as “other monomer”) within a range not to impair the object of the present invention. For example, it may be contained at a ratio of 5% by weight or less, preferably 1% by weight or less.
  • the present invention does not contain polyene.
  • the heat resistance is particularly excellent. It is also preferred that they consist essentially of only ethylene and propylene.
  • Such an ethylene / propylene copolymer (B) has the following properties (Bl), (B2), (B3) and (B4).
  • the ethylene content of the ethylene / propylene copolymer (B) is usually 30 to 75% by weight, preferably 40 to 60% by weight, particularly preferably 42 to 52% by weight.
  • the ethylene content of ethylene 'propylene copolymer (B) is described in “Polymer Analysis Handbook” (edited by the Japan Society for Differentiation, Polymer Analysis Research Council, Kinokuniya Bookstore) Measured by 13 C-NMR according to the method described.
  • the ethylene / propylene copolymer (B) has an intrinsic viscosity [77] of force S1.3 to 2.0 d1 / g, preferably 1.4 to 1.9 (11 ⁇ , particularly preferably 1.5 to 1.8 (11 Zg In the range.
  • the intrinsic viscosity [] of the ethylene / propylene copolymer (B) ' is measured at 135 ° C in decalin.
  • a lubricating oil composition containing an ethylene-propylene copolymer (B) having an intrinsic viscosity [ ⁇ ] within the above range has particularly excellent low-temperature properties and balance of thickening. Further, when the intrinsic viscosity [77] is within the above range, it has extremely low viscosity especially under low-temperature and low-shear-rate conditions, is excellent in lubricating oil pumping characteristics, and can contribute to low fuel consumption.
  • the ethylene / propylene copolymer (B) has a molecular weight distribution index Mw ZMn (Mw: weight average molecular weight, Mn: number average molecular weight) of 2.4 or less, preferably 1 to 2.2.
  • the MwZMn of the ethylene / propylene copolymer (B) is measured at 140 ° C. using GPC (gel permeation chromatography) in an orthodichlorobenzene solvent.
  • the melting point of the ethylene / propylene copolymer (B) is 30 ° C or less, preferably The temperature is 0 ° C or lower, more preferably 130 ° C or lower.
  • the melting point of the ethylene / propylene copolymer (B) is measured using a differential scanning calorimeter (DSC). Specifically, about 5 mg of a sample was packed in an aluminum pan, heated to 200 ° C, kept at 200 ° C for 5 minutes, cooled to 140 ° C in 10 ° 0 minutes, Calculate from the endothermic curve when the temperature is raised at 10 ° C for 10 minutes after holding at 40 ° C for 5 minutes.
  • DSC differential scanning calorimeter
  • the melting point is a measure of the interaction between the ethylene / propylene copolymer (B) and the pour point depressant (C).
  • the ethylene sequence around the melting point (15 to + 10 ° C) of the pour point depressant (C) It is important to include as little as possible to prevent interaction.
  • the ethylene propylene copolymer (B) used in the present invention is a catalyst comprising a transition metal compound such as vanadium, zirconium, or titanium, an organoaluminum compound (organoaluminoxy compound), and Z or an ionized ionic compound. It can be produced by copolymerizing ethylene and propylene using Such a catalyst for the polymerization of olefins is described, for example, in WO 00/34420 pamphlet.
  • a high molecular compound containing an organic acid ester group is used, and a vinyl polymer containing an organic acid ester group is particularly preferably used.
  • the vinyl polymer containing an organic acid ester group include a (co) polymer of alkyl methacrylate, a (co) polymer of alkyl acrylate, a (co) polymer of alkyl fumarate, and a (co) polymer of alkyl maleate. (Co) polymer, alkylated naphthalene and the like.
  • Such a pour point depressant (C) preferably has the following properties (C1). New
  • the melting point of the pour point depressant (C) is at most 13 ° C, preferably at most 15 ° C, more preferably at most 17 ° C.
  • the melting point of the pour point depressant (C) can be determined by a method similar to the method for measuring the melting point of the ethylene-propylene copolymer (B).
  • the pour point depressant (C) preferably further has the following property (C2).
  • C 2 molecular weight of pour point depressant (C) (weight average molecular weight in terms of polystyrene: M);
  • the weight average molecular weight of the pour point depressant (C) is in the range from 20,000 to 400,000, preferably from 30,000 to 300,000, more preferably from 40,000 to 200,000.
  • the weight average molecular weight of the pour point depressant (C) is measured at 40 ° C in GPC (gel permeation chromatography) with tetrafluorofuran solvent.
  • the lubricating oil composition (AA) according to the present invention comprises the above lubricating oil base (A) and the above ethylene propylene copolymer (B). the amount 0/0, preferably 8 5-95 0/0, ethylene 'propylene copolymer (B) 1 to 20 weight 0/0, preferably in a proportion of 5 to 1 5% by weight.
  • the sum of (A) and (B) is 100% by weight.
  • Such a lubricating oil composition has low temperature dependency and excellent low-temperature characteristics.
  • the lubricating oil composition can be used as it is, and a lubricating oil base, a pour point depressant and the like are further added to the lubricating oil composition, for example, as described in (BB) below.
  • a lubricating oil composition can be used for various lubricating oil applications.
  • a lubricating oil base other than the above lubricating oil base (A) may be blended.
  • the lubricating oil composition (AA) may further contain additives such as a pour point depressant, an antioxidant, a detergent / dispersant, an extreme pressure agent, an antifoaming agent, a detergency agent, and a corrosion inhibitor as described below. Can be appropriately blended.
  • the lubricating oil composition (BB) according to the present invention comprises the above lubricating oil base (A), the above ethylene / propylene copolymer (B), and the above pour point depressant (C). 92 to 99.85% by weight, preferably 95 to 99.7% by weight, more preferably 97 to 99.5% by weight of the lubricant base (A), ethylene-propylene copolymer ( B) is 0.1 to 5% by weight, preferably 0.2 to 3% by weight, more preferably 0.4 to 2% by weight, pour point depressant (C) power S 0.05 to 3% by weight, preferably The content is 0.1 to 2% by weight, more preferably 0.1 to 1% by weight.
  • the total of (A), (B) and (C) is 100% by weight.
  • the lubricating oil base added to the lubricating oil composition (AA) may be the same as or different from the lubricating oil base in the lubricating oil composition (AA). Those having characteristics are preferable.
  • the lubricating oil composition (BB) comprising such a lubricating oil base (A), an ethylene propylene copolymer (B) and a pour point depressant (C) has a small temperature dependency and excellent low-temperature characteristics. In particular, it has low viscosity under low temperature and low shear rate conditions.
  • the lubricating oil composition of the present invention comprises the above lubricating oil base (A), ethylene propylene copolymer (B) and, if necessary, a pour point depressant (C). Inhibitor, detergent / dispersant, extreme pressure agent, antifoaming agent, detergency agent, corrosion prevention An additive such as an agent can be appropriately compounded.
  • antioxidants include phenol-based antioxidants such as 2,6-di-tert-butyl-4-methylphenol; and amine-based antioxidants such as dioctyldiphenylamine.
  • detergent / dispersant include snorephonate such as calcium sulfonate and megnesium sulfonate; finate; salicylate; succinic acid imid; benzylamine.
  • extreme pressure agents include sulfurized oils and fats, sulfided olefin, sulfides, ester phosphates, phosphites, phosphate amine salts, and phosphate amine salts.
  • antifoaming agent examples include silicone-based antifoaming agents such as dimethylsiloxane and silica gel dispersion; alcohol and ester-based antifoaming agents.
  • Carboxylic acid, carboxylate, ester, phosphoric acid and the like can be mentioned as the stopping agent.
  • examples of the corrosion inhibitor include benzotriazole and its derivatives, and thiazole compounds.
  • the lubricating oil compositions (AA) and (BB) according to the present invention can be prepared by a conventionally known method by adding an ethylene propylene copolymer (B) to a lubricating oil base (A) and, if necessary, a pour point depressant ( C) and, if necessary, by mixing or dissolving other additives.
  • the lubricating oil composition (BB) can also be obtained by adding a pour point depressant (C) and, if necessary, a lubricating oil base to the lubricating oil composition (AA).
  • the lubricating oil base added to the lubricating oil composition (AA) may be the same as or different from the lubricating oil base (A) in the lubricating oil composition (AA).
  • Those having the characteristics of 1) to (A3) are preferred.
  • the lubricating oil composition of the present invention has a low viscosity under low-temperature and low-shear rate conditions specified by the SAE viscosity standard and has excellent pumping characteristics, and is therefore particularly useful as a lubricating oil for internal combustion engines such as engine oil. is there.
  • the measurement was carried out at 140 ° C. using GPC (geapmeation chromatography) with an onoletodichlorobenzene solvent.
  • the measurement was performed based on ASTM D445.
  • the KV of the sample oil was adjusted to be 11 mm 2 Zs.
  • SSI is a measure of the loss of kinematic viscosity due to the fact that the copolymer component in the lubricating oil is sheared at the metal sliding part and the molecular chain is cut. The larger the SSI, the greater the loss. Show.
  • the polymerization liquid was continuously withdrawn from the upper part of the polymerization vessel so that the polymerization liquid in the polymerization liquid vessel was always 1 liter.
  • ethylene was supplied in an amount of 1,801 Zh
  • propylene was supplied in an amount of 1,201 to 11
  • hydrogen was supplied in an amount of 1.5 to 5.51 / h using a bubbling tube.
  • the copolymerization reaction was carried out at 15 ° C by circulating a refrigerant through a jacket attached outside the polymerization vessel.
  • triphenylcarbenium tetrakispentafluorophenyl borate was converted to 0.02 mM in terms of B, and [dimethinole (t-ptylamide) (tetramethyl-1- ⁇ 5 -six Pentagenenyl) silane] 3 ml of a toluene solution containing titanium dichloride in an amount of 0.0005 mmo 1 was injected into the autoclave with nitrogen to initiate polymerization. Then, for 5 minutes, the temperature of the auto tare was adjusted so that the internal temperature became 70 ° C, and ethylene was directly supplied so that the pressure became 6 kg.
  • the autoclave was charged with 5 ml of methanol using a pump to stop the polymerization, and the autoclave was depressurized to atmospheric pressure.
  • Three liters of methanol was poured into the reaction solution with stirring.
  • the obtained polymer containing the solvent was dried at 130 ° (: 13 hours, 60 Otorr) to obtain 31 g of an ethylene-propylene copolymer.
  • the ethylene content of the obtained polymer was 47 Weight [/], [77] was 1.60 dl Zg, MwZMn was 2.1, and the melting point was less than 40 ° C (the melting point was not confirmed above _40 ° C).
  • Lubricating oil base (base oil) classified into group- (ii) Kinematic viscosity at 100 ° C 4.60 mmV s, viscosity index 114, saturated hydrocarbon content 99 volume %, A mineral oil with a sulfur content of 0.001% by weight or less 120.87% by weight of neutral (trademark, manufactured by ESSO), and an ethylene / propylene copolymer (B) obtained in Polymerization Example 2 as a viscosity index improver (B) 0.85% by weight, 0.3% by weight of ACROP 146 (trademark, manufactured by Sanyo Chemical) as a pour point depressant (C), and 11.0% by weight of a dispersant LZ 20003C (trademark, manufactured by Lubrizol) %, The lubricating oil performance was evaluated. Table 3 shows the results.
  • Example 3 The procedure was carried out in the same manner as in Example 1 except that the ethylene / propylene copolymer obtained in Polymerization Example 5 was used as a viscosity index improver (B) at 0.76% by weight. Table 3 shows the results.
  • Example 3 The procedure was performed in the same manner as in Example 1 except that the ethylene / propylene copolymer obtained in Polymerization Example 3 was used as a viscosity index improver (B) at 0.70% by weight. Table 3 shows the results. Table 3
  • Example 4 The procedure was performed in the same manner as in Example 4 except that the ethylene / propylene copolymer obtained in Polymerization Example 5 was used in an amount of 0.74% by weight as the viscosity index improver (B). Table 4 shows the results.
  • Example 4 was repeated except that 87.52% by weight of mineral oil 120 neutral (trademark, manufactured by ESSO) was used and 0.68% by weight of the ethylene propylene copolymer obtained in Polymerization Example 3 was used as the viscosity index improver (B). Performed similarly. Table 4 shows the results.
  • Example 4 The procedure was performed in the same manner as in Example 4 except that Acrube 136 (trademark, manufactured by Sanyo Kasei) was used as the pour point depressant (C). Table 3 shows the results.
  • Example 5 was carried out in the same manner as in Example 5, except that Acryl 136 (trademark, manufactured by Sanyo Kasei) was used as the pour point depressant (C). Table 4 shows the results.
  • Example 6 was carried out in the same manner as in Example 6, except that ACRUP 136 (trademark, manufactured by Sanyo Kasei) was used as the pour point depressant (C). Table 4 shows the results.
  • Example 4 Using 80.9% by weight of mineral oil 120 neutral (trademark, manufactured by ESSO), 0.6% of the ethylene / propylene copolymer (B) obtained in Polymerization Example 4 was used as a viscosity index improver. 1 weight. The same operation as in Example 1 was performed except that / 0 was used. Table 5 shows the results.
  • a lubricating oil base (base oil), a mineral oil (manufactured by ESSO) with a kinematic viscosity of 4.60 mm 2 Zs classified by group (ii), 87.22 weight% %, Akurubu 1 4 6 (trademark, Sanyo the resulting ethylene-propylene copolymer in polymerization example 1 as a viscosity index improver (B) 0. 9 8 weight 0/0, as pour point depressant (C)
  • the lubricating oil performance was evaluated using 0.3% by weight of Seiko Co., Ltd.) and 11.5% by weight of a detergent and dispersant LZ2003C (trademark, manufactured by Lubrizol Corporation). Table 6 shows the results. (Comparative Example 4)
  • Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 formulation ethylene-off ° propylene copolymer (B) Polymerization Example 1 Polymerization Example 4 Polymerization Example 1 Polymerization Example 4 formulation (weight 0/0)
  • Lubricating oil (Base oil) 87.22 87.61 87.22 87.61 Ethylene-p-pyrene copolymer (B) * 1 0.98 0.59 0.98 0.59
  • Pour point depressant (C) in- 146 * 2 0.30 0.30
  • Example 10 Example 11 Example 12 Example 13 Example 14 Example 15 Formulated Ethylene Fluorene Copolymer (B) Polymerized Example 2 Polymerized Example 5 Polymerized Example 3 Polymerized Example 2 Polymerized Example 5 Polymerized Example 3 (% By weight)
  • Lubricant base (A) base oil
  • B load oil
  • B load oil
  • C Ark-F "133 * 2 0.30 0.30 0.30

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本発明は自動車用・産業用エンジン油、ギヤー油、ショックアブソーバー油、油圧油などとして低温粘度特性に優れた潤滑油組成物および該組成物からなる内燃機関用潤滑油を提供することを目的とするものであって、潤滑油組成物は、100℃における動粘度が1~50mm2/sで、かつ粘度指数が80以上の潤滑油基剤(A)と、下記(B1)~(B4)の特性を有するエチレン・プロピレン共重合体(B)と、必要に応じて流動点降下剤(C)とからなる。(B1)エチレン含量が30~75重量%の範囲にある(B2)極限粘度[η]が1.3~2.0dl/gの範囲にある(B3)Mw/Mnが2.4以下である(B4)DSCで測定した融点が30℃以下である。 

Description

明細書
潤滑油組成物および内燃機関用潤滑油
技術分野
本発明は、 特定のエチレン 'プロピレン共重体を潤滑油粘度改良剤として含 有する潤滑油組成物およぴ該組成物を含有する内燃機関用潤滑油に関する。 背景技術
石油製品は一般に温度が変わると粘度が大きく変化する、 いわゆる粘度の温 度依存性を有している。 例えば、 自動車等に用いられる潤滑油等では粘度の温 度依存性が小さいことが好ましい。 そこで潤滑油には、 粘度の温度依存性を小 さくする目的で、 潤滑油基剤に可溶な、 ある種のポリマーが粘度指数向上剤と して用いられている。 近年では、 このような粘度指数向上剤としてエチレン · α—ォレフィン共重合体が広く用いられており、 潤滑油の性能を更に改善する ためエチレン . α—ォレフィン共重合体について種々の改良がなされている (国際公開第 WO 0 0 / 3 4 4 2 0号パンフレツト参照) 。
粘度指数向上剤は、 一般に潤滑油が高温時に適正な粘度を保持するために用 いられるが、 最近では、 エンジン油に代表されるように、 品質規格の高度化が 進む中で、 特に低温時の粘度上昇も低く抑えるような (低温特性に優れる) 粘 度指数向上剤用のポリマーが求められている。 潤滑油用途において、 より優れ た低温特性を得るためには、 ポリマー濃度をできるだけ低く抑えることが有効 であり、 また、 経済性の面でも有利であることなどから、 できるだけ高分子量 のポリマーを用いる方法が知られている。 しかしながら、 分子量を高く して添 加量を減らすと、 せん断安定性が悪化するという問題がある。
また、 一般の潤滑油には、 パラフィン系鉱油が用いられており、 このパラフ イン系鉱油は、 1〜5 %のパラフィンワックス成分を含有している。 このパラ フィンワックスは低温時に板状結晶を形成し、 さらに油分を吸蔵して三次元的 網目構造となり、 潤滑油全体の流動性を著しく低下させる。 流動点降下剤は、 この板状結晶を不定形化させて流動性を改善させるために併用される。 しかし ながら、 流動点降下剤の効果は潤滑油基剤の種類により大きく異なるため、 各 基剤に適したものを選択する必要がある。
自動車用 ·産業用のエンジン油、 ギヤ一油 (A T Fを含む) 、 油圧油などの 用途では、 新規格設定に伴う要求性能の高度化および環境規制強化に対応する ため、 従来から潤滑油基剤として広く使用されているグループ一 ( i ) オイル に代わり、 グループ一 (i i) または (i i i) オイルのような高度に精製された 潤滑油基剤の使用率が高まっている。 特にエンジン油用途では、 主要規格項目 の一つであるミニロータリー低温粘度 (オイルのポンビング特性のパラメータ 一) の上昇が大きな問題となっている。 本発明者らは、 高分子量のエチレン · α一才レフイン共重合体は、 低温特性および経済性の優れた潤滑油の粘度指数 向上剤として好適であるが、 分子量が高くなり過ぎると潤滑油基剤への溶解性 が低下し、 低温特性が悪化する傾向があること、 および高度に精製された潤滑 油基剤を使用すると高分子量エチレン · ひ一才レフィン共重合体の溶解性が更 に低下する傾向にあることを見出した。
本発明者らは、 このような状況において鋭意研究の結果、 エチレン含量、 分 子量、 分子量分布、 融点が特定の範囲にあるエチレン · プロピレン共重合体で ある粘度指数向上剤と、 必要に応じて流動点降下剤を使用することにより、 上 記のような問題を解決することを見出して、 本発明を完成するに至った。
すなわち、 本発明は、 自動車用 ·産業用エンジン油、 ギヤ一油、 ショックァ ブソーバー油、 油圧油などとして低温粘度特性および増粘性に優れた潤滑油組 成物および該組成物からなる内燃機関用潤滑油を提供することを目的としてい る。
発明の開示
本発明に係る潤滑油組成物 (AA) は、 1 00°Cにおける動粘度が 1〜 5 0 mm2/s で、 かつ粘度指数が 8 0以上の潤滑油基剤 (A) 80〜 9 9重量% と、 下記 (B 1) 〜 (B 4) の特性を有するエチレン · プロピレン共重合体 (B) 1〜 20重量%とを含有することを特徴としている ;
(B 1 ) エチレン含量が 30〜 7 5重量0 /0の範囲にある
(B 2) 極限粘度 [η] カ 1. 3〜2. 0 (1 1 Zgの範囲にある
(B 3) MwZMnが 2.4以下である
(B 4) D S Cで測定した融点が 30°C以下である。
本発明に係る潤滑油組成物 (AA) は、 前記潤滑油基剤 (A) 力 S、 下記 (A 1) 〜 (A3) の特性を有する鉱物油であるかまたはポリ α—ォレフインであ ることが好ましい;
(A 1) 粘度指数が 80以上である
(Α2) 飽和炭化水素分が 90容量%以上である
(A3) 硫黄分が 0. 0 3重量%以下である。
本発明に係る潤滑油組成物 (ΒΒ) は、 1 00°Cにおける動粘度が 1〜 50 mmVs で、 かつ粘度指数が 80以上の潤滑油基剤 (A) を 92〜 9 9. 8 5 重量0 と、 下記 (B 1) 〜 (B 4) の特徴を有するエチレン ' プロピレン共重 合体 (B) を 0. 1〜 5重量%と、 流動点降下剤 (C) を 0. 0 5〜3重量%と からなることを特徴としている ;
(B 1) エチレン含量が 30〜7 5重量%の範囲にあること
(B 2) 極限粘度 [ 77 ] カ 1. 3〜2. 0 (1 1ノ gの範囲にあること
(B 3) Mw/Mnが 2.4以下であること (B 4) D S Cで測定した融点が 3 0 °C以下であること
本発明では、 前記流動点降下剤 (C) I D S Cで測定した融点が一 1 3°C 以下であることが好ましい。
本発明に係る内燃機関用潤滑油は、 前記潤滑油組成物 (BB) からなること を特徴としている。
発明を実施するための最良の形態
以下、 本発明に係る潤滑油組成物および内燃機関用潤滑油について具体的に 説明する。
本発明に係る潤滑油組成物 (AA) は、 潤滑油基剤 (A) と、 エチレン 'プ ロピレン共重合体 (B) とからなることを特徴とし、 潤滑油組成物 (BB) は、 潤滑油基剤 (A) と、 エチレン ·プロピレン共重合体 (B) と、 流動点降下剤 (C) とからなること特徴としている。
まず、 本発明に係る潤滑油組成物に含まれる各成分について説明する。
(潤滑油基剤 (A) )
本発明で使用される潤滑油基剤 (A) としては、 鉱物油、 およびポリ一 α— ォレフィン、 ポリオールエステル、 ジエステル等の合成油が挙げられる。
鉱物油は一般に脱ワックス等の精製工程を経て用いられ、 精製の仕方により 幾つかの等級があり、 本等級は AP I (米国石油協会) 分類で規定される。 表 1に各グループに分類される潤滑油基剤の特性を示す。 4311
表 1
Figure imgf000006_0001
*1: ASTM D445 (JIS Κ2283) に準じて測定
*2: ASTM D3238に準じて測定
*3: ASTM D4294 (JIS K2541) に準じて測定
*4:飽和炭化水素分が 9 0 (容量%) 未満でかつ硫黄分が 0. 0 3 (重量%) 未 満または飽和炭化水素分が 9 0 (容量%) 以上でかつ硫黄分が 0. 0 3 (重 量%) を超える鉱物油のグループ(i)に含まれる。 表 1におけるポリ一 α—ォレフインは、 炭素数 1 0以上のひーォレフィンを 少なく とも原料モノマーとして重合して得られる炭化水素ポリマーであって、 例えばデセン一 1を重合して得られるポリデセンなどが例示される。 本発明で使用される潤滑油基剤 (Α) としての鉱物油は、 精製度の高い等級 であるグループ ( i ) 〜グループ (iv) が好ましく、 すなわち 1 00°Cにおけ る動粘度が 1〜 5 0mm2Zs で、 かつ粘度指数が 80以上の鉱物油またはポ リ α—ォレフィンが好ましく、 精製度の高い等級であるグループ (ii) または グループ (iii) に属する鉱物油またはグループ (iv) に属するポリ α—ォレ フィンがさらに好ましい。 なお、 鉱物油は、 20重量%以下の割合で他の鉱物 油、 ポリ · α—ォレフィン、 ポリオールエステル、 ジエステル等の合成油を含 有してもよい。 本発明では、 潤滑油基剤 (Α) として下記 (A 1) 〜 (A3) の特性を有す る鉱物油またはポリ α—ォレフインが好ましい。 これらの潤滑油基剤の中でも 下記 (A 1) 〜 (A3) の特性を有する鉱物油が特に好ましい。 (Al) 粘度指数が 80以上
(A 2) 飽和炭化水素分が 90容量%以上
(A 3 ) 硫黄分が 0.03重量%以下
ここで粘度指数、 飽和炭化水素分、 硫黄分は以下の方法で測定される。
粘度指数: ASTM D445 (JIS K2283) に準じて測定
飽和炭化水素分: ASTM D3238に準じて測定
硫黄分: ASTM D4294 (JIS K2541) に準じて測定
(エチレン . プロピレン共重合体 (B) )
本発明で使用されるエチレン · プロピレン共重合体 (B) は、 粘度指数改良 用のポリマーである。
エチレン . プロピレン共重合体 (B) は、 本発明の目的を損なわない範囲で 環状ォレフィン、 ポリェンから選ばれる少なくとも 1種のモノマー (以下 「他 のモノマー」 ということがある) から導かれる繰り返し単位を、 例えば、 5重 量%以下、 好ましくは 1重量%以下の割合で含有してもよい。
なお、 本発明はポリェンを含まないことが 1つの好ましい態様である。 この 場合、 特に耐熱性に優れている。 実質的にエチレンとプロピレンのみからなつ ていることも好ましい。
このよ うなエチレン . プロピレン共重合体 (B) は、 下記 (B l) 、 (B 2) 、 (B 3) および (B 4) の特性を有している。
(B 1 ) エチレン含量;
エチレン . プロピレン共重合体 (B) のエチレン含量は、 通常 30〜75重 量%、 好ましくは 40〜 60重量%、 特に好ましくは 42〜52重量%にある。 エチレン ' プロピレン共重合体 (B) のエチレン含量は、 「高分子分析ハン ドブック」 (日本分化学会、 高分子分析研究懇談会編、 紀伊国屋書店発行) に 記載の方法に従って 13 C— N M Rで測定される。
エチレン . プロピレン共重合体 (B) のエチレン含量が上記範囲内にあると 低温特性と剪断安定性のバランスのとれた性能が得られる。
(B 2) 極限粘度 Cry] (dl/g) ;
エチレン . プロピレン共重合体 (B) は、 極限粘度 [ 77 ] 力 S1.3〜2.0 d 1 / g、 好ましくは1.4〜1. 9 (1 1 §、 特に好ましくは1.5〜1.8 (1 1 Z gの範囲にある。
エチレン . プロピレン共重合体 (B)'の極限粘度 [ ] は、 1 35°C、 デカ リン中で測定される。
極限粘度 [η] が上記範囲内にあるエチレン ' プロピレン共重合体 (B) を 含有する潤滑油組成物は、 低温特性と増粘性のパランスは特に優れる。 また、 極限粘度 [ 77 ] が上記範囲内であれば、 特に低温一低せん断速度条件下で極め て低い粘度を有し、 潤滑油ポンプのボンビング特性に優れ、 低省燃費にも寄与 できる。
(B 3) 分子量分布;
エチレン . プロピレン共重合体 (B) は、 分子量分布を示す指標である Mw ZMn (Mw :重量平均分子量、 Mn :数平均分子量) が 2.4以下、 好まし くは 1〜 2.2の範囲にある。
エチレン . プロピレン共重合体 (B) の MwZMnは、 GPC (ゲルパーミ エーシヨンクロマトグラフ) を用い、 オルトジクロロベンゼン溶媒で、 140 °Cで測定される。
分子量分布は 2.4を超えると潤滑油のせん断安定性が低下する。
(B 4) 融点 (Tm) ;
エチレン . プロピレン共重合体 (B) の融点は、 30°C以下、 好ましくは 0°C以下、 さらに好ましくは一 30°C以下である。
エチレン . プロ ピレン共重合体 (B) の融点は、 示差走查型熱量計 (D S C) を用いて測定される。 具体的には試料約 5 m gをアルミ.パンに詰めて 20 0 °Cまで昇温し、 200 °Cで 5分間保持した後、 1 0 °0ノ分で一 40 °Cまで冷 却し、 一 40°Cで 5分保持した後、 10°CZ分で昇温する際の吸熱曲線から求 める。
融点はエチレン · プロピレン共重合体 (B) と流動点降下剤 (C) との相互 作用の目安で、 流動点降下剤 (C) の融点 (一 5〜+ 10°C) 付近のエチレン シーケンスをできるだけ含まないようにすることが、 相互作用を防止するため に重要である。
本発明で使用されるエチレン 'プロピレン共重合体 (B) は、 バナジウム、 ジルコニウム、 チタニウムなどの遷移金属化合物と、 有機アルミニウム化合物 (有機アルミニウムォキシ化合物) および Zまたはイオン化イオン性化合物と からなる触媒を使用して、 エチレンとプロピレンとを共重合することにより製 造することができる。 このようなォレフィン重合用触媒としては、 例えば国際 公開第 WO 00/34420号パンフレツトに記載されている。
(流動点降下剤 (C) )
本発明で使用される流動点降下剤としては、 有機酸エステル基を含有する高 分子化合物が用いられ、 有機酸エステル基を含有するビニル重合体が特に好適 に用いられる。 有機酸エステル基を含有するビニル重合体としては例えばメタ クリル酸アルキルの (共) 重合体、 アクリル酸アルキルの (共) 重合体、 フマ ル酸アルキルの (共) 重合体、 マレイン酸アルキルの (共) 重合体.、 アルキル 化ナフタレン等が挙げられる。
このような流動点降下剤 (C) は、 下記 (C 1) の特性を有することが好ま しい。
(C I) 流動点降下剤 (C) の融点;
流動点降下剤 (C) の融点は、 一 1 3°C以下、 好ましくは一 1 5°C、 さらに 好ましくは一 1 7 °C以下である。
流動点降下剤 (C) の融点は、 上記エチレン ' プロピレン共重合体 (B) の 融点の測定方法と同様の方法により求められる。
上記流動点降下剤 (C) はさらに、 下記 (C 2) の特性を有することが好ま しい。
(C 2) 流動点降下剤 (C) の分子量 (ポリスチレン換算重量平均分子量: M ) ;
流動点降下剤 (C) の重量平均分子量は、 20, 000〜 400, 000、 好 ましくは 30, 000〜 300, 000、 より好ましくは 40, 000〜 200, 000の範囲にある。
流動点降下剤 (C) の重量平均分子量は GP C (ゲルパーミエーシヨンクロ マトグラフィー) を用い、 テトラフロロフラン溶媒で、 40°Cで測定される。
(潤滑油組成物 (AA) )
本発明に係る潤滑油組成物 (AA) は、 上記潤滑油基剤 (A) と上記ェチレ ン 'プロピレン共重合体 (B) とからなり、 潤滑油基剤 (A) を 80〜9 9重 量0 /0、 好ましくは 8 5〜95重量0 /0、 エチレン 'プロピレン共重合体 (B) を 1〜20重量0 /0、 好ましくは 5〜1 5重量%の割合で含有している。 ここで (A) と (B) の合計は 1 00重量%である。
このような潤滑油組成物は、 温度依存性が小さく低温特性に優れる。 この潤 滑油組成物は、 そのまま使用することができ、 またこの潤滑油組成物にさらに 潤滑油基剤、 流動点降下剤などを配合して例えば下記に説明する (BB) のよ うな潤滑油組成物として、 各種の潤滑油用途に使用することもできる。 また上 記潤滑油基剤 (A) 以外の潤滑油基材などを配合しても良い。 また潤滑油組成 物 (AA) にはさらに必要により後述するような流動点降下剤、 酸化防止剤、 清浄分散剤、 極圧剤、 消泡剤、 鑌ぴ止め剤、 腐食防止剤等の添加剤を適宜配合 することができる。
(潤滑油組成物 (BB) )
本発明に係る潤滑油組成物 (BB) は、 上記潤滑油基剤 (A) と、 上記ェチ レン .プロピレン共重合体 (B) と、 上記流動点降下剤 (C) とからなり、 潤 滑油基剤 ( A) が 92〜 9 9. 8 5重量%、 好ましくは 9 5〜 9 9. 7重量%、 更に好ましくは 9 7〜9 9. 5重量%、 エチレン ' プロピレン共重合体 (B) が 0. 1〜 5重量%、 好ましくは 0. 2〜 3重量%、 更に好ましくは 0.4〜 2 重量%、 流動点降下剤 ( C ) 力 S 0. 0 5〜 3重量%、 好ましくは 0. 1〜2重 量%、 さらに好ましくは 0. 1〜 1重量%の割合で含有されている。 なお (A) と (B) と (C) の合計は 1 00重量%である。
潤滑油組成物 (AA) に加えられる潤滑油基剤は潤滑油組成物 (AA) 中の 潤滑油基剤と同じであっても異なってもよいが、 上記 (A 1) 〜 (A3) の特 性を有するものが好ましい。
このような潤滑油基剤 (A) とエチレン ' プロピレン共重合体 (B) と流動 点降下剤 (C) とからなる潤滑油組成物 (BB) は、 温度依存性が小さく低温 特性に優れ、 特に低温一低せん断速度条件下で低い粘度を有する。
(添加剤)
本発明の潤滑油組成物は、 上記潤滑油基剤 (A) およびエチレン 'プロピレ ン共重合体 (B) 、 必要に応じて流動点降下剤 (C) からなるものであるが、 必要により酸化防止剤、 清浄分散剤、 極圧剤、 消泡剤、 鑌ぴ止め剤、 腐食防止 剤等の添加剤を適宜配合することができる。
ここで、 酸化防止剤として具体的には、 2, 6—ジー tーブチルー 4メチルフ ェノール等のフエノール系酸化防止剤;ジォクチルジフエニルァミン等のアミ ン系酸化防止剤などが挙げられる。 また清浄分散剤としては、 カルシウムスル フォネー ト、 メグネシゥムスルフォネー ト等のスノレフォネー ト系 ; フィネー ト ;サリチレート ; コハク酸ィミ ド;ベンジルァミンなどが挙げられる。 極圧剤としては、 硫化油脂、 硫化ォレフィン、 スルフィ ド類、 リン酸エステ ル、 亜リン酸エステル、 リ ン酸エステルアミン塩、 亜リ ン酸エステルアミン塩 などが挙げられる。
消泡剤としては、 ジメチルシロキサン、 シリカゲル分散体等のシリ コン系消 泡剤;アルコール、 エステル系消泡剤などが挙げられる。
鲭止め剤としては、 カルボン酸、 カルボン酸塩、 エステル、 リン酸などが挙 げられる。 また、 腐食防止剤としては、 ベンゾトリアゾールとその誘導体、 チ ァゾール系化合物などが挙げられる。
(調製方法)
本発明に係る潤滑油組成物 (A A) および (B B ) は、 従来公知の方法で、 潤滑油基剤 (A) にエチレン ' プロピレン共重合体 (B ) 、 必要に応じて流動 点降下剤 (C ) 、 さらに必要に応じてその他の添加剤を混合または溶解するこ とにより調製することができる。
潤滑油組成物 (B B ) は、 潤滑油組成物 (A A) に流動点降下剤 (C ) と必 要によりさらに潤滑油基剤を加えることによつても得られる。 この場合、 潤滑 油組成物 (A A) に加えられる潤滑油基剤は、 潤滑油組成物 (A A) 中の潤滑 油基剤 (A) と同じであっても異なってもよいが、 上記 (A 1 ) 〜 (A 3 ) の 特性を有するものが好ましい。 (効果)
本発明の潤滑油組成物は、 S AE粘度規格で規定される低温 ·低せん断速度 条件下で低い粘度を有し、 ボンピング特性に優れるので特にエンジン油等の内 燃機関用潤滑油として有用である。
実施例
以下、 実施例に基づいて本発明を具体的に説明するが、 実施例における各種 物性は以下のようにして測定した。
エチレン含量;
日本電子 LA500型核磁気共鳴装置を用い、 オルトジクロルベンゼンとベン ゼンー d 6との混合溶媒 (オルトジクロルベンゼン Zベンゼン一 d 6 = 3 Z 1 〜4Zl (体積比) ) 中、 1 20°C、 パルス幅 45° パルス、 パルス繰り返し 時間 5.5秒で測定した。
極限粘度 [η] ;
1 35° (:、 デカリン中で測定した。
Mw/Mn ;
GPC (ゲ パーミエーシヨンクロマトグラフィー) を用い、 オノレトジクロ 口ベンゼン溶媒で、 140°Cで測定した。
100°Cでの動粘度 (K.V.) ;
ASTM D 445に基づいて測定を行った。 尚、 本実施例では試料油の K.V.が 1 1 mm2Zsとなるように調整した。
Mini-Rotary Viscometer (MRV) 粘度;
ASTM D 3829、 D4684に基づいて一 35 °Cで測定を行った。 MRVはオイ ルポンプが低温で正常なボンビングを行うための評価に用いられ、 値が小さレ、 程、 低温特性に優れることを示す。 Cold Cranking Simulator (CCS) 粘度;
ASTM D 2602 に基づいて _ 25°Cおよぴー 30°Cで測定を行った。 CCS 粘度はクランク軸における低温での摺動性 (始動性) の評価に用いられ、 値が 小さい程、 低温特性に優れることを示す。
Shear Stability Index (SSI) ;
ASTM D 3945 に基づいて測定を行った。 SSI は潤滑油中の共重合体成分 が金属摺動部でせん断を受け、 分子鎖が切断することによる動粘度の損失の尺 度であり、 SSIが大きい値である程、 損失が大きいことを示す。
(重合例:!〜 4 )
充分窒素置換した容量 2リ ッ トルの攪拌翼付連続重合反応器に、 脱水精製し たへキサン 1 リットルを張り、 8. 0 mm o 1 1に調整したェチノレアルミ二 ゥムセスキクロリ ド (A 1 (C2H5) 15 · C 115) のへキサン溶液を 500m 1 /hの量で連続的に 1時間供給した後、 更に触媒として 0. 8 mm o 1 / 1 に調整した VO (O C2H5) C 12のへキサン溶液を 500 m 1 の量で、 へキサンを 50 Om 1 Zhの量で連続的に供給した。 一方重合器上部から、 重 合液器内の重合液が常に 1 リットルになるように重合液を連続的に抜き出した。 次にバプリング管を用いてエチレンを 1 80 1 Zhの量で、 プロピレンを 1 2 0 1ノ11の量で、 水素を 1.5〜 5. 5 1 /hの量で供給した。 共重合反応は、 重合器外部に取り付けられたジャケットに冷媒を循環させることにより 1 5°C で行った。
上記条件で反応を行うと、 エチレン ·プロピレン共重合体を含む重合溶液が 得られた。 得られた重合溶液は、 塩酸で脱灰した後に、 大量のメタノールに投 入して、 エチレン 'プロピレン共重合体を析出させた後、 1 30°〇で24時間 減圧乾燥を行った。 得られたポリマーの性状を表 2に示す。 表 2
Figure imgf000015_0001
*: - 40°C以上に融点が確認されなレ、。
(重合例 5 )
充分窒素置換した容量 2リットルの攪拌翼付ステンレススチール製オートク レーブに、 2 3°Cでヘプタン 900 m 1 を装入した。 このオートクレープに、 攪拌翼を回し、 かつ氷冷しながらプロピレン 1 3 N 1、 水素 1 00m lを装入 した。 次にオートクレープを 70°Cまで加熱し、 更に、 全圧が 6 KGとなるよ うにエチレンで力 P圧した。 オートクレープの内圧が 6 KGになった所で、 トリ ィソブチルアルミニウムの 1. 0 mm o 1 /m 1へキサン溶液 1. 0m l を窒素 で圧入した。 続いて、 予め調製しておいた、 トリフエニルカルべニゥム (テト ラキスペンタフルオロフェニル) ボレートを B換算で 0. 0 2 mM、 [ジメチ ノレ( t一プチルァミ ド)(テトラメチル一 η 5—シク口ペンタジェニル)シラン] チタンジクロリ ドを 0. 000 5 mm o 1の量で含むトルエン溶液 3 m 1を、 窒素でオートクレープに圧入し重合を開始した。 その後、 5分間、 オートタレ 一ブを内温 70°Cになるように温度調製し、 かつ圧力が 6 k gとなるように直 接的にエチレンの供給を行った。 重合開始 5分後、 オートクレープにポンプで メタノール 5 m 1を装入し重合を停止し、 ォートクレーブを大気圧まで脱圧し た。 反応溶液に 3リ ッ トルのメタノールを攪拌しながら注いだ。 得られた溶媒 を含む重合体を 1 30° (:、 1 3時間、 60 Otorr で乾燥して 3 1 gのェチレ ン ·プロピレン共重合体を得た。 得られたポリマーのエチレン含量は 4 7重 量。/。、 [ 77 ] は 1. 60 d l Zg、 MwZMnは 2. 1、 融点は一 40 °C未満 (_40°C以上に融点が確認されない) であった。
(実施例 1 )
潤滑油基剤 (A) (ベース油) として、 グループ-(ii)に分類される 1 0 0 °Cの動粘度が 4. 60 mmV s、 粘度指数が 1 14、 飽和炭化水素分が 99 容量%、 硫黄分が 0. 001重量%以下の鉱物油 1 20ニュートラル (商標、 ESSO 社製) を 87.85重量%、 粘度指数向上剤として重合例 2で得られた エチレン . プロピレン共重合体 (B) を 0. 85重量%、 流動点降下剤 (C) と してァクループ 146 (商標、 三洋化成社製) を 0. 3重量%、 清浄分散剤 LZ 20003C (商標、 ルブリゾール社製) を 1 1.0重量%用いて、 潤滑油性能 評価を行った。 結果を表 3に示す。
(実施例 2 )
粘度指数向上剤 (B) として重合例 5で得られたエチレン · プロピレン共重 合体を 0.76重量%用いる以外は実施例 1と同様に行った。 結果を表 3に示 す。
(実施例 3 )
粘度指数向上剤 (B) として重合例 3で得られたエチレン ' プロピレン共重 合体を 0.70重量%用いる以外は実施例 1と同様に行った。 結果を表 3に示 す。 表 3
Figure imgf000017_0001
@ xxx°Cは xxx°Cにおける測定結果を示す。 以下同じ。
(実施例 4)
潤滑油基剤 (A) (ベース油) として、 鉱物油 120ニュートラル (商標、 ESSO 社製) を 87.37重量%、 粘度指数向上剤 (B) として重合例 2で得 られたエチレン ·プロピレン共重合体を 0. 83重量0 /0、 流動点降下剤 (C) としてァクルーブ 146 (商標、 三洋化成社製) を 0. 3重量%、 清浄分散剤 LZ20003C (商標、 ルブリゾール社製) を 1 1.5重量%用いて、 潤滑油性能 評価を行った。 結果を表 4に示す。
(実施例 5 )
鉱物油 1 20ニュートラル (商標、 ESSO 社製) を 87.46重量%用い、 粘度指数向上剤 (B) として重合例 5で得られたエチレン ·プロピレン共重合 体を 0. 74重量%用いる以外は実施例 4と同様に行った。 結果を表 4に示す。
(実施例 6 )
鉱物油 1 20ニュートラル (商標、 ESSO 社製) を 87.52重量%用い、 粘度指数向上剤 (B) として重合例 3で得られたエチレン ' プロピレン共重合 体を 0.68重量%用いる以外は実施例 4と同様に行った。 結果を表 4に示す。
(実施例 7 )
流動点降下剤 (C) としてァクルーブ 1 36 (商標、 三洋化成社製) を用い る以外は実施例 4と同様に行った。 結果を表 3に示す。
(実施例 8 )
流動点降下剤 (C) としてァクループ 1 36 (商標、 三洋化成社製) を用い る以外は実施例 5と同様に行った。 結果を表 4に示す。
(実施例 9 )
流動点降下剤 (C) としてァクループ 1 36 (商標、 三洋化成社製) を用い る以外は実施例 6と同様に行った。 結果を表 4に示す。
0
Figure imgf000019_0001
(比較例 1 )
鉱物油 1 20ニュートラル (商標、 ESS0 社製) を 87. 70重量%用い、 粘度指数向上剤 (B) として重合例 1で得られたエチレン ' プロピレン共重合 体を 1. 0 0重量%用いる以外は実施例 4と同様に行った。 結果を表 5に示す。 (比較例 2 )
鉱物油 1 2 0ニュートラル (商標、 ESSO 社製) を 8 8. 0 9重量%用い、 粘度指数向上剤と して重合例 4で得られたエチレン · プロピレン共重合体 (B) を 0. 6 1重量。 /0用いる以外は実施例 1 と同様に行った。 結果を表 5に 示す。
表 5
Figure imgf000020_0001
(比較例 3 )
潤滑油基剤 (A) (ベース油) として、 グループ(ii)に分類される 1 0 0°C 動粘度が 4. 6 0mm2Zsの鉱物油 (ESSO 社製) を 8 7. 2 2重量%、 粘度 指数向上剤 (B) として重合例 1で得られたエチレン · プロピレン共重合体を 0. 9 8重量0 /0、 流動点降下剤 (C) としてァクルーブ 1 4 6 (商標、 三洋化 成社製) を 0. 3重量%、 清浄分散剤 L Z 2 0 0 0 3 C (商標、 ルブリゾール 社製) を 1 1. 5重量%用いて、 潤滑油性能評価を行った。 結果を表 6に示す。 (比較例 4)
1 0 0 °C動粘度が 4. 6 0 mm2/ sの鉱物油 (ESSO 社製) を 8 7. 6 1重 量0 /0、 粘度指数向上剤 (B) として重合例 4で得られたエチレン · プロピレン 共重合体を 0. 5 9重量。 /0用いる以外は比較例 3と同様に行った。 結果を表 6 に示す。
(比較例 5 ) 流動点降下剤 (C) としてァクループ 1 3 6 (商標、 三洋化成社製) を用い る以外は比較例 3と同様に行った。 結果を表 6に示す。 (比較例 6 ) 流動点降下剤 (C) としてァクループ 1 3 6 (商標、 三洋化成社製) を用い る以外は比較例 4と同様に行った。 結果を表 6に示す。 表 6
比較例 3 比較例 4 比較例 5 比較例 6 配合したエチレン ·フ°ロピレン共重合体 (B) 重合例 1 重合例 4 重合例 1 重合例 4 配合 (重量0 /0)
潤滑油 (A) (ベース油) 87.22 87.61 87.22 87.61 エチレン ·フ° pピレン共重合体 (B) *1 0.98 0.59 0.98 0.59 流動点降下剤 (C) in- 146 *2 0.30 0.30
流動点降下剤 (C) ァク フ、' 136 *2 0.30 0.30 清浄分散剤 (LZ20003C) 11.50 11.50 11.50 11.50
*1エチレン'プロピレン共重合体 (B)の ] (dl/g) 1.20 2.18 1.20 2.18
*2流動点降下剤 (C)の融点 (°C) -19.0 -19.0 -18.1 - 18.1
*2流動点降下剤 (C)の重量平均分子量 (Mw) 56100 56100 100200 100200 潤滑油性能
動粘度 @100°C (醒 2/s) 10.79 10.88 10.85 10.91
CCS¾J¾@-25°C (mPa-s) 3120 2950 3150 2930
MR粘度 @-35°C (raPa-s) 52870 48650 54330 51740
S S I 30 57 30 57 (実施例 1 0)
流動点降下剤 (C) としてァクルーブ 1 3 3 (商標、 三洋化成社製) を用い る以外は実施例 4と同様に行った。 結果を表 7に示す。
(実施例 1 1 )
流動点降下剤 (C) と してァクルーブ 1 3 3 (商標、 三洋化成社製) を用い る以外は実施例 5と同様に行った。 結果を表 7に示す。
(実施例 1 2)
流動点降下剤 (C) としてァクルーブ 1 3 3 (商標、 三洋化成社製) を用い る以外は実施例 6と同様に行った。 結果を表 7に示す。
(実施例 1 3)
流動点降下剤 (C) としてビスコプレックス 1一 1 5 6 (商標、 R0HMAX 社 製) を用いる以外は実施例 4と同様に行った。 結果を表 7に示す。
(実施例 14)
流動点降下剤 (C) としてビスコプレックス 1一 1 5 6 (商標、 R0HMAX 社 製) を用いる以外は実施例 5と同様に行った。 結果を表 7に示す。
(実施例 1 5 )
流動点降下剤 (C) と してビスコプレックス 1— 1 5 6 (商標、 R0HMAX社 製) を用いる以外は実施例 6と同様に行った。 結果を表 7に示す。 表 7
実施例 10 実施例 11 実施例 12 実施例 13 実施例 14 実施例 15 配合したエチレン ·フ°ロピレン共重合体 (B) 重合例 2 重合例 5 重合例 3 重合例 2 重合例 5 重合例 3 配合 (重量%)
潤滑油基剤 (A) (ベース油) 87. 37 87. 46 87. 52 87. 37 87. 46 87. 52 エチレン 'フ。ロピレン共重合体 (B) *1 0. 83 0. 74 0. 68 0. 83 0. 74 0. 68 流動点降下剤 (C) ァクル-フ" 133 *2 0. 30 0. 30 0. 30
流動点降下剤(C) ビスコフ。レックス 1-156 *2 0. 30 0. 30 0. 30 清浄分散剤 (LZ20003C) 11. 50 11. 50 11. 50 11. 50 11. 50 11. 50
*1エチレン 'フ。 nt°レン共重合体 (B)の [ η ] (dl/g) 1. 45 1. 60 1. 84 1. 45 1. 60 1. 84
*2流動点降下剤 (C)の融点 (°C) -11. -11. - 11. 4 -8. 7 -8. 7 - 8. 7
*2流動点降下剤 (C)の重量平均分子量 (Mw) 418000 418000 418000 75600 75600 75600 潤滑油性能
動粘度 @ 100°C (腿2/ s) 10. 91 10. 88 10. 82 10. 94 10. 80 10. 77
C C S粘度 @- 25°C (mPa- s) 3090 3060 3050 3080 3060 3010
MR粘度 @-35°C (mPa- s) 42870 41650 42330 44740 43880 44180
S S I 42 45 47 42 44 46

Claims

請求の範囲
1.
1 00°Cにおける動粘度が 1〜 50 mm s で、 かつ粘度指数が 80以上 の潤滑油基剤 (A) 80〜99重量%と、 下記 (B 1) 〜 (B 4) の特性を有 するエチレン .プロピレン共重合体 (B) 1〜20重量%とからなることを特 徴とする潤滑油組成物 (AA) ;
(B 1 ) エチレン含量が 30〜 75重量0 /0の範囲にある
(B 2) 極限粘度 [ 77 ] が 1. 3〜2. O d l Zgの範囲にある
(B 3) MwZMnが 2. 4以下である
(B 4) D S Cで測定した融点が 30°C以下である。
2.
前記潤滑油基剤 (A) 、 下記 (A1) 〜 (A3) の特性を有する鉱物油で あるかまたはポリ α—ォレフインであることを特徴とする請求の範囲第 1項に 記載の潤滑油組成物 (ΑΑ) ;
(A 1 ) 粘度指数が 80以上である
(Α 2) 飽和炭化水素分が 90容量%以上である
(A3) 硫黄分が 0. 03重量%以下である。
3.
1 00°Cにおける動粘度が 1〜 5 Omm2/s で、 かつ粘度指数が 80以上 の潤滑油基剤 (A) を 92〜99. 85重量%と、 下記 (B 1) 〜 (B 4) の 特徴を有するエチレン 'プロピレン共重合体 (B) を 0. 1〜5重量%と、 流 動点降下剤 ( C ) を 0. 05〜 3重量%とからなることを特徴とする潤滑油組 成物 (BB) ;
(B 1) エチレン含量が 30〜 75重量0 /。の範囲にあること (B 2) 極限粘度 [ 77 ] が 1. 3〜2. 0 d 1 Zgの範囲にあること
(B 3) MwZMnが 2. 4以下であること
(B 4) D S Cで測定した融点が 30 °C以下であること
4.
前記流動点降下剤 (C) 、 DS Cで測定した融点が _ 1 3°C以下であるこ とを特徴とする請求の範囲第 3項に記載の潤滑油組成物 (BB) 。
5.
請求の範囲第 3項または第 4項に記載の潤滑油組成物 (BB) からなること を特徴とする内燃機関用潤滑油。
PCT/JP2003/014311 2002-11-12 2003-11-11 潤滑油組成物および内燃機関用潤滑油 WO2004044108A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03811110A EP1561798B1 (en) 2002-11-12 2003-11-11 Lubricating oil composition and internal combustion engine oil
US10/534,580 US7622433B2 (en) 2002-11-12 2003-11-11 Lubricating oil composition and internal combustion engine oil
AU2003277670A AU2003277670A1 (en) 2002-11-12 2003-11-11 Lubricating oil composition and internal combustion engine oil
JP2005505668A JP4634300B2 (ja) 2002-11-12 2003-11-11 潤滑油組成物および内燃機関用潤滑油

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-327750 2002-11-12
JP2002327750 2002-11-12
JP2002352240 2002-12-04
JP2002-353129 2002-12-04
JP2002353129 2002-12-04
JP2002-352240 2002-12-04

Publications (1)

Publication Number Publication Date
WO2004044108A1 true WO2004044108A1 (ja) 2004-05-27

Family

ID=32314784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014311 WO2004044108A1 (ja) 2002-11-12 2003-11-11 潤滑油組成物および内燃機関用潤滑油

Country Status (5)

Country Link
US (1) US7622433B2 (ja)
EP (1) EP1561798B1 (ja)
JP (1) JP4634300B2 (ja)
AU (1) AU2003277670A1 (ja)
WO (1) WO2004044108A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016038A1 (en) * 2006-08-03 2008-02-07 Idemitsu Kosan Co., Ltd. Lubricant composition
WO2010027019A1 (ja) * 2008-09-05 2010-03-11 Ntn株式会社 グリース組成物、該グリース組成物を封入した転がり軸受および自在継手
JP2010059369A (ja) * 2008-09-05 2010-03-18 Ntn Corp グリース組成物、該グリース組成物を封入した転がり軸受および自在継手
JP2013518146A (ja) * 2010-01-27 2013-05-20 エクソンモービル・ケミカル・パテンツ・インク コポリマー、その組成物及びそれらの製造方法
JP2018115229A (ja) * 2017-01-16 2018-07-26 三井化学株式会社 自動車ギア用潤滑油組成物
JP2018115228A (ja) * 2017-01-16 2018-07-26 三井化学株式会社 自動車変速機用潤滑油組成物
JP2018115227A (ja) * 2017-01-16 2018-07-26 三井化学株式会社 自動車ギア用潤滑油組成物
JP2019525987A (ja) * 2016-07-28 2019-09-12 シェブロン ユー.エス.エー. インコーポレイテッド Apiグループii基油を含む駆動系流体
JP2019157140A (ja) * 2014-03-28 2019-09-19 三井化学株式会社 潤滑油用粘度調整剤、潤滑油用添加剤組成物、および潤滑油組成物

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834705B2 (en) * 2006-06-06 2014-09-16 Exxonmobil Research And Engineering Company Gear oil compositions
JP5396589B2 (ja) * 2007-06-21 2014-01-22 シュルンベルジェ ホールディングス リミテッド マルチアトリビュート地震探査データによるガスハイドレートの特徴付け
JP5330716B2 (ja) * 2008-03-17 2013-10-30 出光興産株式会社 潤滑油組成物
US8452548B2 (en) * 2008-09-12 2013-05-28 Exxonmobil Research And Engineering Company Base oil low temperature property classification model
JP5638256B2 (ja) * 2010-02-09 2014-12-10 出光興産株式会社 潤滑油組成物
JP6339936B2 (ja) * 2012-04-12 2018-06-06 三井化学株式会社 潤滑油組成物
US20140020645A1 (en) * 2012-07-18 2014-01-23 Afton Chemical Corporation Lubricant compositions for direct injection engines
CN106190505B (zh) * 2016-08-11 2019-04-02 江苏龙蟠科技股份有限公司 一种涡轮增压直喷发动机用润滑油组合物
US20200362263A1 (en) 2017-11-21 2020-11-19 Exxonmobil Chemical Patents Inc. Bimodal Copolymer Compositions Useful as Oil Modifiers
WO2019116117A1 (en) 2017-12-13 2019-06-20 Chevron Oronite Company Llc Bimodal copolymer compositions useful as oil modifiers and lubricating oils comprising the same
CN109181797B (zh) * 2018-09-17 2020-11-17 青岛涌泉华能源科技有限公司 一种高效汽油清净剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2047266A (en) * 1979-04-09 1980-11-26 Exxon Research Engineering Co Viscosity Index Improved Lubricating Oils
EP0188103A2 (en) * 1984-12-17 1986-07-23 Exxon Research And Engineering Company An ethylene polymer useful as a lubricating oil viscosity modifier
EP0632066A1 (en) * 1993-06-30 1995-01-04 Montell Technology Company bv Elastomeric copolymers of ethylene with propylene and process for their preparation
JPH07150181A (ja) * 1993-11-30 1995-06-13 Mitsui Petrochem Ind Ltd 潤滑油添加剤組成物およびその製造方法
WO2000034420A1 (fr) * 1998-12-09 2000-06-15 Mitsui Chemicals, Inc. Modificateur de viscosite pour huile lubrifiante et composition d'huile lubrifiante
WO2000060032A1 (fr) * 1999-03-30 2000-10-12 Mitsui Chemicals, Inc. Regulateur de viscosite pour huile de graissage et composition d'huile de graissage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666619A (en) * 1984-12-17 1987-05-19 Exxon Research & Engineering Co. Ethylene polymer useful as a lubricating oil viscosity modifier E-25
US6322692B1 (en) * 1996-12-17 2001-11-27 Exxonmobil Research And Engineering Company Hydroconversion process for making lubricating oil basestocks
JP2000351813A (ja) * 1999-04-09 2000-12-19 Mitsui Chemicals Inc エチレン・α−オレフィン共重合体およびその製造方法ならびにその用途
US6764985B2 (en) * 2000-05-10 2004-07-20 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oil and lubricating oil composition
CN1396304A (zh) 2002-06-21 2003-02-12 郭福春 高性能的化学镀镍-磷合金溶液的配制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2047266A (en) * 1979-04-09 1980-11-26 Exxon Research Engineering Co Viscosity Index Improved Lubricating Oils
EP0188103A2 (en) * 1984-12-17 1986-07-23 Exxon Research And Engineering Company An ethylene polymer useful as a lubricating oil viscosity modifier
EP0632066A1 (en) * 1993-06-30 1995-01-04 Montell Technology Company bv Elastomeric copolymers of ethylene with propylene and process for their preparation
JPH07150181A (ja) * 1993-11-30 1995-06-13 Mitsui Petrochem Ind Ltd 潤滑油添加剤組成物およびその製造方法
WO2000034420A1 (fr) * 1998-12-09 2000-06-15 Mitsui Chemicals, Inc. Modificateur de viscosite pour huile lubrifiante et composition d'huile lubrifiante
WO2000060032A1 (fr) * 1999-03-30 2000-10-12 Mitsui Chemicals, Inc. Regulateur de viscosite pour huile de graissage et composition d'huile de graissage
US20020035044A1 (en) 1999-03-30 2002-03-21 Keiji Okada Viscosity modifier for lubricating oil and lubricating oil composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1561798A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016038A1 (en) * 2006-08-03 2008-02-07 Idemitsu Kosan Co., Ltd. Lubricant composition
WO2010027019A1 (ja) * 2008-09-05 2010-03-11 Ntn株式会社 グリース組成物、該グリース組成物を封入した転がり軸受および自在継手
JP2010059369A (ja) * 2008-09-05 2010-03-18 Ntn Corp グリース組成物、該グリース組成物を封入した転がり軸受および自在継手
US8673829B2 (en) 2008-09-05 2014-03-18 Ntn Corporation Grease composition and grease composition-enclosed rolling bearing and universal joint
JP2013518146A (ja) * 2010-01-27 2013-05-20 エクソンモービル・ケミカル・パテンツ・インク コポリマー、その組成物及びそれらの製造方法
JP2019157140A (ja) * 2014-03-28 2019-09-19 三井化学株式会社 潤滑油用粘度調整剤、潤滑油用添加剤組成物、および潤滑油組成物
JP2019525987A (ja) * 2016-07-28 2019-09-12 シェブロン ユー.エス.エー. インコーポレイテッド Apiグループii基油を含む駆動系流体
JP2018115229A (ja) * 2017-01-16 2018-07-26 三井化学株式会社 自動車ギア用潤滑油組成物
JP2018115228A (ja) * 2017-01-16 2018-07-26 三井化学株式会社 自動車変速機用潤滑油組成物
JP2018115227A (ja) * 2017-01-16 2018-07-26 三井化学株式会社 自動車ギア用潤滑油組成物

Also Published As

Publication number Publication date
AU2003277670A8 (en) 2004-06-03
US7622433B2 (en) 2009-11-24
JP4634300B2 (ja) 2011-02-16
AU2003277670A1 (en) 2004-06-03
EP1561798B1 (en) 2013-04-03
US20060122079A1 (en) 2006-06-08
EP1561798A1 (en) 2005-08-10
EP1561798A4 (en) 2008-08-20
JPWO2004044108A1 (ja) 2006-03-09

Similar Documents

Publication Publication Date Title
WO2004044108A1 (ja) 潤滑油組成物および内燃機関用潤滑油
JP5584766B2 (ja) 潤滑油用粘度調整剤、潤滑油用添加剤組成物、および潤滑油組成物
US8410035B2 (en) Viscosity modifier of lubricating oil for power transmission system and lubricating oil composition for power transmission system
JP5452297B2 (ja) 潤滑油組成物
JP6740427B2 (ja) 潤滑油用粘度調整剤、潤滑油用添加剤組成物、および潤滑油組成物
KR101530137B1 (ko) 에틸렌계 공중합체의 블렌드를 포함하는 점도 개질제
Jukic et al. Alkyl methacrylate and styrene terpolymers as lubricating oil viscosity index improvers
JP6339936B2 (ja) 潤滑油組成物
JP4620966B2 (ja) 駆動系潤滑油組成物
JP7189941B2 (ja) 潤滑油組成物および潤滑油用粘度調整剤
CN1333057C (zh) 润滑油组合物和适用于内燃机的润滑油
JP2013147531A (ja) 潤滑油用粘度指数向上剤、潤滑油用添加剤組成物および潤滑油組成物
JP2012172013A (ja) 潤滑油粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物
CN111465677A (zh) 用作油改性剂的双峰共聚物组合物和包含该组合物的润滑油
JP7291525B2 (ja) 潤滑油用粘度調整剤および潤滑油組成物
WO2023054440A1 (ja) 潤滑油組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505668

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003811110

Country of ref document: EP

Ref document number: 20038A29420

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006122079

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10534580

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003811110

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10534580

Country of ref document: US