WO2004042317A1 - Procede de detection de la perpendicularite d'un rail guide d'elevation et detecteur permettant la mise en oeuvre de ce procede - Google Patents

Procede de detection de la perpendicularite d'un rail guide d'elevation et detecteur permettant la mise en oeuvre de ce procede Download PDF

Info

Publication number
WO2004042317A1
WO2004042317A1 PCT/CN2003/000936 CN0300936W WO2004042317A1 WO 2004042317 A1 WO2004042317 A1 WO 2004042317A1 CN 0300936 W CN0300936 W CN 0300936W WO 2004042317 A1 WO2004042317 A1 WO 2004042317A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide rail
detection
elevator
rail
verticality
Prior art date
Application number
PCT/CN2003/000936
Other languages
English (en)
French (fr)
Inventor
Lixin Sun
Yajuan Sun
Original Assignee
Lixin Sun
Yajuan Sun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNB021492182A external-priority patent/CN100398991C/zh
Priority claimed from CN 02288887 external-priority patent/CN2615638Y/zh
Application filed by Lixin Sun, Yajuan Sun filed Critical Lixin Sun
Priority to AU2003277477A priority Critical patent/AU2003277477A1/en
Priority to US10/533,975 priority patent/US7210242B2/en
Publication of WO2004042317A1 publication Critical patent/WO2004042317A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1246Checking means specially adapted for guides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Definitions

  • the invention relates to a detection method and a detection instrument thereof. More specifically, the present invention relates to a method for detecting the verticality of an elevator guide rail and a detector for implementing the method. Background technique
  • the installation quality of the elevator guide rails is an important factor that affects the elevator running quality. Inspection and inspection of the verticality of the elevator guide rails is an important link to ensure the elevator installation quality.
  • GBJ310-88 Elevator Installation Engineering Quality Inspection and Evaluation Standard
  • the requirement for the verticality of the elevator guide rail is 0.7 mm per 5m.
  • the inspection method is "hanging wire, ruler inspection”.
  • T-type counterweight guide rail with safety gear is 1.2 female
  • T-type counterweight guide rail without safety gear is 2 sides.
  • the inspection method is: use a laser plummet or a 5m long magnetic line hammer to measure along the side and top of the guide rail, and continuously detect each 5m along the vertical line, with no less than 3 sections on each side.
  • This "hanging wire, ruler check” method of rail verticality has been used in the elevator industry for decades. Its advantages are simple measuring tools, measuring tools, and intuitive measurement data. The disadvantage is that the measurement accuracy varies depending on the operator's operating level and parallax. Different, it is not easy to realize the automatic collection of measurement data, and the work efficiency is low.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and provide a detection method in which measurement data can be picked up and output by a sensor, and the measurement data is automatically collected, analyzed, and output by a microcomputer, and a detection instrument implementing the detection method.
  • the method for detecting the verticality of an elevator guide rail of the present invention includes the following steps:
  • the present invention designs the elevator rail guideline verticality detector through the following technical solutions:
  • the elevator rail verticality detector includes an instrument frame and a power supply device.
  • the instrument frame is provided with at least two detection heads that can lean against the working surface of the elevator rail, and is also provided for measuring the movement of the detection head along the measured rail.
  • the output terminal is connected to the input terminal of the microcomputer system.
  • the detection head capable of leaning on the working surface of the elevator guide rail is of a roller type or a slider type, and a pressing device is provided thereon;
  • the pressing device is a spring type or a magnetic type.
  • the displacement sensor can be set as a rotary encoder, which is connected to the roller of the detection head through an elastic coupling.
  • the displacement sensor may also be set as a photoelectric type, which is not in contact with the working surface of the track to be tested, and the gap between the working surface of the track to be tested is more than one leg.
  • the beneficial effect of the present invention is that the sensor data is directly input into the microcomputer system by the sensor, and the microcomputer system analyzes and outputs the measurement data, which can realize the automation and intelligence of the verticality detection of the elevator guide rail.
  • FIG. 1 is a schematic structural view of an elevator guide rail verticality detector according to the present invention
  • FIG. 2 is a cross-sectional view taken along the A-A section of FIG. 1;
  • Fig. 3 is a schematic diagram of another structure of the elevator rail verticality detector of the present invention. detailed description
  • the method for detecting the verticality of an elevator guide rail of the present invention includes determining a plurality of detection points on the working surface of the elevator guide rail to be detected, and measuring the length of each detection point on the guide rail one by one The position coordinates in the direction and the distance between two adjacent detection points, the angle between the line between the two adjacent points at each detection point and the plumb line is measured one by one, and the verticality error of the detected elevator guide rail is obtained based on the detection data. Data, drawing a perpendicularity curve, and other steps; in the present invention, when the detection method is implemented, the elevator guideway verticality detector has two structural settings shown in FIG. 1 and FIG.
  • the detection head A, B detection head 8, C detection head 14 and D detection head 15 in the detector can be set as a roller type or a slider type; the distance between the two detection heads can be awake from 300 to 2000 according to the measurement requirements. Choose between; the output ends of the displacement sensor 4 and the inclination sensor 5 are connected to the input end of the microcomputer system 6.
  • the elevator rail verticality detector in this embodiment is mainly used to detect the verticality of the working surface on the side of the guide rail.
  • FIG. 1 illustrates its structure
  • FIG. 2 illustrates from the AA section that the detection head in the detector is under pressure. Close to the working surface on the side of the guide rail under the action of the wheel.
  • the A-detection head 1 and the B-detection head 8 are both configured as roller-type structures and are rigidly connected to the upper and lower ends of the instrument frame 12, respectively.
  • the distance between the two is set according to the convenience of measurement and calculation as 537 mm.
  • a test head 1 and B test head 8 can be pressed against the side working surface of the tested rail, and the pressing wheel 10 can be pressed against the other working surface of the tested rail, and then pressed by The arm 11 applies a pressure of 20 to 30 N through the compression spring 13 to ensure that the A detection head 1 and the B detection head 8 are always close to the side working surface of the tested rail during the detection process.
  • the displacement sensor 4 in this embodiment is a rotary encoder structure, which is connected to the roller of the A detection head 1 through an elastic coupling 2 and is used to measure the distance that the A detection head 1 moves along the measured rail.
  • the direction and distance of the relative movement of the tester and the track to be tested are determined by the direction and rotation value of its rollers rolling along the surface of the track, and the value is measured by electric pulses. Output as a code.
  • the inclination sensor 5 in this embodiment is rigidly mounted on the instrument frame 12 like the A detection head 1 and the B detection head 8 for measuring the angle between the connection line of the A detection head 1 and the B detection head 8 and the plumb line .
  • this detector is selected
  • the American TAB-U type inclination sensor has a resolution of 0.00 ⁇ and a corresponding verticality resolution of 0.01 mm.
  • the inclination sensor 5 can measure the value of the angle formed by the connection between the two detection points before and after each measurement section and the plumb line. Since the distance between the A detection head 1 and the B detection head 8 is set to 537 mm in this embodiment, when the included angle detection value deviates from the reference every 0.1 ° is equivalent to a verticality error of 1.
  • the instrument can be slid along the tested rail.
  • the detection data is picked up by the displacement sensor 4 and the inclination sensor 5 along with the instrument's sliding on the rail in time and transmitted to the microcomputer system 6, which is then analyzed and calculated by the microcomputer system 6. Then output the verticality curve graph of the tested rail and the verticality error value of each detection point of the tested rail.
  • the tester detects each measurement section to the end point, and obtains a series of verticality error values of the next detection point relative to the previous detection point of each measurement section of the measured elevator guide rail;
  • the elevator rail verticality detector in this embodiment can simultaneously detect the verticality of the side working surface and the top working surface of the guide rail, and its structure is shown in FIG. 3.
  • a C detection head 14 and a D detection head 15 for measuring the verticality of the top working surface of the guide rail are added to the embodiment shown in FIG. 1.
  • the C detection head 14 and the D detection head 15 use a slider. Structure, they are respectively installed at the upper and lower ends of the frame 12, and are located outside the A detection head 1 and the B detection head 8 respectively.
  • the sliding surfaces of the C detection head 14 and the D detection head 15 rest on the top working surface of the rail to be tested.
  • the method for detecting the verticality of the top working surface of the elevator guide rail is the same as the method for detecting the verticality of the side working surface in the first embodiment.
  • the C detection head 14 and the D detection head 15 are respectively provided with a magnet 16 and a magnet 17, and the purpose is to rely on the magnetic attraction of the magnet 16 and the magnet 17 to the measured guide rail to make the sliding surface of the detection head closely contact Working surface of the tested rail.
  • the displacement sensor 4 is elastic A rotary encoder in which the coupling 2 is connected to the rollers of the A detection head 1.
  • the rotary encoder can be identified by the rotary encoder during measurement. Measure the rolling direction and rotation value of the surface of the guide rail and output the electric pulse code for counting.
  • the rollers and the elevator guide rails are in direct contact. Generally, the measurement results are good, but if the surface of the elevator guide rails is coated with lubricant, it may cause the rollers to roll due to the reduced friction. This leads to a reduction in measurement accuracy.
  • Another arrangement of the present invention is to replace the rotary encoder type displacement sensor 4 in Embodiments 1 and 2 with a photoelectric displacement sensor which is non-contact with the working surface of the track to be measured, like an optical mouse for a computer.
  • a photoelectric displacement sensor which is non-contact with the working surface of the track to be measured, like an optical mouse for a computer.
  • the gap between the photoelectric displacement sensor and the working surface of the tested rail is more than one drawing.
  • the present invention has the following advantages:
  • the measurement data can be automatically collected by the sensors, and the measurement data can be analyzed and output by the microcomputer system to realize the automation of the inspection work, reduce the work intensity of the inspection personnel, and shorten the inspection work time;

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Description

电梯导轨垂直度检测方法
以及实施该检测方法的检测仪
技术领域
本发明涉及一种检测方法及其检测仪器。 更具体地说, 本发 明涉及一种电梯导轨垂直度的检测方法以及实施该检测方法的检 测仪。 背景技术
电梯导轨的安装质量特别是导轨的垂直度误差是影响电梯 运行质量的重要因素, 对电梯导轨的垂直度进行检测检验是保证 电梯安装质量的重要环节。 GBJ310-88《电梯安装工程质量检验 评定标准》 中对电梯导轨垂直度的要求为每 5m允许偏差 0.7 mm, 检验方法为 " 吊线, 尺量检查"。 国家质量监督检验检疫总局 2002年 1月 9日颁布的 《电梯监督检验规程》规定, 每列导轨工 作面每 5m铅垂线测量值间的相对最大偏差均应不大于下列数值: 轿厢导轨和设有安全钳的 T型对重导轨为 1.2 雌; 不设安全钳的 T型对重导轨为 2 麵。 检验方法为: 使用激光垂准仪或 5m长磁 力线锤沿导轨侧面和顶面测量, 对每 5m沿垂线分段连续检测, 每面不少于 3段。 这种 "吊线, 尺量检查"导轨垂直度的方法在 电梯行业沿用了数十年, 其优点是测量工具、 量具简单, 测量数 据直观;缺点是测量精度因测量者操作水平和视差不同因人而异, 不易实现测量数据的自动采集, 工作效率低。
近年来, 行业中推出了用激光准直仪检测电梯导轨垂直度的 方法, 如大连开发区拉特激光技术开发有限公司申请专利并推广 的使用 JZOA激光自动安平垂准仪检测电梯导轨垂直度的方法, 其测量精度与工作效率均比传统的 "吊线、尺量检查"有所提高, 但此方法也只是以激光束替代了拉线, 其测量原理和测量工艺与 传统的 "吊线法"基本相同, 在实施检测时, 对每个检测位置的 测量依然由人工逐一进行, 测量数据也依然由人工读取。 发明内容
本发明的目的是克服现有技术的不足, 提供一种测量数据可 通过传感器拾取、 输出, 由微机对测量数据自动采集、 分析、 输 出的检测方法以及实施该检测方法的检测仪。
本发明的电梯导轨垂直度的检测方法包括以下步骤:
1. 在被检测电梯导轨的 "侧工作面 "或 "顶工作面 "上 确定若干个检测点;
2. 逐一测量出各检测点在导轨长度方向的位置坐标以及相 邻两检测点之间的距离;
3. 逐一测量出各检测点相邻两点之间的连线与铅垂线的夹 角;
4. 用检测得到的 " 各检测点在导轨长度方向的位置坐标 "、 " 各检测点相邻两点之间的连线与铅垂线的夹角" 以及 "相邻 两检测点之间的距离 "等数据, 经数学计算、 分析、 整理, 得到 被检' 电梯导轨的垂直度误差数据, 绘出垂直度曲线图。
为了实施上述检测方法, 本发明通过下述技术方案设计了电 梯导轨垂直度检测仪:
所述的电梯导轨垂直度检测仪, 包括仪器框架和电源装置, 在仪器框架上至少设置有两个能靠在电梯导轨工作面的检测头, 还设置有用于测量该检测头沿被测导轨移动距离的位移传感器、 用于测量两检测头连线与铅垂线之间夹角的倾角传感器以及能对 测量数据进行处理的微机系统; 所述位移传感器和倾角传感器的 输出端连接微机系统的输入端。
所述的能靠在电梯导轨工作面上的检测头为滚轮式或滑块 式, 且其上设置有压紧装置;
所述的压紧装置为弹簧式或磁力式。
所述的位移传感器可设置为旋转编码器, 它通过弹性联轴器 与检测头的滚轮相连接。
所述的位移传感器也可设置为光电式, 它与被测导轨工作面 非接触, 且与被测导轨工作面的间隙为 1 腿以上。
本发明的有益效果是: 检测数据的采集由传感器直接输入微 机系统, 并由微机系统对测量数据进行分析与输出, 可实现电梯 导轨垂直度检测的自动化与智能化。 附图说明
图 1是本发明电梯导轨垂直度检测仪一种结构简图; 图 2是图 1在 A-A截面的剖视图;
图 3是本发明电梯导轨垂直度检测仪另一种结构简图。 具体实施方式
下面结合实施例和附图对本发明作进一步的详细描述: 本发明检测电梯导轨垂直度的方法, 包括在被检测电梯导轨 的工作面上确定若干个检测点、 逐一测量出各检测点在导轨长度 方向的位置坐标以及相邻两检测点之间的距离、 逐一测量出各检 测点相邻两点之间的连线与铅垂线的夹角, 依据检测数据得到被 检测电梯导轨的垂直度误差数据、 绘出垂直度曲线图等步骤; 本 发明实施该检测方法的,电梯导轨垂直度检测仪为图 1、 图 3所示 的两种结构设置: 一种是在仪器框架 12上设置 A检测头 1、 B检 测头 8、 位移传感器 4、 倾角传感器 5、 微机系统 6和电源装置 7 (见图 1 ) ; 另一种是 图 1的设置中加设 C检测头 14和 D检 测头 15 (见图 3 )。 所述检测仪中的 A检测头 1、 B检测头 8、 C 检测头 14和 D检测头 15可设置为滚轮式或滑块式; 两检测头间 的距离可根据测量要求在 300〜2000醒之间选择;所述的位移传感 器 4和倾角传感器 5的输出端连接微机系统 6的输入端。 实施例 1:
本实施例中的电梯导轨垂直度检测仪, 主要功能是检测导轨 侧工作面的垂直度, 图 1示意了它的结构, 图 2从 A-A剖面示意 了所述检测仪中的检测头在压紧轮作用下靠紧被测导轨侧工作面 的情况。
在本实施例中, A检测头 1和 B检测头 8均设置为滚轮式结 构, 并分别刚性连接在仪器框架 12的上、 下两端, 两者间的距离 根据测量和计算的方便设置为 537 mm。 当使用该仪器检测作业时, 可将 A检测头 1和 B检测头 8靠紧被测导轨的侧工作面, 并将压 紧轮 10靠紧被测导轨的另一侧工作面, 然后由压臂 11通过压紧 弹簧 13施加 20 30N压力, 以保证检测过程中 A检测头 1和 B 检测头 8始终靠紧被测导轨的侧工作面。
本实施例中的位移传感器 4是一种旋转编码器结构, 它通过 弹性联轴器 2与所述 A检测头 1的滚轮相连接, 用于测量 A检测 头 1沿被测导轨移动的距离。 当所述的 A检测头 1沿被测导轨移 动时, 通过其滚轮沿导轨表面滚动的方向与转动数值来确定所述 检测仪与被测导轨相对运行的方向与距离, 并将数值以电脉冲码 的形式输出。
本实施例中的倾角传感器 5与 A检测头 1和 B检测头 8同 样刚性安装在仪器框架 12上,用于测量 A检测头 1和 B检测头 8 连线与铅垂线之间的夹角。 为了保证检测精度, 本检测仪选用了 美国的 TAB-U型倾角传感器, 它的分辨率为 0.00Γ , 对应垂直 度分辨率为 0.01 mm。 在实施导轨垂直度测量时, 倾角传感器 5可 测出每个测量段前、后两个检测点连线与铅垂线构成的夹角数值。 由于在本实施例中设定 A检测头 1和 B检测头 8之间的距离为 537 mm, 所以, 当夹角检测值偏离基准每 0.1 °相当于垂直度误差为 1 醒。
检测作业时, 可将该仪器沿被测导轨滑行, 检测数据由位移 传感器 4和倾角传感器 5随仪器在导轨上的滑行及时拾取并输送 给微机系统 6, 再由微机系统 6进行分析和计算, 然后输出被测 导轨垂直度曲线图及被测导轨各检测点的垂直度误差值。
应用本实施例的电梯导轨垂直度检测仪实施本发明的检测 方法步骤如下:
1. 将检测仪的 A检测头 1和 B检测头 8同时靠在被测电梯 导轨的侧工作面上, 设定 A测试头 1的位置为第 1检测点, B测 试头 8的位置为第 2检测点; 已知两检测点间的距离 (即两测试 头间距) 为 573 醒, 且由倾角传感器 5测出两检测点的连线与铅 垂线间夹角,则第 2检测点相对于第 1检测点的垂直度误差值 =573 xtg a , 此计算由微机系统 6完成;
2. 将检测仪沿被测电梯导轨滑行, 并由位移传感器 4检测 滑动距离的数值, 当移动距离等于两测试头间距时, A 测试头 1 位于第 2检测点, B测试头 8位于第 3检测点, 此测量段中两检 测点的连线与铅垂线间夹角由倾角传感器 5测出, 微机系统 6依 照同样原理, 完成第 3检测点相对于第 2检测点垂直度误差值的 计算;
3. 继续将检测仪沿被测电梯导轨滑行, 并由位移传感器 4 检测滑动距离的数值, 当移动距离等于两测试头间距时, A测试 头 1位于第 3检测点, B测试头 8位于第 4检测点, 此测量段中 两检测点的连线与铅垂线间夹角由倾角传感器 5测出, 微机系统
6依照同样原理, 完成第 4检测点相对于第 3检测点垂直度误差 值的计算;
4. 按此类推, 检测仪对每一测量段进行检测直至终点, 得 到被测电梯导轨各测量段后一检测点相对于前一检测点的一系列 垂直度误差值;
5- 以被测导轨的长度为纵坐标, 以垂直度误差值为横坐标, 建立坐标系; 在纵坐标上逐一标出各检测点的位置, 在横坐标上 逐一标出各测量段后一检测点相对于前一检测点的垂直度误差 值, 绘出被测电梯导轨的垂直度误差曲线图, 从此曲线图中可得 到被测电梯导轨各检测点的垂直度误差值。 此分析、 计算及输出 工作由微机系统 6完成。 实施例 2:
本实施例中的电梯导轨垂直度检测仪可同时对导轨的侧工 作面和顶工作面的垂直度进行检测, 图 3示出了它的结构。
本实施例是在图 1所示实施例的基础上增设了测量导轨顶工 作面垂直度的 C检测头 14和 D检测头 15, 所述的 C检测头 14 和 D检测头 15采用了滑块式结构,它们分别安装在框架 12的上、 下两端, 且分别位于所述的 A检测头 1和 B检测头 8的外侧。
当进行检测作业时, 所述 C检测头 14和 D检测头 15的滑 动面靠在被测导轨的顶工作面上。 电梯导轨顶工作面垂直度的检 测方法与实施例 1中侧工作面垂直度的检测方法相同。
在实施例 2中, 所述的 C检测头 14和 D检测头 15上分别 设置有磁铁 16和磁铁 17, 目的是依靠磁铁 16和磁铁 17对被测 导轨的磁吸力使检测头滑动面紧贴被测导轨的工作面。
在实施例 1和实施例 2中, 所述的位移传感器 4是通过弹性 联轴器 2与所述 A检测头 1的滚轮相连接的旋转编码器, 利用这 种 "滚轮一一旋转编码器"的机械式结构, 可在测量时通过旋转 编码器识别所述滚轮沿被测导轨表面滚动的方向与转动数值并输 出电脉冲码进行计数。 在这种测量方式中, 滚轮与电梯导轨采用 直接接触方式, 一般情况下测量效果很好, 但如果被测电梯导轨 的表面涂有润滑油,就可能产生因摩擦力减小使滚轮丟转的现象, 从而导致测量精度的降低。
为此, 本发明的另一种设置是将实施例 1和实施例 2中旋转 编码器式位移传感器 4替换为与被测导轨工作面非接触的光电式 位移传感器, 就像电脑用的光学鼠标一样, 免除某些工况条件对 实施检测的限制和影响。 所述的光电式位移传感器与被测导轨工 作面之间的间隙为 1 画以上。
本发明与现有技术相比有以下优点:
( 1 ) 可由传感器自动采集测量数据, 并由微机系统对测量 数据进行分析与输出, 以实现检测作业的自动化, 降低检测人员 的工作强度, 缩短检测作业时间;
( 2 ) 有效提高测量精度, 避免了人为因素对测量精度的影 响;
( 3 ) 具有导轨测量的通用性, 不仅可专用于电梯导轨垂直 度的检测, 也可用于铁路轨道、 起重机轨道等机械设备导轨平直 度的检测。
以上结合实施例和附图对本发明的描述只是示意性的, 不具 有限制性, 所以, 本发明检测方法的实施仪器并不局限于所述的 具体实施例。 如果本领域的普通技术人员受其启示, 在不脱离本 发明宗旨和权利要求保护范围的情况下, 对本发明检测仪器的结 构做出其它相关改变或其它类似的实施方式, 均应属于本发明的 保护范围。

Claims

1. 一种电梯导轨垂直度检测方法, 其特征在于, 包括以下步 骤:
( 1 ) 在被检测电梯导轨的 "侧工作面"或 "顶工作面" 上确定若干个检测点; ,
( 2 ) 逐一测量出各检测点在导轨长度方向的位置坐标以及 相邻两检测点之间的距离;
( 3 ) 逐一测量出各检测点相邻两点之间的连线与水平线或 铅垂线的夹角;
( 4 ) 用检测得到的 "各检测点在导轨长度方向的位置坐 标 "、 "各检测点相邻两点之间的连线与铅垂线的夹角 "以及 "相 邻两检测点之间的距离 "等数据, 经数学计算、 分析、 整理, 得 到被检测电梯导轨的垂直度误差数据及垂直度曲线图。
2. 一种实施权利要求 1所述检测方法的电梯导轨垂直度检测 仪, 其特征在于, 它包括仪器框架和电源装置, 所述的仪器框架 上至少设置有两个能靠在电梯导轨工作面的检测头, 还设置有用 于测量该检测头沿被测导轨移动距离的位移传感器、 用于测量两 检测头连线与铅垂线之间夹角的倾角传感器、 以及能对测量数据 进行分析处理的微机系统; 所述位移传感器和倾角传感器的输出 端连接微机系统的输入端。
3. 根据权利要求 2所述的电梯导轨垂直度检测仪, 其特征在 于, 所述的能靠在电梯导轨工作面上的检测头为滚轮式, 所述滚 轮的外圆靠在电梯导轨的工作面上。
4. 根据权利要求 2所述的电梯导轨垂直度检测仪, 其特征在 于, 所述的能靠在电梯导轨工作面上的检测头为滑块式, 所述滑 块的滑动面靠在电梯导轨的工作面上。
5. 根据权利要求 1所述的电梯导轨垂直度检测仪, 其特征在 于, 所述的检测头上设置有压紧装置。
6- 根据权利要求 2所述的电梯导轨垂直度检测仪, 其特征在 于, 所述的压紧装置为弹簧式或磁力式。
7. 根据权利要求 1所述的电梯导轨垂直度检测仪, 其特征在 于, 所述的位移传感器为旋转编码器。
8. 根据权利要求 2所述的电梯导轨垂直度检测仪, 其特征在 于, 所述的旋转编码器通过弹性联轴器与检测头的滚轮相连接。
9. 根据权利要求 2所述的电梯导轨垂直度检测仪, 其特征在 于, 所述的位移传感器为光电式。
10. 根据权利要求 2所述的电梯导轨垂直度检测仪, 其特征 在于, 所述的光电式位移传感器与被测导轨工作面非接触, 且与 被测导轨工作面的间隙为 1 醒以上。
PCT/CN2003/000936 2002-11-06 2003-11-06 Procede de detection de la perpendicularite d'un rail guide d'elevation et detecteur permettant la mise en oeuvre de ce procede WO2004042317A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003277477A AU2003277477A1 (en) 2002-11-06 2003-11-06 A detection method of lift guide rail perpendicularity and a detector for implementing this method
US10/533,975 US7210242B2 (en) 2002-11-06 2003-11-06 Detection method of lift guide rail perpendicularity and a detector for implementing this method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN02149218.2 2002-11-06
CNB021492182A CN100398991C (zh) 2002-11-06 2002-11-06 电梯导轨垂直度检测方法
CN02288887.X 2002-11-28
CN 02288887 CN2615638Y (zh) 2002-11-28 2002-11-28 电梯导轨垂直度检测仪

Publications (1)

Publication Number Publication Date
WO2004042317A1 true WO2004042317A1 (fr) 2004-05-21

Family

ID=32313438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000936 WO2004042317A1 (fr) 2002-11-06 2003-11-06 Procede de detection de la perpendicularite d'un rail guide d'elevation et detecteur permettant la mise en oeuvre de ce procede

Country Status (3)

Country Link
US (1) US7210242B2 (zh)
AU (1) AU2003277477A1 (zh)
WO (1) WO2004042317A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101549A (zh) * 2017-06-05 2017-08-29 林肯电梯(中国)有限公司 垂直循环立体车库外导轨检测装置
CN109827557A (zh) * 2019-03-19 2019-05-31 中国电建集团贵阳勘测设计研究院有限公司 一种具备人工测读功能的垂线坐标仪
CN111148712A (zh) * 2017-09-27 2020-05-12 因温特奥股份公司 用于确定在电梯设备的电梯竖井中的当前位置的定位系统和方法
CN116592846A (zh) * 2023-06-02 2023-08-15 昆山开发区建设工程检测有限公司 一种工程质量检测用垂直度检测装置
CN117268353A (zh) * 2023-11-22 2023-12-22 山西六建集团有限公司 一种工程垂直度检测设备

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090065310A1 (en) * 2004-11-16 2009-03-12 Flynn Michael P Installing guide rails in an elevator system
CN102591888B (zh) * 2011-01-18 2016-08-24 赛恩倍吉科技顾问(深圳)有限公司 量测路径优化系统及方法
CN103162657B (zh) * 2011-12-19 2015-09-16 攀钢集团攀枝花钢钒有限公司 编码器测量系统测量钢轨长度的方法及钢轨长度测量系统
FR2987110B1 (fr) * 2012-02-22 2014-03-14 Centre Nat Rech Scient Inclinometre
CN104703905A (zh) * 2012-10-04 2015-06-10 通力股份公司 用于电梯安装的导轨直线度测量系统
EP2955145B1 (en) * 2014-06-13 2016-12-21 KONE Corporation Apparatus and method for alignment of elevator guide rails
CN104236485B (zh) * 2014-10-14 2017-02-15 沈机集团昆明机床股份有限公司 一种直线度测量装置
EP3265377B1 (en) 2015-03-04 2019-04-24 Fincantieri S.p.A. Ship premises assembly and ship with said premises
CN106370146B (zh) * 2015-07-23 2019-03-29 江苏省特种设备安全监督检验研究院吴江分院 电梯导轨垂直度检测系统
CN105173977B (zh) * 2015-08-10 2017-07-25 沈阳市蓝光自动化技术有限公司 一种电梯导轨质量的检测方法
US20180162693A1 (en) * 2016-12-13 2018-06-14 Otis Elevator Company Speed detection means for elevator or counterweight
CN107339956B (zh) * 2017-08-01 2023-03-31 苏州德奥电梯有限公司 一种电梯加装垂直度检测装置
CN107907598B (zh) * 2017-11-16 2021-01-26 马鞍山钢铁股份有限公司 一种防止钢板边部探伤跑偏的装置及方法
US11434104B2 (en) 2017-12-08 2022-09-06 Otis Elevator Company Continuous monitoring of rail and ride quality of elevator system
CN109990765B (zh) * 2019-03-25 2023-12-15 水利部南京水利水文自动化研究所 一种直线明槽轨道水平度测试仪
CN110482351B (zh) * 2019-08-05 2020-12-04 南京理工大学 一种在用电梯导轨直线度检测系统及方法
CN113945142B (zh) * 2021-10-29 2023-09-12 航天智讯新能源(山东)有限公司 一种建筑用金属配件垂直度检测装置
CN114104894B (zh) * 2021-11-09 2023-05-05 青岛市特种设备检验研究院 一种电梯导轨质量多参数检测方法
CN114812488B (zh) * 2022-05-24 2023-10-27 中国一冶集团有限公司 一种墙面垂直度平整度测量装置及测量方法
CN114800037B (zh) * 2022-06-27 2022-11-22 中机智能装备创新研究院(宁波)有限公司 一种复合导轨及复合导轨的过载检测方法
CN115367582B (zh) * 2022-07-01 2023-07-21 宁波市特种设备检验研究院 一种加装电梯钢结构井道垂直度的检测装置
CN115962704B (zh) * 2023-03-16 2023-05-19 蒂升电梯(中国)有限公司成都分公司 一种高效测量电梯导轨直线度的装置及其测量方法
CN116380022B (zh) * 2023-06-05 2023-09-12 天津普信模具有限公司 一种应用于模具制造的模具安装面垂直度检测装置
CN116380030B (zh) * 2023-06-06 2023-09-12 临沂市金明寓建筑科技有限公司 一种用于预制叠合板生产用垂直度快速测量装置
CN116576840B (zh) * 2023-06-13 2024-01-26 青岛黄海学院 一种建筑墙体垂直度检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585679A (ja) * 1991-09-26 1993-04-06 Mitsubishi Electric Corp エレベータの昇降路検出装置
CN2208211Y (zh) * 1994-08-25 1995-09-20 太原长城光电子工业公司 真空清洗炉防堵废料收集罐
JPH0821104A (ja) * 1994-07-05 1996-01-23 Mitsubishi Heavy Ind Ltd 昇降支柱の垂直度調整装置
JPH1160104A (ja) * 1997-08-25 1999-03-02 Mitsubishi Denki Bill Techno Service Kk 油圧エレベーターのプランジャー垂直度測定装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345671A (en) * 1980-03-12 1982-08-24 Westinghouse Electric Corp. Apparatus and method for installing elevator guide rails
US4593794A (en) * 1984-04-23 1986-06-10 Schindler Haughton Elevator Corporation Apparatus and method for installing elevator rails
FI83302C (fi) * 1989-05-09 1991-06-25 Kone Oy Foerfarande foer att faesta ledskenor foer hissar eller motvikter och ett faestsystem som foerverkligar foerfarandet.
US5189798A (en) * 1991-11-06 1993-03-02 Force Jeffrey Alignment gauge
FR2705145B1 (fr) * 1993-05-10 1995-08-04 Exa Ingenierie Dispositif de mesure de rectitude.
US5553686A (en) * 1994-12-13 1996-09-10 Otis Elevator Company Installation of elevator rails in a hoistway
US5735054A (en) * 1995-06-02 1998-04-07 Cole; Jerry W. Fixture for a table saw
US5992574A (en) * 1996-12-20 1999-11-30 Otis Elevator Company Method and apparatus to inspect hoisting ropes
FI109291B (fi) * 1997-03-07 2002-06-28 Kone Corp Menetelmä ja laitteisto hissin asentamiseksi
BR0210025B1 (pt) * 2001-05-31 2011-05-31 conjunto para instalação de uma cinta de códigos em um trilho-guia de um elevador.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585679A (ja) * 1991-09-26 1993-04-06 Mitsubishi Electric Corp エレベータの昇降路検出装置
JPH0821104A (ja) * 1994-07-05 1996-01-23 Mitsubishi Heavy Ind Ltd 昇降支柱の垂直度調整装置
CN2208211Y (zh) * 1994-08-25 1995-09-20 太原长城光电子工业公司 真空清洗炉防堵废料收集罐
JPH1160104A (ja) * 1997-08-25 1999-03-02 Mitsubishi Denki Bill Techno Service Kk 油圧エレベーターのプランジャー垂直度測定装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101549A (zh) * 2017-06-05 2017-08-29 林肯电梯(中国)有限公司 垂直循环立体车库外导轨检测装置
CN111148712A (zh) * 2017-09-27 2020-05-12 因温特奥股份公司 用于确定在电梯设备的电梯竖井中的当前位置的定位系统和方法
CN111148712B (zh) * 2017-09-27 2022-07-22 因温特奥股份公司 用于确定在电梯设备的电梯竖井中的当前位置的定位系统和方法
CN109827557A (zh) * 2019-03-19 2019-05-31 中国电建集团贵阳勘测设计研究院有限公司 一种具备人工测读功能的垂线坐标仪
CN116592846A (zh) * 2023-06-02 2023-08-15 昆山开发区建设工程检测有限公司 一种工程质量检测用垂直度检测装置
CN117268353A (zh) * 2023-11-22 2023-12-22 山西六建集团有限公司 一种工程垂直度检测设备
CN117268353B (zh) * 2023-11-22 2024-02-09 山西六建集团有限公司 一种工程垂直度检测设备

Also Published As

Publication number Publication date
US7210242B2 (en) 2007-05-01
AU2003277477A1 (en) 2004-06-07
US20060059700A1 (en) 2006-03-23

Similar Documents

Publication Publication Date Title
WO2004042317A1 (fr) Procede de detection de la perpendicularite d'un rail guide d'elevation et detecteur permettant la mise en oeuvre de ce procede
CN203079561U (zh) 起重机轨距偏差量自动监测装置
CN205537552U (zh) 一种水利工程墙面平整度检测仪
CN205102789U (zh) 一种自动电梯导轨距激光测量装置
CN108819980B (zh) 一种列车车轮几何参数在线动态测量的装置和方法
CN108622134A (zh) 一种列车车轮几何参数在线动态测量的装置及方法
CN107416627A (zh) 一种电梯t型导轨多参数检测系统及方法
CN208665210U (zh) 一种基于机器视觉的自动行走轨道检测仪
CN109238092A (zh) 陶瓷砖坯厚度在线自动检测方法及装置
CN202321843U (zh) 导轨检测装置及具有该导轨检测装置的电梯装置
CN108839674B (zh) 一种列车车轮几何参数在线动态测量装置及测量方法
CN211042084U (zh) 一种家具行孔深与板件平整度自动测量装置
CN106225738B (zh) 一种直线导轨精度检测装置及方法
CN103507832B (zh) 一种轨道几何尺寸检测装置
CN108839676B (zh) 一种列车车轮几何参数在线动态测量装置及测量方法
CN2615638Y (zh) 电梯导轨垂直度检测仪
CN108839673B (zh) 一种列车车轮几何参数在线动态测量的装置及方法
CN207792393U (zh) 一种电梯曳引轮轮槽磨损状况非接触检测装置
CN108844465B (zh) 一种列车车轮几何参数在线动态测量装置及测量方法
CN206019607U (zh) 一种直线导轨精度检测装置
CN206540530U (zh) 一种活塞环梯高的检测装置
CN205898106U (zh) 一种建筑物外墙裂缝检测装置
CN108639098B (zh) 一种用于在线动态测量列车车轮几何参数的装置及方法
CN211042100U (zh) 基于激光测距仪的钢管长度测量系统
CN108891444B (zh) 一种在线动态测量列车车轮几何参数的装置及方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006059700

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533975

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10533975

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP