WO2004042099A1 - 耐食性に優れた室温成形可能なマグネシウム合金 - Google Patents

耐食性に優れた室温成形可能なマグネシウム合金 Download PDF

Info

Publication number
WO2004042099A1
WO2004042099A1 PCT/JP2003/013948 JP0313948W WO2004042099A1 WO 2004042099 A1 WO2004042099 A1 WO 2004042099A1 JP 0313948 W JP0313948 W JP 0313948W WO 2004042099 A1 WO2004042099 A1 WO 2004042099A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion resistance
magnesium alloy
room temperature
excellent corrosion
test
Prior art date
Application number
PCT/JP2003/013948
Other languages
English (en)
French (fr)
Inventor
Tatsuo Fukuzumi
Kazunari Suemune
Susumu Takahashi
Original Assignee
Mitsubishi Steel Mfg. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg. Co., Ltd. filed Critical Mitsubishi Steel Mfg. Co., Ltd.
Priority to US10/499,932 priority Critical patent/US6838049B2/en
Priority to AU2003280650A priority patent/AU2003280650A1/en
Priority to KR1020047010870A priority patent/KR100596287B1/ko
Priority to EP03770041.6A priority patent/EP1559803B1/en
Priority to CA002470969A priority patent/CA2470969C/en
Publication of WO2004042099A1 publication Critical patent/WO2004042099A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium

Definitions

  • the present invention relates to a magnesium alloy having a high specific strength used in automobile parts, various home appliances, and various OA devices, and particularly to a magnesium alloy having excellent corrosion resistance and capable of being formed at room temperature.
  • Magnesium alloys are attracting attention as practical alloys because they are lightweight and have excellent electromagnetic wave shielding properties, machinability and recyclability, but it is known that plastic working at room temperature is difficult. For this reason, magnesium alloys used in conventional press forming require warm forming (150-350 ° C), and are not suitable for workability, safety, and cost. There is a demand for development of a material having thermoformability.
  • Mg is said to have poor formability because the crystal structure is hexagonal (h.c.p.) and there are few slip surfaces during plastic deformation. Therefore, efforts are being made to improve the formability by changing the crystal structure (increase of the sliding surface) by adding various elements to Mg.
  • the Mg-Li eutectic alloy is a ⁇ phase, which is a body-centered cubic (b.c.c.) in which Li is dissolved in Mg by adding 6% or more of Li. Is an alloy with improved formability.
  • This Mg-Li eutectic alloy can be formed at room temperature, and taking advantage of this feature greatly expands the possibilities of new processing methods.
  • this Mg-Li eutectic alloy has excellent formability at room temperature, it has drawbacks such as a decrease in tensile strength due to improvement in formability and a decrease in corrosion resistance due to addition of an active element called Li. If a large amount of A 1, Zn, etc. is added to improve tensile strength and corrosion resistance, This has a significant negative effect of lowering room temperature moldability, a characteristic of gold.
  • An object of the present invention is to provide a magnesium alloy that can be formed at room temperature and has excellent corrosion resistance.
  • the present invention comprises the following constitutions (1) to (3).
  • L n total amount of one or more lanthanoids: 0::! To 2.5%, Ca: 0.1 ⁇ 1.2. /. Room temperature moldable magnesium alloy with excellent corrosion resistance.
  • L i In order to improve the crystal structure (h.c.p.) of Mg and to have formability, Li of at least 8 ⁇ 0% is required. On the other hand, if it exceeds 11.0%, the structure becomes a b.c.c. single phase, and although room temperature formability is improved, corrosion resistance is reduced. Therefore, the tensile strength of the corrosion resistance test. Based on the results, the range of L i is 8.0 to: L 1.0%.
  • Zn is an element that improves the corrosion resistance and strength, but also has the adverse effect of reducing the formability. Therefore, it is not preferable to add a large amount of Zn to have room temperature formability.
  • the results of microstructure observation show that the ⁇ phase (h.c.p.Mg) of the Mg-Li eutectic alloy has an adverse effect on the formability of the alloy containing 2% Zn. Phase) was observed. Therefore, based on the results of the rolling test, tensile test, and corrosion test, the range of 211 is set to 0.1 to 4.0%.
  • M g 17 B a is b c c a
  • M g 17 B a 2 has an ⁇ and / 3 phase because it precipitates at 634 ° C, a temperature close to and higher than the eutectic reaction temperature of M g — L i, 588 ° C.
  • Mg 17 Ba 2 is h.c.p.
  • an increase in the abundance may adversely affect the moldability. Therefore, based on the results of the tensile strength, the range of Ba is set to 0.1 to 4.5%.
  • a 1 is an element that greatly improves corrosion resistance and strength. However, it is not preferable to add a large amount to obtain room temperature formability because A 1 has a large adverse effect on the decrease in formability as the strength increases. Therefore, based on the results of the corrosion resistance test, the lower limit is set to 0.1% from the effect of improving the corrosion resistance, and the upper limit is set to 0.5%, which is the range having room temperature formability based on the results of the tensile test (elongation). '
  • Ln La, Ce, misch metal, etc.
  • Ln is an element that improves corrosion resistance and heat resistance, but also has an adverse effect on the decrease in tensile strength.
  • it is an expensive material, so using it in large quantities is a cost to manufacture the alloy. Is not so preferable because it rises. Therefore, based on the results of the tensile test, the range of 11 is set to 0.:! To 2.5%.
  • C a is an element that improves tensile strength, but it also has a negative effect on corrosion resistance, so it is not preferable to add a large amount. Therefore, based on the results of the tensile test, the lower limit is set to 0.1% from the strength improvement effect, and the upper limit is set to 1.2% based on the results of the corrosion resistance test.
  • the present invention can provide a magnesium alloy that can be formed at room temperature and has excellent corrosion resistance by taking the component range of each of the above elements (the best mode for carrying out the invention).
  • alloys having the compositions shown in Table 1 were produced.
  • a stainless steel crucible was used, and no flux or the like was used.
  • the molten metal was poured into a mold of 250 mm x 300 mm x 3 O mmt to prepare a test ingot. Test specimens were collected from the ingots obtained in this way, and microstructure observation was performed.
  • Test piece thickness 0.6 mm ', gauge length 5 mm, gauge length 40 mm
  • L n in Table 1 used in this example contains 95% or more of Ce and La in total, and the balance consists of other lanthanide series elements.
  • the magnesium alloy according to the constitution of the present invention provides an alloy which can be formed at room temperature and has excellent corrosion resistance.
  • the present invention provides a magnesium alloy having a high specific strength used in automotive parts, various home appliances, and various office automation equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Powder Metallurgy (AREA)
  • Metal Rolling (AREA)
  • Cookers (AREA)

Abstract

 室温成形が可能で耐食性に優れたマグネシウム合金を提供する。即ち、質量%でLi:8.0~11.0%、Zn:0.1~4.0%、Ba:0.1~4.5%含有し、残部はMgおよび不可避的不純物からなる合金、さらに、Al:0.1~0.5%含有するもの、さらには、Ln(ランタノイドの1種または2種以上の総量):0.1~2.5%、Ca:0.1~1.2%を含有するマグネシウム合金を提供する。

Description

明 細 書 耐食性に優れた室温成形可能なマグネシウム合金 技術分野
本発明は、 自動車用部品、 各種家電製品並びに各種 O A機器にお いて使用される高い比強度を有するマグネシウム合金に関し、 特に 耐食性に優れ室温成形が可能なマグネシウム合金に関する。
背景技術
マグネシウム合金は軽量で電磁波遮断性や切削性、 リサイクル性 に優れることから、 実用合金と して注目 されているが、 室温での塑 性加工が困難なことが知られている。 そのため、 従来のプレス成形 などで用いられているマグネシウム合金は、 温間 ( 1 5 0〜 3 5 0 °C ) での成形が必要であり、 作業性、 安全性、 コス トの面からも室 温成形性を有する材料開発が望まれている。
M g,は結晶構造が六方晶 (h . c . p . ) で塑性変形時の滑り面 が少ないため、 成形性が悪いといわれている。 そこで、 M gへの各 種元素の添加による結晶構造の変化 (滑り面の増加) による成形性 の向上への取り組みが行なわれている。
そのような中で、 M g — L i共晶合金は、 6 %以上の L i の添加 により M gに L i を固溶した体心立方晶 (b . c . c . ) である β 相を晶出させ、 成形性を向上させた合金である。 この M g — L i共 晶合金は、 室温での成形が可能であり、 この特徴を生かすことで新 しい加工方法の可能性が大きく広がる。
しかし、 この M g - L i共晶合金は室温成形性に優れるものの、 成形性の向上に伴う引張強度の低下および L i という活性元素の添 加による耐食性の低下という欠点を有する。 引張強度および耐食性 の向上のために A 1 、 Z nなどを多量に添加した場合には、 この合 金の特徴である室温成形性を低下させるという大きなマイナス効果 が現れる。
引張強度に関しては、 M g — L i合金に Yを添加することで強度 向上と強度安定性の向上についての提案 (特公平 8 — 2 3 0 5 7号 公報参照) があるが、 L i と同様に活性元素である Yを使用してい ることで耐食性に関する課題は依然残ったままである。
また、 M g — L i共晶合金に A gを添加した合金において引張強 度が向上するという報告もあるが、 A g という高価な材料の使用は 合金の製造コス トが上昇することからあまり好ましくない。
発明の開示
本発明は、 室温成形が可能でしかも耐食性に優れたマグネシウム 合金を提供することにある。
本発明は下記 ( 1 ) 〜 ( 3 ) の構成より成る。
( 1 ) 質量%で、 L i : 8 . 0〜: 1 1 . 0 %、 Z n : 0. 1 〜 4. 0 %、 B a : 0. :!〜 4. 5 %含有し、 残部は M gおよび不可避的 不純物からなることを特徴とする耐食性に優れた室温成形可能なマ グネシゥム合金。
( 2 ) 上記 ( 1 ) にさらに質量0 /0で、 A 1 : 0. :!〜 0. 5 %含有 する耐食性に優れた室温成形可能なマグネシゥム合金。
( 3 ) 上記 ( 1 ) または ( 2 ) にさらに質量%で、 L n (ランタノ イ ドの 1種または 2種以上の総量) : 0. :!〜 2. 5 %、 C a : 0. 1〜 1 . 2。/。含有する耐食性に優れた室温成形可能なマグネシウム 合金。
本発明における成分の限定理由は次の通りである。 以下、 %は質 量%である。
L i : M gの結晶構造 ( h . c . p . ) を改善し、 成形性を有す るためには 8 · ■ 0 %以上の L i が必要である。 一方、 1 1 . 0 %を 超える添加は組織が b . c . c . 単相となり、 室温成形性が向上す るものの、 耐食性が低下する。 そこで、 引張強度おょぴ耐食試験の. 結果を基に、 L i の範囲は 8. 0〜: L 1 . 0 %とする。
Z n : Z nは耐食性、 強度を改善する元素であるが、 成形性低下 の悪影響も同時に及ぼすため、 室温成形性を有するには多量に添加 することは好ましくない。
—方、ミク口組織観察の結果では、 M g - L i共晶合金に対して、 2 % Z nを添加した合金において成形性へ悪影響を及ぼす α相( h . c . p . の M g相) の減少が観察された。 そこで、 圧延試験、 引張 試験おょぴ耐食試験の結果を基に、 2 11の範囲は 0. 1 〜 4. 0 % とする。
B a : B aは b . c . c . であるが M gへの固溶限は小さく、 M g との金属間化合物 (M g 17B a 2) が形成される。 M g 17B a 2は、 M g — L i の共晶反応温度である 5 8 8 °Cに近ぐ、 それより も高い 温度の 6 3 4 °Cで析出するために αおよび /3相の晶出時にその核と -して働き、 αおよび ;3相の微細化、分散均一化を達成する。ただし、 M g 17B a 2は h . c . p . のため、 存在量が増加すると成形性低下 の悪影響が懸念される。 そこで、 引張強度の結果を基に、 B aの範 囲は 0. 1〜 4. 5 %とする。
上記 ( 2 ) における A 1 の添加理由は下記のとおりである。
A 1 : A 1 は耐食性、 強度を大きく改善する元素であるが、 強度 上昇にともなう成形性低下の悪影響も大きいため、 室温成形性を有 するには多量に添加することは好ましくない。 そこで、 耐食性試験 の結果を基に耐食性改善効果から下限を 0. 1 %と し、 引張試験 ( 伸び) の結果を基に室温成形性を有する範囲である 0. 5 %を上限 とする。 '
上記 ( 3 ) における L n、 C aの組成限定理由は下記のとおりで める。 .
L n : L n ( L a、 C e、 ミ ッシュメタル等) は耐食性、 耐熱性 を改善する元素であるが、 引張強度低下の悪影響も同時に及ぼす。 又、 高価な材料であるため多量に使用することは合金の製造コス ト が上昇することからあまり好ましくない。 そこで、 引張試験の結果 を基に、 し 11の範囲は0 . :!〜 2 . 5 %とする。
C a : C aは引張強度を改善する元素であるが、 耐食性低下の悪 影響も同時に及ぼすため、 多量に添加することは好ましくない。 そ こで、 引張試験の結果を基に、 強度改善効果から下限を 0 . 1 %と し、 耐食性試験の結果を基に上限を 1 . 2 %とする。
本発明は、 上記の各元素の成分範囲をとることにより、 室温成形' が可能で耐食性に優れたマグネシウム合金を提供することができる ( 発明を実施するための最良の態様
次に具体的な実施例を挙げて本発明をさらに詳細に説明する。
1 0 2〜 1 0 3 k P aに調整したアルゴン雰囲気の高周波誘導溶 解炉において、 表 1に示す組成の合金を溶製した。 溶解はステンレ ス坩堝を使用し、 フラックス等は使用しなかった。 溶湯は 2 5 0 m m X 3 0 0 m m X 3 O m mtの金型に鎵込むこ とで、 試験用イ ンゴッ トを作製した。 この様にして得られたインゴッ トから試験片を採取 し、 ミクロ組織観察を実施した。
試験片 1 0 mm X 1 0 mm X 5 mint
(铸造方向の断面を鏡面研磨)
熱処理 無 ( A s C a s t )
エッチング条件 ナイタール溶液にて 1 0秒間腐食し、 洗浄後 乾燥
その後、 0 . e m mtまで圧延し、 ( 1 ) 引張試験、 ( 2 ) 耐食試 験を実施した。 . . ( 1 ) 引張試験条件 ,
装置 島津オートグラフ (A J — l O O k N B )
試験片 厚さ 0 . 6 m m'、 標点間幅 5 m m、 標点間長さ 4 0 m m
[ J I S (日本工業規格) Z 2 2 0 1に規定された試験 片 1 3 B号の 8Z 1 2. 5倍サイズの試験片、 圧延方 向より採取] 熱処理条件 無 ( A s R o l l )
雰囲気 室温、 大気中
引張速度 S mm/m i n (初期歪速度 8. 3 X 1 0 4 s一1) 評価 引張強度、 伸び
( 2 ) 耐食試験条件
装置 塩水噴霧試験機 スガ試験機
試験片 6 O mm X I 2 O mm X O . 6 mm1
熱処理条件 無 (A s R o l l )
噴霧溶液 3 5 °C、 5 % N a C 1水溶液
噴霧圧 1 k g f Z c m2
評価 腐食損傷部 (腐食反応部) を除去し、 損傷部面積率を測定 引張試験および耐食試験の測定結果を表 1に示す。
本実施例で用いた表 1の " L n " は、 C e、 L aを合計で 9 5 % 以上含み、 残部が他のランタノィ ド系列の元素より成る。
1 開発材と比較材の組成と引張試験および耐食試験結果
Figure imgf000007_0001
産業上の利用可能性
本発明の構成によるマグネシウム合金は、 室温成形が可能で耐食性 に優れた合金を提供するものである。 特に自動車用部品、 各種家電製 品並びに各種 O A機器において使用される高い比強度を有するマグネ シゥム合金を提供するものである。

Claims

請求の範囲 質量。 /。で、 L i : 8. 0 . 0 %、 Z n 0 4. 0
%、 B a : 0. :!〜 4. 5 %含有し、 残部は M gおよび不可避的不純 物からなる、 ことを特徴とする耐食性に優れた室温成形可能なマグネ シゥム合金。
2. 請求項 1にさらに質量%で、 A 1 : 0. 1 ~ 0. 5 %含有する、 耐食性に優れた室温成形可能なマグネシゥム合金。
3. 請求項 1または 2にさらに質量%で、 L n (ラン'タノイ ドの 1 種または 2種以上の総量) : 0. 1〜 2. 5 %、 C a : 0. 1〜 1.
2 %含有ずる、 耐食性に優れた室温成 ネ;ノゥム合—金 .
PCT/JP2003/013948 2002-11-06 2003-10-30 耐食性に優れた室温成形可能なマグネシウム合金 WO2004042099A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/499,932 US6838049B2 (en) 2002-11-06 2003-10-30 Room-temperature-formable magnesium alloy with excellent corrosion resistance
AU2003280650A AU2003280650A1 (en) 2002-11-06 2003-10-30 Room-temperature-formable magnesium alloy with excellent corrosion resistance
KR1020047010870A KR100596287B1 (ko) 2002-11-06 2003-10-30 내식성에 뛰어난 실온성형이 가능한 마그네슘합금
EP03770041.6A EP1559803B1 (en) 2002-11-06 2003-10-30 Room-temperature-formable magnesium alloy with excellent corrosion resistance
CA002470969A CA2470969C (en) 2002-11-06 2003-10-30 Magnesium alloy with room-temperature formability and excellent corrosion resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-322180 2002-11-06
JP2002322180A JP3852769B2 (ja) 2002-11-06 2002-11-06 耐食性に優れた室温成形可能なマグネシウム合金

Publications (1)

Publication Number Publication Date
WO2004042099A1 true WO2004042099A1 (ja) 2004-05-21

Family

ID=32310383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013948 WO2004042099A1 (ja) 2002-11-06 2003-10-30 耐食性に優れた室温成形可能なマグネシウム合金

Country Status (8)

Country Link
US (1) US6838049B2 (ja)
EP (1) EP1559803B1 (ja)
JP (1) JP3852769B2 (ja)
KR (1) KR100596287B1 (ja)
AU (1) AU2003280650A1 (ja)
CA (1) CA2470969C (ja)
TW (1) TWI235182B (ja)
WO (1) WO2004042099A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1835042A1 (en) 2006-03-18 2007-09-19 Acrostak Corp. Magnesium-based alloy with improved combination of mechanical and corrosion characteristics
PT2000551E (pt) 2007-05-28 2010-10-21 Acrostak Corp Bvi Ligas à base de magnésio
WO2009053969A2 (en) * 2007-10-22 2009-04-30 Advanced Getter Innovations Ltd. Safe gas sorbents with high sorption capacity on the basis of lithium alloys
DE102008039683B4 (de) * 2008-08-26 2010-11-04 Gkss-Forschungszentrum Geesthacht Gmbh Kriechbeständige Magnesiumlegierung
GB0817893D0 (en) * 2008-09-30 2008-11-05 Magnesium Elektron Ltd Magnesium alloys containing rare earths
TWI545202B (zh) 2016-01-07 2016-08-11 安立材料科技股份有限公司 輕質鎂合金及其製造方法
JP6993337B2 (ja) * 2016-07-26 2022-02-15 株式会社三徳 マグネシウム-リチウム合金及びマグネシウム空気電池
JP6940759B2 (ja) * 2017-07-31 2021-09-29 富士通株式会社 マグネシウム合金及びその製造方法、並びに電子機器
CN108546861B (zh) * 2018-04-18 2020-07-14 长沙新材料产业研究院有限公司 一种超轻镁合金带材的制备方法
JP2023075682A (ja) 2021-11-19 2023-05-31 キヤノン株式会社 合金、合金部材、機器及び合金の製造方法
CN114807703A (zh) * 2022-03-25 2022-07-29 哈尔滨工程大学 一种基于高固溶含量的高强高塑镁锂合金制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119409A (en) * 1976-03-31 1977-10-06 Osaka Daigakuchiyou Method of producing of high strength magnesium hypooeutectic high damping capacity alloy
JPH0823057B2 (ja) 1992-03-25 1996-03-06 三井金属鉱業株式会社 超塑性マグネシウム合金
JPH0941066A (ja) * 1995-08-01 1997-02-10 Mitsui Mining & Smelting Co Ltd 冷間プレス加工可能なマグネシウム合金
JP2001107171A (ja) * 1999-10-04 2001-04-17 Japan Steel Works Ltd:The 耐熱性と鋳造性に優れたマグネシウム合金およびマグネシウム合金耐熱部材
JP2001247925A (ja) * 2000-03-03 2001-09-14 Japan Steel Works Ltd:The 流動性に優れた高延性マグネシウム合金およびマグネシウム合金材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464918A (en) * 1945-03-22 1949-03-22 Magnesium Elektron Ltd Magnesium base alloys
GB613167A (en) * 1945-09-14 1948-11-23 Mathieson Alkali Works Improvements in and relating to magnesium-base alloys
US3119684A (en) * 1961-11-27 1964-01-28 Dow Chemical Co Article of magnesium-base alloy and method of making
JPH07122111B2 (ja) * 1993-03-26 1995-12-25 三井金属鉱業株式会社 超塑性マグネシウム合金

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119409A (en) * 1976-03-31 1977-10-06 Osaka Daigakuchiyou Method of producing of high strength magnesium hypooeutectic high damping capacity alloy
JPH0823057B2 (ja) 1992-03-25 1996-03-06 三井金属鉱業株式会社 超塑性マグネシウム合金
JPH0941066A (ja) * 1995-08-01 1997-02-10 Mitsui Mining & Smelting Co Ltd 冷間プレス加工可能なマグネシウム合金
JP2001107171A (ja) * 1999-10-04 2001-04-17 Japan Steel Works Ltd:The 耐熱性と鋳造性に優れたマグネシウム合金およびマグネシウム合金耐熱部材
JP2001247925A (ja) * 2000-03-03 2001-09-14 Japan Steel Works Ltd:The 流動性に優れた高延性マグネシウム合金およびマグネシウム合金材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1559803A4 *

Also Published As

Publication number Publication date
TWI235182B (en) 2005-07-01
US20040247480A1 (en) 2004-12-09
EP1559803B1 (en) 2013-11-27
EP1559803A1 (en) 2005-08-03
JP2004156089A (ja) 2004-06-03
KR20040071314A (ko) 2004-08-11
CA2470969C (en) 2008-01-15
AU2003280650A1 (en) 2004-06-07
EP1559803A4 (en) 2006-04-26
TW200413545A (en) 2004-08-01
JP3852769B2 (ja) 2006-12-06
US6838049B2 (en) 2005-01-04
CA2470969A1 (en) 2004-05-21
KR100596287B1 (ko) 2006-06-30

Similar Documents

Publication Publication Date Title
JP4189687B2 (ja) マグネシウム合金材
EP2275584A1 (en) Aluminum alloy casting material for heat treatment with excellent thermal conductivity and manufacturing methods thereof.
JP2003534455A (ja) 耐食性アルミニウム合金
JP2022513645A (ja) マグネシウム合金材およびその製造方法
US20170369972A1 (en) Magnesium-lithium alloy, rolled material and shaped article
KR20120074037A (ko) 고온용 마그네슘 합금 및 그 제조 방법
JPH0941066A (ja) 冷間プレス加工可能なマグネシウム合金
WO2016074423A1 (zh) 镁合金及其制备方法和应用
WO2004042099A1 (ja) 耐食性に優れた室温成形可能なマグネシウム合金
WO2020203980A1 (ja) 強度-延性バランスと常温加工性に優れたマグネシウム合金板
JP4322733B2 (ja) 成形性に優れる展伸用マグネシウム薄板およびその製造方法
WO2009113601A1 (ja) マグネシウム-リチウム合金、圧延材、成型品
JP2009079271A (ja) Ca含有Mg合金圧延材
JPH06279905A (ja) 超塑性マグネシウム合金
JP6927418B2 (ja) チタン合金およびその製造方法
JP6085211B2 (ja) スケール付着抑制性と成形性に優れたチタン合金材およびその製造方法、ならびに熱交換器または海水蒸発器
JP2003328063A (ja) 成形性に優れる展伸用マグネシウム薄板およびその製造方法
JP2003328064A (ja) 成形性に優れる展伸用マグネシウム薄板およびその製造方法
JP4341453B2 (ja) 熱伝導性に優れたアルミニウム合金鋳物及びその製造方法
JP4180868B2 (ja) 成形性に優れた展伸用マグネシウム薄板およびその製造方法
JPH02129333A (ja) 熱交換器用アルミニウムブレージングシート
JPH0823058B2 (ja) 超塑性マグネシウム合金
JP4395740B2 (ja) 蓄電池用Pb−Sn−Ca−Al系鉛合金板の製造方法
TWI650428B (zh) 鈦合金及其製造方法
JP3077112B2 (ja) アルミニウム合金箔

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2470969

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10499932

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003770041

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047010870

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003770041

Country of ref document: EP