WO2004040266A1 - Optical lighting system, test device for solid-state imaging device, repeater - Google Patents

Optical lighting system, test device for solid-state imaging device, repeater Download PDF

Info

Publication number
WO2004040266A1
WO2004040266A1 PCT/JP2003/013915 JP0313915W WO2004040266A1 WO 2004040266 A1 WO2004040266 A1 WO 2004040266A1 JP 0313915 W JP0313915 W JP 0313915W WO 2004040266 A1 WO2004040266 A1 WO 2004040266A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
solid
optical fiber
fiber bundle
state imaging
Prior art date
Application number
PCT/JP2003/013915
Other languages
French (fr)
Japanese (ja)
Other versions
WO2004040266A8 (en
Inventor
Shingo Tamai
Original Assignee
Inter Action Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inter Action Corporation filed Critical Inter Action Corporation
Priority to AU2003280637A priority Critical patent/AU2003280637A1/en
Publication of WO2004040266A1 publication Critical patent/WO2004040266A1/en
Publication of WO2004040266A8 publication Critical patent/WO2004040266A8/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a light irradiating device that irradiates inspection light used for inspecting characteristics of a solid-state imaging device such as a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor).
  • a solid-state imaging device such as a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor).
  • An imaging device such as CCD or CMOS has a large number of light receiving devices arranged two-dimensionally.
  • CCD or CMOS has a large number of light receiving devices arranged two-dimensionally.
  • An object of the present invention is to provide a light irradiating device capable of improving the test efficiency of the photoelectric conversion characteristics of a solid-state imaging device and easily and accurately adjusting the characteristics of light irradiated to the solid-state imaging device. It is in.
  • Another object of the present invention is to provide a solid-state imaging device that can improve the test efficiency of the photoelectric conversion characteristics of the solid-state imaging device and can easily and accurately adjust the characteristics of light applied to the solid-state imaging device.
  • An object of the present invention is to provide a test device and a relay device used for the test device.
  • the light irradiation device of the present invention is a light irradiation device capable of simultaneously irradiating a plurality of solid-state imaging devices with light, wherein a light source for emitting light, a plurality of optical fibers are bundled together at an input end, and an output is provided.
  • An optical fiber bundle for splitting the light from the light source incident from the input end into a plurality of lights at the output end; and light output from an output end of the optical fiber bundle for splitting. And a plurality of independent optical systems for independently adjusting and guiding each of the imaging elements.
  • the light irradiation device according to claim 1, wherein the light irradiation device of the present invention further includes a common optical system that commonly adjusts light incident on the splitting optical fiber bundle from the light source.
  • the plurality of independent optical systems are arranged at positions symmetrical about a predetermined axis, are provided rotatably about the predetermined axis, and collectively configure the plurality of independent optical systems. Further having optical components to change
  • the light irradiation device of the present invention comprises: a guide optical fiber bundle for guiding light from the light source to the splitting optical fiber bundle; and a guide optical fiber bundle and the splitting optical fiber bundle.
  • a test apparatus for a solid-state imaging device is a test device for testing photoelectric conversion characteristics by irradiating a solid-state imaging device with test light, and includes a test head, a solid-state imaging device to be tested, and the test device.
  • a relay for electrically connecting the head to the head and transmitting a signal necessary for testing a photoelectric conversion characteristic of the solid-state imaging device; a light source provided outside the test head; And a guide optical fiber bundle for guiding the light from the light source to the solid-state imaging device electrically connected to the relay means.
  • a plurality of optical fibers are bundled together at an input end and a plurality of optical fibers are bundled at an output end, and light from the guide optical fiber bundle incident from the input end is provided.
  • a splitting optical fiber bundle that splits the light into a plurality of lights at the output end and guides the lights to the plurality of solid-state imaging devices in a state of being electrically connected to the relay unit.
  • the solid-state imaging device test apparatus of the present invention includes a coupling unit for optically coupling the guide optical fiber bundle and the division optical fiber bundle, wherein the test head, the light source, and The guide optical fiber bundle is movable with respect to the splitting optical fiber bundle and the middle joint stage.
  • the relay device of the present invention electrically connects a test head of a test device that irradiates a solid-state imaging device with test light to test photoelectric conversion characteristics with the solid-state imaging device, A relay device for transmitting a signal necessary for a test of a conversion characteristic, a connection means for electrically connecting to a plurality of solid-state imaging devices positioned at predetermined positions, and the solid-state imaging device
  • An opening for irradiating the light, a plurality of optical fibers are bundled together at an input end and a plurality of optical fibers are bundled together at an output end, and the light from a light source incident from the input end is output to a plurality of lights at the output end.
  • a splitting optical fiber bundle that is guided to each of the solid-state imaging devices through the opening.
  • the light output from the light source enters from the input end of the optical fiber bundle for splitting, and is split at the output end into a number of lights corresponding to a plurality of image sensors.
  • the light from each output end It is adjusted independently by each independent optical system and irradiates the corresponding image sensor.
  • the plurality of independent optical systems are arranged at symmetrical positions about a predetermined axis, and the optical components rotatably provided about the predetermined axis form the plurality of independent optical systems.
  • FIG. 1 is a schematic configuration diagram of a light irradiation device according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating a structure of a splitting optical fiber bundle
  • FIG. 3 is a diagram showing the internal configuration of the optical system unit and the components of the optical system unit.
  • FIG. 4 is a diagram illustrating a configuration of a test apparatus for a solid-state imaging device to which a light irradiation device according to another embodiment of the present invention is applied;
  • FIG. 5 is a cross-sectional view showing the structure of the optical module.
  • FIG. 6 is a diagram showing a state in which a test head of a test apparatus is moved
  • FIG. 7 is a cross-sectional view showing a structure of an embodiment of a relay device of the present invention
  • FIG. It is a figure showing other embodiments of a connecting means in a test device of the present invention.
  • FIG. 1 is a schematic configuration diagram of a light irradiation device according to one embodiment of the present invention.
  • the light irradiation device 1 inspects the electrical characteristics of an image sensor such as a CCD (Charge Coupled Device) or CMOS, and applies light to the light receiving surface of the image sensor. Used to irradiate an image sensor such as a CCD (Charge Coupled Device) or CMOS. Used to irradiate an image sensor such as a CCD (Charge Coupled Device) or CMOS. Used to irradiate
  • an image sensor such as a CCD (Charge Coupled Device) or CMOS
  • the light irradiation device 1 includes a light source 2, a condensing lens 10, a mechanical slit 11, a ND filter overnight 12, a color filter sauce 13 and a fly. It has an eye lens 15, a splitting optical fiber bundle 20, and an optical system unit 30.
  • the light source 2, condensed lens 10, mechanical slit 11, ND filter evening and evening lettuce 12, color fill evening and evening lettuce 13 and fly-eye lens 15 are housed in the box OB. These constitute one embodiment of the common optical system of the present invention. Further, the optical system unit 30 incorporates an optical system corresponding to the plurality of independent optical systems of the present invention, as described later.
  • the light source 2 for example, a halogen lamp, a xenon lamp, a metal halide lamp, or the like is used.
  • the light source 2 includes a reflector (not shown) that reflects and condenses the emitted light in a predetermined direction.
  • the condensing lens 10 concentrates the light from the light source 2 in the direction of the mechanical slit 11.
  • the mechanical slit 11 is composed of two movable plates 11A and 11B, and is formed between the movable plates 11A and 11B by adjusting the movement of the movable plates.
  • the area of the opening 11C is adjusted.
  • the area of Sekiguchi 11 C the amount of light collected by the condenser lens 10 is adjusted.
  • the ND file evening and evening lett 12 is supported rotatably about a support shaft 14.
  • the ND filter turret 12 holds a plurality of types of ND (Neutral Density) filters along the circumferential direction.
  • the ND filter 1 attenuates the light from the light source 2 transmitted through the mechanical slit 11 at a predetermined rate without changing the spectral composition.
  • an ND filter with a desired amount of light reduction is selected.
  • the ND filter 12 has a simple opening, and if the light is not dimmed, the opening is used as it is.
  • the color fill evening and evening let 13 is supported rotatably about a support shaft 14.
  • the color filter evening 13 has multiple types of color filters along the circumferential direction.
  • the light from the light source 2 passes through the color filter to generate light having a wavelength corresponding to the color of the color filter.
  • the desired color fill is selected by rotating the color fill evening 13 and indexing it.
  • the color filter set 13 has a mere opening, and when no wavelength is selected, the light is passed through the opening as it is.
  • the fly-eye lens # 5 is an optical element in which single lenses are arranged vertically and horizontally in a matrix.
  • the fly-eye lens 15 is provided to make the illuminance distribution of the light from the light source 2 uniform.
  • the fly-eye lens 15 has a rectangular outer shape.
  • the above common optical system has a function of adjusting the amount of light from the light source 2, the intensity, the illuminance distribution, the wavelength, and the like.
  • FIG. 2 is a view showing the structure of the splitting optical fiber bundle 20
  • FIG. 2A is a side view
  • FIG. 2B is a cross-sectional view taken along the line A--A shown in FIG. 2A. is there.
  • the splitting optical fiber bundle 20 is composed of a bundle of many optical fibers. One end of the splitting optical fiber bundle 20 is supported by a support member 20.
  • the support member 21 bundles, for example, optical fibers having a diameter of 50 m so as to have a rectangular shape having a cross-sectional dimension of 2 Omm x 2 Omm.
  • the support member 21 is provided in the box 0B.
  • the splitting optical fiber bundle 20 is split from the middle into a plurality (four) of bundles 20a and bundled, and the end of the plurality of split optical fiber bundles 20a is provided with an optical guide. Mode 23 is connected.
  • the optical guide 23 is connected to an optical unit 30 described later, and guides light output from the end of the bundle of a plurality of divided optical fibers 20 a to the optical unit 30. o Further, the number of optical fibers constituting the bundle 2 0 a of each optical fiber is not equal respectively 0
  • the support member 21 side of the splitting optical fiber bundle 20 is an input end to which light is incident, and the light guide 23 side of the splitting optical fiber bundle 20 is an output end.
  • the input end of the splitting optical fiber bundle 20 has a rectangular cross section.
  • the shape of the input end substantially matches the outer shape of the fly-eye lens 15 described above. This is because the coupling efficiency with the fly-eye lens 15 can be higher than when the cross-sectional shape of the input end of the splitting optical fiber bundle 20 is circular.
  • the light output, illuminance, illuminance distribution, and other characteristics of each light output from each output end of the splitting optical fiber bundle 20 are independently adjusted to output a plurality of independent lights: RL. I do. As described later, these lights RL irradiate light receiving surfaces of a plurality of solid-state imaging devices to be inspected, which are arranged at predetermined positions below the optical system unit 30.
  • FIG. 3A is a diagram showing the internal configuration of the optical system unit 30, and FIG. 3B is a component of the optical system unit 30.
  • a stage 100 is provided below the optical system unit 30, and an image pickup device 101 to be inspected is arranged at a predetermined position on the stage 100. .
  • These imaging devices 101 are electrically connected to a test device (not shown).
  • a plurality of independent optical systems 31 are provided inside the optical system unit 30.
  • the optical system 31 comprises a lens 32, a fly-eye lens 33, a lens 34, a diffuser 35, a center filter 36, imaging lenses 37, 38, and an iris lens 39. .
  • the optical system 31 is provided corresponding to the four output terminals of the splitting optical fiber bundle 20, and the irislet 39 is provided in common to the four optical systems 31.
  • the fly-eye lens 33, the diffuser plate 35, and the sensor filter 36 are provided to equalize the illuminance distribution of light incident from each output end of the splitting optical fiber bundle 20 through the light guide 23. Have been.
  • the center filter 36 prevents the illuminance distribution of the light from gradually decreasing toward the periphery of the cross section of the light, and gradually becomes uniform toward the center of the cross section so as to be uniform over the entire cross section. This filter increases the degree of dimming.
  • each diffuser plate 35 and each sensor ⁇ filter 36 are independently selected such that the finally output four lights RL have desired light quantity, illuminance, illuminance distribution, etc. .
  • the diffuser 35 and the center filter 36 can be selected so that the four lights RL have the same light amount, illuminance, and illuminance distribution.
  • the iris retlet 39 is formed with a plurality of types of openings OP 1 to OP 3 having different areas at regular intervals along the circumferential direction.
  • Each of the openings OP 1 to ⁇ 3 is provided corresponding to each of the four optical systems 31.
  • the irislet 39 is provided for controlling the F-number of the optical system 31.
  • the iris sunset 39 is provided so as to be rotatable about a rotation axis 40.
  • the rotating shaft 40 is rotationally driven by a driving device such as a motor.
  • a driving device such as a motor.
  • This driving device By controlling this driving device to determine the iris let 39, one of the apertures OP1 to OP3 is simultaneously selected for the four optical systems 31 and the four optical systems 31 are selected.
  • the F value (caliber ratio) is changed collectively.
  • a plurality of (four) imaging elements are arranged at predetermined positions with respect to the optical system unit 30, and light is emitted from the light source 2.
  • the light from light source 2 is a condensing lens; I 0, mechanical slit 11, ND After the characteristics such as light intensity, illuminance, illuminance distribution, and wavelength are adjusted as desired through the Irk Nightlet 12, the Color Fill Nightlet 13 and the fly-eye lens 15, the splitting optical fiber bundle 2 Incident at 0.
  • the light incident from the support member 21 is split into a plurality of parts and output from the light guide 23.
  • the number of optical fibers at each output end of the splitting optical fiber bundle 20 connected to the light guide 23 is equal to each other, the amount of light and the illuminance of the light entering each optical guide 23 are substantially equal. .
  • Each light that has entered each of the plurality of optical systems 30 through the splitting optical fiber bundle 20 passes through a fly-eye lens 33, a diffusion plate 35, a center filter 36, and an iris evening light 39.
  • the respective lights output through the plurality of optical systems 30 have the same characteristics such as the amount of light and the illuminance, and this light is applied to the light receiving surfaces of the plurality of image sensors arranged on the stage 100. Each is incident.
  • the light from the single light source 2 is equally split into a plurality of lights by using the splitting optical fiber bundle 20, and the split lights are respectively separated into independent optical systems. Adjust using 30 and irradiate the corresponding solid-state imaging device. Therefore, the light from the light source 2 can be used effectively. In addition, even if an illuminance difference or the like occurs in the light incident on each optical system 30, this can be adjusted independently by each optical system 30, so that the light under the same conditions can be transmitted to a plurality of solid-state imaging devices. At the same time.
  • a plurality of optical systems 30 are arranged at positions symmetrical with respect to the rotation axis 40, and optical components such as an iris retlet 39 are rotatably provided around the rotation axis 40.
  • the characteristic of the light incident on each optical system 30 is adjusted by using the diffusion plate 35 and the center filter 36.
  • the illuminance is applied to the light output from each optical system 30. Differences can occur, in which case fine-tuning is required.
  • a filter having an antireflection film formed on both sides of a transparent substrate such as a glass plate or the like can be arranged in the optical path of each optical system 30 to finely adjust the illuminance difference. That is, by independently adjusting the number of filters on which the antireflection film is formed in each optical system 30, fine adjustment of the illuminance difference becomes possible.
  • the light irradiation device 1 is used to irradiate a plurality of solid-state imaging devices with light under the same condition.
  • different conditions may be applied to the plurality of solid-state imaging devices. May be applied.
  • the light irradiation device 1 can be applied to any object that requires irradiation of light that is accurately adjusted.
  • FIG. 4 is a diagram showing a configuration of a solid-state imaging device test device to which a light irradiation device according to another embodiment of the present invention is applied.
  • the test apparatus 200 inspects, for example, the photoelectric conversion characteristics of a solid-state imaging device (for example, CCD) formed on the wafer 400.
  • the test apparatus 200 includes a tester 201, a test head 201, a probe card 250, a moving stage 260, and the like.
  • the tester 201 manages the test head 201, and based on the signal obtained from the solid-state image sensor formed on the wafer 400 through the test head 201, the solid-state imaging device 400 Perform the inspection of 1.
  • the test head 201 is set on a base 205.
  • the test head 201 is connected to a drive arm 202 provided on a base 205, and by rotating the drive arm 202, the test head 201 is connected to the base 205.
  • the test head 201 is electrically connected to a later-described program card 250 by wiring (not shown).
  • the test head 201 is connected to, for example, the solid-state imaging device 401.
  • the probe card 250 is set at a predetermined position below the test head 201.
  • the probe card 250 includes a probe needle 251, which comes into contact with a pad of the solid-state imaging device 401, and electrically connects the test head 201 to the solid-state imaging device 401.
  • the probe card 250 has an opening 250a for irradiating a plurality of solid-state imaging elements 401 with light.
  • the opening 250a has an optical module 3OA described later. Is provided.
  • This optical module 3OA is one embodiment of the modularized independent optical system of the present invention.
  • the moving stage 260 chucks the wafer 400 and positions the wafer 400 with respect to the probe card 250. Further, the moving stage 260 separates the probe 400 from the probe card 250 after the end of the inspection.
  • the light irradiation device includes a light source 2, a common optical system 210, a guide optical fiber bundle 220, a coupler 22A, 2211B, and a split optical fiber bundle 222.
  • the optical module consists of 3 OA.
  • the light source 2 is provided in the test head 202 and has the same configuration as the light source 2 according to the first embodiment.
  • the common optical system 210 is provided in the test head 202 and has the same function as the common optical system according to the first embodiment.
  • the optical fiber bundle 220 for the guide is provided in the test head 202, and a large number is provided.
  • an optical fiber having a diameter of 50 is bundled into a rectangular shape having a cross section of 20 mm ⁇ 20 mm.
  • the guide optical fiber bundle 220 guides the light from the light source 2 incident through the common optical system 210 to the splitting optical fiber bundle 222.
  • the couplers 22 A and 22 B are composed of optical components such as lenses, and couple the guide fiber bundle 220 and the splitting optical fiber bundle 22.
  • the coupler 222 A is provided on the guide optical fiber bundle 220 side.
  • the coupler 2 21 B is provided on the side of the splitting optical fiber bundle 2 25.
  • Couplers 22 A and 22 B are one embodiment of the coupling means of the present invention.
  • the splitting optical fiber bundle 225 is provided on the base 205 side, and is positioned with respect to the probe card 250.
  • the splitting optical fiber bundle 2 25 has the same configuration as the splitting optical fiber bundle 20 according to the first embodiment, and the end of the coupler 22 1 B side is bundled into one.
  • the end on the probe card 250 side is divided into a plurality (four), and each is positioned with respect to the optical module 3 OA.
  • FIG. 5 is a cross-sectional view showing the structure of the optical module 3 OA.
  • the optical module 3OA includes a flange 301, a condenser lens 302, a diffusion plate 303, and a pinhole plate 304. Although a plurality of optical modules 3OA are provided, they have similar optical characteristics.
  • the flange 300 is made of a cylindrical member and is fixed on the probe card 250.
  • the flange 301 is formed of a material that does not transmit light, such as a metal.
  • the condenser lens 302, the diffusion plate 303, and the pinhole plate 304 are held on the inner periphery of the flange 301.
  • the condenser lens 302 condenses the light L from the light source 2 guided from the optical fiber bundle for division 222 described above.
  • the diffusing plate 303 diffuses the light that has passed through the condenser lens 302 so that the light amount, illuminance and And control the illumination distribution.
  • the pinhole plate 304 has a pinhole 304p formed on the optical axis, and irradiates the light passing through the diffusion plate 303 through the pinhole 304p. As a result, the light L for inspection is applied to the solid-state imaging device 401 positioned below the pinhole 304p.
  • the F value is defined by the diameter of the pinhole 304p.
  • the optical path from the light source 2 to the solid-state imaging device to be inspected is constituted by a guide optical fiber bundle 220 and a splitting optical fiber bundle 222, both of which are couplers 22A and 21A.
  • the test head 202 can be moved by being separably connected by the 222B.
  • the positional relationship between the components of the light irradiation device is important.
  • the position of the independent optical system and the splitting optical fiber bundle 225 relative to the probe card 250 is important.
  • the optical module 3OA and the probe card are integrated. The alignment with 250 can be performed accurately.
  • the volume of the test head 202 does not increase.
  • the light source 2 which is a heat source
  • the light source 2 is located outside the test head 202, Various substrates in the storage 202 are not affected by heat.
  • the guide optical fiber bundle 220 is passed through the test head 202, and the light from the light source 2 is transmitted to the vicinity of the solid-state imaging device 401 by the guide optical fiber bundle 220.
  • the light use efficiency can be improved, and the adjustment range of the F value of the light impinging on each solid-state imaging element 401 can be expanded.
  • FIG. 7 is a sectional view showing the structure of one embodiment of the relay device of the present invention.
  • the same components as those of the second embodiment are denoted by the same reference numerals.
  • the output end of the splitting optical fiber bundle 222 is fixed to each opening 250 a formed in the prop card 250 via the optical module 3 OA. ing.
  • probe needles 251 provided corresponding to the respective openings 250a, is one embodiment of the connection means of the present invention.
  • the relay device 500 is used in place of the probe card 250 and the splitting optical fiber bundle 222 of the test device 200 according to the second embodiment, and the solid-state imaging device is tested.
  • splitting optical fiber bundle 2 25 By positioning and fixing the splitting optical fiber bundle 2 25 to the probe card 250 beforehand, assembly of the test equipment becomes easy, and even during the test, the splitting optical fiber bundle 2 25 and the probe card The position with 250 does not shift. Also, since the propcard 250 and the solid-state imaging device are positioned, the positional relationship between the solid-state imaging device and the splitting optical fiber bundle 225 is stabilized. As a result, it is possible to irradiate the solid-state imaging device with test light having stable characteristics.
  • the output end of the splitting optical fiber bundle 2 25 is fixed to the probe card 250 via the optical module 3 OA.
  • the splitting optical fiber bundle 2 25 is used without using the optical module 3 OA.
  • Output end of fiber bundle 2 25 to probe card 250 It is also possible to adopt a configuration of directly fixing.
  • FIG. 8 is a diagram showing another embodiment of the coupling means in the test apparatus of the present invention.
  • a coupling means for optically coupling the guide optical fiber bundle 220 and the splitting optical fiber bundle 222 a coupler 22 composed of optical components is used.
  • the optical axis ⁇ a of the guide optical fiber bundle 220 and the optical axis O b of the splitting optical fiber bundle 25 must be adjusted precisely.
  • test head 202 is movable, it is easy to accurately align the optical axis b of the guide optical fiber bundle 22 Oa with the optical axis b of the splitting optical fiber bundle 25. is not.
  • a fly eye lens 22 1 C is used between the optical components 21 A and 22 1 B. Since the fly-eye lens 2 21 C acts to make the light intensity distribution uniform, the optical axis O b of the guide optical fiber bundle 22 O a and the optical fiber bundle 22 5 of the splitting optical fiber bundle 22 5 are slightly shifted. Even so, the effects of this shift can be absorbed. As a result, it is possible to suppress the occurrence of variations in the characteristics of the test light emitted to the solid-state imaging device due to the deviation between the optical fiber bundle for guide 22Oa and the optical axis Ob of the optical fiber bundle for splitting 22. Can be.
  • the present invention is not limited to the embodiment described above.
  • the probe force is 250 is described as the relay means and the relay device of the present invention, but the present invention is not limited to this.
  • the relay device of the present invention can be configured.
  • the connecting means of the present invention is constituted by a socket.
  • the probe It is not limited to boards such as cards.
  • the splitting light is placed on the table side that holds the wafer of the proper positioner that positions the probe card and the solid-state imaging device to be tested, or on the handler that is used to inspect the packaged solid-state imaging device.
  • the fiber bundle may be fixed. With this configuration, the positional relationship between the solid-state imaging device and the test-split splitting optical fiber bundle can be accurately maintained, and a more accurate test can be performed.
  • the test head of the present invention includes, in addition to a general test head for testing a semiconductor device, an equivalent having the same or similar function as those test heads.
  • the present invention can be used, for example, for testing the photoelectric conversion characteristics of a solid-state imaging device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

An optical lighting system capable of improving the photoelectric conversion characteristics and the test efficiency of a solid-state imaging element, and easily and accurately regulating the characteristics of a light applied to the solid-state imaging element. The optical lighting system comprises a light source (2) for emitting light, a splitting optical fiber bundle having a plurality of optical fibers bundled into one group at the input end thereof and into a plurality of groups at the output end thereof, and splitting a light entered via the input end from the light source into a plurality of lights at the output end, and an optical system unit (30) incorporating a plurality of independent optical systems for independently regulating light fluxes output from the output end of the splitting optical fiber bundle (20) and introducing them to a solid-state imaging element.

Description

明糸田書 光照射装置、 固体撮像装置の試験装置、 中継装置 技術分野  Akira Itoda Light irradiation device, solid-state imaging device test device, relay device
本発明は、 C C D (Charge Coupled Device) や C M O S (Complementary Metal Oxide Semiconductor) 等の固体撮像素子の特性の検査に用いられる検査用光を 照射する光照射装置に関する。  The present invention relates to a light irradiating device that irradiates inspection light used for inspecting characteristics of a solid-state imaging device such as a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor).
背景技術  Background art
C C Dや C MO S等の撮像素子の製造工程にお 、ては、 撮像素子に種々の条件 の光を照射し、 その光電変換特性を検査する必要がある。  In the manufacturing process of an imaging device such as CCD and CMOS, it is necessary to irradiate the imaging device with light under various conditions and inspect its photoelectric conversion characteristics.
C C Dや C MO S等の撮像素子は、 二次元状に配列された多数の受光素子を有 している。 これらの受光素子の特性がそれぞれ要求される範囲の特性をもってい るかを検査するためには、 各受光素子に均一な照度分布をもつ光を照射する必要 がある。 各受光素子に照射される光の照度が均一でないと、 検査にばらつきが発 生し、 歩留りが低下する原因にもなる。 このため、 撮像素子の検査においては、 均一な照度分布をもつ光を照射する光照射装置の性能が重要である。  An imaging device such as CCD or CMOS has a large number of light receiving devices arranged two-dimensionally. In order to check whether the characteristics of these light receiving elements have the required range of characteristics, it is necessary to irradiate each light receiving element with light having a uniform illuminance distribution. If the illuminance of the light applied to each light receiving element is not uniform, the inspection will vary, which may cause a decrease in yield. Therefore, the performance of a light irradiation device that irradiates light with a uniform illuminance distribution is important in the inspection of an image sensor.
ところで、 撮像素子の検査効率を高めるためには、 撮像素子を複数個同時に検 査する必要がある。 撮像デバイスを複数個同時に測定するには、 たとえば、 光源 からの光を不要なェリアを含む広いェリアに拡大して照射し、 このエリアの中に 複数の撮像素子を配置し、 検査を行っていた。  By the way, in order to improve the inspection efficiency of the image sensor, it is necessary to inspect a plurality of image sensors simultaneously. In order to measure multiple imaging devices at the same time, for example, light from a light source was expanded and radiated to a large area containing unnecessary areas, and multiple image sensors were placed in this area for inspection. .
この場合、 光源からの光を所定の光学系を用 L、て照度分布が均一となるように 拡大する必要があるため、 照射される光の照度が低下するため、 充分な照度の光 が要求される場合に対応することができない。  In this case, it is necessary to expand the light from the light source using a predetermined optical system so that the illuminance distribution becomes uniform, so that the illuminance of the irradiated light decreases. Can not respond to the case.
また、 一括して複数の撮像素子に光を照射するため、 光学系の F値を複数の撮 像素子に対して独立して調整することや、 複数の撮像素子に対して独立した光パ ターンの照射を行うことができない。 このため、 複数の撮像素子に同時に照射さ れる光の照度を正確に均一にすることが困難であった。 発明の関示 In addition, since light is irradiated to a plurality of image sensors at once, the F-number of the optical system can be adjusted independently for the plurality of image sensors, Cannot irradiate the turn. For this reason, it has been difficult to accurately and uniformly equalize the illuminance of light that is simultaneously applied to a plurality of image sensors. Guidance of invention
本発明の目的は、 固体撮像素子の光電変換特性を試験効率を向上でき、 固体撮 像素子に対して照射する光の特性を容易にかつ精度良く調整することができる光 照射装置を握供することにある。  An object of the present invention is to provide a light irradiating device capable of improving the test efficiency of the photoelectric conversion characteristics of a solid-state imaging device and easily and accurately adjusting the characteristics of light irradiated to the solid-state imaging device. It is in.
本発明の他の目的は、 固体撮像素子の光電変換特性を試験効率を向上でき、 固 体撮像素子に対して照射する光の特性を容易にかつ精度良く調整することができ る固体撮像素子の試験装置およびこれに用いる中継装置を提供することにある。 本発明の光照射装置は、 複数の固体撮像素子に同時に光を照射可能な光照射装 置であって、 光を出射する光源と、 複数の光ファイバが入力端で一つに束ねられ かつ出力端で複数に束ねられ、 前記入力端から入射した前記光源からの光を前記 出力端で複数の光に分割する分割用光フアイパ束と、 前記分割用光ファィバ束の 出力端から出力される光を独立して調整し、 前記各撮像素子に導く複数の独立光 学系とを有する。  Another object of the present invention is to provide a solid-state imaging device that can improve the test efficiency of the photoelectric conversion characteristics of the solid-state imaging device and can easily and accurately adjust the characteristics of light applied to the solid-state imaging device. An object of the present invention is to provide a test device and a relay device used for the test device. The light irradiation device of the present invention is a light irradiation device capable of simultaneously irradiating a plurality of solid-state imaging devices with light, wherein a light source for emitting light, a plurality of optical fibers are bundled together at an input end, and an output is provided. An optical fiber bundle for splitting the light from the light source incident from the input end into a plurality of lights at the output end; and light output from an output end of the optical fiber bundle for splitting. And a plurality of independent optical systems for independently adjusting and guiding each of the imaging elements.
好適には、 本発明の光照射装置は、 前記光源から前記分割用光ファイバ束に入 射する光を共通に調整する共通光学系をさらに有する請求'項 1に記載の光照射装 置。  Preferably, the light irradiation device according to claim 1, wherein the light irradiation device of the present invention further includes a common optical system that commonly adjusts light incident on the splitting optical fiber bundle from the light source.
' さらに好適には、 前記複数の独立光学系は、 所定軸を中心に対称な位置に配置 されており、 前記所定軸を中心として回転可能に設けられ、 前記複数の独立光学 系の構成を一括して変更する光学部品をさらに有する  More preferably, the plurality of independent optical systems are arranged at positions symmetrical about a predetermined axis, are provided rotatably about the predetermined axis, and collectively configure the plurality of independent optical systems. Further having optical components to change
また、 本発明の光照射装置は、 前記光源からの光を前記分割用光ファイバ束へ 案内するガイ ド用光ファイバ束と、 前記ガイ ド用光ファイバ束と前記分割用光フ アイバ束とを光学的に結合する結合手段とをさらに有し、 少なく とも前記ガイ ド 用光フアイバ束が前記分割用光ファィバ束に対して移動可能となっている構成と することも可能である。 Further, the light irradiation device of the present invention comprises: a guide optical fiber bundle for guiding light from the light source to the splitting optical fiber bundle; and a guide optical fiber bundle and the splitting optical fiber bundle. A coupling means for optically coupling, wherein at least the guide optical fiber bundle is movable relative to the division optical fiber bundle. It is also possible.
本発明の固体撮像素子の試験装置は、 固体撮像素子に試験用光を照射して光電 変換特性を試験する試験装置であって、 テストへッ ドと、 試験すべき固体撮像素 子と前記テストへツ ドとを電気的に接続し、 前記固体撮像素子の光電変換特性の 試験に必要な信号を伝達する中継手段と、 前記テストへツ ドの外部に設けられた 光源と、 前記テストへツ ドを貫通し、 前記光源からの光を前記中継手段と電気的 に接続された固体撮像素子へ導くためのガイド用光ファイバ束とを有する。 また、 本発明の固体撮像素子の試験装置は、 複数の光ファイバが入力端で一つ に束ねられかつ出力端で複数に束ねられ、 前記入力端から入射する前記ガイド用 光フアイパ束からの光を前記出力端で複数の光に分割し、 前記中継手段と電気的 に接続された状態の前記複数の固体撮像素子へ導く分割用光ファイバ束をさらに 有する。  A test apparatus for a solid-state imaging device according to the present invention is a test device for testing photoelectric conversion characteristics by irradiating a solid-state imaging device with test light, and includes a test head, a solid-state imaging device to be tested, and the test device. A relay for electrically connecting the head to the head and transmitting a signal necessary for testing a photoelectric conversion characteristic of the solid-state imaging device; a light source provided outside the test head; And a guide optical fiber bundle for guiding the light from the light source to the solid-state imaging device electrically connected to the relay means. In the solid-state imaging device testing apparatus according to the present invention, a plurality of optical fibers are bundled together at an input end and a plurality of optical fibers are bundled at an output end, and light from the guide optical fiber bundle incident from the input end is provided. And a splitting optical fiber bundle that splits the light into a plurality of lights at the output end and guides the lights to the plurality of solid-state imaging devices in a state of being electrically connected to the relay unit.
さらに、 本発明の固体撮像素子の試験装置は、 前記ガイ ド用光ファイバ束と前 記分割用光ファイバ束とを光学的に結合する結合手段とを有し、 前記テストへッ ド、 光源およびガイ ド用光ファイバ束は、 前記分割用光ファイバ束および中継手 段に対して移動可能となっている。  Further, the solid-state imaging device test apparatus of the present invention includes a coupling unit for optically coupling the guide optical fiber bundle and the division optical fiber bundle, wherein the test head, the light source, and The guide optical fiber bundle is movable with respect to the splitting optical fiber bundle and the middle joint stage.
本発明の中継装置は、 固体撮像素子に試験用光を照射して光電変換特性を試験 する試験装置のテストへッドと前記固体撮像素子とを電気的に接続し、 前記固体 撮像素子の光電変換特性の試験に必要な信号を伝達する中継装置であつて、 所定 の位置に位置決めされた複数の固体撮像素子と電気的に接続する接続手段と、 前 記試験用光を前記各固体撮像素子へ照射するための開口部と、 複数の光フアイパ が入力端で一つに束ねられかつ出力端で複数に束ねられ、 前記入力端から入射し た光源からの光を前記出力端で複数の光に分割し、 前記各固体撮像素子へ前記開 口部を通じて導く分割用光ファイバ束とを有する。  The relay device of the present invention electrically connects a test head of a test device that irradiates a solid-state imaging device with test light to test photoelectric conversion characteristics with the solid-state imaging device, A relay device for transmitting a signal necessary for a test of a conversion characteristic, a connection means for electrically connecting to a plurality of solid-state imaging devices positioned at predetermined positions, and the solid-state imaging device An opening for irradiating the light, a plurality of optical fibers are bundled together at an input end and a plurality of optical fibers are bundled together at an output end, and the light from a light source incident from the input end is output to a plurality of lights at the output end. And a splitting optical fiber bundle that is guided to each of the solid-state imaging devices through the opening.
本発明では、 光源から出力された光は分割用光ファィバ束の入力端から入射し 、 出力端で複数の撮像素子に対応した数の光に分割される。 各出力端からの光は それぞれの独立光学系により独立して調整され、 対応する撮像素子に照射される 。 これにより、 光源から出力される光が効率良く利用され、 各固体撮像素子に照 射される光の照度分布が均一化される。 また、 本発明では、 複数の独立光学系を 所定軸を中心に対称な位置に配置し、 この所定軸を中心として回転可能に設けら れた光学部品によつて、 複数の独立光学系の構成を一括して変更することにより 、 条件を種々変更した光が複数の撮像素子に同時に照射される。 図面の簡単な説明 In the present invention, the light output from the light source enters from the input end of the optical fiber bundle for splitting, and is split at the output end into a number of lights corresponding to a plurality of image sensors. The light from each output end It is adjusted independently by each independent optical system and irradiates the corresponding image sensor. Thereby, the light output from the light source is efficiently used, and the illuminance distribution of the light applied to each solid-state imaging device is made uniform. Further, in the present invention, the plurality of independent optical systems are arranged at symmetrical positions about a predetermined axis, and the optical components rotatably provided about the predetermined axis form the plurality of independent optical systems. Are collectively changed, so that light whose conditions are variously changed is simultaneously applied to a plurality of imaging elements. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態に係る光照射装置の概略構成図であり、 図 2は、 分割用光ファイバ束の構造を示す図であり、  FIG. 1 is a schematic configuration diagram of a light irradiation device according to an embodiment of the present invention, and FIG. 2 is a diagram illustrating a structure of a splitting optical fiber bundle,
図 3は、 光学系ュニツ 卜の内部の構成および光学系ュニッ 卜の構成部品を示す 図であり、  FIG. 3 is a diagram showing the internal configuration of the optical system unit and the components of the optical system unit.
図 4は、 本発明の他の実施形態に係る光照射装置が適用された固体撮像素子の 試験装置の構成を示す図であり、  FIG. 4 is a diagram illustrating a configuration of a test apparatus for a solid-state imaging device to which a light irradiation device according to another embodiment of the present invention is applied;
図 5は、 光学モジュールの構造を示す断面図であり、  FIG. 5 is a cross-sectional view showing the structure of the optical module.
図 6は、 試験装置のテストへツ ドを移動させた状態を示す図であり、 図 7は、 本発明の中継装匱の一実施形態の構造を示す断面図であり、 図 8は、 本発明の試験装置における結合手段の他の実施形態を示す図である。  FIG. 6 is a diagram showing a state in which a test head of a test apparatus is moved, FIG. 7 is a cross-sectional view showing a structure of an embodiment of a relay device of the present invention, and FIG. It is a figure showing other embodiments of a connecting means in a test device of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態につ 、て図面を用いて詳しく説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第 1の実施形態  First embodiment
図 1は、 本発明の一実施形態に係る光照射装置の概略構成図である。  FIG. 1 is a schematic configuration diagram of a light irradiation device according to one embodiment of the present invention.
本実施形態に係る光照射装置 1は、 たとえば、 C C D (Charge Coupled Device ) や C M O S等の撮像素子の電気的特性の検査において、 撮像素子の受光面に光 を照射するのに用いられる。 The light irradiation device 1 according to the present embodiment, for example, inspects the electrical characteristics of an image sensor such as a CCD (Charge Coupled Device) or CMOS, and applies light to the light receiving surface of the image sensor. Used to irradiate
本実施形態に係る光照射装置 1は、 光源 2と、 コンデンスレンズ 1 0と、 メカ 二カルスリッ ト 1 1と、 N Dフィルタ一夕レッ ト 1 2と、 カラーフィルタータレ' ツ ト 1 3と、 フライアイレンズ 1 5と、 分割用光ファイバ束 2 0と、 光学系ュニ ツ ト 3 0とを有する。  The light irradiation device 1 according to the present embodiment includes a light source 2, a condensing lens 10, a mechanical slit 11, a ND filter overnight 12, a color filter sauce 13 and a fly. It has an eye lens 15, a splitting optical fiber bundle 20, and an optical system unit 30.
なお、 光源 2、 コンデンスレンズ 1 0、 メカニカルスリッ ト 1 1、 N Dフィル 夕一夕レツ ト 1 2、 カラーフィル夕 夕レツ ト 1 3およびフライアイレンズ 1 5 は、 ボックス O Bに収納されており、 これらは本発明の共通光学系の一実施態様 を構成している。 また、 光学系ュニット 3 0は、 後述するように、 本発明の複数 の独立光学系に對応する光学系を内蔵している。  The light source 2, condensed lens 10, mechanical slit 11, ND filter evening and evening lettuce 12, color fill evening and evening lettuce 13 and fly-eye lens 15 are housed in the box OB. These constitute one embodiment of the common optical system of the present invention. Further, the optical system unit 30 incorporates an optical system corresponding to the plurality of independent optical systems of the present invention, as described later.
光源 2は、 たとえば、 ハロゲンランプ、 キセノンランプ、 メタルハライ ドラン プ等が用いられる。 この光源 2は、 発光した光を所定の方向に反射集光する図示 しない反射鏡を具備している。  As the light source 2, for example, a halogen lamp, a xenon lamp, a metal halide lamp, or the like is used. The light source 2 includes a reflector (not shown) that reflects and condenses the emitted light in a predetermined direction.
コンデンスレンズ 1 0は、 光源 2からの光をメカニカルスリツ ト 1 1の方向に 集中させる。  The condensing lens 10 concentrates the light from the light source 2 in the direction of the mechanical slit 11.
メカニカルスリッ ト 1 1は、 図 1に示すように、 2枚の可動板 1 1 A, 1 1 B から構成され、 可動板 1 1 A, 〗 〗 Bの移動調整により、 これらの間に形成され る開口 1 1 Cの面積が調整される。 関口 1 1 Cの面積を調整することにより、 コ ンデンスレンズ 1 0で集光された光の光量を調整する。  As shown in Fig. 1, the mechanical slit 11 is composed of two movable plates 11A and 11B, and is formed between the movable plates 11A and 11B by adjusting the movement of the movable plates. The area of the opening 11C is adjusted. By adjusting the area of Sekiguchi 11 C, the amount of light collected by the condenser lens 10 is adjusted.
N Dフィル夕一夕レッ ト 1 2は、 支持軸 1 4を中心に回転可能に支持されてい る。 この N Dフィルタ タレツ ト 1 2は、 周方向に沿って複数種の N D (Neutral Density) フィルターを保持している。 N Dフィルタ一は、 メカニカルスリッ ト 1 1を透過した光源 2からの光を分光組成を変えないで所定の割合で減光する。 N Dフィル夕一夕レツ ト 1 2を回転させて割り出すことにより、 所望の減光量の N Dフィルターが選択される。 なお、 N Dフィルタ一夕レツ ト 1 2は単なる開口 も備えており、 減光しない場合には、 この開口をそのまま遒過させる。 カラーフィル夕一夕レット 1 3は、 支持軸 1 4を中心に回転可能に支持されて いる。 この、 カラーフィル夕一夕レッ ト 1 3は周方向に沿って複数種のカラーフ ィルターを保持している。 光源 2からの光は、 カラーフィルターを通過すること により、 カラ フィルターの色に応じた波長の光が生成される。 カラーフィル夕 一夕レッ ト 1 3を回転させて割り出すことにより、 所望のカラーフィル夕が選択 される。 なお、 カラーフィル夕一夕レツ ト 1 3は単なる開口も備えており、 波長 を選択しない場合には、 この開口をそのまま通過させる。 The ND file evening and evening lett 12 is supported rotatably about a support shaft 14. The ND filter turret 12 holds a plurality of types of ND (Neutral Density) filters along the circumferential direction. The ND filter 1 attenuates the light from the light source 2 transmitted through the mechanical slit 11 at a predetermined rate without changing the spectral composition. By rotating the ND filter 12 and rotating the index 12, an ND filter with a desired amount of light reduction is selected. Note that the ND filter 12 has a simple opening, and if the light is not dimmed, the opening is used as it is. The color fill evening and evening let 13 is supported rotatably about a support shaft 14. The color filter evening 13 has multiple types of color filters along the circumferential direction. The light from the light source 2 passes through the color filter to generate light having a wavelength corresponding to the color of the color filter. The desired color fill is selected by rotating the color fill evening 13 and indexing it. The color filter set 13 has a mere opening, and when no wavelength is selected, the light is passed through the opening as it is.
フライアイレンズ〗 5は、 単レンズを縦横にマトリクス状に配列した光学素子 である。 このフライアイレンズ 1 5は、 光源 2からの光の照度分布を均一化する ために設けられている。 また、 フライアイレンズ 1 5は矩形状の外形を有してい る c  The fly-eye lens # 5 is an optical element in which single lenses are arranged vertically and horizontally in a matrix. The fly-eye lens 15 is provided to make the illuminance distribution of the light from the light source 2 uniform. The fly-eye lens 15 has a rectangular outer shape.
上記の共通光学系は、 光源 2からの光の光量、 鸱度、 照度分布、 波長等を調整 する機能を有する。  The above common optical system has a function of adjusting the amount of light from the light source 2, the intensity, the illuminance distribution, the wavelength, and the like.
ここで、 図 2は、 分割用光ファイバ束 2 0の構造を示す図であって、 図 2 Aは 側面図であり、 図 2 Bは図 2 Aに示す A— A線方向の断面図である。  Here, FIG. 2 is a view showing the structure of the splitting optical fiber bundle 20, FIG. 2A is a side view, and FIG. 2B is a cross-sectional view taken along the line A--A shown in FIG. 2A. is there.
分割用光ファイバ束 2 0は、 多数の光ファイバの束で構成される。 分割用光フ アイバ束 2 0の一端は、 支持部材 2 〗で支持されている。 この支持部材 2 1は、 たとえば、 直径 5 0 mの光ファイバを断面寸法が 2 O mm x 2 O mmの矩形と なるように束ねている。 なお、 支持部材 2 1は、 ボックス 0 Bに設けられている The splitting optical fiber bundle 20 is composed of a bundle of many optical fibers. One end of the splitting optical fiber bundle 20 is supported by a support member 20. The support member 21 bundles, for example, optical fibers having a diameter of 50 m so as to have a rectangular shape having a cross-sectional dimension of 2 Omm x 2 Omm. The support member 21 is provided in the box 0B.
0 0
分割用光ファイバ束 2 0は、 中途から複数 (4本) の束 2 0 aに分割して束ね られており、 分割された複数の光ファイバの束 2 0 aの端部には、 光ガイ ド 2 3 が接続されている。  The splitting optical fiber bundle 20 is split from the middle into a plurality (four) of bundles 20a and bundled, and the end of the plurality of split optical fiber bundles 20a is provided with an optical guide. Mode 23 is connected.
光ガイ ド 2 3は、 後述する光学系ュニッ ト 3 0に接続されており、 分割された 複数の光ファイバの束 2 0 aの端部から出力される光を光学系ュニット 3 0に導 く o また、 各光ファイバの束 2 0 aを構成する光ファイバの本数は、 それぞれ等し い 0 The optical guide 23 is connected to an optical unit 30 described later, and guides light output from the end of the bundle of a plurality of divided optical fibers 20 a to the optical unit 30. o Further, the number of optical fibers constituting the bundle 2 0 a of each optical fiber is not equal respectively 0
分割用光ファイバ束 2 0の支持部材 2 1側が光が入射する入力端となり、 分割 用光ファイバ束 2 0の光ガイ ド 2 3側が出力端となる。  The support member 21 side of the splitting optical fiber bundle 20 is an input end to which light is incident, and the light guide 23 side of the splitting optical fiber bundle 20 is an output end.
分割用光ファイバ束 2 0の入力端は、 上記したように、 断面が矩形伏となって いる。 この入力端の形状は、 上記のフライアイレンズ 1 5の外形状と略合致して いる。 これは、 分割用光ファイバ束 2 0の入力端の断面形状を円形とする場合 よりも、 フライアイレンズ 1 5との結合効率を高くすることができるからである 光学系ュニツ ト 3 0は、 図 1に示すように、 分割用光フアイパ束 2 0の各出力 端からそれぞれ出力される光の光量、 照度、 照度分布等の特性を独立して調整し 、 複数の独立した光: R Lを出力する。 これらの光 R Lは、 後述するように、 光学 系ュニッ ト 3 0の下方の所定位置に配置された検査すべき複数の固体撮像素子の 受光面にそれぞれ照射される。  As described above, the input end of the splitting optical fiber bundle 20 has a rectangular cross section. The shape of the input end substantially matches the outer shape of the fly-eye lens 15 described above. This is because the coupling efficiency with the fly-eye lens 15 can be higher than when the cross-sectional shape of the input end of the splitting optical fiber bundle 20 is circular. As shown in FIG. 1, the light output, illuminance, illuminance distribution, and other characteristics of each light output from each output end of the splitting optical fiber bundle 20 are independently adjusted to output a plurality of independent lights: RL. I do. As described later, these lights RL irradiate light receiving surfaces of a plurality of solid-state imaging devices to be inspected, which are arranged at predetermined positions below the optical system unit 30.
図 3 Aは、 光学系ユニッ ト 3 0の内部の構成を示す図であり、 図 3 Bは光学系 ユニッ ト 3 0の構成部品である。  FIG. 3A is a diagram showing the internal configuration of the optical system unit 30, and FIG. 3B is a component of the optical system unit 30.
図 3 Bに示すように、 光学系ュニツ ト 3 0の下方にはステージ 1 0 0が設けら れ、 このステージ 1 0 0上の所定の位置に検査すべき撮像素子 1 0 1が配置され る。 これらの撮像素子 1 0 1は、 図示しない試験装置に電気的に接続される。 光学系ュニツ ト 3 0の内部には、 複数の独立した光学系 3 1が設けられている 。 光学系 3 1は、 レンズ 3 2、 フライアイレンズ 3 3、 レンズ 3 4、 拡散板 3 5 、 センターフィルター 3 6、 結像レンズ 3 7, 3 8およびアイリス夕レッ ト 3 9 から構成されている。  As shown in FIG. 3B, a stage 100 is provided below the optical system unit 30, and an image pickup device 101 to be inspected is arranged at a predetermined position on the stage 100. . These imaging devices 101 are electrically connected to a test device (not shown). A plurality of independent optical systems 31 are provided inside the optical system unit 30. The optical system 31 comprises a lens 32, a fly-eye lens 33, a lens 34, a diffuser 35, a center filter 36, imaging lenses 37, 38, and an iris lens 39. .
なお、 光学系 3 1は、 分割用光ファイバ束 2 0の 4つの出力端に対応して設け られているとともに、 アイリスタレッ ト 3 9は 4つの光学系 3 1に共通に設けら れている。 フライアイレンズ 3 3、 拡散板 3 5およびセン夕^フィルター 3 6は、 分割用 光ファイバ束 2 0の各出力端から光ガイ ド 2 3を通じて入射する光の照度分布を 均一化するために設けられている。 なお、 センターフィルター 3 6は、 光の照度 分布が光の断面の周辺部に向かって次第に低下するのを防止し、 断面全域にわた つて均一化されるように、 断面の中央部に向かつて次第に減光の度合 、を高めた フィルターである。 The optical system 31 is provided corresponding to the four output terminals of the splitting optical fiber bundle 20, and the irislet 39 is provided in common to the four optical systems 31. The fly-eye lens 33, the diffuser plate 35, and the sensor filter 36 are provided to equalize the illuminance distribution of light incident from each output end of the splitting optical fiber bundle 20 through the light guide 23. Have been. The center filter 36 prevents the illuminance distribution of the light from gradually decreasing toward the periphery of the cross section of the light, and gradually becomes uniform toward the center of the cross section so as to be uniform over the entire cross section. This filter increases the degree of dimming.
また、 各拡散板 3 5および各セン夕 ^フィルター 3 6は、 最終的に出力される 4本の光 R Lがそれぞれ所望の光量、 照度、 照度分布等をもつように、 それぞれ 独立に選択される。 たとえば、 4本の光 R Lが互いに等しい光量、 照度および照 度分布をもつように、 拡散板 3 5やセンターフィルター 3 6を選択することがで きる。  Further, each diffuser plate 35 and each sensor ^ filter 36 are independently selected such that the finally output four lights RL have desired light quantity, illuminance, illuminance distribution, etc. . For example, the diffuser 35 and the center filter 36 can be selected so that the four lights RL have the same light amount, illuminance, and illuminance distribution.
アイリスタレッ ト 3 9は、 図 3 Bに示すように、 周方向に沿って一定間隔で面 積の異なる複数種の開口 O P 1〜Ο Ρ 3が形成されている。 各開口 O P 1 ~ Ο Ρ 3は、 4つの光学系 3 1にそれぞれ対応して設けられている。  As shown in FIG. 3B, the iris retlet 39 is formed with a plurality of types of openings OP 1 to OP 3 having different areas at regular intervals along the circumferential direction. Each of the openings OP 1 to Ο 3 is provided corresponding to each of the four optical systems 31.
このアイリスタレッ ト 3 9は、 光学系 3 1の F値を制御するために設けられて いる。  The irislet 39 is provided for controlling the F-number of the optical system 31.
また、 アイリス夕レツ ト 3 9は、 回転軸 4 0を中心に回転可能に設けられてい る。 回転軸 4 0はモー夕等の駆動装置によって回転駆動される。 この駆動装置を 制御してアイリス レツ ト 3 9の割り出しを行うことにより、 4つの光学系 3 1 に対して開口 O P 1〜Ο Ρ 3のいずれかが同時に選択され、 4つの光学系 3 1の F値 (口径比) は一括して変更される。  Further, the iris sunset 39 is provided so as to be rotatable about a rotation axis 40. The rotating shaft 40 is rotationally driven by a driving device such as a motor. By controlling this driving device to determine the iris let 39, one of the apertures OP1 to OP3 is simultaneously selected for the four optical systems 31 and the four optical systems 31 are selected. The F value (caliber ratio) is changed collectively.
次に、 上記構成の光照射装置 1を用いた撮像素子の検査の一例について説明す る  Next, an example of an inspection of an image sensor using the light irradiation device 1 having the above configuration will be described.
まず、 光学系ュニツ ト 3 0に対して所定の位置に複数 (4個) の撮像素子を配 置するとともに、 光源 2から光を照射する。  First, a plurality of (four) imaging elements are arranged at predetermined positions with respect to the optical system unit 30, and light is emitted from the light source 2.
光源 2からの光は、 コンデンスレンズ; I 0、 メカニカルスリッ ト 1 1、 N Dフ イルク一夕レッ ト 1 2、 カラーフィル夕一夕レッ ト 1 3およびフライアイレンズ 1 5を通じて、 光量、 照度、 照度分布、 波長等の特性が所望に調整されたのち、 分割用光ファイバ束 2 0に入射する。 The light from light source 2 is a condensing lens; I 0, mechanical slit 11, ND After the characteristics such as light intensity, illuminance, illuminance distribution, and wavelength are adjusted as desired through the Irk Nightlet 12, the Color Fill Nightlet 13 and the fly-eye lens 15, the splitting optical fiber bundle 2 Incident at 0.
分割用光ファイバ束 2 0では、 支持部材 2 1側から入射した光が複数に分割さ れて光ガイド 2 3から出力される。 このとき、 光ガイド 2 3に接続された分割用 光ファイバ束 2 0の各出力端の光ファイバの本数は互いに等しいため、 各光ガイ ド 2 3に入射する光の光量および照度は略等しくなる。  In the splitting optical fiber bundle 20, the light incident from the support member 21 is split into a plurality of parts and output from the light guide 23. At this time, since the number of optical fibers at each output end of the splitting optical fiber bundle 20 connected to the light guide 23 is equal to each other, the amount of light and the illuminance of the light entering each optical guide 23 are substantially equal. .
分割用光ファイバ束 2 0を通じて複数の光学系 3 0にそれぞれ入射した各光は 、 フライアイレンズ 3 3、 拡散板 3 5、 センターフィルター 3 6およびアイリス 夕レッ ト 3 9を通じて光量、 照度分布等の特性が独立して調整される。 これによ り、 複数の光学系 3 0を通じて出力される各光は、 光量、 照度等の特性が互いに 等しくなり、 この光がステージ 1 0 0上に配置された複数の撮像素子の受光面に それぞれ入射される。  Each light that has entered each of the plurality of optical systems 30 through the splitting optical fiber bundle 20 passes through a fly-eye lens 33, a diffusion plate 35, a center filter 36, and an iris evening light 39. Are independently adjusted. As a result, the respective lights output through the plurality of optical systems 30 have the same characteristics such as the amount of light and the illuminance, and this light is applied to the light receiving surfaces of the plurality of image sensors arranged on the stage 100. Each is incident.
これにより、 複数の固体撮像素子の受光面に特性が等しく調整された光が入射 するため、 複数の撮像素子を同一の条件で同時に検査することが可能となる。 以上のように、 本実施形態によれば、 分割用光ファイバ束 2 0を用いて、 単一 の光源 2からの光を複数の光に等しく分割し、 この分割した光をそれぞれ独立の 光学系 3 0を用いて調整し、 対応する固体撮像素子へ照射する。 このため、 光源 2からの光を有効に利用することができる。 これに加えて、 各光学系 3 0に入射 される光に照度差等が発生したとしても、 これを各光学系 3 0でそれぞれ独立に 調整できるため、 複数の固体撮像素子へ同一条件の光を同時に照射することが可 能となる。  This allows light whose characteristics are adjusted to be equal to the light receiving surfaces of the plurality of solid-state imaging devices, so that a plurality of imaging devices can be inspected simultaneously under the same conditions. As described above, according to the present embodiment, the light from the single light source 2 is equally split into a plurality of lights by using the splitting optical fiber bundle 20, and the split lights are respectively separated into independent optical systems. Adjust using 30 and irradiate the corresponding solid-state imaging device. Therefore, the light from the light source 2 can be used effectively. In addition, even if an illuminance difference or the like occurs in the light incident on each optical system 30, this can be adjusted independently by each optical system 30, so that the light under the same conditions can be transmitted to a plurality of solid-state imaging devices. At the same time.
また、 複数の光学系 3 0を回転軸 4 0に関して対称な位置に配置し、 この固転 軸 4 0を中心に、 たとえば、 アイリスタレッ ト 3 9等の光学部品を回転可能に設 け、 このアイリスタレツ ト 3 9により複数の光学系 3 0の構成を一括して変更す ることにより、 複数の固体撮像素子に照射する光の条件を同時に変更することが できる。 Further, a plurality of optical systems 30 are arranged at positions symmetrical with respect to the rotation axis 40, and optical components such as an iris retlet 39 are rotatably provided around the rotation axis 40. By changing the configuration of the plurality of optical systems 30 collectively by the step 39, it is possible to simultaneously change the conditions of light to be applied to the plurality of solid-state imaging devices. it can.
なお、 本実施形態では、 拡散板 3 5やセンターフィルター 3 6を用いて各光学 系 3 0に入射する光の特性を調整する構成としたが、 各光学系 3 0から出力され る光に照度差が発生する可能性もあり、 その場合には微調整する必要がある。 たとえば、 ガラス板等の透明基板の両面ある 、は片面に反射防止膜を形成した フィルターを各光学系 3 0の光路中に配置し、 照度差の微調整を行うことができ る。 すなわち、 反射防止膜を形成したフィルターの枚数を各光学系 3 0において 独立に調整することで、 照度差の微調整が可能となる。  In the present embodiment, the characteristic of the light incident on each optical system 30 is adjusted by using the diffusion plate 35 and the center filter 36. However, the illuminance is applied to the light output from each optical system 30. Differences can occur, in which case fine-tuning is required. For example, a filter having an antireflection film formed on both sides of a transparent substrate such as a glass plate or the like can be arranged in the optical path of each optical system 30 to finely adjust the illuminance difference. That is, by independently adjusting the number of filters on which the antireflection film is formed in each optical system 30, fine adjustment of the illuminance difference becomes possible.
なお、 本実施形態では、 光照射装置 1は、 複数の固体撮像素子に同一の条件の 光を照射するのに用いる場合につ 、て説明したが、 複数の固体撮像素子にそれぞ れ異なる条件の光を照射する構成とすることも可能である。 また、 複数の固体撮 像素子以外にも、 正確に調整された光の照射を要する対象物であれば、 光照射装 置 1を適用することは可能である。  In the present embodiment, the case where the light irradiation device 1 is used to irradiate a plurality of solid-state imaging devices with light under the same condition has been described. However, different conditions may be applied to the plurality of solid-state imaging devices. May be applied. In addition to the plurality of solid-state imaging devices, the light irradiation device 1 can be applied to any object that requires irradiation of light that is accurately adjusted.
第 2の実施形態  Second embodiment
図 4は、 本発明の他の実施形態に係る光照射装置が適用された固体撮像素子の 試験装置の構成を示す図である。  FIG. 4 is a diagram showing a configuration of a solid-state imaging device test device to which a light irradiation device according to another embodiment of the present invention is applied.
図 4において、 試験装置 2 0 0は、 たとえば、 ゥエーハ 4 0 0に形成された固 体撮像素子 (たとえば、 C C D ) の光電変換特性を検査する。 この試験装置 2 0 0は、 テスタ 2 0 1、 テストへッ ド 2 0 1、 プローブカード 2 5 0、 移動ステー ジ 2 6 0等から構成される。  In FIG. 4, the test apparatus 200 inspects, for example, the photoelectric conversion characteristics of a solid-state imaging device (for example, CCD) formed on the wafer 400. The test apparatus 200 includes a tester 201, a test head 201, a probe card 250, a moving stage 260, and the like.
テスタ 2 0 1は、 テストへッ ド 2 0 1を管理し、 テストへヅ ド 2 0 1を通じて ゥヱーハ 4 0 0に形成された固体撮像素子から得られる信号に基づいて、 固体撮 像素子 4 0 1の検査を行う。  The tester 201 manages the test head 201, and based on the signal obtained from the solid-state image sensor formed on the wafer 400 through the test head 201, the solid-state imaging device 400 Perform the inspection of 1.
テストヘッ ド 2 0 1は、 基台 2 0 5上に設置されている。 このテストヘッド 2 0 1は、 基台 2 0 5に設けられた駆動アーム 2 0 2と連結されており、 駆動ァー ム 2 0 2の旋回により、 テストへツ ド 2 0 1は基台 2 0 5から移動する。 テスト ヘッ ド 2 0 1を基台 2 0 5から移動させるのは、 たとえば、 メインテナンス等の ときである。 The test head 201 is set on a base 205. The test head 201 is connected to a drive arm 202 provided on a base 205, and by rotating the drive arm 202, the test head 201 is connected to the base 205. 0 Move from 5. test Moving the head 201 from the base 205 is performed, for example, during maintenance.
テストへツ ド 2 0 1は、 後述するプロ^"プカード 2 5 0と図示しない配線によ り電気的に接続される。 テストへッド 2 0 1は、 たとえば、 固体撮像素子 4 0 1 にプローブカード 2 5 0を通じて印加する電源、 タイミングジェネレータ、 パ夕 ーンジェネレータ等の各種の信号発生部、 プローブカード 2 5 0を通じて測定し た固体撮像素子 4 0 1の信号を取得する入力部等から構成される。  The test head 201 is electrically connected to a later-described program card 250 by wiring (not shown). The test head 201 is connected to, for example, the solid-state imaging device 401. Power supply applied through the probe card 250, various signal generation units such as a timing generator and a pattern generator, and an input unit that acquires the signal of the solid-state imaging device 401 measured through the probe card 250 Be composed.
プローブカード 2 5 0は、 テストへッ ド 2 0 1の下方の所定の位置に設置され ている。 このプローブカード 2 5 0は、 固体撮像素子 4 0 1のパッ ドに接触する プローブ針 2 5 1を備えており、 テストヘッ ド 2 0 1 と固体撮像素子 4 0 1とを 電気的に接続する。  The probe card 250 is set at a predetermined position below the test head 201. The probe card 250 includes a probe needle 251, which comes into contact with a pad of the solid-state imaging device 401, and electrically connects the test head 201 to the solid-state imaging device 401.
このプローブカード 2 5 0には、 複数の固体撮像素子 4 0 1へ光を照射するた めの開口 2 5 0 aが形成されており、 この開口 2 5 0 aに後述する光学モジユー ル 3 O Aが設けられている。 この光学モジュール 3 O Aは、 本発明のモジュール 化された独立光学系の一実施態様である。  The probe card 250 has an opening 250a for irradiating a plurality of solid-state imaging elements 401 with light. The opening 250a has an optical module 3OA described later. Is provided. This optical module 3OA is one embodiment of the modularized independent optical system of the present invention.
移動ステージ 2 6 0は、 ゥェ ハ 4 0 0をチャックし、 このゥエーハ 4 0 0を プローブカード 2 5 0に対して位置決めする。 また、 移動ステージ 2 6 0は、 検 查の終了後にゥユーハ 4 0 0をプローブカード 2 5 0から離隔させる。  The moving stage 260 chucks the wafer 400 and positions the wafer 400 with respect to the probe card 250. Further, the moving stage 260 separates the probe 400 from the probe card 250 after the end of the inspection.
本実施形態に係る光照射装置は、 光源 2、 共通光学系 2 1 0、 ガイド用光ファ ィパ束 2 2 0、 カプラー 2 2 1 A, 2 2 1 B、 分割用光ファイバ束 2 2 5、 光学 モジュール 3 O Aから構成されている。  The light irradiation device according to the present embodiment includes a light source 2, a common optical system 210, a guide optical fiber bundle 220, a coupler 22A, 2211B, and a split optical fiber bundle 222. The optical module consists of 3 OA.
光源 2は、 テストヘッ ド 2 0 2に設けられており、 第〗の実施形態に係る光源 2と同様の構成である。  The light source 2 is provided in the test head 202 and has the same configuration as the light source 2 according to the first embodiment.
共通光学系 2 1 0は、 テストヘッド 2 0 2に設けられており、 第 1の実施形態 に係る共通光学系と同様の機能を有している。  The common optical system 210 is provided in the test head 202 and has the same function as the common optical system according to the first embodiment.
ガイ ド用光ファイバ束 2 2 0は、 テストへッ ド 2 0 2に設けられており、 多数 の光ファイバの束で構成されており、 たとえば、 直径 5 0 の光ファイバを断 面寸法が 2 O mm x 2 0 mmの矩形となるように束ねられている。 The optical fiber bundle 220 for the guide is provided in the test head 202, and a large number is provided. For example, an optical fiber having a diameter of 50 is bundled into a rectangular shape having a cross section of 20 mm × 20 mm.
このガイ ド用光ファイバ束 2 2 0は、 共通光学系 2 1 0を通じて入射される光 源 2からの光を分割用光ファイバ束 2 2 5へ導く。  The guide optical fiber bundle 220 guides the light from the light source 2 incident through the common optical system 210 to the splitting optical fiber bundle 222.
カプラー 2 2 1 A, 2 2 1 Bは、 レンズ等の光学部品からなり、 ガイ ド用光フ アイバ束 2 2 0と分割用光ファイバ束 2 2 とを結合する。 カプラー 2 2 1 Aは 、 ガイ ド用光ファイバ束 2 2 0側に設けられている。 カプラー 2 2 1 Bは分割用 光ファイバ束 2 2 5側に設けられている。  The couplers 22 A and 22 B are composed of optical components such as lenses, and couple the guide fiber bundle 220 and the splitting optical fiber bundle 22. The coupler 222 A is provided on the guide optical fiber bundle 220 side. The coupler 2 21 B is provided on the side of the splitting optical fiber bundle 2 25.
カプラー 2 2 〗 A, 2 2 1 Bは、 本発明の結合手段の一実施態様である。 分割用光ファイバ束 2 2 5は、 基台 2 0 5側に設けられており、 プローブカー ド 2 5 0に対して位置決めされている。 この分割用光ファイバ束 2 2 5は、 第 1 の実施形態に係る分割用光ファイバ束 2 0と同様の構成であり、 カプラー 2 2 1 B側の端部は一つに束ねられており、 プローブカード 2 5 0側の端部は複数 (4 本) に分割され、 それぞれ、 光学モジュ ル 3 O Aに対して位置決めされている 図 5は、 光学モジュール 3 O Aの構造を示す断面図である。  Couplers 22 A and 22 B are one embodiment of the coupling means of the present invention. The splitting optical fiber bundle 225 is provided on the base 205 side, and is positioned with respect to the probe card 250. The splitting optical fiber bundle 2 25 has the same configuration as the splitting optical fiber bundle 20 according to the first embodiment, and the end of the coupler 22 1 B side is bundled into one. The end on the probe card 250 side is divided into a plurality (four), and each is positioned with respect to the optical module 3 OA. FIG. 5 is a cross-sectional view showing the structure of the optical module 3 OA.
光学モジュール 3 O Aは、 図 5に示すように、 フランジ 3 0 1 と、 集光レンズ 3 0 2と、 拡散板 3 0 3と、 ピンホール板 3 0 4とを有する。 なお、 光学モジュ ール 3 O Aは複数設けられているが、 同様の光学特性を有する。  As shown in FIG. 5, the optical module 3OA includes a flange 301, a condenser lens 302, a diffusion plate 303, and a pinhole plate 304. Although a plurality of optical modules 3OA are provided, they have similar optical characteristics.
フランジ 3 0 】は、 円筒状の部材からなり、 プローブカード 2 5 0上に固定さ れている。 フランジ 3 0 1は、 金属等の光を透過しない材料で形成されている。 集光レンズ 3 0 2、 拡散板 3 0 3およびピンホール板 3 0 4は、 フランジ 3 0 1の内周に保持されている。  The flange 300 is made of a cylindrical member and is fixed on the probe card 250. The flange 301 is formed of a material that does not transmit light, such as a metal. The condenser lens 302, the diffusion plate 303, and the pinhole plate 304 are held on the inner periphery of the flange 301.
集光レンズ 3 0 2は、 上記した分割用光ファイバ束 2 2 5から導かれた光源 2 からの光 Lを集光する。  The condenser lens 302 condenses the light L from the light source 2 guided from the optical fiber bundle for division 222 described above.
拡散板 3 0 3は、 集光レンズ 3 0 2を通過した光を拡散させて、 光量、 照度お よび照度分布を制御する。 The diffusing plate 303 diffuses the light that has passed through the condenser lens 302 so that the light amount, illuminance and And control the illumination distribution.
ピンホール板 3 0 4は、 光軸上にピンホール 3 0 4 pが形成されており、 拡散 板 3 0 3を通過した光をこのピンホール 3 0 4 pを通じて照射する。 これにより 、 ピンホール 3 0 4 pの下方に位置決めされた固体撮像素子 4 0 1に検査用の光 Lが照射される。 このピンホール 3 0 4 pの直径によって F値が規定される。 上記構成の試験装置 2 0 0では、 メインテナンスのとき等に、 図 6に示すよう に、 駆動アーム 2 0 2を旋回させることにより、 テストヘッ ド 2 0 2を基台 2 0 5上から移動させる。  The pinhole plate 304 has a pinhole 304p formed on the optical axis, and irradiates the light passing through the diffusion plate 303 through the pinhole 304p. As a result, the light L for inspection is applied to the solid-state imaging device 401 positioned below the pinhole 304p. The F value is defined by the diameter of the pinhole 304p. In the test apparatus 200 having the above configuration, at the time of maintenance or the like, the test head 202 is moved from above the base 205 by rotating the drive arm 202 as shown in FIG.
本実施形態では、 光源 2から検査対象である固体撮像素子までの光路をガイ ド 用光ファイバ束 2 2 0と分割用光ファイバ束 2 2 5とで構成し、 両者をカプラー 2 2 1 A, 2 2 1 Bにより分離可能に結合したことにより、 テストヘッ ド 2 0 2 の移動を可能としている。 本実施形態のように、 複数の固体撮像素子 4 0 1を 同時に検査する場合には、 光学特性を均一化する観点から、 光照射装置の構成要 素間の位置関係が重要であり、 特に、 プローブカード 2 5 0に対する独立光学系 や分割用光ファイバ束 2 2 5の位置が重要である。 本実施形態では、 本発明の独 立光学系を構成する集光レンズ 3 0 2、 拡散板 3 0 3およびピンホール板 3 0 4 を一体化したので、 光学モジュ^"ル 3 O Aとプローブカード 2 5 0との位置合わ せを精度良く行うことができる。  In the present embodiment, the optical path from the light source 2 to the solid-state imaging device to be inspected is constituted by a guide optical fiber bundle 220 and a splitting optical fiber bundle 222, both of which are couplers 22A and 21A. The test head 202 can be moved by being separably connected by the 222B. When simultaneously inspecting a plurality of solid-state imaging devices 401 as in the present embodiment, from the viewpoint of making the optical characteristics uniform, the positional relationship between the components of the light irradiation device is important. The position of the independent optical system and the splitting optical fiber bundle 225 relative to the probe card 250 is important. In this embodiment, since the condenser lens 302, the diffusion plate 303 and the pinhole plate 304 constituting the independent optical system of the present invention are integrated, the optical module 3OA and the probe card are integrated. The alignment with 250 can be performed accurately.
なお、 本実施形態では、 ガイド用光ファイバ束 2 2 0と分割用光ファイバ束 2 2 5の双方を使用した場合について説明したが、 たとえば、 複数同時に試験せず 単一の固体撮像素子 4 0 1を試験する場合には、 ガイ ド用光ファイバ束 2 2 0の みを用いて、 単一の固体撮像素子 4 0 〗に試験用光を導く構成とすることも可能 である。  In the present embodiment, the case where both the guide optical fiber bundle 220 and the splitting optical fiber bundle 222 are used has been described. For example, a single solid-state imaging device 40 In the case of testing 1, it is also possible to adopt a configuration in which test light is guided to a single solid-state imaging device 40 # using only the guide optical fiber bundle 220.
また、 本実施形態によれば、 光源 2と共通光学系 2 1 0をテストへッ ド 2 0 2 の外部に設置したことにより、 テストへツ ド 2 0 2の容積が拡大しない。  Further, according to the present embodiment, since the light source 2 and the common optical system 210 are installed outside the test head 202, the volume of the test head 202 does not increase.
また、 熱源である光源 2をテストヘッ ド 2 0 2の外部に配置しているので、 テ ストヘッ ド 2 0 2内の各種基板が熱の影響を受けることがない。 In addition, since the light source 2, which is a heat source, is located outside the test head 202, Various substrates in the storage 202 are not affected by heat.
さらに、 ガイ ド用光ファイバ束 2 2 0をテストへッ ド 2 0 2を貫通させ、 光源 2からの光を固体撮像素子 4 0 1の近くまでガイ ド用光ファイバ束 2 2 0によつ て導いているので、 光の利用効率を向上させることができるとともに、 各固体撮 像素子 4 0 1へ賊射する光の F値の調整範囲を拡大させることができる。  Further, the guide optical fiber bundle 220 is passed through the test head 202, and the light from the light source 2 is transmitted to the vicinity of the solid-state imaging device 401 by the guide optical fiber bundle 220. As a result, the light use efficiency can be improved, and the adjustment range of the F value of the light impinging on each solid-state imaging element 401 can be expanded.
第 3の実施形態  Third embodiment
図 7は、 本発明の中継装置の一実施形態の構造を示す断面図である。 なお、 図 7において、 第 2の実施形態と同一の構成部分につ 、ては同一の符号を使用して いる。  FIG. 7 is a sectional view showing the structure of one embodiment of the relay device of the present invention. In FIG. 7, the same components as those of the second embodiment are denoted by the same reference numerals.
図 7に示す中継装置 5 0 0は、 プロ プカード 2 5 0に形成された各開口部 2 5 0 aに分割用光ファイバ束 2 2 5の出力端が光学モジュール 3 O Aを介して固 定されている。  In the relay device 500 shown in FIG. 7, the output end of the splitting optical fiber bundle 222 is fixed to each opening 250 a formed in the prop card 250 via the optical module 3 OA. ing.
なお、 各開口部 2 5 0 aに対応して設けられたプローブ針 2 5 1は、 本発明の 接続手段の一実施態様である。  Note that the probe needles 251, provided corresponding to the respective openings 250a, is one embodiment of the connection means of the present invention.
この中継装置 5 0 0を第 2実施形態に係る試験装置 2 0 0のプローブカード 2 5 0および分割用光ファイバ束 2 2 5に代えて使用し、 固体撮像素子の試験を行 ラ  The relay device 500 is used in place of the probe card 250 and the splitting optical fiber bundle 222 of the test device 200 according to the second embodiment, and the solid-state imaging device is tested.
あらかじめ分割用光ファイバ束 2 2 5をプローブカード 2 5 0に位置決め固定 しておくことにより、 試験装置の組み立てが容易となり、 また、 試験中において も、 分割用光ファイバ束 2 2 5とプローブカード 2 5 0との位置がずれない。 また、 プロ プカ ド 2 5 0と固体撮像素子とは位置決めされるので、 固体撮 像素子と分割用光ファイバ束 2 2 5との位置関係が安定する。 この結果、 特性の 安定した試験用光を固体撮像素子へ照射することが可能となる。  By positioning and fixing the splitting optical fiber bundle 2 25 to the probe card 250 beforehand, assembly of the test equipment becomes easy, and even during the test, the splitting optical fiber bundle 2 25 and the probe card The position with 250 does not shift. Also, since the propcard 250 and the solid-state imaging device are positioned, the positional relationship between the solid-state imaging device and the splitting optical fiber bundle 225 is stabilized. As a result, it is possible to irradiate the solid-state imaging device with test light having stable characteristics.
なお、 本実施形態では、 分割用光ファイバ束 2 2 5の出力端を光学モジュール 3 O Aを介してプローブカード 2 5 0へ固定する構成としたが、 光学モジュール 3 O Aを用いずに分割用光ファイバ束 2 2 5の出力端をプローブカード 2 5 0へ 直接固定する構成を採用することも可能である。 In the present embodiment, the output end of the splitting optical fiber bundle 2 25 is fixed to the probe card 250 via the optical module 3 OA. However, the splitting optical fiber bundle 2 25 is used without using the optical module 3 OA. Output end of fiber bundle 2 25 to probe card 250 It is also possible to adopt a configuration of directly fixing.
第 4の実施形態  Fourth embodiment
図 8は、 本発明の試験装置における結合手段の他の実施形態を示す図である。 第 2の実施形態においては、 ガイ ド用光ファイバ束 2 2 0と分割用光ファイバ 束 2 2 5とを光学的に結合する結合手段として、 光学部品からなるカプラー 2 2 FIG. 8 is a diagram showing another embodiment of the coupling means in the test apparatus of the present invention. In the second embodiment, as a coupling means for optically coupling the guide optical fiber bundle 220 and the splitting optical fiber bundle 222, a coupler 22 composed of optical components is used.
1 A, 2 2 1 Bを用いた場合について説明した。 The case where 1 A and 2 21 B are used has been described.
一方、 固体撮像素子 4 0 1へ均一な条件の試験用光を照射するためには、 ガイ ド用光ファイバ束 2 2 0の光軸◦ aと分割用光ファイバ束 2 5の光軸 O bを精 度良く合わせる必要がある。  On the other hand, in order to irradiate the test light under uniform conditions to the solid-state imaging device 401, the optical axis ◦a of the guide optical fiber bundle 220 and the optical axis O b of the splitting optical fiber bundle 25 Must be adjusted precisely.
しかしながら、 テストへッド 2 0 2を移動可能にしているので、 ガイド用光フ アイバ束 2 2 O O aと分割用光ファイバ束 2 5の光軸◦ bを精度良く位置合わ せするのは容易ではない。  However, because the test head 202 is movable, it is easy to accurately align the optical axis b of the guide optical fiber bundle 22 Oa with the optical axis b of the splitting optical fiber bundle 25. is not.
このため、 本実施形態では、 光学部品 2 1 A, 2 2 1 Bの間にフライアイレ ンズ 2 2 1 Cを使用する。 フライアイレンズ 2 2 1 Cは光の強度分布を均一化す るように作用するので、 ガイ ド用光ファイバ束 2 2 O O aと分割用光ファイバ束 2 2 5の光軸 O bとが多少ずれたとしても、 このずれによる影響を吸収すること ができる。 この結果、 ガイド用光ファイバ束 2 2 O O aと分割用光ファイバ束 2 2 5の光軸 O bとのずれによる固体撮像素子へ照射される試験用光の特性のばら つきの発生を抑制することができる。  For this reason, in the present embodiment, a fly eye lens 22 1 C is used between the optical components 21 A and 22 1 B. Since the fly-eye lens 2 21 C acts to make the light intensity distribution uniform, the optical axis O b of the guide optical fiber bundle 22 O a and the optical fiber bundle 22 5 of the splitting optical fiber bundle 22 5 are slightly shifted. Even so, the effects of this shift can be absorbed. As a result, it is possible to suppress the occurrence of variations in the characteristics of the test light emitted to the solid-state imaging device due to the deviation between the optical fiber bundle for guide 22Oa and the optical axis Ob of the optical fiber bundle for splitting 22. Can be.
なお、 本発明の結合手段は、 これらの実施形態に限定されることなく、 種々に 変更可能である。  Note that the coupling means of the present invention is not limited to these embodiments, and can be variously modified.
本発明は上述した実施形態に限定されな 、。  The present invention is not limited to the embodiment described above.
上述した実施形態では、 本発明の中継手段および中継装置として、 プローブ力 ード 2 5 0の場合について説明したが、 本発明はこれに限定されない。  In the embodiment described above, the case where the probe force is 250 is described as the relay means and the relay device of the present invention, but the present invention is not limited to this.
たとえば、 ソケツトボード等のパッケージングされた固体撮像素子を検査する 際に用いられるものや、 プローブ力 ドゃソケツ トポードと接続されるマザーボ ードも中継手段および中継装置に含まれる。 また、 プローブカードやソケットボ 一ドとマザ一ボードとを接続した状態のものを中継手段および中継装置とするこ とができる。 これらのボード類に分割用光ファイバ束を固定すれば、 本発明の中 継装置を構成することができる。 For example, those used when inspecting packaged solid-state imaging devices such as socket boards, and the motherboard connected to a probe force socket socket The mode is also included in the relay means and the relay device. Further, a probe card or a socket board connected to a mother board can be used as the relay means and the relay device. By fixing the splitting optical fiber bundle to these boards, the relay device of the present invention can be configured.
なお、 たとえば、 ソケットボードを中継装置とした場合には、 本発明の接続手 段はソケツ トで構成される。  If, for example, a socket board is used as a relay device, the connecting means of the present invention is constituted by a socket.
また、 上述した実施形態では、 分割用光ファイバ束がプローブ力 ド 2 5 0に 固定されている場合について説明したが、 試験すべき固体撮像素子に対して位置 決めされる対象であれば、 プローブカード等のボード類に限定されない。 たとえ ば、 プローブカードと試験すべき固体撮像素子との位置決めを行うプロ一パのゥ エーハを保持するテーブル側や、 パッケージングされた後の固体撮像素子を検査 する際に用いるハンドラーに分割用光ファイバ束を固定してもよい。 このように 構成することにより、 固体撮像素子と試験すぺき分割用光ファイバ束との位置関 係を精度良く保つことができ、 より正確な試験が可能となる。 また、 本発明の テストへッ ドには、 半導体装置を試験する一般的なテストへク ドに加えて、 これ らのテストへッ ドと同等、 類似の機能を有する均等物が含まれる。 産業上の利用可能性  Further, in the above-described embodiment, the case where the splitting optical fiber bundle is fixed to the probe force 250 is described. However, if the object is positioned with respect to the solid-state imaging device to be tested, the probe It is not limited to boards such as cards. For example, the splitting light is placed on the table side that holds the wafer of the proper positioner that positions the probe card and the solid-state imaging device to be tested, or on the handler that is used to inspect the packaged solid-state imaging device. The fiber bundle may be fixed. With this configuration, the positional relationship between the solid-state imaging device and the test-split splitting optical fiber bundle can be accurately maintained, and a more accurate test can be performed. Further, the test head of the present invention includes, in addition to a general test head for testing a semiconductor device, an equivalent having the same or similar function as those test heads. Industrial applicability
本発明は、 たとえば、 固体撮像素子の光電変換特性の試験に利用することがで きる。  The present invention can be used, for example, for testing the photoelectric conversion characteristics of a solid-state imaging device.

Claims

請求の範囲 The scope of the claims
1 . 複数の固体撮像素子に同時に光を照射可能な光照射装置であって、 1. A light irradiation device capable of simultaneously irradiating a plurality of solid-state imaging devices with light,
光を出射する光源と、  A light source for emitting light,
複数の光ファィバが入力端で一つに束ねられかつ出力端で複数に束ねら れ、 前記入力端から入射した前記光源からの光を前記出力端で複数の光に分割す る分割用光ファイバ束と、  A plurality of optical fibers bundled together at an input end and a plurality of optical fibers bundled at an output end, and a splitting optical fiber for splitting light from the light source incident from the input end into a plurality of lights at the output end A bunch,
前記分割用光ファィバ束の出力端から出力される光を独立して調整し、 前記各撮像素子に導く複数の独立光学系と  A plurality of independent optical systems that independently adjust light output from the output end of the splitting optical fiber bundle and guide the light to each of the imaging elements;
を有する光照射装置。  A light irradiation device having:
2 . 前記光源から前記分割用光ファイバ束に入射する光を共通に調整する共 通光学系をさらに有する請求項 1に記載の光照射装置。  2. The light irradiation device according to claim 1, further comprising a common optical system that commonly adjusts light incident on the bundle of splitting optical fibers from the light source.
3 . 前記複数の独立光学系は、 所定軸を中心に対称な位置に配置されており 前記所定軸を中心として回転可能に設けられ、 前記複数の独立光学系の 構成を一括して変更する光学部品をさらに有する  3. The plurality of independent optical systems are arranged at symmetrical positions about a predetermined axis, are provided rotatably about the predetermined axis, and change the configuration of the plurality of independent optical systems collectively. Have more parts
請求項 1に記載の光照射装置。  The light irradiation device according to claim 1.
4 . 前記光源からの光を前記分割用光ファイバ束へ案内するガイ ド用光ファ ィパ束と、  4. A guide optical fiber bundle for guiding light from the light source to the splitting optical fiber bundle;
前記ガイ ド用光フアイバ束と前記分割用光フアイバ束とを光学的に結合 する結合手段とをさらに有し、  Coupling means for optically coupling the guide optical fiber bundle and the splitting optical fiber bundle,
少なく とも前記ガイ ド用光ファイバ束が前記分割用光ファイバ束に対し て移動可能となっている  At least the guide optical fiber bundle is movable with respect to the division optical fiber bundle.
請求項 1に記載の光照射装置。  The light irradiation device according to claim 1.
5 . 前記結合手段は、 フライアイレンズを有する  5. The coupling means has a fly-eye lens
請求項 4に記載の光照射装置。 The light irradiation device according to claim 4.
6 . 前記複数の独立光学系は、 それぞれモジュ ル化されている 請求項 1に記載の光照射装置。 6. The light irradiation device according to claim 1, wherein each of the plurality of independent optical systems is modularized.
7 . 固体撮像素子に試験用光を照射して光電変換特性を試験する試験装置で めって、  7. With a test device that irradiates the solid-state imaging device with test light to test the photoelectric conversion characteristics,
テス卜へツ 卜と、  To the test,
試験すべき固体撮像素子と前記テストへッ ドとを電気的に接続し、 前記 固体撮像素子の光電変換特性の試験に必要な信号を伝達する中継手段と、  Relay means for electrically connecting a solid-state image sensor to be tested and the test head, and transmitting a signal necessary for testing a photoelectric conversion characteristic of the solid-state image sensor;
前記テストへッ ドの外部に設けられた光源と、  A light source provided outside the test head;
前記テストへツ ドを貫通し、 前記光源からの光を前記中継手段と電気的 に接続された固体撮像素子へ導くためのガイド用光ファイバ束と  A guide optical fiber bundle for penetrating the test head and guiding light from the light source to a solid-state imaging device electrically connected to the relay means;
を有する固体撮像素子の試験装置。  A test apparatus for a solid-state imaging device having the same.
8 . 複数の光ファィパが入力端で一つに束ねられかつ出力端で複数に束ねら れ、 前記入力端から入射する前記ガイド用光ファイバ束からの光を前記出力端で 複数の光に分割し、 前記中継手段と電気的に接続された状態の前記複数の固体撮 像素子へ導く分割用光ファィバ束をさらに有する  8. A plurality of optical fibers are bundled together at an input end and a plurality of bundled at an output end, and light from the guide optical fiber bundle incident from the input end is split into a plurality of lights at the output end. And a splitting optical fiber bundle for guiding to the plurality of solid-state imaging elements electrically connected to the relay unit.
請求項 7に記載の固体撮像素子の試験装置。  A test apparatus for a solid-state imaging device according to claim 7.
9 . 前記分割用光ファイバ束は、 試験すべき固体撮像素子に対して位置決め される対象のいずれかに固定されている  9. The splitting optical fiber bundle is fixed to one of the objects positioned with respect to the solid-state imaging device to be tested.
請求項 8に記載の固体撮像素子の試験装置。  9. The test device for a solid-state imaging device according to claim 8.
1 0 . 前記分割用光ファイバ束は、 前記中継手段に固定されている  10. The splitting optical fiber bundle is fixed to the relay means.
請求項 9に記載の固体撮像素子の試験装置。  A test apparatus for a solid-state imaging device according to claim 9.
1 1 . 前記ガイ ド用光ファイバ束と前記分割用光ファイバ束とを光学的に結合 する結合手段とを有し、  11. A coupling means for optically coupling the guide optical fiber bundle and the splitting optical fiber bundle,
前記テストへツ ド、 光源およびガイド用光ファイバ束は、 前記分割用光 フアイバ束および中継手段に対して移動可能となっている  The test head, the light source and the guide optical fiber bundle are movable with respect to the splitting optical fiber bundle and the relay unit.
請求項 8に記載の試験装置。 The test device according to claim 8.
1 2 . 固体撮像素子に試験用光を照射して光電変換特性を試験する試験装置の テストへツ ドと前記固体撮像素子とを電気的に接続し、 前記固体撮像素子の光電 変換特性の試験に必要な信号を伝達する中継装置であつて、 1 2. Electrical connection between the test head of the test device that irradiates the solid-state imaging device with test light to test the photoelectric conversion characteristics and the solid-state imaging device, and tests the photoelectric conversion characteristics of the solid-state imaging device A relay device for transmitting necessary signals to
所定の位置に位置決めされた複数の固体撮像素子と電気的に接続する接 続手段と、  Connection means for electrically connecting to a plurality of solid-state imaging devices positioned at predetermined positions;
前記試験用光を前記各固体撮像素子へ照射するための開口部と、 複数の光ファィパが入力端で一つに束ねられかつ出力端で複数に束ねら れ、 前記入力端から入射した光源からの光を前記出力端で複数の光に分割し、 前 記各固体撮像素子へ前記開口部を通じて導く分割用光フアイバ束と  An opening for irradiating each of the solid-state imaging devices with the test light; a plurality of optical fibers being bundled together at an input end and being bundled together at an output end; and a light source incident from the input end. Splitting the light into a plurality of lights at the output end, and a splitting optical fiber bundle for guiding each solid-state image sensor through the opening.
を有する中継装置。  A relay device having the same.
PCT/JP2003/013915 2002-10-31 2003-10-30 Optical lighting system, test device for solid-state imaging device, repeater WO2004040266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003280637A AU2003280637A1 (en) 2002-10-31 2003-10-30 Optical lighting system, test device for solid-state imaging device, repeater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002317731 2002-10-31
JP2002-317731 2002-10-31

Publications (2)

Publication Number Publication Date
WO2004040266A1 true WO2004040266A1 (en) 2004-05-13
WO2004040266A8 WO2004040266A8 (en) 2005-03-10

Family

ID=32211733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013915 WO2004040266A1 (en) 2002-10-31 2003-10-30 Optical lighting system, test device for solid-state imaging device, repeater

Country Status (3)

Country Link
AU (1) AU2003280637A1 (en)
TW (1) TW200409987A (en)
WO (1) WO2004040266A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812505B (en) * 2004-12-30 2010-05-26 东部亚南半导体株式会社 Image sensor using optical fiber
CN109799235A (en) * 2019-03-12 2019-05-24 中国工程物理研究院激光聚变研究中心 Imaging device and imaging method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399528B (en) * 2007-09-21 2013-06-21 Hon Hai Prec Ind Co Ltd Holding apparatus for spectrum measurement
CN107727664B (en) * 2017-11-30 2021-04-13 四川恒匀通科技有限公司 Metal plate visual detection acquisition terminal and method
CN108871570A (en) * 2018-09-21 2018-11-23 苏州华兴源创科技股份有限公司 A kind of optic probe
CN112748558A (en) * 2020-12-31 2021-05-04 中国科学院西安光学精密机械研究所 Wide-spectrum large-dynamic-range optical system and test calibration method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292310A (en) * 1999-04-08 2000-10-20 Sony Corp Inspection device and its method
JP2002008405A (en) * 2000-06-21 2002-01-11 Moritex Corp Lighting equipment and lighting optical system
JP2002214072A (en) * 2001-01-15 2002-07-31 Nikon Corp Light irradiation device and inspection device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292310A (en) * 1999-04-08 2000-10-20 Sony Corp Inspection device and its method
JP2002008405A (en) * 2000-06-21 2002-01-11 Moritex Corp Lighting equipment and lighting optical system
JP2002214072A (en) * 2001-01-15 2002-07-31 Nikon Corp Light irradiation device and inspection device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812505B (en) * 2004-12-30 2010-05-26 东部亚南半导体株式会社 Image sensor using optical fiber
CN109799235A (en) * 2019-03-12 2019-05-24 中国工程物理研究院激光聚变研究中心 Imaging device and imaging method

Also Published As

Publication number Publication date
WO2004040266A8 (en) 2005-03-10
AU2003280637A1 (en) 2004-05-25
AU2003280637A8 (en) 2004-05-25
TW200409987A (en) 2004-06-16

Similar Documents

Publication Publication Date Title
US7525593B2 (en) Position detection apparatus, position detection method, testing apparatus, and camera module manufacturing apparatus
KR100785818B1 (en) Device for detecting wave fronts
US11255514B2 (en) Illumination apparatus having planar array of LEDs and movable pair of lens arrays for modifying light output
WO2006028183A1 (en) Lens system adjusting device and lens system adjusting method using it, and production device for imaging device and production method for imaging device
JP6670561B2 (en) Seamless fusion of telecentric brightfield and annular darkfield illumination
CN1715890A (en) Light emitting device,automatic optical detecting system and method for detecting PCB pattern
KR20050085408A (en) Instrument for testing solid-state imaging device
WO2004040266A1 (en) Optical lighting system, test device for solid-state imaging device, repeater
JP3657526B2 (en) Light source device for image sensor inspection and image sensor inspection method
JP2009145180A (en) Device for irradiating inspection light and device for inspecting solid-state image sensor using it
US10908020B2 (en) Light source device and method for driving light source device
CN107703616A (en) Multi-channel laser output equipment and fluorescence microscope
JP2004172595A (en) Photoirradiation apparatus, test apparatus of solid state imaging device, and relay device
JP2004266250A (en) Testing apparatus for solid-state imaging device, repeater, and optical module
US20070013902A1 (en) Apparatus for Inspecting a Wafer
JP2005195348A (en) Illumination optical apparatus
JP2006064441A (en) Light source for inspection and ic tester
JP3445047B2 (en) Illumination device and observation device using the same
JPH0868942A (en) Lighting system for optical microscope
JP4591658B2 (en) Imaging device inspection illumination device, imaging device inspection device, imaging device inspection method, and imaging device manufacturing method
JP2002090686A (en) Light irradiating apparatus
SU1420428A1 (en) Apparatus for checking image quality in optical systems
KR102361925B1 (en) Optical device
JP2810400B2 (en) Exposure equipment
KR100660542B1 (en) Overlay measurement equipment for semiconductor device fabrication equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 20/2004 UNDER (51) REPLACE "G01N 12/84" BY "G01N 21/84"

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP