WO2004040022A1 - 耐環境助長割れ性の優れた金属構造製品および、金属構造製品の環境助長割れ抵抗性向上方法 - Google Patents

耐環境助長割れ性の優れた金属構造製品および、金属構造製品の環境助長割れ抵抗性向上方法 Download PDF

Info

Publication number
WO2004040022A1
WO2004040022A1 PCT/JP2003/014031 JP0314031W WO2004040022A1 WO 2004040022 A1 WO2004040022 A1 WO 2004040022A1 JP 0314031 W JP0314031 W JP 0314031W WO 2004040022 A1 WO2004040022 A1 WO 2004040022A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal structure
environmentally
structure product
assisted
treatment
Prior art date
Application number
PCT/JP2003/014031
Other languages
English (en)
French (fr)
Inventor
Akihiro Miyasaka
Tomonori Tominaga
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to AU2003280700A priority Critical patent/AU2003280700A1/en
Publication of WO2004040022A1 publication Critical patent/WO2004040022A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • the present invention relates to a metal structure or a structural product used as various devices such as a chemical plant and an oil refining device, a pipe, or a gas pipeline, and is used for a chloride, an amine, a hydrogen sulfide, a nitrate, and a carbonate.
  • the present invention relates to a structure and a structural product having increased resistance to stress corrosion cracking and hydrogen embrittlement cracking (hereinafter referred to as environment-assisted cracking) in various corrosive environments such as, and a method of improving the environment-assisted cracking resistance.
  • environment-assisted cracking stress corrosion cracking and hydrogen embrittlement cracking
  • Corrosion cracking stress corrosion cracking of carbon steel in a CO—CO 2 -H 2 O environment in chemical plants, etc. Also, there is stress corrosion cracking of Ni alloy in pressure vessels and others. 11 ⁇ ⁇ 1! Alloy, even in humid air, seawater, freshwater environment, and A 1 In the alloy, stress corrosion cracking occurs in a chloride aqueous solution environment.
  • stress relief annealing requires a large heat treatment furnace for heat treatment when the object to be treated is a large structural product, and it is impossible to perform heat treatment itself for a fixed structure or the like.
  • this heat treatment has no effect on externally applied stress. It is also effective to reduce residual stress by shot peening, but as with heat treatment, there are problems with equipment for large metal structural products. Limited and cost-effective Because of the large size of the project, it was difficult to provide economic and efficient measures.
  • a processing method using ultrasonic impact energy has been proposed to improve the strength of the welded portion of the welded product by the above-described peening treatment and to form a stress pattern that suppresses stress concentration and minute stress defects.
  • the present invention has been made to solve the above-mentioned problem, and is a tool that vibrates the tip with ultrasonic waves at an amplitude of 20 to 60 ⁇ , a frequency of 19 kHz to 60 kHz, and an output of 0.2 to 3.
  • an ultrasonic impact treatment that strikes the metal surface using a metal to the parts of the metal structure product where environmentally-friendly cracking is a problem
  • the structure of the metal surface layer is improved, and therefore, excellent environmentally-friendly cracking resistance
  • it is intended to obtain a metal structure product which has been processed, and to perform an appropriate pre-treatment and an inspection after the treatment in order to guarantee the effect.
  • the metal of the metal structure product where environmentally-promoted cracking is problematic is steel having a tensile strength of 490 N / mm class 2 or higher. Metal structure products with excellent properties.
  • the environmentally-assisted cracking resistance according to (1) or (2), wherein the portion where the environmentally-assisted cracking of the metal structural product is problematic includes a weld bond portion and / or a weld heat-affected zone.
  • the ratio of the major axis length to the minor axis length of the crystal grains in which the major axis of the layered structure is substantially parallel to the surface is 5 or more (1) to (1).
  • Ultrasonic bombardment treatment is applied to the parts of the metal structure product where environmentally-assisted cracking is a problem, and the surface metal structure with a thickness of 50 / xm or more is A method for improving environmentally-assisted cracking resistance of a metal structure product, wherein the method has a layered structure composed of parallel crystal grains.
  • the metal of the metal structure product according to (6), wherein the metal at the place where the ring cracking of the metal structure product is problematic is steel having a tensile strength of 49 ON / mm class 2 or higher.
  • Environmentally-friendly crack resistance improvement method is described below.
  • the environment of the metal structure product according to (6) or (7), wherein the portion where the environmentally-assisted cracking of the metal structure product becomes a problem includes a weld bond portion and a Z or a weld heat affected zone. How to improve the resistance to accelerated cracking.
  • the pretreatment is a process of changing internal stress and Z or surface stress at a location where environmentally-assisted cracking of the metal structure product becomes a problem and at a location in the vicinity thereof.
  • the pre-treatment is characterized in that the pre-processing includes a process of detecting cracks at locations where environmentally-assisted cracking of the metal structure product is problematic, and removing the detected cracks. (11) or (11) 12. A method for improving environmentally-assisted cracking resistance of a metal structural product according to 2).
  • the ultrasonic impact treatment further comprises: making the surface shape of the metal structure product at a location where environmentally-assisted cracking is problematic a shape in which stress concentration is unlikely to occur; and applying compressive residual stress in the vicinity of the surface.
  • any of the above (6) to (14) is characterized by applying ultrasonic impact treatment to the parts where environmentally-assisted cracking of the metal structure product becomes a problem, and then conducting a quality assurance inspection. 4.
  • the method for improving environmentally-assisted crack resistance of a metal structure product according to (1) (16) In the quality assurance inspection, the treated surface after ultrasonic impact treatment was plastically deformed by a thickness of 50 ⁇ m or more compared to the surface before the treatment, and stress concentration occurred on the treated surface.
  • Fig. 1 (a) is a schematic cross-sectional view showing the progress of the stress corrosion cracking, showing the case where the grain boundaries are perpendicular to the direction of the tensile stress.
  • Fig. 1 (b) is a schematic cross-sectional view showing the progress of stress corrosion cracking, showing the case where most of the grain boundaries are in a direction parallel to the direction of tensile stress.
  • Figure 2 (a) is a micrograph showing the cross-sectional microstructure of a metal structure product before ultrasonic impact treatment.
  • FIG. 2 (b) is a schematic diagram showing a cross-sectional structure of the metal structure product before the ultrasonic impact treatment.
  • Figure 3 (a) is a micrograph showing the cross-sectional microstructure of a metal structure product after ultrasonic impact treatment.
  • FIG. 3 (b) is a schematic diagram showing a cross-sectional structure of the metal structure product after the ultrasonic impact treatment.
  • Fig. 4 is a diagram showing the sampling status of stress corrosion test specimens.
  • the metal structural products to which the present invention is directed include structural parts such as mechanical parts, piping, containers, and the like made of metal, or equipment such as a combination thereof. These structural products are generally manufactured by subjecting a metal material to processing such as cutting and bending, or further, to welding.
  • the metal material is not limited to steel materials such as carbon steel, low alloy steel, and stainless steel, but also includes metals such as Ni and Cu and alloys thereof.
  • environmentally-assisted cracking is a phenomenon in which, when a metal structure product is in a corrosive environment in the presence of tensile stress, minute cracks generated on the surface or surface layer develop, and the function of the metal structure product decreases as a large crack.
  • the direction of growth of this crack is perpendicular to the tensile stress (residual stress, external stress) and usually along the grain boundary. Therefore, as shown in Fig. 1 (b), if the direction of the tensile stress is substantially parallel to the direction of the grain boundary, this stress will cause the crack tip to open further. Since it does not act on cracks, it can slow down the growth, that is, improve the propagation resistance of cracks and suppress environmentally-assisted cracking.
  • the present inventors have paid attention to this point and have conceived of using a layered structure as a surface structure at a location where environmentally-assisted cracking becomes a problem.
  • a layered structure By forming a layered structure, most of the crystal grain boundaries are substantially parallel to the direction of the tensile stress. Therefore, as described above, even if a small crack occurs, the propagation resistance of the crack can be increased. In addition, it is possible to suppress environmentally-assisted cracking.
  • the hammer at the tip is subjected to ultrasonic waves with an amplitude of 20 to 60 ⁇ , a frequency of 19 to 60 kHz, and an output of 0.2 to 3 Ultrasonic impact treatment in which a metal surface is struck and peened by a vibrating device (for example, U.S. Patent No. 6,171,41 ⁇ , Kourigo, iuriace Nanocrystall izat lon (SNC) of meta meta) ic Materials—Presentation of the Concept behind a New Approach, Journal. Sci. Technol. Vol.15 No.3, 1999).
  • a vibrating device for example, U.S. Patent No. 6,171,41 ⁇ , Kourigo, iuriace Nanocrystall izat lon (SNC) of meta meta
  • This treatment method is basically the same as hammer peening, except that the energy of each impact is small, but instead of applying more than 10,000 impacts per second, the metal is plastically deformed. It gives deformation. At this time, since the impact force of each impact is small, there is almost no recoil generated in the impact device, which is superior in terms of usability and workability as compared with the hammer peening device.
  • the shape of the hammer at the tip can be reduced in size, and impact processing can be performed on minute or narrow parts such as welds and connections. it can. In this regard, processing can be applied to small areas where environmentally-friendly cracks are a problem. Even in this case, since the number of impacts can be extremely large as described above, sufficient plastic deformation can be given. In addition, since this ultrasonic impact treatment hits the metal surface a very large number of times, it has an effect that the conventional hammer peening does not have on the metal surface. One shot energy shot is larger than shot beaning, so it has an effect that conventional shot peening does not have.
  • the number of hits increases the uniformity of the treatment. Even with hammer peening, a certain degree of uniformity can be obtained by performing several passes on the same line.However, the impact frequency of the ultrasonic impact treatment is 15 to 60 kHz, and the obtained uniformity is At a processing speed of about 0.5 mZ, almost all required metal surfaces can be finished uniformly and without leaving any defects.
  • the inventor of the present invention has proposed an ultrasonic impact device having a tip hammer having a radius of curvature of 1.5 mm on the surface of a steel material, and has a processing speed of 0.5 ⁇ and a frequency of 2 ′ 5 kHz.
  • One pass of ultrasonic impact treatment was performed at 5 mZ min, and the surface structure before and after the treatment was examined in detail.
  • the results are shown in Fig. 2 (a), Fig. 2 (b), Fig. 3 (a), and Fig. 3 (b) as the cross-sectional state of the steel material before and after the treatment, with the respective micrographs and schematic diagrams.
  • the cross section perpendicular to the treated surface was plastically deformed by the ultrasonic impact treatment, and the crystal grains whose major axis extended substantially parallel to the surface were arranged in multiple layers in the thickness direction. It has a layered structure.
  • the major axis of the grains is substantially parallel to the surface, and the grain boundaries and tensile stress, which are the main directions of crack propagation extending from the steel surface exposed to the corrosive environment, It is thought that stress corrosion cracking can be reduced because the direction in which cracks act is close.
  • the inventors carried out ultrasonic impact treatment on a 12 mm thick metal plate having the composition shown in Table 1 while changing the treatment conditions as shown in Table 2.
  • a method of forming a welded part with a bead-on-plate as shown in Fig. 4 was used to collect three stress corrosion test specimens for each level, and to conduct an environmental promotion cracking test. Carried out.
  • Table 3 shows the properties of the tissue and the results of the test. As can be seen from Table 3, when the thickness of the layered structure of the surface layer parallel to the surface is less than 50 ⁇ from the surface, the susceptibility to environmentally-assisted cracking is high, and cracking is likely to occur. On the other hand, when the thickness of the layered structure is 50 ⁇ m or more, no cracking occurs, and it is understood that excellent environmentally-assisted cracking resistance is exhibited.
  • substantially parallel means that the direction of the long axis of the crystal grains of the layered structure and the surface are at an angle of ⁇ 10 ° or less.
  • major axis and the minor axis refer to the major axis and minor axis of the crystal grains in a section in the thickness direction of the metal, that is, a section perpendicular to the metal-treated surface.
  • the layered structure preferably has a ratio of the major axis length to the minor axis length (length in the major axis direction and the minor axis direction) of the crystal grains of the layered structure is 5 or more. This is because, as described above, the crystal grains extend in the major axis direction parallel to the surface, so that the grain boundaries parallel to the stress direction become longer and the crack propagation path becomes longer, leading to fracture. This is because it takes longer to complete.
  • the ratio of the length in the major axis direction to the minor axis direction must be 5 or more.
  • a layered structure can be formed uniformly and can be formed in multiple layers, which is extremely advantageous for environmentally-assisted cracking.
  • the short axis length of crystal grains of the layered structure is 5 ⁇ m or less. If the length in the short axis direction is 5 ⁇ or more, the formation of a layered structure is insufficient, and the time until fracture is slightly shortened. On the other hand, if it is 5 ⁇ or less, the time until fracture can be more sufficiently secured.
  • this ultrasonic impact treatment can make the metal surface layer have a layered structure by plastic deformation, make the surface shape smooth and planar, and apply compressive residual stress near the surface layer.
  • the surface layer of the metal where the environment-assisted cracking becomes a problem by the ultrasonic impact treatment is formed into a layered structure, and the surface of this portion is made to have a surface shape in which stress concentration is unlikely to occur.
  • the surface shape in which stress concentration is unlikely to occur is, for example, in the case of a weld toe, a shape in which the stress concentration coefficient is 2 or less. By adopting such a surface shape, stress concentration hardly occurs.
  • compressive residual stress in the vicinity of the surface for example, within a range of 50 ⁇ m from the surface, it is possible to suppress the expansion of small defects serving as starting points of environmentally-assisted cracks into large cracks. Therefore, these micro-cracks can be rendered harmless, and the environmentally-assisted cracking resistance can be improved.
  • the surface layer is formed into a layered structure, or the surface is formed into a shape in which stress concentration is unlikely to occur, and the surface is formed near the surface.
  • various types of environmentally-promoted cracks such as stress corrosion cracking, hydrogen-induced cracking, and sulfide stress corrosion cracking, which are promoted by stress, can be suppressed and reduced.
  • Metal structure products with excellent cracking properties be able to.
  • This ultrasonic impact treatment may be applied to at least the parts of the above-mentioned metal structure product where environmentally-friendly cracking is a problem.
  • the problematic part is that the metal structure product is in contact with the corrosive environment and stress is applied. Or a place that remains.
  • the first place where the stress concentrates or remains is the weld joint (weld joint, heat affected zone).
  • Weld joint welding joint, heat affected zone.
  • Many metal structure products are manufactured with welding, and residual stress is generated in the welded joint.
  • the weld toe of the weld joint tends to concentrate stress.
  • the welded portion of the metal structural product that is, the portion including the welded bond portion and / or the weld heat affected zone is subjected to the ultrasonic impact treatment, and it is also preferable to include the welded toe portion.
  • Examples of places where stress is concentrated or loaded besides welds are cuts due to sawing, cutting, fusing, etc., which may be added at the stage of manufacturing a metal structure product. At these points, large tensile and shear stresses are applied to the end faces as the cutting is performed. In addition, metal-structured products are sometimes constructed by bending or twisting, and the places where these are concentrated are subjected to tensile stress due to these bending and twisting. In addition to the stresses generated during these processing steps, there are some places where external stresses are applied during use, and these are also subject to this treatment. If the place where the tensile stress is applied is in a corrosive environment, as described above, the environment-assisted crack will be generated.
  • the occurrence of environment-assisted cracking involves three conditions: environment, stress, and material.
  • the ultrasonic impact treatment of the present invention is intended to reduce the stress conditions among them, and in particular, does not limit the material of the metal structure product. With a tensile strength of 49 ON / m and this applying also less for necessary portions of the structure product comprising m 2 or more steel is preferred.
  • the tensile strength 4 9 ON / mm 2 or more steel, for residual stress of the welded portion is higher Ri good, further increases the environmental assisted cracking susceptibility.
  • the effect of applying the ultrasonic impact treatment strength of the material becomes the larger Ri good both high tensile strength of 5 9 welds ON / mm 2 or more steel, tensile strength 6 9 0 N / mm 2 or more welds of the steel, the tensile weld strength 7 8 ON / mm 2 or more steel weld tensile strength 9 8 ONZmm 2 or more steel, a strong degree of accordance of increases, the ultrasonic impact treatment The effect and necessity to apply it will increase.
  • the ultrasonic impact treatment is performed using an ultrasonic impact device having a tip hammer having a predetermined radius of curvature at the tip, with an amplitude of 20 to 60 ⁇ m and a cycle number of 19 to 60 k. Hz is applied to the required metal surface for the required time, but this impact plastically deforms the surface layer, transforming the crystal grains into a layered structure substantially parallel to the surface.
  • the surface shape is such that stress concentration is unlikely to occur, and a residual compressive stress can be applied, so that resistance to environmentally-assisted cracking can be increased.
  • the thickness of the plastic deformation of the metal surface layer by the ultrasonic impact treatment needs to be 50 ⁇ or more. If it is less than this, it is difficult to secure a layered structure of the surface layer of 50 ⁇ or more, and it is difficult to obtain a sufficient environment-assisted crack-promoting property. From the viewpoint of eliminating tensile stress and applying compressive stress, it is necessary to plastically deform a thickness of 50 / ⁇ ⁇ or more from the surface to form a layered structure. However, if the thickness of the layer structure or plastic deformation of this surface layer is excessively large, Excessively hardened or excessively deformed, resulting in poor surface properties of the product, but unfavorable due to increased processing costs.
  • the thickness of the stratified structure or plastic deformation caused by the impact energy is also related to the radius of curvature R of the hammer at the tip of the impact device.
  • the thickness of the lamellar structure or plastic deformation generated by the impact increases, and the larger the R, the smaller the thickness.
  • the shape of the hammer at the tip of the ultrasonic impact treatment device is appropriately selected depending on the condition of the metal structure product to be treated.
  • the required thickness of the metal structure product from the surface to be treated is formed into a layered structure, or the shape is such that stress is less likely to concentrate, and the hammer required to apply compressive residual stress is applied.
  • processing conditions such as shape, impact energy of one cycle, number of passes, number of treatments, etc., for example, by a preliminary test etc., for each metal material or, if necessary, for each treatment location such as welded part, cut end face, etc. After the treatment, the required layer structure or compressive residual stress can be given. Wear.
  • the stress state such as the internal stress and / or the surface stress at the location where the metal structure product is subjected to the ultrasonic impact treatment is changed.
  • the treatment is not performed after the ultrasonic impact treatment.
  • At least a portion of the metal structure product to be subjected to the treatment includes, for example, plastic working, straightening, heat treatment, welding, etc. It is preferable that a treatment that changes the situation, the stress state, and the like be performed as a pre-treatment before performing the ultrasonic shock treatment, and that such treatment is not performed after the ultrasonic shock treatment. Is preferred.
  • the above pretreatment preferably includes, in addition to the above-described respective treatments, a process of inspecting the presence of a crack at a location where cracking is a problem, and removing the detected crack.
  • a process of inspecting the presence of a crack at a location where cracking is a problem and removing the detected crack.
  • the detected cracks are subjected to a process to remove them in advance. How to remove is to grind the crack An appropriate method such as grinding and cutting with a cutting tool, etc., or fusion bonding of cracks by welding is adopted.
  • the cracked portion is ground and removed, and after welding, the surface of this portion is ground by a mechanical means such as a grinder or cutting tool. It is preferable to include a process for finishing to a smoother shape and further confirming that no crack is detected by the crack inspection process described above.
  • the above-mentioned pre-processing is performed as necessary, and then the above-described ultrasonic impact processing is performed. Thereafter, the quality assurance inspection is performed as necessary.
  • Plastically deformed to a thickness of 50 ⁇ m or more that is, a surface layer with a thickness of 50 ⁇ or more from the surface has a layered structure, and the surface shape of the treated surface is unlikely to cause stress concentration It is to confirm whether one or both of the two are satisfied.
  • the grain size of the treated surface is measured by an ultrasonic grain size measuring device, and it is determined whether 50% or more of the grain size is smaller than that of the untreated part. This can be done by: If the crystal grain refinement is less than 50%, the formation of a layered structure is insufficient.
  • miniaturization means that if the grain size number is 1 or more larger than the crystal grain size of the part to be treated, it is determined to be fine.
  • a molding material such as a dental shape material, for example, and inspect the surface shape of the replicated mold.
  • a high-precision displacement measuring device such as a displacement meter
  • it can be performed by determining whether or not the treated surface has a curvature or a displacement of the surface on which stress concentration is difficult.
  • a quality assurance inspection to confirm the surface structure or surface shape after ultrasonic impact treatment by the above-mentioned method, it is possible to reduce the environmentally-assisted cracking resistance of metal-structured products where environmentally-assisted cracking is a problem. You can confirm the gender improvement.
  • a steel (sheet thickness of 12 mm) having the composition shown in Table 1 was used as the base metal 1, and a welded part 2 obtained by arc welding using a common metal welding material was used as a test specimen.
  • the metal structure of the surface layer was given as a layered structure composed of crystal grains whose major axis was substantially parallel to the surface.
  • As-welded specimens were used as comparative materials. As shown schematically in Fig. 4, the width is 100 mm, the length is 200 mm, and the thickness of the plate is the original thickness. The test piece was used. Needless to say, there is residual welding stress in the weld of the as-welded specimen.
  • the metal structure product excellent in environmentally-assisted cracking resistance of the present invention is subjected to ultrasonic impact treatment at a location where environmentally-assisted cracking is a problem, and the surface layer has a layered structure. Since the surface has a surface shape where stress concentration is unlikely to occur and a residual compressive stress is applied, micro-cracks are unlikely to occur even when exposed to a corrosive environment. Suppresses progress, greatly increases rupture time, and has excellent resistance to environmentally-assisted cracking. Further, according to the method of the present invention, by combining the quality assurance inspection after the ultrasonic impact treatment, the surface layer of the treated portion has a predetermined layered structure and further has a surface shape. ⁇ It is possible to reliably improve the environmentally friendly cracking resistance of required parts of metal structure products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Articles (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本発明は、材料に応力が負荷され、腐食環境下にある金属構造製品の割れ、すなわち環境助長割れに対する抵抗性に優れた金属構造製品、および環境助長割れ抵抗性の向上方法を提供するものであり、金属構造製品の環境助長割れが問題となる箇所の表面から50μmの厚さの表層を、その長軸が表面に平行な結晶粒からなる層状組織とする。好ましくは、この層状組織の結晶粒の長軸方向長さの短軸方向長さに対する比を5以上とする。これは、金属構造製品の環境助長割れが問題となる箇所の表面を超音波衝撃処理することにより得られる。好ましくは、超音波衝撃処理後に、表面から50μmの厚さの範囲が塑性変形していることを検査する品質保証検査を行う。

Description

明 細 書 耐環境助長割れ性の優れた金属構造製品および、 金属構造製品の環 境助長割れ抵抗性向上方法 技術分野
本発明は、 化学プラントゃ石油精製装置などの各種の装置や配管 、 或いはガスパイプラインなどと して使用される金属構造物或いは 構造製品において、 塩化物、 ァミ ン、 硫化水素、 硝酸塩、 炭酸塩な どの各種の腐食環境下における応力腐食割れ、 及び水素脆化割れ ( 以下、 これらを環境助長割れという) 抵抗性を高めた構造物および 構造製品、 および環境助長割れ抵抗性向上方法に関する。 背景技術
環境助長割れとして、 低濃度塩化物水溶液中あるいは塩化物の濃 縮希釈が繰り返される海岸近傍における構造物、 配管などの応力腐 食割れ、 石油精製工業の水素化脱硫装置の反応塔、 加熱炉の熱交換 器などにおけるオーステナイ ト系ステン'レス鋼溶接熱影響部のポリ チオン酸による粒界応力腐食割れ、 硝酸アンモニゥム製造装置、 油 井管、 熱風炉などにおける炭素鋼、 低合金鋼の硝酸塩水溶液環境下 での応力腐食割れ、 天然ガス輸送パイプライ ン、 高圧ガスタービン などにおける炭素鋼の炭酸塩水溶液環境下の応力腐食割れ、 肥料用 アンモニアの貯蔵、 運搬容器などにおける炭素鋼の溶接熱影響部の 応力腐食割れ、 化学プラントにおける炭素鋼の C O— C O 2 - H 2 O環境下での応力腐食割れなどがあり、 さらに、 N i合金において も、 圧力容器などにおける N i合金の応力腐食割れがあり、 その他 。 11ゃ< 1!合金でも、 湿潤大気、 海水、 淡水環境下で、 また、 A 1 合金では塩化物水溶液環境下で応力腐食割れが発生している。
また、 水素の金属材料への侵入によ り発生する応力による割れ、 すなわち、 水素誘起割れがある。 その発生は水素の侵入反応速度に より大きく左右されるが、 金属材料に負荷ないし残留する応力によ つて亀裂の進展が加速され、 上記の応力腐食割れと同様の挙動とな る。 すなわち、 これらの割れは、 応力の存在下において金属構造製 品の表面或いは表層の微小な割れが腐食環境によって進展助長され て生じるものである。
これらの割れは、 材料、 腐食環境、 応力の存在の 3つの条件が重 畳されて発生するものであり、 これらのうちのいずれかの条件を除 く ことによ り割れの発生を抑制することができる。 材料の面から、 応力腐食割れを起こさない材料への変更、 例えばオーステナイ トス テンレス鋼からフェライ ト系ステンレス鋼への変更、 腐食環境の面 から、 力ソー ド防食などの防食措置の採用、 或いは、 応力の面から 、 負荷応力を除去ないし低減するための熱処理 (応力除去焼鈍) や ピーニング処理など、 各種の対策が従来から行なわれている。
しかしながら、 材料の変更は、 材料強度上の制約や腐食環境との 組み合わせ上の制約などから、 適切な選択ができる場合は限られて いる。 また、 応力除去焼鈍は、 処理対象が大型の.構造製品である場 合は、 熱処理するための大型の熱処理炉が必要となり、 また固定構 造物などでは熱処理自体も不可能である。 また、 材料によっては応 力除去焼鈍熱処理による材質上の変化も制約となる。 さ らに、 外部 から加えられる応力に対してはこの熱処理は効果が無い。 また、 シ ヨ ッ ト ピーニングによる残留応力の低減も有効であるが、 熱処理と 同様に、 大型の金属構造製品については装置上の問題を抱えている このよ うに、 これら従来の対策は適用上の制約があり、 またコス トも嵩むことから、 経済的かつ効率的な対策とはなり難かった。 なお、 上述のピーニング処理によつて溶接製品の溶接部の強度を 向上させ、 応力集中や微小応力欠陥を抑制する応力パターンを形成 するための超音波衝撃エネルギーによる処理方法が提案されている
(例えば米国特許第 6 , 1 7 1 , 4 1 5号公報) 。 また、 この衝撃 処理により表面が平滑になることも知られている (例えば、 Surfac e Nanocrystall izat ion( SNし) oi metallic Materials— Presentatio n of the Concept behind a New Approach , Journal . Sci. Technol . Vol.15 No.3, 1999) 。
しながら、 これらの文献には、 環境助長割れについては言及され ていない。 発明の開示
本発明は、 上記の問題点を解決し、 耐環境助長割れ性に優れた金 属構造製品、 およびその環境助長割れ抵抗性を向上させる方法を提 供することを課題とする。
本発明は、 上記の課題を解決するためになされてものであって、 超音波で先端を振幅 2 0〜60μιη、 周波数 1 9 kHz〜 6 0 kHz, 出 力 0. 2〜 3 で振動させる工具を用いて金属表面を打撃する超音 波衝撃処理を、 金属構造製品の環境助長割れが問題となる箇所に施 すことによって、 その金属表層の組織を改善し、 よって耐環境助長 割れ性に優れた金属構造製品を得るものであり、 また、 さらには、 この処理を行なう際の適切な前処理、 ならびに処理後の検査を行な い、 その効果を保証するものである。 その要旨とするところは、 以下のとおりである。
( 1 ) 金属構造製品の環境助長割れが問題となる箇所の、 表面から 5 0 μιη以上の厚さの表層の金属組織を、 長軸が表面に実質的に平 行な結晶粒からなる層状組織と したことを特徴とする耐環境助長割 れ性の優れた金属構造製品。
( 2 ) 前記金属構造製品の環境助長割れが問題となる箇所の金属が 、 引張強度 4 9 0 N/mm 2 級以上の鋼であることを特徴とする ( 1 ) に記載の耐環境助長割れ性の優れた金属構造製品。
( 3 ) 前記金属構造製品の環境助長割れが問題となる箇所が、 溶接 ボンド部および/または溶接熱影響部を含むことを特徴とする ( 1 ) または ( 2 ) に記載の耐環境助長割れ性の優れた金属構造製品。
( 4 ) 前記層状組織の長軸が表面に実質的に平行な結晶粒の長軸方 向長さの短軸方向長さに対する比が、 5以上であることを特徴とす る ( 1 ) 〜 ( 3 ) のいずれか 1つに記載の耐環境助長割れ性の優れ た金属構造製品。
( 5 ) 前記層状組織の長軸が表面に実質的に平行な結晶粒の短軸方 向長さが、 5 /zm以下であることを特徴とする ( 1 ) 〜 ( 4 ) のレヽ ずれか 1つに記載の耐環境助長割れ性の優れた金属構造製品。
( 6 ) 金属構造製品の環境助長割れが問題となる箇所に、 超音波衝 撃処理を施し、 表面から 5 0 /xm以上の厚さの表層の金属組織を、 長軸が表面に実質的に平行な結晶粒からなる層状組織とすることを 特徴とする金属構造製品の環境助長割れ抵抗性向上方法。
( 7 ) 前記金属構造製品の環 ¾助長割れが問題となる箇所の金属が 、 引張強度 4 9 O N/mm2 級以上の鋼であることを特徴とする ( 6 ) に記載の金属構造製品の環境助長割れ抵抗性向上方法。
( 8 ) 前記金属構造製品の環境助長割れが問題となる箇所が、 溶接 ボンド部および Zまたは溶接熱影響部を含むことを特徴とする ( 6 ) または ( 7 ) に記載の金属構造製品の環境助長割れ抵抗性の向上 方法。
( 9 ) 前記層状組織の長軸が表面にほぼ平行な結晶粒の長軸方向長 さの短軸方向長さに対する比を 5以上とすることを特徴とする ( 6 ) 〜 ( 8 ) のいずれか 1つに記載の金属構造製品の環境助長割れ性 向上方法。
( 1 0 ) 前記層状組織の表面にほぼ平行な結晶粒の短軸方向長さを 5 μ m以下とすることを特徴とする ( 6 ) 〜 ( 9 ) のいずれか 1つ に記載の金属構造製品の環境助長割れ抵抗性向上方法。
( 1 1 ) 前記超音波衝撃処理を施す前に、 前記金属構造製品の環境 助長割れが問題となる箇所及びその近傍箇所に、 前処理を施すこと を特徴とする ( 6 ) 〜 ( 1 0 ) のいずれか 1つに記載の金属構造製 品の環境助長割れ抵抗性向上方法。
( 1 2 ) 前記前処理が、 前記金属構造製品の環境助長割れが問題と なる箇所及びその近傍箇所の内部応力および Zまたは表面応力を変 化させる処理であることを特徴とする ( 1 1 ) に記載の金属構造製 品の環境助長割れ抵抗性向上方法。
( 1 3 ) 前記前処理が、 前記金属構造製品の環境助長割れが問題と なる箇所の亀裂を検出すると共に、 検出された亀裂を除去する処理 を含むことを特徴とする ( 1 1 ) 又は ( 1 2 ) に記載の金属構造製 品の環境助長割れ抵抗性向上方法。
( 1 4 ) 前記超音波衝撃処理が、 さらに、 前記金属構造製品の環境 助長割れが問題となる箇所の表面形状を応力集中の生じ難い形状と し、 かつ表面近傍に圧縮残留応力を付与することを特徴とする ( 6 ) 〜 ( 1 3 ) のいずれか 1つに記載の金属構造製品の環境助長割れ 抵抗性向上方法。
( 1 5 ) 前記金属構造製品の環境助長割れが問題となる箇所に、 超 音波衝撃処理を施し、 その後さらに、 品質保証検査をすることを特 徴とする ( 6 ) 〜 ( 1 4) のいずれか 1つに記載の金属構造製品の 環境助長割れ抵抗性向上方法。 ( 1 6 ) 前記品質保証検査は、 超音波衝撃処理後の処理面が処理前 に比べて、 5 0 μ m以上の厚さが塑性変形していること、 および処 理面が応力集中の生じ難い表面形状となっていることのいずれか一 方又は双方を確認するものであることを特徴とする特徴とする ( 1 5 ) に記載の金属構造製品の環境助長割れ抵抗性向上方法。
( 1 7 ) 前記品質保証検査の塑性変形の確認は、 超音波衝撃処理後 の処理面をス ンプ法によ り観察し、 処理していない部分に比べてそ の 5 0 %以上の結晶粒が微細化しているかどうかを判断することに よるものであることを特徴とする ( 1 6 ) に記載の金属構造製品の 環境助長割れ抵抗性向上方法。
( 1 8 ) 前記品質保証検査の塑性変形の確認は、 超音波衝撃処理後 の処理面の結晶粒度を超音波粒径測定装置によ り測定し、 処理して いない部分に比べてその 5 0 %以上の結晶粒が微細化しているかど うかを判断することによるものであることを特徴とする ( 1 6 ) に 記載の金属構造製品の環境助長割れ抵抗性向上方法。
( 1 9 ) 前記品質保証検査の応力集中が生じ難い表面形状の確認は 、 超音波衝撃処理後の処理面を型取材を用いて型取り し、 型取り し た面が応力集中の生じ難い表面形状であるかどうかを判断すること によるものであることを特徴とする ( 1 6 ) に記載の金属構造製品 の環境助長割れ抵抗性向上方法。
( 2 0 ) 前記品質保証検査の応力集中のし難い表面形状の確認は、 超音波衝撃処理後の処理面を変位計を用いて測定し、 その変位が応 力集中の生じ難い面の変位の範囲内であるかどうかを判断すること によるものであることを特徴とする ( 1 6 ) に記載の金属構造製品 の環境助長割れ抵抗性向上方法。 図面の簡単な説明 図 1 ( a ) は、 応力腐食割れ亀裂の進展状況を示す断面模式図で あり、 粒界が引張応力の方向に垂直な方向にある場合を示す。 図 1 ( b ) は、 応力腐食割れ亀裂の進展状況を示す断面模式図であり粒 界のほとんどが引張応力の方向と平行する方向にある場合を示す。
図 2 ( a ) は、 金属構造製品の超音波衝撃処理前の断面組織を示 す組織写真である。 図 2 ( b ) は、 金属構造製品の超音波衝撃処理 前の断面組織を示す模式図である。
図 3 ( a ) は、 金属構造製品の超音波衝撃処理後の断面組織を示 す組織写真である。 図 3 ( b ) は、 金属構造製品の超音波衝撃処理 後の断面組織を示す模式図である。
図 4は、 応力腐食試験片の採取状況を示す図である。 発明を実施するための最良の形態
本発明が対象とする金属構造製品は、 金属によ り構成される機械 部品や配管、 容器などの構造部品、 或いはこれらを組み合わせた装 置などの構造物を含むものである。 そしてこれらの構造製品は、 一 般に、 金属材料に切削、 曲げなどの加工、 或いはさらに、 溶接加工 を施して製造される。 また、 金属材質と しては、 炭素鋼、 低合金鋼 、 ステンレス鋼などの鋼材に限ることなく、 N i 、 C uなどの金属 及びこれらの合金も含むものである。
ところで、 環境助長割れは、 金属構造製品が引張応力の存在下で 腐食環境にあると、 表面或いは表層で生じた微小の亀裂が進展し、 大きな割れと して金属構造製品の機能を低下させるものであるが、 この亀裂の進展方向は、 図 1 ( a ) に示すように、 引張応力 (残留 応力、 外部応力) に垂直な方向で、 通常粒界に沿っている。 従って 、 図 1 ( b ) に示すように、 引張応力の方向が、 粒界の方向と実質 的に平行であれば、 この応力は亀裂の先端をさらに開口させるよう には作用しないので、 進展を遅らせ、 すなわち亀裂の伝播抵抗を向 上させ、 環境助長割れを抑制することができる。
本発明者らは、 この点に着目 し、 環境助長割れが問題となる箇所 の表層組織を層状組織とすることに想到したものである。 層状組織 とすることによ り、 結晶粒界の殆どが引っ張り応力の方向と実質的 に平行となるため、 上述のとおり、 微小亀裂が生じても、 亀裂の伝 播抵抗性を高めることができ、 環境助長割れを抑制することができ る。
このよ う に、 所要の箇所の表層を層状組織とする手段と して、 超 音波で先端のハンマー部を振幅 2 0〜 6 0 μιη、 周波数 1 9〜 6 0 kHz, 出力 0. 2〜 3 で振動させる装置によ り金属表面を打撃し てピーニングを行なう超音波衝撃処理 (例えば、 米国特許第 6, 1 7 1, 4 1 ΰ号公幸艮、 iuriace Nanocrystall izat lon(SNC) of meta 丄丄 ic Materials— Presentation of the Concept behind a New Ap r oach, Journal. Sci. Technol. Vol.15 No.3, 1999参照) が好適で ある。 この処理方法は、 基本的にはハンマーピーニングと同じであ るが、 一回一回の打撃のエネルギーは小さいかわりに、 1秒間に 1万 回を超える回数の打撃を与えることによって、 金属に塑性変形を与 えるものである。 このとき、 一回一回の打撃力は小さいために、 打 撃装置に生じる反動は殆どなく、 ハンマーピーニング装置に比べて 使用性、 施工性の面で優れている。
また、 1回の打撃エネルギーが小さいため、 先端部のハンマー形 状は、 小型にすることができ、 溶接部や接続部などの微小な部分や 狭隘な部分に対しても打撃処理を施すことができる。 この点におい て、 環境助長割れが問題となる箇所が小さな部分でも処理が適用可 能となる。 この場合でも、 上述のように打撃回数を極めて多くでき ることから、 十分な塑性変形を与えることができる。 また、 この超音波衝撃処理は、 金属表面に対して非常に多くの回 数の打撃を与えているので、 金属表面に対して従来のハンマーピー ニングにはない効果をもあり、 また、 一回一回の打撃エネルギーシ ョ ッ トは、 ショ ッ ト ビーニングよ り も大きいので、 従来のショ ッ ト ピーニングにない効果もある。
すなわち、 先ず、 打撃の回数が多いことで、 処理の均一性が得ら れる。 ハンマーピーニングでも数パスを同一線上で実施すればある 程度の均一性が得られるが、 超音波衝撃処理の打撃周波数は、 1 5 〜 6 0 k Hzであり、 その得られる均一性はハンマーピーユングのそ れとは全く異なるレベルにあり、 処理スピードが 0 . 5 m Z分程度 であれば、 所要の金属表面のほとんどを均一にかつ欠陥を残すこと なく仕上げることができる。
また、 処理後の金属表面を平滑にするとともに、 金属表層の金属 組織が微細にする作用を有しており、 極めて有利である。
発明者らは、 鋼材の表面に 1 . 5 m mの曲率半径を有する先端ハ ンマーを有する超音波衝撃装置によ り、 振幅 5 0 μ πι、 周波数 2' 5 k H z にて処理速度 0 . 5 m Z m i nで 1 パスの超音波衝撃処理を 行ない、 処理前後の表層組織を詳細に調査した。 その結果を処理前 後の鋼材の断面状況として、 図 2 ( a ) 、 図 2 ( b ) 及び図 3 ( a ) 、 図 3 ( b ) に、 それぞれの組織写真及び模式図で示す。 これら の図から判るように、 処理面に垂直な断面は、 超音波衝撃処理によ り塑性変形し、 長軸が表面に実質的に平行に伸展した結晶粒が厚さ 方向に多層に並んだ層状組織となっている。 このよ うな層状組織で は、 結晶粒の長軸が表面に実質的に平行になっており、 腐食環境に 曝される鋼材表面から伸展する鼂裂の主たる進展方向である結晶粒 界と引張応力の作用する方向とが近接するため、 応力腐食割れが軽 減されることが考えられる。 そこで、 発明者らはこれを確認するために、 表 1に示す組成を有 する厚さ 1 2 m m金属板に対して、 表 2に示すように処理条件を変 えて超音波衝撃処理を実施し、 処理前後の表層部の組織を調査する と共に、 図 4に示すビードオンプレートで溶接部を形成する方法で 、 応力腐食試験片を各水準ごとにそれぞれ 3個採取し、 環境助長割 れ試験を実施した。 その組織の性状と試験の結果を表 3に示す。 表 3から判るよ うに、 表面に平行な表層の層状組織の厚さが表面 から 5 0 μ πι未満では、 環境助長割れ感受性が高く、 割れが発生し やすいことがわかる。 一方、 層状組織の厚さが 5 0 μ m以上である と、 割れが発生することがなく、 優れた耐環境助長割れ性を示すこ とがわかる。
これは、 超音波衝撃処理によって表層が、 長軸が表面に実質的に 平行な結晶粒で形成された層状組織となることによって、 結晶粒界 の殆どが応力の方向と実質的に平行な方向に伸びることとなり、 表 面から粒界に沿って進展することが多い亀裂の進展経路が長くなり 、 亀裂が板厚方向の深部に達して破断に到るまでの時間が長くなる ためと考えられる。 なお、 実質的に平行とは、 層状組織の結晶粒の 長軸の方向と表面とが、 ± 1 0° 以下の角度であることを言う。 ま た、 長軸、 短軸は、 金属の厚さ方向断面、 すなわち金属処理表面に 垂直な断面、 における結晶粒の長軸、 短軸をいう。
この層状組織は、 層状組織の結晶粒の長軸方向長さと短軸方向長 さとの比 (長軸方向長さ 短軸方向長さ) が 5以上であることが好 ましい。 これは、 上述と同様に、 結晶粒が表面に平行な長軸方向に 伸展したことによって、 応力の方向に平行な結晶粒界がより長くな り、 亀裂の進展経路が長くなって破断に到るまでの時間が長く なる ためである。
さ らに、 長軸方向長さと短軸方向長さとの比を 5以上とすること によって層状組織が均一に形成され、 かつ多層に形成することがで きるため耐環境助長割れに対して極めて有利である。
また、 この層状組織は、 層状組織の結晶粒の短軸方向長さが 5 μ m以下であることが好ましい。 短軸方向の長さを 5 μ πΐ以上では、 層状組織の形成が不十分であり、 破断までの時間がやや短くなる。 一方、 5 μ πΐ以下であると、 破断までの時間をよ り十分に確保でき る。
さらに、 この超音波衝撃処理は、 塑性変形によ り金属表層を層状 組織とすることができると共に、 表面形状をなめらかな平面形状と し、 かつ表層近傍に圧縮残留応力を付与することができる。
したがって、 好ましく は、 超音波衝撃処理によって環境助長割れ が問題となる箇所の金属表層を層状組織とすると共に、 この箇所の 表面を応力集中の生じ難い表面形状と し、 かつ表面近傍に圧縮残留 応力を付与することが好ましい。 応力集中の生じ難い表面形状とは 、 例えば、 溶接止端部の場合、 応力集中係数が 2以下となるような 形状であって、 このような表面形状とすることによって応力集中が 生じ難くなり、 かつ表面近傍、 例えば表面から 5 0 μ m以内の範囲 、 に圧縮残留応力が付与されることによって、 環境助長割れの起点 となる微小な欠陥が大きな亀裂に伸展することを抑制することがで きるので、 これらの微小亀裂を無害化し、 さ らに、 環境助長割れ抵 抗性を向上させることができる。
以上のように、 金属材料の表面に超音波衝撃処理を施すことによ つて、 その表層部を層状組織と し、 あるいは、 さ らに、 表面を応力 集中の生じ難い形状とすると共に表面近傍に圧縮残留応力を付与す ることによって、 応力によって助長される、 応力腐食割れ、 水素誘 起割れ、 硫化物応力腐食割れなど、 各種の環境助長割れを抑制、 低 減することができ、 耐環境助長割れ性に優れた金属構造製品とする こ とができる。
この超音波衝擊処理は、 前述の金属構造製品の少なく とも環境助 長割れが問題となる箇所に施せばよく、 その問題となる箇所とは、 金属構造製品で腐食環境と接し、 かつ応力が負荷ないし残留する個 所である。 応力が集中ないし残留する具体的な箇所と して、 溶接継 手部 (溶接ポン ド部、 溶接熱影響部) が先ず挙げられる。 金属構造 製品の多くが溶接を伴って製作され、 その溶接継手部には残留応力 が発生する。 また、 溶接継手部の溶接止端部は、 応力が集中しやす レヽ
従って、 金属構造製品の溶接部、 すなわち、 溶接ポン ド部および または溶接熱影響部を含む部分を超音波衝撃処理することが好ま しく、 さ らには、 溶接止端部を含めることも好ましい。
溶接部以外に、 応力が集中ないし負荷される箇所の例としては、 金属構造製品を作成する段階で加えられるこ とのある、 鋸断、 せん 断、 溶断などによる切断箇所がある。 これらの箇所は、 切断に伴な つて端面に大きな引張応力、 せん断応力が負荷される。 そのほか、 金属構造製品には、 曲げや捻りを加えて構成されることがあり、 こ れらが集中する箇所には、 これらの曲げやねじりに伴う引張応力が 負荷されている。 これらの加工過程で生じる応力のほか、 使用状態 で外部から応力が負荷される箇所もあり、 これら'も本処理の対象と なる。 このように引張応力が負荷されている箇所が、 腐食環境下に あると、 上述のとおり、 環境助長割れを発生させることとなる。 上述のように、 環境助長割れの発生は、 環境、 応力及び材料の 3 つの条件が関与する。 本発明の超音波衝撃処理は、 このうちの応力 条件を低減するこ とを主眼とするものであり、 特に、 金属構造製品 の材料を限定するものではないが、 環境助長割れは、 強度、 硬度の 高い材料に発生しやすいと言う観点から、 引張強度が 4 9 O N/ m m2 以上の鋼材からなる構造製品の必要箇所には少なく とも施すこ とが好ましい。 引張強度が 4 9 ON/mm2 以上の鋼材では、 溶接 部の残留応力がよ り高くなるために、 環境助長割れ感受性が一段と 高くなる。 このため、 引張強度が 4 9 ON/mm2 以上の鋼材の溶 接部には、 超音波衝撃処理を施すことがー段と有効であるとともに 、 超音波衝撃処理を施す効果がより大きい。 超音波衝撃処理を施す 効果は材料の強度が高くなると ともによ り大きくなるので、 引張強 度が 5 9 ON/mm 2 以上の鋼材の溶接部、 引張強度が 6 9 0 N/ m m2 以上の鋼材の溶接部、 引張強度が 7 8 ON/mm2 以上の鋼材 の溶接部、 引張強度が 9 8 ONZmm 2 以上の鋼材の溶接部、 と強 度が高くなるのにしたがって、 超音波衝撃処理を施す効果と必要性 が大きくなる。
上述のように超音波衝撃処理は、 先端部に所定の曲率半径を有す る先端ハンマーを有する超音波衝撃装置によ り、 振幅 2 0〜 6 0 μ m、 サイクル数 1 9〜 6 0 k H zにて必要の時間、 所要の金属表面 部分に対して行うが、 この衝撃によ り表層部分を塑性変形させ、 そ の結晶粒を表面に実質的に平行な層状組織とすると ともに、 この塑 性変形によ り、 好ましく は、 応力集中の発生し難い表面形状とし、 かつ残留圧縮応力付与することができ、 環境助長割れ抵抗性を高め ることができる。
このためには、 超音波衝撃処理による金属表層の塑性変形の厚さ は、 5 0 μιη以上であることが必要である。 これ未満では、 表層の 層状組織を 5 0 μιη以上確保することが困難であり、 十分な耐環境 助長割れ特性を得ることが困難となる。 また、 引張応力を解消し圧 縮応力を付与する点からも、 表面から 5 0 /χιη以上の厚さを塑性変 形させ、 層状組織とすることが必要である。 しかしながら、 この表 層の層状組織或いは塑性変形の厚さを過度に大きくすると、 表層が 過度に硬化したり、 変形が大きくなり過ぎたり して製品としての表 面性状が悪くなる一方、 処理のためのコス トが増えるために好まし くない。
所要の厚さの層状組織或いは塑性変形を得るために必要な変形の ためのエネルギーはほぼ一定であるため、 1サイクルの衝撃エネル ギーを大きく して短時間に処理しても良いが、 均一性を高めたい場 合や、 衝撃部位の位置をより精緻に制御し、 過度な塑性変形を防止 したい場合は、 1サイクルの衝撃エネルギーを小さく し、 二回以上 の処理を同一箇所に対して行なう ことが好ましい。
また、 衝撃エネルギーによって生じる層状組織或いは塑性変形の 厚さは、 衝撃装置の先端のハンマーの曲率半径 Rとも関係しており 、 1サイクルの衝撃エネルギーが同じでも、 Rが小さければ、 1サイ クルの衝撃で'生じる層状組織或いは塑性変形の厚さは大きくなり、 Rが大きければその厚さは小さくなる。
また、 表面を応力集中し難い形状とし、 圧縮残留応力を付与する 場合は、 ハンマーの Rが小さければ、 1サイクルで形成される表面 形状の範囲が狭いので繰り返し処理が必要となり、 一方、 Rが大き ければ、 形状の制御が困難となるこ ともある。 従って、 超音波打撃 処理装置の先端のハンマーの形状は、 処理対象とする金属構造製品 の状況によって適宜選択する。
超音波衝撃処理を施すにあたっては、 金属構造製品の処理対象箇 所の表面から所要の厚さを層状組織とし、 或いはさらに応力集中し 難い形状と し圧縮残留応力を付与するために必要なハンマーの形状 、 1 サイクルの打撃エネルギー、 パス数、 処理回数などの処理条件 を、 例えば、 金属材質或いは必要により、 溶接部、 切断端面などの 処理箇所ごとに予備試験などにより、 予め決めて置く ことによって 、 処理後に所要の層状組織或いは圧縮残留応力を付与することがで きる。
ところで、 本発明の環境助長割れ抵抗性の向上方法においては、 金属構造製品の超音波衝撃処理を施す箇所に対して、 この箇所の内 部応力および/または表面応力など応力状態を変化させるような処 理を、 超音波衝撃処理を施した後には行なわないようにすることが 好ましい。
すなわち、 超音波打撃処理を施して、 当該箇所の表層を層状組織 と し、 或いは塑性変形させて表面形状を応力集中の生じ難い形状と し、 かつ残留圧縮応力を付与した後で、 当該箇所及びその近傍箇所 の表層の組織、 塑性変形状況、 応力状態などを変化させるような処 理、 例えば、 塑性加工、 矯正、 熱処理、 溶接などを施すと、 超音波 衝撃処理によ り形成された環境助長割れを抑制するための上記の表 層の性状がこれによつて減殺され、 抑制効果が低下する。
従って、 本発明の超音波衝撃処理方法においては、 金属構造製品 の少なく とも当該処理を施す箇所に対しては、 例えば、 塑性加工、 矯正、 熱処理、 溶接など、 当該箇所の表層の組織、 塑性変形状況、 応力状態などを変化させるような処理は、 超音波衝撃処理を施す前 に、 前処理と して施しておく ことが好ましく、 超音波衝撃処理後は 、 このよ うな処理を行なわないようにすることが好ましい。
また、 上記の前処理においては、 上述の各処理のほか、 環境助長 割れが問題となる箇所に対する亀裂の有無を検査し、 検出された亀 裂を除去する処理を含むことが好ましい。 すなわち、 目視検査、 浸 透探傷検査、 磁粉探傷検査、 渦流探傷検査など金属構造製品の亀裂 を検査する適切な手段によ り、 環境助長割れが問題となる箇所、 す なわち、 超音波衝撃処理を施そう とする箇所に対して亀裂の有無を 検査し、 そして、 検出された亀裂に対して、 事前にこれを除去する 処理を施すものである。 除去する方法は、 亀裂部分をグラインダー 、 切削工具等によ り研削 ·切削して除去する方法、 或いは溶接によ り亀裂部を溶融接着する方法など適宜な方法を採用しう る。
また、 特に、 除去した亀裂の深さ力 以上である場合は、 亀裂 部分を研削除去し、 肉盛溶接を行った後、 この箇所の表面をグライ ンダ一、 切削工具等の機械的手段によ り平滑な形状に仕上げ、 さら に上述の亀裂の検査処理によつて亀裂が検出されないことを確認す る処理を含むことが好ましい。
本発明においては、 必要に応じて上述の前処理を施した後、 上記 の超音波衝撃処理を施し、 その後、 必要に応じて、 品質保証検査を 行なう。
超音波衝撃処理後の品質保証検査は、'処理面が処理前と比較して
5 0 μ m以上の厚さまで塑性変形していること、 すなわち、 表面か ら 5 0 μ πι以上の厚さの表層が層状組織となっていること、 および 処理面が応力集中の生じ難い表面形状となっているかどうかのいず れか一方又は双方を確認するものである。
処理面が処理前と比較して 5 0 z/ m以上の厚さまで塑性変形して いることを確認するには、 スンプ法により処理面の複製を制作し、 その結晶組織を観察するか、 あるいは処理面の結晶粒度を超音波粒 径測定装置によるかのいずれかによ り結晶粒度を測定し、 処理して いない部分に比べて 5 0 %以上の結晶粒が微細化しているかどうか を判断することによつて行なう ことができる。 結晶粒の微細化が 5 0 %未満では、 層状組織の形成が不十分である。 なおここでいぅ微 細化とは、 処理を施してい部分の結晶粒度よ り粒度番号で 1以上大 きければ微細化されていると判断する。
また、 処理面が応力集中し難い表面形状となっているかどうかを 確認するには、 例えば歯科用形象材のような型取り材を用いて型取 り し、 型取り した複製の表面形状を検査するか、 或いは、 レーザー 変位計などの高精度な変位測定装置を用いて表面の変位を測定する ことによって、 処理面が応力集中のし難い表面の曲率ないしは変位 を有するかどうかを判断することによって行なうことができる。 以上のような方法によ り、 超音波衝撃処理後の表層組織或いは、 表面形状を確認する品質保証検査を行なう ことによって、 金属構造 製品の耐環境助長割れが問題となる箇所の環境助長割れ抵抗性の向 上を確認することができる。
なお、 この品質保証検査によ り、 所要の表面形状或いは表層組織 が得られていない場合は、 超音波衝撃処理を繰り返し、 所要の表面 性状、 表層組織となるようにすることはいうまでもない。 実施例
以下、 実施例により、 本発明を説明する。
表 1に示す組成の鋼 (板厚 1 2 m m ) を母材 1 と し、 共金系の溶 接材料を用いてアーク溶接した溶接部 2を試験体とし、 この箇所に 超音波衝撃処理を付与して表層の金属組織を、 長軸が表面に実質的 に平行な結晶粒からなる層状組織と した。 比較材と して溶接ままの 試験体を用いた。 図 4に概略を示す要領で、 幅 1 0 0 m m、 長さ 2 0 0 m m , 板厚は元厚まま、 の試験片の中央に、 ビー ドオンプレー トで溶接部を形成し、 そのまま環境助長割れ試験片と した。 言うま でもなく、 溶接ままの試験片の溶接部には溶接残留応力が存在して いる。
これらの試験片を、 9 0 °Cの I N N a 2 C O 3 + 1 N N a H
C O 3 水溶液中に浸漬し、 ポテンシォスタツ トを用いて一定の電位
(標準水素電極基準に換算して一 0 . 4 2 V ) に保持し、 9 0 日試 験した。 試験後の試験片は、 浸透試験および断面観察によって環境 助長割れの発生の有無を確認した。 表 2に超音波衝撃処理条件を示し、 表 3には結晶粒および環境助 長割れ試験結果を示す。
表 3から明らかな通り、 表層の金属組織を、 長軸が表面に実質的 に平行な結晶粒からなる層状組織と した本発明例 1〜 8では環境助 長割れ (応力腐食割れ) がまったく発生していないのに対して、 溶 接ままあるいは処理が不充分な比較例 9〜 1 2では環境助長割れ ( 応力腐食割れ) が発生しており、 本発明の効果が明らかである。 表 1 供試金属 (鋼材) の組成 ( m a s s % )
Figure imgf000020_0001
表 2 超音波打撃処理条件
Figure imgf000020_0002
一 : 超音波衝撃処理を施していないことを示す, 表 3 処理試験片の耝織状況と環境助長割れ試験結果
Figure imgf000021_0001
- : 超音波衝擊処理を施していないことを示す。 産業上の利用可能性
発明の効果
本発明の耐環境助長割れ性に優れた金属構造製品は、 環境助長割 れの問題となる箇所に超音波衝撃処理が施され、 表層が層状組織と なっており、 さ らに好適には、 表面が応力集中が生じ難い表面形状 で、 かつ残留圧縮応力が付与されているため、 腐食環境に曝されて も微小亀裂が生じ難く また、 微小亀裂が存在しても亀裂の厚さ方向 への進展が抑制され、 破断時間が大幅に伸び、 環境助長割れに対し て優れた抵抗性を有する。 また、 本発明の方法によれば、 超音波衝 撃処理後の品質保証検査を組み合わせることによって、 処理を施し た箇所の表層が所定の層状組織となり、 さ らには表面形状となって ί いることを確認できるため、 金属構造製品の所要箇所の環境助長割 れ抵抗性を確実に向上させることができる。

Claims

請 求 の 範 囲
1 . 金属構造製品の環境助長割れが問題となる箇所の、 表面から 5 0 μ πι以上の厚さの表層の金属組織を、 長軸が表面に実質的に平 行な結晶粒からなる層状組織と したことを特徴とする耐環境助長割 れ性の優れた金属構造製品。 .
2 . 前記金属構造製品の環境助長割れが問題となる箇所の金属が 、 引張強度 4 9 O N/ m m 2 級以上の鋼であることを特徴とする請 求項 1 に記載の耐環境助長割れ性の優れた金属構造製品。
3 . 前記金属構造製品の環境助長割れが問題となる箇所が、 溶接 ボンド部およびノまたは溶接熱影響部を含むことを特徴とする請求 項 1または 2に記載の耐環境助長割れ性の優れた金属構造製品。
4 . 前記層状組織の長軸が表面に実質的に平行な結晶粒の長軸方 向長さの短軸方向長さに対する比が 5以上であることを特徴とする 請求項 1〜 3のいずれか 1項に記載の耐環境助長割れ性の優れた金 属構造製品。 '
5 . 前記層状組織の長軸が表面に実質的に平行な結晶粒の短軸方 向長さが 5 /z m以下であることを特徴とする請求項 1〜 4のいずれ か 1項に記載の耐環境助長割れ性の優れた金属構造製品。
6 . 金属構造製品の環境助長割れが問題となる箇所に、 超音波衝 撃処理を施し、 表面から 5 0 μ ιη以上の厚さの表層の金属組織を長 軸が表面に実質的に平行な結晶粒からなる層状組織とすることを特 徴とする金属構造製品の環境助長割れ抵抗性向上方法。
7 . 前記金属構造製品の環境助長割れが問題となる箇所の金属が 、 引張強度 4 9 O N/ m m 2 級以上の鋼であることを特徴とする請 求項 6に記載の金属構造製品の環境助長割れ抵抗性向上方法。
8 . 前記金属構造製品の環境助長割れが問題となる箇所が、 溶接 ボンド部および/または溶接熱影響部を含むことを特徴とする請求 項 6または 7に記載の金属構造製品の環境助長割れ抵抗性向上方法
9 . 前記層状組織の長軸が表面に実質的に平行な結晶粒の長軸方 向長さの短軸方向長さに対する比が 5以上とすることを特徴とする 請求項 6〜 8のいずれか 1項に記載の金属構造製品の環境助長割れ 抵抗性向上方法。
1 0 . 前記層状組織の長軸が表面に実質的に平行な結晶粒の短軸 方向長さを 5 μ ιη以下とすることを特徴とする請求項 6〜 9のいず れか 1項に記載の金属構造製品の環境助長割れ抵抗性向上方法。
1 1 . 前記超音波衝撃処理を施す前に、 前記金属構造製品の環境 助長割れが問題となる箇所及びその近傍箇所に、 前処理を施すこと を特徴とする請求項 6〜 1 0のいずれか 1項に記載の金属構造製品 の環境助長割れ抵抗性向上方法。
1 2 . 前記前処理が、 前記金属構造製品の環境助長割れが問題と なる箇所及びその近傍箇所の内部応力および Ζまたは表面応力を変 化させる処理であることを特徴とする請求項 1 1 に記載の金属構造 製品の環境助長割れ抵抗性向上方法。
1 3 . 前記前処理が、 前記金属構造製品の環境助長割れが問題と なる箇所の亀裂を検出すると共に、 検出された亀裂を除去する処理 を含むことを特徴とする請求項 1 1又は 1 2に記載の金属構造製品 の環境助長割れ抵抗性向上方法。
1 4 . 前記超音波衝撃処理が、 さ らに、 前記金属構造製品の環境 助長割れが問題となる箇所の表面形状を応力集中の生じ難い形状と し、 かつ表面近傍に圧縮残留応力を付与することを特徴とする請求 項 6〜 1 3のいずれか 1項に記載の金属構造製品の環境助長割れ抵 抗性向上方法。
1 5 . 前記金属構造製品の環境助長割れが問題となる箇所に、 超 音波衝撃処理を施し、 その後さらに、 品質保証検査をすることを特 徴とする請求項 6〜 1 4のいずれか 1項に記載の金属構造製品の環 境助長割れ抵抗性向上方法。
1 6 . 前記品質保証検査は、 超音波衝撃処理後の処理面が処理前 に比べて、 5 0 m以上の厚さが塑性変形していること、 および処 理面が応力集中の生じ難い表面形状となっていることのいずれか一 方又は双方を確認するものであることを特徴とする特徴とする請求 項 1 5に記載の金属構造製品の環境助長割れ抵抗性向上方法。
1 7 . 前記品質保証検査の塑性変形の確認は、 超音波衝擊処理後 の処理面をスンプ法によ り観察し、 処理していない部分に比べてそ の 5 0 %以上の金属結晶粒が微細化しているかどうかを判断するこ とによるものであることを特徴とする請求項 1 6に記載の金属構造 製品の環境助長割れ抵抗性向上方法。
1 8 . 前記品質保証検査の塑性変形の確認は、 超音波衝擊処理後 の処理面の結晶粒度を超音波粒径測定装置によ り測定し、 処理して いない部分に比べてその 5 0 %以上の結晶粒が微細化しているかど うかを判断することによるものであることを特徴とする請求項 1 6 に記載の金属構造製品の環境助長割れ抵抗性向上方法。
1 9 . 前記品質保証検査の応力集中の生じ難い表面形状の確認は 、 超音波衝撃処理後の処理面を型取材を用いて型取り し、 型取り し た面が応力を集中し難い表面形状であるかどうかを判断することに よるものであることを特徴とする請求項 1 6に記載の金属構造製品 の環境助長割れ抵抗性向上方法。
2 0 . 前記品質保証検査の応力集中の生じ難い表面形状の確認は 、 超音波衝撃処理後の処理面を変位計を用いて測定し、 その変位が 応力集中の生じ難い面の変位の範囲内であるかどうかを判断するこ とによるものであることを特徴とする請求項 1 6に記載の金属構造 製品の環境助長割れ抵抗性向上方法。
PCT/JP2003/014031 2002-10-31 2003-10-31 耐環境助長割れ性の優れた金属構造製品および、金属構造製品の環境助長割れ抵抗性向上方法 WO2004040022A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003280700A AU2003280700A1 (en) 2002-10-31 2003-10-31 Metal structure product with excellent environmental cracking resistance and method of enhancing environmental cracking resistance of metal structure product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002318155A JP4441166B2 (ja) 2002-10-31 2002-10-31 鋼構造製品の環境助長割れ抵抗性向上方法
JP2002-318155 2002-10-31

Publications (1)

Publication Number Publication Date
WO2004040022A1 true WO2004040022A1 (ja) 2004-05-13

Family

ID=32211750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014031 WO2004040022A1 (ja) 2002-10-31 2003-10-31 耐環境助長割れ性の優れた金属構造製品および、金属構造製品の環境助長割れ抵抗性向上方法

Country Status (5)

Country Link
JP (1) JP4441166B2 (ja)
KR (1) KR100664003B1 (ja)
CN (1) CN100439519C (ja)
AU (1) AU2003280700A1 (ja)
WO (1) WO2004040022A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850505B2 (ja) * 2005-12-19 2012-01-11 古河機械金属株式会社 超塑性マグネシウム合金材の製造方法
JP4837428B2 (ja) * 2006-04-17 2011-12-14 新日本製鐵株式会社 溶接止端部の超音波衝撃処理方法
JP4987772B2 (ja) * 2007-03-30 2012-07-25 新日本製鐵株式会社 ロングレール
JP4987773B2 (ja) * 2007-03-30 2012-07-25 新日本製鐵株式会社 ロングレール
JP2009291918A (ja) * 2008-06-09 2009-12-17 Jfe Steel Corp 繰り返し荷重履歴を受けた金属材料の疲労寿命を延命化させる方法
KR101277838B1 (ko) * 2009-12-28 2013-06-21 주식회사 포스코 선재의 표면크랙깊이 측정방법
US20140290808A1 (en) * 2011-07-11 2014-10-02 Uit, Llc Remediation of Sensitization in Metals
JP5944989B2 (ja) * 2012-05-31 2016-07-05 Udトラックス株式会社 排気管の耐久性向上方法
JP6699221B2 (ja) * 2016-02-23 2020-05-27 日本製鉄株式会社 試験片の製造方法、試験片および応力腐食割れ試験方法
US10330645B2 (en) * 2016-09-13 2019-06-25 Livermore Software Tecchnology Corp. Systems and methods for determining crack propagation length inside a structure using a technique based on acoustic signature
CN108707741B (zh) * 2018-06-06 2019-08-09 江苏省特种设备安全监督检验研究院 一种奥氏体不锈钢焊接接头的表面复合处理工艺
CN109097708B (zh) * 2018-09-06 2021-02-09 中国石油大学(华东) 一种提高单相高熵合金表面性能的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479320A (en) * 1987-09-19 1989-03-24 Nippon Steel Corp Improvement of material quality of metal for welding austenitic stainless steel
JPH081514A (ja) * 1994-06-16 1996-01-09 Toshiba Corp 原子炉内構造物の表面処理方法
JPH09234585A (ja) * 1996-02-29 1997-09-09 Mitsubishi Heavy Ind Ltd 溶接残留応力の低減装置付き溶接装置
US6171415B1 (en) * 1998-09-03 2001-01-09 Uit, Llc Ultrasonic impact methods for treatment of welded structures
JP2003113418A (ja) * 2001-10-04 2003-04-18 Nippon Steel Corp 疲労寿命向上処理法およびそれによる長寿命金属材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322843A (en) * 1976-08-13 1978-03-02 Nippon Steel Corp Method of improving solidification structure of weld zone by use of ultrasonic oscillatory radiation
US6338765B1 (en) * 1998-09-03 2002-01-15 Uit, L.L.C. Ultrasonic impact methods for treatment of welded structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479320A (en) * 1987-09-19 1989-03-24 Nippon Steel Corp Improvement of material quality of metal for welding austenitic stainless steel
JPH081514A (ja) * 1994-06-16 1996-01-09 Toshiba Corp 原子炉内構造物の表面処理方法
JPH09234585A (ja) * 1996-02-29 1997-09-09 Mitsubishi Heavy Ind Ltd 溶接残留応力の低減装置付き溶接装置
US6171415B1 (en) * 1998-09-03 2001-01-09 Uit, Llc Ultrasonic impact methods for treatment of welded structures
JP2003113418A (ja) * 2001-10-04 2003-04-18 Nippon Steel Corp 疲労寿命向上処理法およびそれによる長寿命金属材

Also Published As

Publication number Publication date
KR20050065664A (ko) 2005-06-29
CN100439519C (zh) 2008-12-03
CN1708592A (zh) 2005-12-14
JP4441166B2 (ja) 2010-03-31
KR100664003B1 (ko) 2007-01-03
JP2004149880A (ja) 2004-05-27
AU2003280700A1 (en) 2004-05-25

Similar Documents

Publication Publication Date Title
Gupta et al. Laser shock peening and its applications: a review
Świerczyńska et al. Hydrogen embrittlement of X2CrNiMoCuN25-6-3 super duplex stainless steel welded joints under cathodic protection
WO2004040022A1 (ja) 耐環境助長割れ性の優れた金属構造製品および、金属構造製品の環境助長割れ抵抗性向上方法
JP2003113418A (ja) 疲労寿命向上処理法およびそれによる長寿命金属材
Ye et al. Effects of ultrasonic nanocrystal surface modification on the residual stress, microstructure, and corrosion resistance of 304 stainless steel welds
Olugbade et al. A review on the corrosion fatigue strength of surface-modified stainless steels
Fydrych et al. Cold cracking of underwater wet welded S355G10+ N high strength steel
Scharf et al. Hydrogen embrittlement of DP‐1000 flat steel sheet: Influence of mechanical properties, specimen geometry, pre‐damaging and electrolytically zinc galvanizing
JP5052918B2 (ja) 耐き裂発生伝播特性に優れた溶接継手、溶接構造体及び耐き裂発生伝播特性の向上方法
Kim et al. Evaluation of fatigue limit and harmless crack size of needle peened offshore structure steel F690
Alhussein et al. Static, dynamic and fatigue characteristics of the pipeline API 5L X52 steel after sandblasting
JP4351433B2 (ja) 液体金属脆化抵抗性の優れた鉄構製品およびそれらの製造方法
JP5919986B2 (ja) ハンマーピーニング処理方法およびそれを用いた溶接継手の製造方法
Zhang et al. Failure analysis of a welded impeller in coke oven gas environment
JP4767885B2 (ja) 脆性き裂伝播停止特性に優れた溶接継手、溶接構造体及び脆性き裂伝播停止特性の向上方法
Angeles-Herrera et al. Fracture-toughness and fatigue crack growth evaluation in the transversal direction of the longitudinal weld of an API X52 steel pipeline
Luk-Cyr et al. Mechanical properties of 75% Ar/25% CO2 flux-cored arc welded E309L austenitic stainless steel
Mitelea et al. Susceptibility to Stress Corrosion Cracking in Hydrogen Sulfide Environment of MAG Welded Joints of API 5L x 65M Thermomechanical Treated Steel
JP6747416B2 (ja) 打撃痕形成用工具および溶接継手の作製方法
Govindaraj et al. Influence of high-frequency mechanical peening on the fatigue life of stainless steel joints in corrosive environment
Kazasidis et al. Comparative study of toughness between the AH 40 fatigue crack arrester steel and its weld metal in the case of robotic metal-cored arc welding
Farrahi et al. Fatigue Life of Shot Peened Welded Tubular Joint
Abdulhadi et al. Influence of shot peening on stress corrosion cracking in 1100–H12 aluminum alloy
PALAU et al. Effect of grit blasting on fatigue life of aged 18Ni (300) maraging steel
Sano et al. Improvement in fatigue strength of friction stir welded aluminum alloy plates by laser peening

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A21931

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057007739

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057007739

Country of ref document: KR

122 Ep: pct application non-entry in european phase