WO2004039501A1 - 微粒子の分別回収方法および回収装置 - Google Patents

微粒子の分別回収方法および回収装置 Download PDF

Info

Publication number
WO2004039501A1
WO2004039501A1 PCT/JP2003/014037 JP0314037W WO2004039501A1 WO 2004039501 A1 WO2004039501 A1 WO 2004039501A1 JP 0314037 W JP0314037 W JP 0314037W WO 2004039501 A1 WO2004039501 A1 WO 2004039501A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
fine particles
flow path
light pressure
laser
Prior art date
Application number
PCT/JP2003/014037
Other languages
English (en)
French (fr)
Inventor
Ken Hirano
Yoshinobu Baba
Original Assignee
Techno Network Shikoku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Network Shikoku Co., Ltd. filed Critical Techno Network Shikoku Co., Ltd.
Priority to DE60335411T priority Critical patent/DE60335411D1/de
Priority to AU2003280704A priority patent/AU2003280704A1/en
Priority to US10/533,109 priority patent/US7428971B2/en
Priority to EP03770113A priority patent/EP1563908B1/en
Publication of WO2004039501A1 publication Critical patent/WO2004039501A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties

Definitions

  • the present invention relates to a method and an apparatus for separating and collecting fine particles such as cells, as well as flow cytometry and Celso overnight using the same.
  • cell sorting technology based on flow cytometry is known as a method for selecting specific individual cells from a population of microparticles such as cells (for example, see Cell Engineering, separate volume, Flow Cytometry Freedom). Freedom ", supervision: Hiromitsu Nakauchi (Immunology, University of Tsukuba), Shujunsha, published July 1, 1999, pp. 3-23).
  • a suspension of target cells to which antibodies previously labeled with a fluorescent dye or the like are bound is used as a liquid stream, and the cells are first irradiated with excitation light in the flow channel in accordance with the labeled fluorescent dye. Then, a desired cell is identified by analyzing the wavelength and intensity of the fluorescence or scattered light emitted from each cell. Next, a voltage is applied to cells having specific properties identified based on the analysis results such as the light intensity and wavelength to charge the cells, and the above-mentioned charged cells are distinguished, quantitated, and statistically determined using a deflection electrode. Perform analysis, etc.
  • This method is capable of treating cells in a large amount and at a high speed in a living state. Therefore, in the fields of immunology, hematology, genetic engineering, etc., various kinds of cultured cells can be collected and isolated, and specific cells can be isolated. It is widely used for cloning * propagation, sorting of cells that express a specific antigen on the cell surface, dynamic analysis of cell membrane molecules, and analysis of cell chromosomes. In particular, it is becoming an indispensable tool for analyzing cell dynamics. In addition, this technology has begun to be used in the clinical field, for example, for the analysis of particles in urine.
  • the cell analysis and cell separation device used in the cell sorting technique by the flow cytometry is called a cell sorter (Fluororescence-Activated Cell Sorter, FACS).
  • FACS Fluororescence-Activated Cell Sorter
  • This apparatus further includes a sorting unit downstream of the analysis unit for analyzing the fluorescence and the like.
  • a water drop charging system is typically known.
  • the sorting of cells (particles) by the water droplet charging method is based on the following principle, for example. That is, the cells where the scattered light and the fluorescence are detected by the irradiation of the laser light, Immediately before the water stream containing the water splits into water droplets, it is charged with a positive or negative charge. When the water droplet containing the charged cells is passed between two polarizing electrode plates having a potential difference during the drop, the water droplet is attracted to the polarizing plate and deflected. Since the water droplets containing uncharged cells and the water droplets containing cells other than the desired cells fall vertically, water droplets containing only the desired cells can be separated and collected.
  • the cell sorter is particularly expensive, and its operation and maintenance are too complicated.
  • a technology microchip-based technology
  • microparticles such as cells
  • flow cytometry to separate the desired microparticles.
  • a T-shaped flow path is formed, and the direction of the solution that feeds the cells is switched between cells to be sorted and other cells (flow path selection control). ).
  • the liquid flow can be switched only once, and therefore only one kind of fine particles can be separated. It is thought that if the liquid flow is switched multiple times, multiple particles can be separated, but in practice, the liquid flow is switched. Because the response time is too slow, multiple pumps are required for multiple switching operations, and the connection between them and the tip and the switching of valves are complicated, making practical use difficult. it is conceivable that. Disclosure of the invention
  • An object of the present invention is to solve the drawbacks of conventional cell sorting technologies, such as the necessity of a device for generating water droplets and the inability to separate and collect a large number of target particles at once.
  • An object of the present invention is to provide a sorted sorting technique and a technique for separating and collecting fine particles therefor.
  • the inventor of the present invention has replaced the conventionally known q-cytometry method, in particular, a sorting technique based on a water droplet charging method, and a sorting technique based on switching of a liquid flow (flow path selection control).
  • a sorting technique based on a water droplet charging method and a sorting technique based on switching of a liquid flow (flow path selection control).
  • the present invention provides the inventions described in the following items 1 to 13.
  • Item 1 By irradiating a laser beam to a gas or liquid flow path containing fine particles that respond to light pressure and components that do not respond to light pressure so as to cross the flow direction of the gas or liquid, The method is characterized by selectively deflecting only the direction of movement of particles responding to light pressure in the direction of laser beam convergence, and separating and collecting the particles from components not responding to light pressure. A method for separating and collecting fine particles in response to pressure.
  • Item 2 The method according to Item 1, wherein the fine particles are selected from the group consisting of organic or inorganic polymer materials, metals, cells, microorganisms, and biopolymers that respond to light pressure.
  • Item 3 Crossing the flow direction of the gas or liquid with the target fine particles responsive to light pressure in the flow path of gas or liquid containing fine particles that respond to light pressure and components that do not respond to light pressure.
  • the target microparticle in the flow path is selectively deflected to the convergence direction of the laser beam, and the microparticle is reduced to the light pressure of other microparticles.
  • a method for separating and collecting target microparticles wherein the method separates and collects components that do not respond.
  • Item 4. The method for separating and recovering target fine particles according to Item 3, wherein the flow path is formed by a liquid flow.
  • Item 5. The method for separating and collecting target fine particles according to Item 3, wherein the target fine particles are selected from the group consisting of organic or inorganic polymer materials, metals, cells, microorganisms, and biopolymers that respond to light pressure.
  • Item 6 The method for separating and collecting target particles according to Item 3, wherein the target particles are cells or microorganisms.
  • Item 7 Flow cytometry, wherein the method for separating and collecting target microparticles according to Item 6 is used as a method for sorting target cells.
  • a fine particle recovery device provided with a flow path for flowing a gas or liquid containing a component that does not respond to
  • the recovery section includes at least one chamber arranged with the opening facing the flow path,
  • the laser beam irradiation section has at least one irradiation port
  • a laser beam is emitted from the laser beam irradiation port, crossing the flow path, toward the opening of the champer of the collection unit, and converging behind the opening.
  • Item 9 The particle collection device according to item 8, wherein the opening of the champer of the collection unit and the irradiation port of the laser one-beam irradiation unit are provided to face each other with a flow path therebetween.
  • Item 10 The fine particle collection device according to Item 8, comprising a laser beam irradiation unit having at least 0.2 irradiation ports, and a collection unit having a number of champers corresponding to the number of irradiation ports.
  • Item 11 The particle collection device according to item 8, further comprising a detection and analysis unit for detecting and analyzing particles in a gas or liquid flowing through the flow path.
  • Item 12 The detection and analysis unit works in conjunction with the laser-beam irradiation unit to select target microparticles based on data obtained by the detection and analysis unit, and only for the selected target microparticles.
  • Item 12. The fine particle collection device according to Item 11, wherein the irradiation is performed with a laser beam.
  • Item 13 A cell saw provided with the fine particle recovery device according to Item 8 as a sorting unit. Evening ''
  • the method for separating and recovering fine particles of the present invention described in the above item 12 and the fine particle recovery device of the present invention described in the above item 8 utilize the light pressure of a laser beam. As an object to be recovered, this can be separated and recovered from components that do not respond to light pressure (gases and liquids used as a channel medium are also included in the components).
  • the method for separating and recovering target fine particles of the present invention described in the above section 3-6, the cell sorter of the present invention described in section 13 can be used, for example, in a conventionally known flow cytometer and cell sorter.
  • the target microparticles that respond to the light pressure By selecting only the target microparticles that respond to the light pressure by the detection and analysis technology used, and irradiating a single laser beam in the same manner as in paragraphs 1-2 and 8 above, only the target microparticles are converted to other components (This includes microparticles that respond to light pressure and components that do not respond to light pressure.)
  • the method and apparatus of the present invention particularly the methods and apparatuses described in the paragraphs 3-6 and 13 according to the difference in size and structure (physical properties) or the difference in the labeling substance.
  • any number of cells can be separated and collected from a diverse population of cells with various properties and functions in a living state without destruction or other damage.
  • the method and apparatus of the present invention are useful as supporting technologies such as cloning of specific cells and cloning of growth / differentiation factor receptor genes. It can also be used effectively for analysis of various cell functions and analysis of cell dynamics such as cell membrane molecules and chromosomal DNA molecules. Further, the present invention can be effectively used not only in the field of cell engineering but also in the clinical field, for example, for the analysis of particles in urine.
  • the device of the present invention can be in the form of a microchip, and the method of the present invention can be easily and simply implemented using such a microchip. That is, there is an advantage that an expensive and complicated operation is not required as compared with the conventional FACS or the like. Moreover, if the device of the present invention is used, multiple types of fine particles, which were difficult with the technology for controlling fluid using a microchip, which has been conventionally proposed, can be very quickly (high response speed) in one operation. , It can be accurately and efficiently distinguished. In particular, the use of the device of the present invention makes it possible to use a very small amount There is also an advantage that the fine particles can be easily discriminated by using the sample. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic view showing one embodiment (embodiment) of the fine particle collection device of the present invention.
  • A is a front view of a part of the particle collection device (collection unit and flow path), and
  • B) is an enlarged view of the part enclosed by a dotted line in (a).
  • B) also shows a state where the laser beam (3b) is irradiated from the laser beam irradiation port (3a).
  • 2 indicates a flow channel
  • 5 indicates a flow channel inlet
  • 6 indicates a flow channel outlet.
  • FIG. 7 shows a color image diagram corresponding to FIG. 1 (a) above, in which the particle collection device is photographed from the front.
  • FIG. 2 is a schematic diagram illustrating the laser beam irradiation unit (3) in the fine particle recovery apparatus shown in FIG. 1 in more detail.
  • 2 is the flow path
  • 5 is the flow path inlet
  • 6 is the flow path outlet
  • a is the sample (liquid or gas) inlet
  • b is the sample outlet
  • 3a is the laser beam irradiation port.
  • 7 is a Nd: VAN laser, 8 is a beam expander, 9 is a reflection mirror, 1, 10 is a dichroic mirror, 2, 11 is a dichroic mirror, 1, 2 is an objective lens, and 1 is a mercury lamp.
  • 14 is an ND filter (neutral-density filter), 15 is a barrier filter for excitation, 16 is a barrier filter for fluorescence, 17 is a reflection mirror 2, 18 is a laser beam cut filter, 19 is a CCD camera 1, and 20 is an objective Lenses 2 and 21 indicate the CCD camera 2, respectively.
  • FIG. 3 is a schematic diagram showing one embodiment of the fine particle recovery apparatus (multiplex sorting apparatus) of the present invention suitable for multiplex recovery and multiplex detection.
  • 101 is a reservoir containing a liquid or gas sample containing target microparticles
  • 104-1, 104-2, 104-3 and 104-n are champers (104 1a, 104-2a, 104-3a and 104-na) are shown.
  • Reference numeral 105 denotes a laser beam controller including a laser one-beam irradiation unit
  • reference numerals 105-1, 105-2, 105-3, and 105-n denote a plurality of irradiation ports provided in the laser one-beam irradiation unit.
  • Reference numeral 2 denotes a flow path
  • reference numeral 106 denotes a drainage reservoir for recovering the flow path.
  • 3b is a laser beam
  • 102 is a laser for detection
  • 103 is a detector.
  • FIG. 4 is a blank image diagram showing the results of the test performed in Example 1.
  • FIG. 4 is an image diagram of a state in which the fluorescent latex beads A are collected by a collection chamber by being irradiated with a laser single beam over time.
  • FIG. 5 is a graph showing a change in fluorescence intensity in the champer in the test performed in Example 1, showing that fine particles are collected and accumulated with time in the collection chamber.
  • the time (laser-beam irradiation time) (seconds), and the vertical axis indicates the relative value (au: arbitary unit) of the fluorescence intensity in the region inside the chamber.
  • FIG. 6 is an image diagram of the recovery chamber (1a) and the negative control chamber (1b) taken 90 seconds after the irradiation of one laser beam in the test performed in Example 1.
  • Fig. 7 is a color image diagram of a part of the particle collection device (the flow path and the collection unit) taken from the front, and corresponds to Fig. 1 (a).
  • red ink is passed through the channel (2).
  • the red spots on the right and left sides are the channel inlet (5) and the channel outlet (6), respectively, and the red line connecting them is the channel (2).
  • the microparticle recovery device (chip) is a PDMS substrate (60mm x 24mm, 5mm thickness) with a thickness of 5mm, and has a channel inlet (5) and a channel outlet (6).
  • a gas or liquid flow path containing fine particles responsive to optical pressure is first irradiated with a laser beam crossing the flow direction of the gas or liquid to recover the gas flowing in the flow path. This can be achieved by deflecting the direction of movement of the fine particles in the direction of convergence of the laser beam.
  • the principle is as follows. That is, light pressure is applied to the irradiation area of the irradiated laser beam.
  • the light field becomes uneven in the irradiation area, and the fine particles are affected by the difference in the refractive index, the dielectric constant, etc. with the surrounding material. Therefore, there is a difference in light power (radiation pressure of light, dielectrophoretic force, etc.) acting on it. Due to this difference in force, the fine particles responding to the light pressure move along the axial direction of the beam against the hydrodynamic flow direction toward the dense position of the light field. This force is called optical pressure.
  • the light pressure increases as the difference between the refractive index (or dielectric constant) of the fine particles and the substance surrounding the fine particles increases, and as the volume of the fine particles increases.
  • a liquid in which polystyrene fine particles (for example, having a diameter of 1 m), microorganisms such as Escherichia coli, or cells thereof are suspended in water generally generates a large light pressure.
  • the known laser trapping technology is a technology that captures fine particles only at the focal position of a laser beam focused by a lens, and deflects the movement direction (flow direction) of the fine particles to collect the fine particles.
  • Japanese Patent Application Laid-Open No. 5-18887 discloses a method in which a suspension of fine particles is accommodated in a champ such as a slide glass and the fine particles to be sampled in the suspension are captured by irradiating a laser beam. Absent. The captured fine particles are oriented in the direction of the electric field by electrostatic force, and then transported by moving one laser beam or one chamber.
  • Japanese Unexamined Patent Publication No. 7-104191 also relates only to a device that traps fine particles with a single laser beam and controls the position and orientation (posture) of the particles. In either case, the light pressure of the laser beam deflects the direction of movement of the particles and does not attempt to move the particles in the direction of convergence of the laser beam.
  • the gas or liquid flowing through the flow channel may be any as long as it contains fine particles that act on (respond to) light pressure. That is, the gas or liquid flowing in the flow channel may be any as long as it contains fine particles that respond to light pressure and components that do not respond to light pressure.
  • the gas or liquid used as a medium is included in the components that do not respond to the light pressure described above.
  • Fine particles contained in a gas or liquid are inferior to a medium such as gas or liquid. Any material may be used as long as it has a different refractive index, a different dielectric constant, and the like, thereby causing a difference in light pressure.
  • Representative examples of the fine particles include cells, microorganisms, and biopolymer substances.
  • Cells include animal cells (such as red blood cells) and plant cells.
  • Microorganisms include bacteria such as Escherichia coli; viruses such as tobacco mosaic virus; and fungi such as yeast.
  • Biopolymers include chromosomes, ribosomes, mitochondria, and organelles (organelles) that make up various cells.
  • the fine particles responsive to the light pressure to which the method of the present invention can be applied are not limited to those exemplified above, but may be various fine particles known to be trapped by a laser trapping technique, for example, organic or inorganic fine particles. It may be a molecular material, a metal, or the like.
  • Organic polymer materials include polystyrene, styrene divinylbenzene, and polymethyl methacrylate.
  • Inorganic polymer materials include glass, silica, magnetic materials, and the like.
  • Metals include colloidal gold and aluminum.
  • the fine particles preferably have a particle size on the order of nanometers to micrometer, more specifically, a particle size of about 20 nm to 50 m.
  • the shape, size, mass, etc. are not particularly limited. Generally, the shape is generally spherical, but may be non-spherical.
  • the fine particles can be mixed with a medium such as a gas or a liquid, and can be flown in the air flow or the liquid flow through the flow path.
  • a medium such as a gas or a liquid
  • the medium for forming the gas flow or the liquid flow include various gases and liquids used in the conventional laser-trabbing technology.
  • Preferred media (liquid medium) for forming the liquid flow include pure water and
  • PBS phosphate buffered saline
  • the medium preferably has a refractive index or the like smaller than that of the microparticles in relation to the microparticles that respond to light pressure (in this sense, in the present invention, the “component that does not respond to light pressure”). ).
  • a suspension or the like in which cells are mixed or suspended in the above liquid medium can be exemplified.
  • the number of cells in the liquid stream is not also the be particularly limited, usually Dearu that a 1 ⁇ 10 5-1 10 7 1 about the over 2.20.
  • the flow velocity can be appropriately determined according to the type of the fine particles and the type of the laser beam to be irradiated, assuming that the flow direction can be deflected to the convergence direction of one laser beam by the irradiation of the laser beam.
  • the laser beam used can be the same as those used in the conventional laser trapping technology in terms of its type, irradiation conditions and the like.
  • Typical laser beams include, for example, Nd: YAG (neodymium-doped yttrium aluminum garnet) laser dome (wavelength: I 064 nm),
  • Nd VAN (neodymium-doped vanadate) laser beam (wavelength: 1064nm) etc. can be used. This laser beam is particularly suitable because it has little effect on living organisms.
  • the irradiation conditions are, specifically, CW (continuous wave or continuous wave)
  • Irradiation with a laser beam can be performed intermittently or continuously.
  • the irradiation of the laser beam is performed so as to intersect the flow direction of the gas or liquid containing the fine particles.
  • the fine particles in the gas stream or liquid stream are deflected in the direction of movement of the laser beam (convergence direction) against the direction of gas or liquid flow, and do not respond to light pressure. It can be separated and collected. For example, if an appropriate collection chamber is arranged with the opening facing the flow path in the direction of convergence of the laser beam, only the target particles are selectively collected and stored in the chamber. (Concentration).
  • the laser beam irradiation is preferably performed in a direction perpendicular to the direction of the air flow or the liquid flow.
  • the angle is not particularly important as long as it is deflected.
  • each of the target fine particles can be collected in a separate chamber.
  • the method for separating and collecting fine particles according to the present invention described above can be applied to, for example, a sorting method for flow cytometry. That is, the method of the present invention can be replaced with a conventional water droplet charging method as a sorting unit in flow cytometry. According to the flow cytometry using the method of the present invention, the desired fine particles (Target microparticles) can be selectively separated and sorted (sorted).
  • Flow cytometry cell sorting, FACS
  • FACS cell sorting
  • a sample (gas or liquid) containing fine particles (fine particles that respond to light pressure) to be collected for a sample (gas or liquid) containing fine particles (fine particles that respond to light pressure) to be collected, the same operation as that of a known flow cytometry detection unit and analysis unit is performed in advance to obtain scattered light (forward). Scattered light, side scattered light) and fluorescence are detected and analyzed.
  • the sample (gas or liquid) containing the fine particles is caused to flow through the flow channel according to the method of the present invention, and intersects with the flow of the gas or liquid, and the desired fine particles (collected through the flow channel) to be collected are collected.
  • the target microparticles By selectively irradiating a laser beam to the target microparticles, only the target microparticles are deflected in the direction of convergence of the laser beam, and collected separately from other microparticles and components that do not respond to light pressure. Is done.
  • Preferred specific examples of the target microparticles include cells to which antibodies labeled with a fluorescent dye or the like are bound (coated) according to general FACS, and biological molecules similarly labeled with a fluorescent dye or the like. . These selections can be made according to conventional FACS. For example, by irradiating with an argon laser, the intensity and wavelength of the fluorescence or the intensity of the scattered light are detected, and by analyzing the obtained detection results (data), the specific fluorescence intensity and the wavelength of the target fine particles, Fine particles having scattered light intensity or the like can be selected. '
  • test subjects present inside or on the surface of a cell for example, a protein expressed in a cell, or the like, can be obtained by combining two or more types of fluorescent dyes or a luminescent protein such as GFP (Green fluorescent protein, green luminescent protein). If multiple staining is used, multiple types of microparticles emitting a desired emission wavelength can be simultaneously selected as target microparticles, respectively, and these operations can be performed using a conventional flow cytometer or cell sorter.
  • GFP Green fluorescent protein, green luminescent protein
  • the sorting method of the present invention is a method in which a very small amount of a solution is used as a sample flowing through a flow channel to detect and separate and collect fine particles therein. It can be suitably applied to the system.
  • use in advance By labeling the antibody with a fluorescent substance, micrometer-sized fine particles generated by an immune reaction such as an antigen-antibody reaction are selectively guided to the chamber from the flow channel by laser single beam irradiation.
  • the immunoreactant can be detected with high sensitivity by measuring the fine particles separated and collected in the chamber and accumulated (concentrated).
  • beads having different sizes can be used according to the type of the antibody instead of the fluorescent substance.
  • the antibody is mixed with a sample sample such as blood to cause an immunoreaction, and the obtained liquid containing the reactant (fine particles) is used as a sample flowing through a channel.
  • a sample sample such as blood
  • the obtained liquid containing the reactant fine particles
  • different types of antigen-antibody reactants ie, different cells, etc.
  • the particle collecting apparatus of the present invention includes a collecting unit for collecting fine particles responsive to light pressure, a laser beam irradiating unit, and a fine particle responsive to light pressure between the collecting unit and the laser beam irradiating unit. And a flow path for flowing a gas or liquid containing a component that does not respond to light pressure.
  • the recovery section has at least one chamber arranged with the opening facing the flow path side, and the laser one-beam irradiation section has at least one irradiation port. Further, the laser beam is radiated from the laser beam irradiating port to the opening of the champer of the collecting section so as to cross the flow path, and the laser beam is irradiated to the chamber of the collecting section.
  • FIGS. 1 and 2 are schematic diagrams of a fine particle recovery apparatus according to one embodiment of the present invention.
  • FIGS. 1 and 2 are schematic diagrams of a microchip-type device of the present invention for collecting fluorescent latex beads (about 2 m in diameter) described in detail in Examples below.
  • Fig. 1 (a) is a front view of the particle collecting device.
  • Fig. 1 (b) is an enlarged view of the part surrounded by the dotted line in Fig. 1 (a) .
  • the device for collecting fine particles is composed of a fine particle collection unit (1 in Fig. 1 (b), 1) having two chambers (1a and 1b in Fig. 1 (b)), and one irradiation port (1 in Fig. 1 (b)). , 3a), the laser beam irradiation section (in FIG. 1 (b), 3) and the flow path between the particle collection section (1) and the laser beam irradiation section (3) (FIG. 1 ( b) Medium and 2) are required.
  • the irradiation port (3a) is disposed so as to face the opening of the chamber 1 (1a) of the fine particle collecting section via the flow path (2), and the laser beam is inserted into the chamber 1 from the opening. Is in place.
  • the gas or liquid sample containing the target microparticles to be collected enters the flow channel (2) through the flow channel inlet (5) from a in FIG. It is designed to flow from (5) in the direction of the channel outlet (6), and then to be discharged from the channel outlet (6) to b.
  • (4) is an outer wall constituting a bottom surface of the particle collection device.
  • a flow path (2) is formed between the outer wall and the fine particle collection section (1).
  • the particle collection unit shown in Fig. 1 has a chamber (1a, 1b) having a volume of 35 mX25 m (area of bottom or opening) 35 urn (length from opening to bottom, depth). I have.
  • the volume of the chamber and the size of the opening provided in the particle collecting section of the apparatus of the present invention are not limited to these, and the purpose of use of the particle collecting apparatus, the size of the collecting section, and the size of one chamber It can be appropriately selected and set according to the size and amount of the fine particles to be collected, the diameter of the laser beam to be irradiated, and the like.
  • the flow path (2) shown in FIG. 1 has a cubic flow path diameter of 50 m ⁇ 25 m in cross section.
  • the cross-sectional shape and the cross-sectional area (in other words, the diameter of the flow path) of the flow path (2) of the device of the present invention are not limited to this, and are not limited to the gas and liquid flowing through the flow path and the size of the fine particles. It can be selected and set as appropriate according to the size and the like.
  • the collection of fine particles by the fine particle collection device is performed, for example, as follows. First, a gas or liquid sample (preferably a liquid sample) containing the target microparticles to be collected is flowed from the channel inlet (5) to the channel outlet (6) into the channel (2). While the sample is flowing through the flow path (2), the laser beam (3b) is irradiated from the irradiation port (3a) so as to condense the light into the chamber (1a). Then, the laser beam emitted from the irradiation port (3a) is irradiated to the channel (2) in which the gas or liquid sample containing the target fine particles to be collected flows.
  • a gas or liquid sample preferably a liquid sample
  • the target particles enter the laser beam irradiation area of the flow path (2), the target fine particles are subjected to the action of the optical pressure of the laser beam, so that the traveling direction of the target fine particles is deflected toward the first chamber (1a), and is thus collected in the first chamber (1a).
  • FIG. 2 is a diagram illustrating, in more detail, a laser beam irradiation unit (3) in the fine particle collection device shown in FIG.
  • the fine particle recovery device having the laser beam irradiation unit (3) shown in FIG. 2 is one embodiment of the present invention, and the present invention is not particularly limited to this.
  • (7) is an Nd: VAN laser
  • (8) is a beam expander
  • (9) is a reflection mirror 1
  • (10) is a dichroic mirror 2
  • (1 1) is a dichroic mirror.
  • 1 and (12) show objective lens 1, respectively.
  • (13) shows a mercury lamp
  • (14) shows an ND filter (neutral density filter), and (15) shows a barrier filter for excitation.
  • (16) shows a fluorescence barrier filter
  • (17) shows a reflection mirror
  • (18) shows a laser-beam cut filter
  • (19) shows a CCD camera.
  • the laser beam oscillated from the Nd: VAN laser (7) which is a laser beam irradiation source, is irradiated by the beam expander (8) located in the forward direction of the laser beam.
  • the beam diameter is adjusted.
  • the laser beam is bent by the reflection mirror 1 (9), the dichroic mirror 2 (10) and the dichroic mirror 1 (11), and passes through the objective lens 1 (12). Irradiation is performed from the irradiation port (3b) toward the opening of the first chamber (1a) of the particle collection unit. By doing so, the laser beam (3b) from the Nd: VAN laser (7) can be focused on the jumper (1a).
  • the laser beam converges farther from the opening of the chamber one, preferably near the bottom of the chamber one.
  • the convergence of the laser beam can be performed, for example, by using an objective lens as described above.
  • the objective lens 1 (12) in FIG. 2 can be moved up and down, and the movement allows the convergence position of the laser beam to be adjusted up and down.
  • the convergence position of the laser beam only needs to be farther from the opening of the chamber of the particle collection unit (1).
  • it does not matter whether inside or outside the chamber.
  • near the bottom of the chamber both inside and outside the chamber.
  • the laser beam used is generally a circular laser beam, but is not particularly limited thereto, and may be an elliptical beam or the like.
  • FIG. 1 An example in which one opening and an irradiation port of a laser beam irradiation unit are provided to face each other with a flow path therebetween is provided.
  • the laser beam is incident so as to be perpendicular to the flow path, in other words, the flow of the gas or liquid containing the target fine particles (air flow or liquid flow).
  • the present invention is not limited to this. If the laser beam crosses the flow path and enters the opening of the chamber of the particle collection unit, the laser beam and the chamber of the particle collection unit may be used.
  • the arrangement of the irradiation ports of the irradiation unit can be set arbitrarily.
  • a laser one-beam irradiation unit provided with two or more irradiation units and a particle collection unit provided with a plurality of chambers corresponding to the number of irradiation ports are provided.
  • An example of the configuration can be exemplified. According to such an apparatus, a plurality of target fine particles responding to light pressure can be separated and collected in separate champers.
  • FIG. 3 shows a schematic diagram of an example of such a multiplex sorting apparatus.
  • FIG. 3 shows a schematic diagram of an example of such a multiplex sorting apparatus.
  • (101) indicates a reservoir containing a liquid or gas sample containing target microparticles to be collected.
  • (104-1), (104-2), (104-3), ⁇ and (104-n) are the chambers for collecting fine particles [(104-1a), (104-n) 2a), (104-3a),,... And (104-na)] are shown (corresponding to the particle collection unit in FIG. 1) and the champers (1a, 1b)).
  • . (105) indicates a laser beam controller including a laser beam irradiation unit (corresponding to the laser beam irradiation unit (3) in FIG. 1).
  • the fine particle collection unit also has a plurality of chambers ((104-1a), (104-2a), (104-3a),..., And (104-na)).
  • (2) is a channel through which the sample flows, and (106) is a drainage reservoir for collecting the sample.
  • the particle collecting apparatus of the present invention in this aspect detects and analyzes, in addition to the laser beam irradiation unit, the particle collecting unit, and the flow path described above, fine particles responding to the light pressure in the gas or liquid flowing through the flow path. It is preferable to provide a detection and analysis unit for this.
  • a device part including a laser beam irradiation part, a particle collection part, and a flow path can be called a sorting part with respect to the detection and analysis part.
  • the one that includes the sorting unit and the detection and analysis unit is a cell sorter.
  • (102) and (103) correspond to the detection unit, (102) indicates a detection laser, and (103) indicates a detector.
  • the analysis unit is incorporated in the laser controller shown by (105).
  • the detection and analysis unit can be the same as the detection and analysis unit used in conventionally known flow cytometry or cell sorter.
  • the detection unit applies a laser beam (eg, argon, diode, die, helium neon, etc.) to the flow path (liquid flow, air flow) of the sample (liquid sample or gas sample, preferably liquid sample) flowing in the flow path.
  • a laser beam eg, argon, diode, die, helium neon, etc.
  • FSC forward scattered light
  • SSC side scattered light
  • the analysis unit may include an analysis display device for digitally converting the data detected by the detector and displaying the data as a cytogram or a histogram.
  • the forward scattered light (FSC) changes the light intensity, for example, reflecting the size of the cell
  • the side scattered light (SSC) changes the light intensity, reflecting, for example, the complexity of the internal structure of the cell.
  • fluorescent substances used for labeling target microparticles in flow cytometry or cell sorter are well known, and these can be used in the present invention in the same manner (for example, “Cell Engineering”, separate volume). "Flow cytometry is free", supervised by Keimitsu Nakauchi (Immunology, University of Tsukuba), Shujunsha, published July 1, 1999, page 3-23).
  • the detection unit and the analysis unit are linked to a laser beam irradiation unit in a sorting unit, and are obtained by the detection unit. Based on the data analyzed by the analysis unit, it is designed to selectively irradiate the target microparticles with the laser beam only when the selected microparticles flow into the irradiation area of the flow channel. You.
  • one or more samples can be selected from a sample (gas sample or liquid sample) containing a plurality of fine particles responding to light pressure, according to the characteristics of each particle.
  • a sample gas sample or liquid sample
  • FIG. 3 a method for separating and recovering target fine particles using the apparatus of the present invention shown in FIG. 3 will be described below as an example.
  • Each of a plurality of different target microparticles (eg, cells, microorganisms, proteins, etc.) is bound to each of the fluorescently labeled antibodies by an immunological reaction such as an antigen-antibody reaction, and a sample solution (eg, a suspension of cells or the like) containing the antibodies is bound to
  • an immunological reaction such as an antigen-antibody reaction
  • a sample solution eg, a suspension of cells or the like
  • the laser controller (105) determines the irradiation position and timing of the laser beam, and when the target particles pass through the flow path (2), the target particles Is selectively irradiated with a laser beam.
  • the target microparticles irradiated with the laser beam are deflected by the light pressure in the flow direction, and are collected in one chamber of the collection unit.
  • the target microparticles are separately separated and collected on the basis of differences in the intensity and wavelength of scattered light and fluorescence emitted from the target microparticles (104-1).
  • the fine particles (eg, cells, microorganisms, proteins, etc.) collected in each chamber can be detected in each chamber of (104-n).
  • the microparticles accumulated in each chamber can be taken out and separately subjected to biochemical analysis according to a conventional method to perform an immunoassay.
  • the number of laser beam irradiation ports can be prepared by the number of recovery chambers.
  • the direction of one laser beam can be changed using a polygon mirror or the like using a known laser operation technique.
  • the collection of individual target particles is performed as a result of deflecting the flow direction of the target particles by the light pressure of the laser beam emitted from the laser beam irradiation port.
  • the position where the flow direction of the target particles is deflected can be controlled by controlling the laser beam irradiation port, or by moving the collection section or its chamber position while keeping the position of the irradiation port fixed. You can do it too.
  • the apparatus shown in FIG. 3 can be applied to a case where cells having a plurality of pieces of fluorescence information are collected in a separate chamber for each piece of fluorescence information (multi-sorting).
  • the analysis of each cell collected in each chamber can be performed in the chamber, or can be taken out from the chamber and analyzed.
  • Such an apparatus of the present invention is useful. By using it, one device (for example, one chip in the case of a chip form) can simultaneously collect and separate a plurality of different cells. The invention's effect
  • the recovery method and apparatus of the present invention recovers a desired collection chamber by deflecting and moving fine particles responsive to light pressure in the direction of convergence of one laser beam by utilizing light pressure. Is what you can do.
  • the method and apparatus can select desired target microparticles from a plurality of microparticles responding to light pressure by using the detection and analysis technology in a conventional flow cytometry cell sorter. Method and equipment that can be used (multiple fractionation).
  • the light pressure used in the present invention is easily controllable by itself, and furthermore, there is an advantage that the use thereof can simplify the device of the present invention and its peripheral devices.
  • the microparticle collection unit (1) provided on the chip has two micro-glues (35 111 351 35 171 25 [11, chamber 1 (1a), (1 b)) for collecting microparticles. .
  • the microchannel 50 m wide x 25 m deep, flow path (2)) through which the sample containing the microparticles flows is separated from the outside by the outer wall (4) (made by PDMS).
  • the outer wall (wavelength: 1064nm) is focused so that the Nd: VAN laser beam (wavelength: 1064nm) converges near the bottom of the chamber (1a) (micro glove).
  • the thickness of 4) was 300 m.
  • an inverted fluorescence microscope (Axiovert135TV, Carl Zeiss) was used in combination with a laser operation system.
  • the laser beam emitted from the Nd: VAN laser (7) was condensed using a microscope objective lens (12) facing the outer wall (4), and introduced into the chamber (1a).
  • the beam diameter was adjusted by inserting a beam expander (8) in the optical path of the laser, and the laser focus and the observation plane were matched with the same objective lens.
  • another objective lens 2 (20) and a color CCD camera 2 (21) are installed in the horizontal direction to observe the behavior of the fine particles flowing through the flow path (2) and take a fluorescent image of the fine particles. did.
  • the CCD camera 2 (21) can change the traveling direction from the flow path (2) to capture an image of the fine particles introduced into the champer (1a).
  • a CCD camera 1 (19) was arranged so that the collected fine particles in the chamber could be photographed from below.
  • fluorescent latex peas having a diameter of 2 mm were used as light-responsive particles.
  • a liquid in which the microparticles were suspended in ultrapure water at a concentration of 1 ⁇ 10 5 particles / ml was used as a sample liquid.
  • the sample liquid was introduced into the channel (2) from the channel inlet (5) through (a) using a syringe pump (syringe feeder).
  • the speed of the sample liquid flowing in the flow path (2) was 192 tm / sec.
  • the sample liquid passed through the flow path (2) was recovered from the flow path outlet (6) to (b).
  • the laser beam (3b) was focused on one (1a) of the two chambers (1a, 1b).
  • the first chamber (1a) was used as a chamber for collecting fine particles, and the other chamber (1b) was used as a chamber for negative control.
  • Fig. 4 shows a spot on a specific fluorescent latex bead A and its movement in the flow path.
  • black arrow ⁇ indicates the position and direction of the laser beam irradiation light
  • white arrow indicates the position and movement direction of the bead A.
  • specific target particles can be selected and collected in individual chambers depending on whether or not a laser beam is applied.
  • the fluorescence intensity was measured using an image analysis software (NIH image: http: ⁇ rsb.info.nih.gov / nih-image /) after capturing the image recorded on the videotape into a computer. It was determined by analyzing the fluorescence intensity of each video frame (30 frames / second). The value is a relative value (a.u. in FIG. 5 is an abbreviation of arbitrary unit).
  • Figure 5 shows the elapsed time (seconds) (irradiation time of one laser beam) on the horizontal axis and the above-mentioned fluorescence intensity (unit: au) on the vertical axis, and shows the transition of the fluorescence intensity in chamber (1a) over time. This is a graph described in FIG.
  • the fluorescence intensity in one chamber (1a) increases in proportion to time over a period of 90 seconds. Accordingly, by continuously irradiating the laser beam, the flow of the target particles passing through the flow path is deflected in one direction of the chamber by the optical pressure, and the target particles are collected and accumulated in the chamber. (Concentration)
  • Figure 6 shows the results of the 90-second image taken by the CCD camera.
  • (a) shows one recovery chamber (1a)
  • (b) shows one recovery chamber (1b).
  • the “white arrow flow” indicates the flow direction of the liquid (sample liquid) containing fluorescent latex beads in the flow path, and the black arrow indicates the irradiation direction of one laser beam.
  • one chamber (1a) was filled with fluorescent beads to about 1/3 of its volume.
  • no fluorescence was observed in the negative control chamber (chamber 1 (1b)) where the light pressure of the laser beam did not act, and it was confirmed that latex pease was not recovered. This result confirms that a series of collections and enrichments occur based on the deflection and movement of the microparticles due to light pressure (by laser beam irradiation).
  • the present invention provides a method and an apparatus for collecting fine particles such as cells, and a flow cytometry and a cell sorter using the same.
  • the recovery method and apparatus of the present invention are useful, for example, as assisting technologies such as cloning of cells and cloning of growth / differentiation factor receptor genes. It is also useful for analyzing cell functions and analyzing cell dynamics such as cell membrane molecules and chromosomal DNA molecules. Furthermore, it can be effectively used not only in the field of cell engineering but also in the clinical field, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明は、従来のセルソーティング技術に代わって、光圧(optical forceもしくはoptical pressure)を利用した、微粒子のソーティング技術およびそのための微粒子の回収技術を提供する。本発明の微粒子回収方法は、微粒子の流路に、微粒子の流れ方向に交差させてレーザービームを照射し、回収すべき微粒子の運動方向をレーザービームの収束方向に偏向させて該微粒子を回収することを特徴とする。また、本発明のソーティング方法は、フローサイトメトリーによる微粒子のソーティングを上記本発明回収方法によって行うものである。

Description

明 細 書
微粒子の分別回収方法および回収装置
技 術 分 野
本発明は細胞などの微粒子の分別回収方法および回収装置、 並びにこれらを利用 したフロ一サイトメトリーおよびセルソ一夕一に関する。
背 景 技 術
現在、 細胞などの微粒子集団から特定の個々の細胞などを選り分ける方法として は、 フローサイトメトリーを基礎としたセルソーティング技術が知られている (例 えば、 「細胞工学」 別冊 「フローサイトメトリー自由自在」 、 監修:中内啓光 (筑 波大学医学系 免疫学) 、 秀潤社、 1999年 7月 1日発行、 第 3-23頁参照)。
この技術では、 予め蛍光色素などで標識した抗体を結合させた対象細胞の懸濁液 を液流とし、 まず、 その流路内で該細胞に、 標識した蛍光色素に応じて励起光を照 射し、 各細胞から発する蛍光乃至散乱光の波長や強度を解析して所望の細胞を識別 する。 次いで、 上記光の強度や波長などの解析結果によって識別された特定の性質 を有する細胞に電圧を印加して帯電させ、 偏向電極を利用して上記で帯電された細 胞の弁別、 定量、 統計解析などを行う。
この方法は、 細胞を生存状態のまま大量且つ高速度で処理できる点より、 免疫学 的分野、 血液学的分野、 遺伝子工学的分野などにおいて、 種々の培養細胞の採取- 単離、 特定細胞のクローニング*増殖、 細胞表面に特定抗原を発現した細胞の分取 などに、 また、 細胞膜分子の動態解析、 細胞染色体の解析などに広く用いられてい る。 特に、 細胞動態の解析には不可欠な手段となりつつある。 また、 この技術は臨 床分野でも、 例えば尿中の有形成分の解析などに利用され始めている。
上記フローサイトメトリーによるセルソーティング技術に利用される細胞解析お よび細胞分離装置を、 セルソ一タ一(蛍光活性化セルソー夕一、 Fluolorescence- Activated Cell Sorter, FACS)と呼んでいる。 この装置は、 前記蛍光などの解析を行 う解析部の下流に更にソ一ティング部を備えたものである。 該ソ一ティング部とし ては、 代表的には水滴荷電方式が知られている。
この水滴荷電方式による細胞 (微粒子)のソーティングは、 例えば次の原理を基礎 としている。 即ち,、 レーザー光の照射により散乱光と蛍光とが検出された細胞に、 これを含む水流が水滴に分かれる寸前に、 プラスまたはマイナスの電荷を加えて荷 電する。 この帯電した細胞を含む水滴を、.その落下の途中に電位差を有する 2枚の 偏光用電極板間に通過させと、 該水滴は偏光板に引き寄せられて、 その方向を偏向 される。 帯電されなかった細胞を含む水滴おょぴ所望の細胞以外の細胞を含む水滴 は垂直に落下するので、 所望の細胞のみを含む水滴を分離、 回収することができる。 しかるに、 このようなセルソーターを利用する技術では、 一つの細胞 (微粒子)を 含む水滴を生成させるための超音波発生装置が必要であり、 セルソー夕一自体非常 に高価であることは勿論のこと、 運転操作、 メンテナンスなどが複雑であり、 しか も一度に多種類の微粒子を分別することができないという欠点がある。 即ち、 電極 板を利用する場合は、 プラスまたはマイナスのいずれかに帯電させるしかなく、 電. 気的に区別できる細胞はこの 2種に限られる不利がある。 更に、 フローセルゃノズ ルを使い回しするために不純物の混入のおそれがある。 また、 細胞分別で行われる 細胞溶液の超音波による小滴ィ匕の際に、 有害物質による雰囲気汚染などの問題も伴 われる。
以上のように、 セルソ一ターが特に高価であり、 運転操作、 メンテナンスが煩雑 すぎる欠点、 不純物が混入する欠点などを解決して、 低コストで運転でき、 不純物 が混入しない方法として、 ガラスや高分子材料の基板上に微小な流路を形成させて、 その中で細胞などの微粒子を水流にのせてフローサイトメトリーを行い、 所望微粒 子を分別する技術 (マイクロチップを利用する技術)が提案されている (例えば、 Anne. Y. Fu, et al., "A microfabricated fluorescence-activated cell sorter", Nature Biotechnology, Voに 17, November 1999, pp.1109-1 111;および Anne Y. Fu, et al., "An Integrated Microfab!icated Cell Sorter", Analytical Chemistry, Vol.74, No.1 1 , June 1 , 2002, pp.2451 -2457参照) 。
このマイクロチップを利用したセルソーティングは、 丁字型の流路を形成させて、 分別したい細胞とそれ以外の細胞とを、 細胞を液送している溶液の方向を切り替え ること (流路選択制御) によって分別するものである。
しかしながら、 現在提案されている該方法では、 液の流れの切り替えは、 一回し か行い得ず、 それ故一種類の微粒子しか分離できない。 液の流れの切り替えを複数 回行えば複数の微粒子が分離できると考えられるが、 実際には、 液の流れの切り替 えはその応答時間が遅過ぎるために、 複数回の切り替えには複数の送液ポンプが必 要となり、 それらとチップとの接続、 バルブの切り替えなどが複雑なものとなりす ぎ、 実用化は困難と考えられる。 発 明 の 開 示
本発明の目的は、 従来のセルソーティング技術にみられる、 例えば水滴を生成さ せるための装置が必要であることや多数の標的微粒子を一度に分別回収することが できない等といった欠点を解消した改良されたソ一ティング技術、 およびそのため の微粒子の分別回収技術を提供することにある。
本発明者は、 従来公知のフ q—サイトメトリ一、 特に水滴荷電方式によるソーテ ィング技術、 および液の流れの切り替え (流路選択制御)によるソーティング技術に 代わって、 光圧 (optical forceもしくは optical pressure)を利用した微粒子のソーテ ィング技術を開発するに初めて成功した。
本発明は、 下記項 1 _ 1 3に記載の発明を提供する。
項 1 . 光圧に応答する微粒子および光圧に応答しない成分を含有する気体または 液体の流路に、 当該気体または液体の流れ方向に交差させてレーザービームを照射 することによって、 流路内の、 光圧に応答する微粒子の運動方向のみを選択的にレ 一ザ—ビームの収束方向に偏向させて、 当該微粒子を光圧に応答しない成分と分別 して回収することを特徵とする、 光圧に応答する微粒子の分別回収方法。
項 2 . 微粒子が、 光圧に応答する有機もしくは無機高分子材料、 金属、 細胞、 微 生物および生体高分子からなる群から選ばれる項 1に記載の分別回収方法。
項 3 . 光圧に応答する微粒子および光圧に応答しない成分を含有する気体または 液体の流路内の、 光圧に応答する標的微粒子に対して、 当該気体または液体の流れ 方向に交差させてレーザービームを照射することによって、 流路内の、 当該標的微 粒子の運動方向のみを選択的にレーザ一ビームの収束方向に偏向させて、 当該微粒 子を、 他の微粒子おょぴ光圧に応答しない成分と分別して回収することを特徴とす る、 標的微粒子の分別回収方法。
項 4 . 流路が液流によって形成されてなるものである、 項 3に記載の標的微粒子 の分別回収方法。 項 5 . 標的微粒子が、 光圧に応答する有機もしくは無機高分子材料、 金属、 細胞、 微生物および生体高分子からなる群から選ばれる項 3に記載の標的微粒子の分別回 収方法。
項 6 . 標的微粒子が、 細胞または微生物である、 項 3に記載の標的微粒子の分別 回収方法。
項 7 . 項 6に記載の標的微粒子の分別回収方法を、 標的細胞のソーティング方法 として用いる、 フローサイトメトリー。
項 8 . 光圧に応答する微粒子を回収するための回収部、 レーザ一ビーム照射部、 並びに、 当該回収部とレーザ一ビーム照射部との間に、 光圧に応答する微粒子およ び光圧に応答しない成分を含有する気体または液体を流すための流路を備えた微粒 子回収装置であって、
上記回収部が、 流路側に開口を向けて配置された少なくとも 1つのチヤンパ一を備 え、
上記レーザービーム照射部が、 少なくとも 1つの照射口を備え、
当該レーザービーム照射口から、 レーザ一ビームを、 上記流路に交差させて、 上記 回収部のチャンパ一の開口に向けて、 当該開口の後方に収束するように照射するも のである、
微粒子回収装置。
項 9 . 回収部のチャンパ一の開口とレーザ一ビーム照射部の照射口とが、 流路を 隔てて、 対向して設けられている項 8に記載の微粒子回収装置。
項 1 0 . 2以上の照射口を有するレーザービーム照射部、 および当該照射口の数 に対応する数のチャンパ一を有する回収部を備える、 項 8に記載の微粒子回収装置。 項 1 1 . 更に、 流路を流れる気体または液体中の微粒子を検出して解析するため の、 検出および解析部を備える、 項 8に記載の微粒子回収装置。
項 1 2 . 検出および解析部がレ一ザ一ビーム照射部と連動してなり、 検出および 解析部で得られるデータに基づいて標的微粒子を選択し、 当該選択された標的微粒 子に対してのみレ一ザ一ビームの照射が行われるものである、 項 1 1に記載の微粒 子回収装置。
項 1 3 . 項 8に記載の微粒子回収装置をソ一ティング部として備える、 セルソー 夕 '
上記項 1一 2に記載する本発明の微粒子の分別回収方法および項 8に記載する本 発明の微粒子回収装置は、 レーザービームの光圧を利用するものであり、 該光圧に 応答する微粒子をその回収対象として、 これを光圧に応答しない成分 (流路媒体と して使用する気体および液体も、 当該成分に含まれる) と分別して回収することが できる。
また上記項 3 - 6に記載する本発明の標的微粒子の分別回収方法おょぴ項 1 3に 記載する本発明のセルソ一ターは、 例えば、 従来公知のフローサイトメトリ一およ ぴセルソーターで採用されている検出および解析技術によって光圧に応答する標的 の微粒子のみを選択して、 上記項 1— 2および項 8と同様にレーザ一ビームを照射 することによって、 当該標的微粒子のみを他の成分 (これには、 光圧に応答する微 粒子および光圧に応答しない成分が含まれる) と分別して回収することができる。 これらの本発明の方法および装置、 特に項 3— 6および項 1 3に記載する方法お よび装置によれば、 大きさや構造 (物理的性質) 等の相違または標識物質の相違な どに応じて、 各種の性質や機能を有する多様な細胞の集団から任意の複数種の細胞 (標的細胞) を、 それぞれ生きている状態で、 しかも破壊、 その他の損傷を与える ことなく、 分別回収することができる。 従って、 本発明方法および装置は、 特定細 胞のクローニング、 増殖 ·分化因子受容体遺伝子のクローニングなどの支援技術と して有用である。 また、 細胞の諸機能の解析、 細胞膜分子、 染色体 DNA分子など の細胞動態の解析にも有効に利用することができる。 更に、 細胞工学分野に限らず、 例えば臨床分野などにおいても、 例えば尿中の有形成分の解析にも有効に利用でき る。
また、 本発明の装置はマイクロチップの形態にすることもでき、 また本発明の方 法も、 こうしたマイクロチップを用いて容易に且つ簡便に実施することもできる。 即ち、 従来の FACSなどに比して、 高価で煩雑な操作を必要としない利点がある。 しかも、 本発明装置を利用すれば、 従来提案されているマイクロチップを用いて 流体制御を行う技術では困難であった複数種の微粒子を、 一度の操作で非常に迅速 に (応答速度が速い)、 精度よく効率的に弁別することができる。 殊に、 本発明装置 を利用すれば、 従来のマイクロチップを用いて流体制御を行う技術に比して、 微量 のサンプルを利用して簡便に上記微粒子の弁別を行い得る利点もある。 図面の簡単な説明
図 1は、 本発明の微粒子回収装置の一態様 (実施例) を示す概略図である。 (a)は 微粒子回収装置一部 (回収部と流路) の正面図を、 (b)は、 (a)中、 点線で囲った部 分を拡大した図である。 なお、 (b)は、 レーザービーム照射口 (3a) からレーザー ビーム (3b) が照射されている様子を合わせて示す。 図 1 (a)および (b)中、 2は流路、 5は流路入口、 および 6は流路出口を意味する。 図 1 (b)中、 1は微粒子回収部、 1aお よび 1 bはそれぞれ微粒子回収部に設けられたチヤンバー、 3はレーザービーム照射 部、 3aは照射口、 3bはレーザービーム、 および 4は外壁を意味する。 なお、 図 7に、 当該微粒子回収装置を正面から写した、 上記図 1 (a)に対応するカラー画像図を示す。 図 2は、 図 1に示す微粒子回収装置について、 レーザービーム照射部 (3)をより詳 細に記載する概略図である。 図 2中、 2は流路、 5は流路入口、 6は流路出口、 aは 試料 (液体または気体) 導入口、 bは試料排出口、 および 3aはレーザ一ビ一ム照 射口を意味する。 7は Nd:VANレーザー、 8はビームエキスパンダ一、 9は反射ミラ —1、 10は二色性ミラ一 2、 11は二色性ミラ一 1、 12は対物レンズ 1、 13は水銀ラン プ、 14は NDフィルター (neutral-density filter)、 15は励起用バリアフィルター、 16 は蛍光用バリアフィルタ一、 17は反射ミラー 2、 18はレーザービームカットフィル ター、 19は CCDカメラ 1、 20は対物レンズ 2、 およぴ 21は CCDカメラ 2をそれぞれ 示す。
図 3は、 多重回収および多重検出に適した本発明の微粒子回収装置 (多重ソーテ イング装置) の一態様を示す概略図である。 図中、 101は標的微粒子を含む液体ま たは気体試料を収納したリザ一パ、 104-1、 104-2、 104-3および 104-nは、 それぞ れ微粒子回収用のチャンパ一 (104-1a、 104-2a、 104-3aおよび 104-na) を備えた 微粒子回収部を示す。 また 105はレーザ一ビーム照射部を含むレーザービームコン トロ一ラー、 105-1、 105-2、 105-3および 105-nはレーザ一ビーム照射部に設けら れた複数の照射口を示す。 2は流路、 106はそれを回収する排液用リザーバを示す。
3bはレーザービーム、 102は検出用レ一ザ一、 および 103は検出器を示す。
図 4は、 実施例 1で行った試験の結果を示すカラ一画像図である。 具体的には、 蛍光ラテックスビーズ Aが、 レーザ一ビーム照射を受けることによって、 回収チヤ ンパーに回収される様子を経時的に撮影した画像図である。
図 5は、 実施例 1で行った試験において、 回収チャンバ一内に微粒子が経時的に 回収、 蓄積されることを示す、 該チャンパ一内の蛍光強度推移を示すグラフである- 横軸は経過時間 (レーザ一ビーム照射時間) (秒) 、 縦軸は、 チャンバ一内領域の 蛍光強度の相対値 (a.u.: arbitary unit) を示す。
図 6は、 実施例 1で行った試験において、 レーザ一ビーム照射 90秒後に、 回収チ ヤンバ一 (1 a) と負のコント口一ルチヤンバー (1 b)を撮影、した画像図である。
図 7は、 微粒子回収装置の一部 (流路と回収部) を正面から写したカラー画像図 であり、 図 1 (a)に対応するものである。 理解を容易にするために、 流路 (2)に赤イン クを通液している。 向かって右側および左側の赤スポット部が、 それぞれ流路入口 (5)および流路出口 (6)であり、 その間をつなぐ赤いラインが流路 (2)である。 当該微 粒子回収装置 (チップ) は、 5mm厚の PDMS基板 (60mm X 24mm、 5mm厚) に、 図 1 (a)に示すように、 流路入口 (5)および流路出口 (6)となる穴をあけ、 両者をつな ぐように 50 w m幅および 25 m深さの溝を作成する (これが、 流路 (2)となる) 。 さらに当該溝に垂直になるように、 35 m幅 X 35 m奥行きおよび 25 m m深さの溝 を作成する (これが、 チャンバ一 (1 a、 1 b) となる) 。 次いで、 当該基板の上か ら溝を覆うように、 100 m厚の PDMS製のフィルム (60mm X 24mm、 5mm厚) を貼り合わせる。 斯くして、 微粒子回収装置の流路 (流路 (2)) と回収部 (回収チ ヤンバー (1a、 1 b)) 力 S形成される。 発明を実施するための最良の形態
( 1 ) 微粒子の分別回収方法
以下、 本発明の微粒子の分別回収方法につき詳述する。
本発明方法においては、 まず光圧に応答する微粒子を含む気体または液体の流路 に、 該気体または液体の流れ方向に交差させてレーザ一ビームを照射して、 流路内 を流れる回収すべき微粒子の運動方向をレーザービームの収束方向に偏向させるこ とによつて実施することができる。
この原理は次の通りである。 即ち、 照射されたレーザービームの照射領域に光圧 に応答する微粒子が流れてくると、 該照射領域内には光の場に不均一が生じている ため、 その中で微粒子はこれを取り囲む物質との間の屈折率、 誘電率などの違いに よって、 これに作用する光の力 (光の放射圧、 誘電泳動力など)に差を生じる。 この 力の差によって、 光圧に応答する微粒子は流体力学的流れ方向に逆らってビームの 軸方向に沿って、 光の場の密な位置に向かって移動するのである。 この力を光圧 (optical force)という。 この光圧は、 微粒子とそれを取り囲む物質との屈折率 (もし くは誘電率) の値の差が大きいほど大きく、 また、 微粒子の体積が大きいほど大き い。 例えば、 ポリスチレン微粒子 (たとえば直径が 1 m) 、 大腸菌などの微生物 乃至その細胞などを水中に懸濁させた液では、 一般に大きな光圧が生じる。
従来、 このような原理は、 微粒子を捕捉するためのレーザ一トラッピング技術に 応用された例がある (特開平 5-18887号公報、 特開平 7-104191号公報など参照) 。 しかしながら、 公知のレーザートラッピング技術は、 あくまでも、 レンズで絞り 込んだレーザ一光の焦点位置で微粒子を捕捉する技術であり、 該技術によって微粒 子の運動方向 (流れ方向) を偏向させて微粒子を回収すること、 即ち微粒子の流路 にレ一ザ一ビームを照射することによって微粒子をその流れ方向に逆らってビーム の進行方向に偏向させて回収しょうとする試みは従来知られていない。
事実、 例えば上記特開平 5-18887号公報は、 微粒子の懸濁液をスライドガラス等 のチャンパ一に収容し、 その懸濁液中サンプリングすべき微粒子にレーザービーム を照射して捕捉するものでしかない。 捕捉した微粒子は、 静電力により電界方向に 配向させ、 しかる後レーザ一ビーム又はチャンバ一を移動させて輸送している。 特 開平 7-104191号公報も、 微粒子をレーザ一ビームでトラップして、 その位置およ び向き (姿勢) を制御する装置に関するものでしかない。 いずれも、 レーザービー ムの光圧によって、 微粒子の運動方向を偏向し、 かつレーザービームの収束方向に 微粒子を移動しょうとするものではない。
本発明方法において、 流路に流す気体または液体は、 上述したように、 光圧が作 用する (光圧に応答する) 微粒子を含むものであればよい。 即ち、 流路に流す気体 乃至液体は、 光圧に応答する微粒子と光圧に応答しない成分とを含むものであれば よい。 なお、 媒体として使用する気体乃至液体は、 上記でいう光圧に応答しない成 分に含まれる。 気体乃至液体中に含まれる微粒子は、 気体や液体などの媒体とは屈 折率、 誘電率などが相違し、 これによつて光圧に差を生じるものであればよい。 該 微粒子の代表例としては、 細胞、 微生物、 生体高分子物質などが挙げられる。 細胞 には、 動物細胞 (赤血球など)および植物細胞が含まれる。 微生物には、 大腸菌など の細菌類;タバコモザイクウィルスなどのウィルス類;ィースト菌などの菌類など が含まれる。 生体高分子物質には、 各種細胞を構成する染色体、 リボソーム、 ミト コンドリァ、 オルガネラ (細胞小器官)などが含まれる。
また本発明方法が適用できる光圧に応答する微粒子は、 上記例示のものに限定さ れることなく、 レーザートラッピング技術によつてトラップされることの知られて いる各種の微粒子、 例えば有機もしくは無機高分子材料、 金属などであってもよい。 有機高分子材料には、 ポリスチレン、 スチレン ·ジビニルベンゼン、 ポリメチルメ タクリレートなどが含まれる。 無機高分子材料には、 ガラス、 シリカ、 磁性体材料 などが含まれる。 金属には、 金コロイド、 アルミなどが含まれる。
上記微粒子は、 通常、 ナノメートルからマイクロメ一トルのオーダの粒径、 より 具体的には約 20nm— 50 mの粒径を有しているのが好ましい。 その形状、 大きさ、 質量などは特に制限されない。 一般にその形状は球形であるのが普通であるが、 非 球形であってもよい。
上記微粒子は、 一般には、 これを気体または液体等の媒体に混合して、 気流若し くは液流の状態で前記流路に流すことができる。 気流または液流を形成する媒体と しては、 従来のレーザ一トラッビング技術に利用されている各種の気体および液体 を挙げることができる。 液流を形成する好ましい媒体 (液媒)としては、 純水、
PBS (リン酸塩緩衝生理食塩水)などを例示することができる。 該媒体は、 光圧に応 答する微粒子との関連において、 その屈折率などが当該微粒子のそれよりも小さい ものであるのが好ましい (この意味で、 本発明では 「光圧に応答しない成分」 とい う) 。 流路に流される特に好ましい液体としては、 細胞を上記液媒に配合または懸 濁させた懸濁液等を挙げることができる。 該液流中の細胞数は、 特に制限されるも のではないが、 ー般には1 < 105〜1 107個 1程度とするのが普通でぁる。 その流 速は、 レーザービームの照射によってその流れ方向を、 レーザ一ビームの収束方向 に偏向できることを前提として、 微粒子の種類、 これに照射するレーザービームの 種類などに応じて適宜決定できる。 本発明方法において、 利用されるレーザービームは、 その種類、 照射条件などに おいて、 従来のレーザ一トラッピング技術に利用されるそれらと同様のものとする ことができる。 代表的なレーザービームとしては、 例えば Nd:YAG(neodymium- doped yttrium aluminum garnet)レーザー匕ーム (波長: I 064nm)、
Nd:VAN(neodymium-doped vanadate)レーザーピーム (波長: 1064nm)などを禾【J用 できる。 このレーザ一ビームは、 生物に対する影響が少ない点で特に好適である。 その照射条件は、 具体的には、 CW(continuous waveもしくは連続波)において
100mW〜2Wの条件を利用することができる。 レーザービームの照射は、 間欠的に または連続して行うことができる。
本発明ではこのレーザービームの照射を、 微粒子を含む気体または液体の流れ方 向に交差させて行うことが重要である。 この照射によって、 気流または液流中の微 粒子は、 その運動方向が、 気体または液体の流れ方向に逆らって、 レーザ一ビーム の進行方向 (収束方向) に偏向されて、 光圧に応答しない成分とは分別して回収可 能となるのである。 例えばレーザ一ビ一ムの収束方向に、 流路側に開口を向けて適 当な回収用チャンバ一を配置すれば、 目的とする微粒子のみが選択的に該チャンバ —内に回収され、 蓄積される (濃縮) 。
尚、 レーザービームの照射は、 一般には気流または液流の方向に対して直角とな る方向に行われるのが好ましいが、 気流または液流の方向と交差する限り、 即ち、 微粒子の流れる方向が偏向される限り、 特にその角度は重要ではない。
光圧に応答する、 異なる特性を有する複数の微粒子を標的とする場合、 例えば、 前記回収用チヤンバ一を並列させて複数個配置し、 各チヤンバーの開口に向けて、 複数のレ一ザ一ビームを照射すれば、 これによつて目的とする各微粒子 (標的微粒 子) の各々を、 別々のチャンバ一内に回収することができる。 ( 2 ) 標的微粒子の分別回収方法
前述する本発明に従う微粒子の分別回収方法は、 これを例えばフローサイトメト リーのソ一ティング方法に応用することができる。 即ち、 本発明方法は、 フローサ ィトメ卜リーにおけるソーティング部としての従来の水滴荷電方式に代替すること ができる。 本発明方法を利用したフローサイトメトリ一によれば、 所望の微粒子 (標的微粒子) のみを選択的に分別回収 (ソーティング) することができる。
本発明方法を応用したフローサイトメトリ一 (セルソーティング、 FACS)は、 例 えば以下の如くして実施できる。
即ち、 回収対象とする微粒子 (光圧に応答する微粒子) を含む試料 (気体または 液体) について、 予め公知のフローサイトメトリーの検出部および解析部における 操作と同様の操作を行って散乱光 (前方散乱光、 側方散乱光) や蛍光などを検出、 解析する。 次いで、 この微粒子を含む試料 (気体または液体) を本発明方法に従つ て流路に流し、 当該気体または液体の流れに交差させて、 この流路内を通過する回 収したい所望の微粒子 (標的微粒子) に対して選択的にレーザービームを照射すれ ば、 標的微粒子のみがその運動方向をレーザ一ビームの収束方向に偏向されて、 他 の微粒子および光圧に応答しない成分とは分別して回収される。
上記標的微粒子の好ましい具体例としては、 一般的な FACSに従って蛍光色素な どで標識された抗体を結合 (コーティング)させた細胞、 同様に蛍光色素などで標識 した生体离分子などを挙げることができる。 これらの選択は、 従来の FACSに準じ て実施することができる。 例えば、 アルゴンレーザーを照射することによって、 蛍 光の強度および波長もしくは散乱光強度を検出し、 得られる検出結果 (データ)を解 析することによって、 標的微粒子とする特定の蛍光強度やその波長、 散乱光強度な どを有する微粒子を選択することができる。 '
また、 細胞内部や表面上に存在する種々の被験対象、 例えば細胞内で発現された 蛋白質などを、 二種以上の蛍光色素や例えば GFP(Green fluorescent protein,緑色発 光蛋白質〉などの発光蛋白質を用いて多重染色すれば、 所望の発光波長を発する複 数種の微粒子を、 それぞれ標的微粒子として、 同時に選択することができる。 これ らの操作は、 従来公知のフローサイトメトリ一乃至セルソ一ターの検出部および解 析部における各操作と同様のものとすることができる (例えば、 「細胞工学」 別冊 「フローサイトメトリー自由自在」 、 監修:中内啓光 (筑波大学医学系 免疫学) 、 秀潤社、 1999年 7月 1日発行、 第 3-23頁参照のこと) 。
本発明ソ一ティング方法は、 微少量の溶液を流路に流すサンプルとして使用して、 その中の微粒子の検出および分別回収が可能な方法であるため、 例えば、 抗原抗体 反応を利用する免疫検出系に好適に適用することができる。 この場合、 予め使用す る抗体を蛍光物質で標識しておくことにより、 抗原抗体反応等の免疫反応によって 生じたマイクロメートルサイズの微粒子を、 選択的に、 レーザ一ビーム照射によつ て流路からチャンバ一に誘導することができ、 該チャンバ一に分別回収され、 蓄積 (濃縮) された微粒子を測定することによって、 免疫反応物を高感度で検出するこ とができる。 特に、 この方法において用いる抗体の種類に応じて異なる蛍光物質を 利用することによって、 蛍光強度や波長の相違に基づいて、 同時に異なる複数種の 抗原抗体反応物 (すなわち、 異なる細胞など) を分別回収して解析することができ る (多重検出)。
なお、 蛍光標識によらない場合、 蛍光物質に代えて、 抗体の種類に応じて異なる 大きさのビーズを用いることもできる。 この場合、 当該ピーズに抗体をコーティン グした後、 該抗体を血液などの検体サンプルと混合して免疫反応させ、 得られた反 応物 (微粒子) を含む液体を流路に流すサンプルとして使用すると、 微粒子の大き さの相違に基づいて、 同時に異なる複数種の抗原抗体反応物 (すなわち、 異なる細 胞など) を分別回収して解析することができる。
( 3 ) 微粒子回収装置
本発明の微粒子回収装置は、 光圧に応答する微粒子を回収するための回収部と、 レーザービ一ム照射部と、 当該回収部とレーザービーム照射部との間に、 光圧に応 答する微粒子および光圧に応答しない成分を含有する気体または液体を流すための 流路とを備えている。 上記回収部は流路側に開口を向けて配置された少なくとも一 つのチャンバ一を備えており、 また上記レーザ一ビーム照射部は少なくとも一つの 照射口を備えている。 更に上記レーザ一ビーム照射口からのレ一ザ一ビームの照射 は、 上記流路に交差させて、 上記回収部のチャンパ一の開口に向けて行われ、 且つ レーザ一ビームが回収部のチヤンバーの開口より遠方に収束するように行われる。 本発明の一実施態様である微粒子回収装置の概略図を図 1および 2に示す。 当該 図 1および 2は、 後記実施例に詳述する蛍光ラテックスビーズ (直径約 2 m)を回収 するための、 マイクロチップ形態の本発明装置の概略図である。 図 1 (a)は微粒子回 収装置の正面図である。 図 1 (b)は、 図 1 (a)中、 点線で囲った部分を拡大した図であ つて、 加えて、 レーザービーム照射部 (3) の照射口 a)からレーザービーム (3b) 7
13 を照射している様子を示すものである。
当該微粒子回収装置は、 2つのチャンバ一 (図 1 (b)中、 1aおよび 1b) を有する微 粒子回収部 (図 1 (b)中、 1) 、 1つの照射口 (図 1 (b)中、 3a) を有するレーザ一ビ ーム照射部 (図 1 (b)中、 3) 、 並びに、 当該微粒子回収部 (1)とレーザービーム照射 部 (3)との間に流路 (図 1 (b)中、 2) を備えている。 また、 照射口 (3a) は、 あいだ に流路 (2)を介して、 微粒子回収部のチャンバ一 (1a)の開口と対向するように配置さ れており、 開口からチャンバ一内にレーザービ一ムが入るようになつている。 さら に、 回収するための標的微粒子を含む気体または液体試料は、 図 2中 aから、 流路 入口 (5)を介して流路 (2)に入り、 当該流路 (2)を流路入口 (5)から流路出口 (6)方向に 流れて、 次いで当該流路出口 (6)から bに排出されるように設計されている。 なお、 図 1 (b)において、 (4)は微粒子回収装置の底面を構成する外壁である。 当該外壁と微 粒子回収部 (1)との間に、 流路 (2)が構成されている。
図 1に示す微粒子回収部は、 35 mX25 m (底面若しくは開口の面積) 35 u rn (開口部から底面までの長さ、 奥行き) の容積を有するチャンバ一 (1a,1 b) を有している。 しかし、 本発明装置の微粒子回収部に設けられるチャンバ一の容積 および開口の大きさは、 これに限定されることなく、 微粒子回収装置の使用目的、 回収部の大きさ、 その 1チャンバ一内に回収したい微粒子の大きさおよびその量や、 照射するレーザービームの径などに応じて適宜選択設定することができる。 また図 1に示す流路 (2)は、 断面積が 50 mX25 mの立方形の流路径を備えている。 しか し、 本発明装置の流路 (2)の断面形状やその断面積 (言い換えれば、 流路径) は、 これに限定されることなく、 流路を流す気体および液体の別、 および微粒子の大き さなどに応じて適宜選択設定することができる。
当該微粒子回収装置による微粒子の回収は、 例えば、 以下のように実施される。 まず、 回収したい標的微粒子を含有する気体または液体試料 (好ましくは液体試 料) を、 流路入口 (5)から流路出口 (6)に向けて、 流路 (2)内に流す。 試料が流路 (2)を 流れている間に、 照射口 (3a)からチャンバ一 (1 a)内に集光するように、 レ一ザ一ビ ーム (3b) を照射する。 そうすると、 照射口 (3a)から出たレーザ一ビ一ムは、 回収 したい標的微粒子を含有する気体または液体試料が流れている流路 (2)に照射され る。 このとき、 当該流路 (2)のレーザービーム照射領域に標的微粒子が入ると、 当 該標的微粒子はレーザービームの光圧の作用を受けて、 その標的微粒子の進行方向 がチャンバ一 (1a)方向に偏向され、 かくしてチャンバ一 (1a)内に回収される。
図 2は、 図 1に示す微粒子回収装置について、 レーザービーム照射部 (3)をより詳 細に記載する図である。 但し、 当該図 2に示すレーザービーム照射部 (3)を有する微 粒子回収装置は、 本発明の一態様であって、 本発明はこれに特に制限されるもので はない。 図 2において、 (7)は Nd:VANレーザー、 (8)はビームエキスパンダ一、 (9)は 反射ミラー 1、 (10)は二色性ミラ一 2、 (1 1)は二色性ミラー 1、 および (12)は対物レン ズ 1をそれぞれ示す。 (13)は水銀ランプ、 (14)は NDフィルター (neutral- density filter) を、 および (15)は励起用バリアフィルタ一を示す。 また、 (16)は蛍光用バリアフィ ルター、 (17)は反射ミラ一 2、 (18)はレーザ一ビームカットフィルター、 および (19) は CCDカメラ 1を示す。
当該図 2に示す態様によれば、 レ一ザ一ビーム照射源である Nd:VANレーザ一 (7) から発振されたレーザービームは、 その進行方向前方に位置するビームエキスパン ダー (8)によってそのビーム径が調整される。 次いで、 当該レーザ一ビームは、 反 射ミラ一 1 (9)、 二色性ミラー 2(10)および二色性ミラ一 1 (11)によって屈曲されて、 対物レンズ 1 (12)を通過し、 照射口 (3b)から、 微粒子回収部のチャンバ一 (1 a)の開口 に向けて照射される。 こうすることによって、 Nd:VANレーザー (7)からのレーザ一 ビーム (3b)をチヤンパー (1a)に集光させることができる。
この時、 チャンバ一の開口より遠方、 好ましくはチャンバ一の底部付近にレーザ —ビームが収束するように調整することが好ましい。 なお、 レーザービームの収束 は、 例えば上記の如く対物レンズを用いることによって行うことができる。 図 2中 の対物レンズ 1 (12)は、 上下移動自在となっており、 その移動によってレーザービ ームの収束位置を上下に調節することが可能である。 なお、 上述するように、 レー ザ一ビームの収束位置は、 微粒子回収部 (1)のチヤンバ一の開口より遠方であれば よい。 なお、 開口より遠方であればチャンバ一内および外を問わない。 好ましくは、 チヤンバー内および外を問わず、 チヤンバ一の底部付近である。
ここで、 使用するレ一ザ一ビームは、 円形のものが普通であるが特にこれに限定 されず、 楕円形などのものであってもよい。
本発明装置の好ましい態様として、 図 1に示すように、 微粒子回収部のチャンバ 一の開口とレーザービーム照射部の照射口とが、 流路を隔てて対向して設けられて いる態様を挙げることができる。 この態様によれば、 レーザービームは、 流路、 言 い換えれば標的微粒子を含む気体または液体の流れ (気流または液流) に直角とな るように入射される。 但し、 これに限定されることなく、 レ一ザ一ビームが流路と 交差して、 微粒子回収部のチャンバ一に開口に入射されるものであれば、 微粒子回 収部のチャンバ一およびレーザービーム照射部の照射口の配置は任意に設定するこ とができる。
また、 本発明微粒子回収装置の他の好ましい態様としては、 2以上の照射ロを備 えるレーザ一ビーム照射部と、 当該照射口の数に対応する複数のチャンバ一を備え た微粒子回収部とを備える態様を例示することができる。 こうした装置によれば、 光圧に応答する複数の標的微粒子を、 各々別個のチャンパ一に分別回収することが できる。
このような多重ソ一ティング装置の一例の概略図を図 3に示す。 該図において
(101)は、 回収したい標的微粒子を含む液体または気体試料を収納したリザ一バを 示す。 当該図において (104-1)、 (104-2)、 (104-3)、 · · ·および (104-n)は、 微粒 子回収用のチャンバ一 〔(104-1 a)、 (104-2a)、 (104-3a)、 , · ·および (104-na)〕 を備えた微粒子回収部を示す 〔図 1でいう微粒子回収部 ) およびチャンパ一 (1 a、 1 b) に対応する〕 。 また (105)はレーザービーム照射部を含むレーザーピ一ムコン トローラーを示す (図 1でいうレーザ一ビーム照射部 (3) に対応する) 。 ここで、 レーザービーム照射部に設けられた複数の照射口 〔(105-1)、 (105-2)、 (105-3)、 · ■ 'および (105-n)〕 の数に対応して、 微粒子回収部も複数のチャンバ一 〔(104-1 a)、 (104-2a)、 (104-3a)、 · · 'および (104-na)〕 を備えている。 (2)は上記試料が流れ る流路であり、 (106)はそれを回収する排液用リザ一バを示す。
かかる態様の本発明微粒子回収装置は、 前述するレーザービーム照射部、 微粒子 回収部および流路に加えて、 流路を流れる気体または液体中の光圧に応答する微粒 子を、 検出して解析するための検出および解析部を備えることが好ましい。 この場 合、 当該検出および解析部に対して、 レーザービーム照射部、 微粒子回収部および 流路から構成される装置部分をソーティング部ということもできる。 当該ソーティ ング部と検出および解析部を備えるものが、 セルソ一ターである。 なお、 図 3中、 3 014037
16
(102)および (103)が検出部に相当し、 (102)は検出用レーザー、 (103)は検出器を示 す。 また図 3中、 解析部は (105)で示すレーザ一コントローラ一内に組み込まれてい る。
ここで、 検出および解析部は、 従来公知のフロ一サイトメトリー乃至セルソ一ター で用いられる検出および解析部と同様のものとすることができる。 例えば、 検出部 は、 流路内を流れる試料 (液体試料または気体試料、 好ましくは液体試料) の流路 (液流、 気流) にレーザ一光 (例えば、 アルゴン、 ダイオード、 ダイ、 ヘリウムネ オンなどの single laserまたは Dual laser) を当てて、 該流路を通過した微粒子から 得られる、 前方散乱光 (FSC)若しくは側方散乱光 (SSC)、 または標的微粒子を予め 蛍光物質で標識した場合は、 当該蛍光標識した微粒子の各種蛍光を測定するための 検出器を備えたものとすることができる。 また、 解析部は、 上記検出器によって検 出されたデータをデジタル変換してサイトグラム、 ヒストグラムとして表示するた めの解析表示装置を備えたものとすることができる。 なお、 上記前方散乱光 (FSC) は例えば細胞の大きさ、 側方散乱光 (SSC)は例えば細胞の内部構造の複雑さをそれ ぞれ反映して光強度が変化する。 また、 フロ一サイトメトリ一乃至セルソ一ターで 標的微粒子の標識に使用される蛍光物質もよく知られており、 これらを本発明で同 様に使用することができる (例えば、 「細胞工学」 別冊 「フローサイトメトリー自 由自在」 、 監修:中内啓光 (筑波大学医学系 免疫学) 、 秀潤社、 1999年 7月 1日発 行、 第 3-23頁参照) 。
本発明の微粒子回収装置の好ましい一態様によれば、 当該装置は、 上記検出部お よび解析部が、 ソ一ティング部におけるレーザ一ビ一ム照射部と連動してなり、 検 出部で得られ解析部で解析されたデータに基づいて、 流路の照射予定領域に、 選択 された標的微粒子が流れてきた時にのみ、 当該標的微粒子に選択的にレーザービ一 ムが照射されるように設計される。
このような好適な本発明微粒子回収装置を利用すれば、 光圧に応答する複数の微 粒子を含む試料 (気体試料または液体試料) の中から、 微粒子個々の特性に応じて, 1または 2以上の標的微粒子を、 選択的に区別して各々分別回収することができる 例えば、 一例として図 3に示す本発明装置を利用した標的微粒子の分別回収方法 を説明すると次の通りである。 複数の異なる標的微粒子 (例えば細胞、 微生物または蛋白質など) のそれぞれに、 蛍光標識した各抗体を抗原抗体反応等の免疫反応により結合させ、 これを含む試料 溶液 (例えば細胞等の浮遊液) を、 ノズル等を利用して高流速で線状に流し、 これ にレーザーを照射すると当該液流中を通過した標的微粒子から、 散乱光と蛍光が発 せられる。 かかる光の強度や蛍光波長等を検出部で測定し、 得られた結果を解析部 で解析する。 次いで得られた情報 (データ)を元にしてレーザーコントローラ一 (105) によりレーザービームの照射位置おょぴ時期等を決定し、 流路 (2)を標的の微粒子 が通過する時に、 当該標的微粒子に選択的にレーザービームを照射ずる。 レーザー ビームが照射された標的微粒子は、 光圧によってその流れ方向が偏向し、 回収部の チャンバ一内に回収される。 斯くして、 回収する標的微粒子が複数ある場合であつ ても、 それが発する散乱光や蛍光の強度や波長の違いに基づいて、 それぞれ別個に 分別し回収部 (104-1 )■ ♦ ·および (104-n)の各チャンバ一に回収することができる なお、 各チェンバーに回収された微粒子 (例えば、 細胞、 微生物または蛋白質な ど) は、 該チャンバ一内で免疫反応の検出を行うかまたは各チェンバーに蓄積され た微粒子を取り出して別個に常法に従う生化学的分析に供して免疫検定を行うこと もできる。
上記においては、 レーザービーム照射口を回収チヤンパーの数だけ用意すること もできるが、 これに代えて、 既知のレーザー操作技術を利用してポリゴンミラ一な どを用いて 1本のレーザーの方向を変えて、 レ一ザ一照射位置および時期を走査、 制御することも可能である。
なお、 個々の標的微粒子の回収は、 レーザービーム照射口から発せられるレーザ —ビームの光圧によって標的微粒子の流れ方向を偏向させた結果として行われるも のである。 標的微粒子の流れ方向を偏向させる位置は、 レーザ一ビーム照射口を制 御することによって行うこともできるし、 また照射口の位置は固定したままで回収 部またはそのチャンバ一位置を移動させることによって行うこともできる。
上記図 3に示す装置は、 複数の蛍光情報を有する細胞を、 その蛍光情報ごとに別 々のチャンバ一に回収する場合 (マルチソーティング)に応用できる。 この場合も、 各チャンバ一に回収された各細胞の分析は、 該チャンパ一内で行うこともでき、 ま たチャンバ一から取り出して分析することもできる。 このような本発明の装置を利 用することによって一つの装置 (例えば、 チップ形態にした場合は一枚のチップ) で、 同時に複数の異なる細胞を分別回収することができる。 発 明 の 効 果
以上のように、 本発明回収方法および装置は、 光圧を利用することによって、 光 圧に応答する微粒子を、 レーザ一ビームの収束方向に偏向移動させることで、 所望 の回収チャンバ一に回収することができるものである。 また当該方法および装置は、 従来のフロ一サイトメトリ一ゃセルソーターにおける検出および解析技術を使用す ることにより、 光圧に応答する複数の微粒子の中から、 所望の標的微粒子を選別す ることもできる方法および装置である (多重分別回収) 。 当該本発明で利用する光 圧は、 それ自体制御容易であり、 しかもその利用によって本発明の装置およびその 周辺装置の簡略化をも図り得る利点がある。 更に、 本発明方法および装置を利用す る微粒子のソーティング技術では、 従来の水滴荷電方式のような水滴にするといつ た流体制御の必要がなく、 少量の試料を利用して容易に所望の微粒子のソーティン グを行い得る。 [実施例]
以下、 本発明を更に詳しく説明するため実施例を挙げる。
実施例 1
(1) 試験方法
この試験には図 1および図 2に示す本発明の微粒子回収装置 (マイクロチップ形 態) を利用した。
チップに設けられた微粒子回収部 (1 ) は、 微粒子を回収するための 2つのマイ クログル一ブ (35 111乂35 171 25 [11、 チャンバ一 (1a),(1 b))を備えている。 また, 微粒子を含有する試料を通液するマイクロチャネル (50 m幅 X25^ m深さ、 流路 (2))は、 外壁 (4) (PDMS製) によって外部と仕切られている。 対物レンズ 1 (図 2 の 12) の作動距離を考慮して、 上記チャンバ一 (1a) (マイクログローブ) の底 部付近に Nd:VANレーザービーム (波長: 1064nm)が収束するように、 外壁 (4)の厚 さは 300 mとした。 この試験には倒立蛍光顕微鏡 (Axiovert135TV,Carl Zeiss)を、 レーザー操作システ ムと結合させて用いた。 Nd:VANレーザー (7) から照射されたレーザーピ一ムは、 外壁 (4)に面する顕微鏡対物レンズ (12)を用いて集光し、 チヤンバ一 (1 a)内に導入し た。 なお、 レーザ一光路内にビームエキスパンダー (8)を挿入することで、 ビーム 径を調整し、 同一の対物レンズにおいてレーザー焦点と観察面とを一致させた。 また、 流路 (2)を流れる微粒子の挙動を観察し、 該微粒子の蛍光像を撮影するた めに、 他の対物レンズ 2(20)およびカラー CCDカメラ 2(21 )を、 水平方向に設置した。 当該 CCDカメラ 2(21)によって、 流路 (2)から進行方向を変えてチャンパ一 (1a)に導 入される微粒子の映像を撮影することができる。 また、 回収したチャンバ一内の微 粒子を下方向から撮影できるように、 CCDカメラ 1 (19)を配置した。
この試験では直径 2 ΓΏの蛍光ラテックスピーズ (Polysciences, Inc.)を光圧に応答 する微粒子として用いた。 該微粒子を超純水に 1 X 105個/ mlとなる濃度で懸濁させ た液をサンプル液として利用した。 該サンプル液は、 シリンジポンプ (シリンジフ ィーダ一)を利用して (a)を通じて流路入口 (5)より流路 (2)内に導入した。 流路 (2) 内を流れるサンプル液の速度は、 192 t m/秒とした。 流路 (2)を通過したサンプル液 は、 流路出口 (6)から (b ) に回収した。
レーザービーム (3b)は、 2つのチャンバ一 (1 a、 1 b) の内の一つ (1 a)に集光させ た。 このチャンバ一 (1 a)を微粒子回収用チャンバ一とし、 他の一つ (1 b)を負のコン トロール用チャンパ一とした。
(2) 結果
ある特定の蛍光ラテックスビーズ Aにスポットをあて、 流路中での動きを追った 図を図 4に示す。 図 4中、 黒矢印†は、 レーザービーム照射光の位置および照射方 向を示し、 白矢印はビーズ Aの位置および運動方向を示す。 この図から、 流路内を 液流にのって流れてきたビーズ A (図 4の (a)参照、 これを t=0とする。 ) は、 レー ザ一ビーム照射領域にくると (図 4の (b)参照、 t=0.13) 、 運動方向がビームの進行 方向に偏向し (図 4の (C)参照、 t=0.17) 、 回収部のチャンバ一内に入ることがわか る (図 4の (d)参照、 t=0.21 ) 。 即ち、 流路を流れる 2 mの蛍光ビーズは、 Nd:VAN レーザービーム ( 1600mW)の照射領域に入ると、 流体力学的な力および重力による 流れに逆らつて、 光圧によってビームの光軸に沿って偏向してビーム照射の集束方 向に移動して、 チャンバ一に回収される。
この方法では、 レーザービームを当てるか否かによって特定の標的微粒子を選別 して個々のチヤンバーに回収することができる。
本方法における光学的回収能を確認するために、 流路内を通過する蛍光ラテック スビーズが経時的にチャンパ一内に回収蓄積 (濃縮) できるか否かを調べた。 即ち、 レ一ザ一ビームの照射を連続的に行って、 チャンバー (1 a)(35 m X35 m X25 m)内の蛍光強度を経時的に測定した。 得られた結果を図 5に示す。
なお、 蛍光強度は、 ビデオテープに記録した画像をコンピュータに取り込んだ後、 画像解析ソフト(NIH image: http:〃 rsb.info.nih.gov/nih-image/)を用いて、 チヤンバ 一内領域のビデオフレーム毎 (30フレーム/秒)の蛍光強度を解析することにより求め た。 その値は相対値 (図 5における a.u.は arbitrary unitの略である)を示す。
図 5は、 横軸に経過時間 (秒) (レーザ一ビームの照射時間) および縦軸に上記蛍光 強度 (単位: a.u.)をとり、 チャンバ一 (1 a)内の蛍光強度の推移を経時的に記載した グラフである。
図 5に示される結果から明らかなように、 チャンバ一 (1 a)内の蛍光強度は、 90秒 間に亘つて、 時間に比例して増加することがわかる。 このことから、 レーザ一ビー ムを連続的に照射することによって、 流路を通過する標的微粒子の流れを光圧によ つてチャンバ一方向に偏向させて、 当該チャンバ一内に標的微粒子を回収蓄積 (濃 縮) できることがわかる。
90秒後の CCDカメラによる撮影結果は図 6に示されるとおりである。 図 6中、 (a) は回収チャンバ一 (1 a)を、 (b)は回収チャンバ一 (1 b)を示す。 「白矢印 flow」 は、 流 路内での、 蛍光ラテックスビーズを含む液体 (サンプル液) の流れ方向を示し、 黒 矢印はレーザ一ビームの照射方向を示す。
図 6に示されるように、 チャンバ一 (1 a)は、 その容積の約 1/3まで蛍光ピーズで満 たされた。 これに対して、 レーザ一ビームの光圧が作用しない負のコント口一ルチ ヤンバー (チャンバ一 (1 b))では、 蛍光は観察されず、 ラテックスピーズは回収され ていないことが確認された。 この結果は、 一連の回収および濃縮が、 微粒子が光圧 (レーザービーム照射による)を受けることによる偏向および移動に基づいて生じて いることを裏付けるものである。 産業上の利用可能性
本発明は細胞などの微粒子の回収方法および回収装置並びにこれらを利用したフ 口一サイトメトリーおよびセルソーターを提供する。
本発明の回収方法および装置は、 例えば、 細胞のクローニング、 増殖 ·分化因子 受容体遺伝子のクローニングなどの支援技術として有用である。 また、 細胞の諸機 能の解析、 細胞膜分子、 染色体 DNA分子などの細胞動態の解析にも有用である。 更に、 細胞工学分野に限らず、 例えば臨床分野などにおいても有効に利用できる。

Claims

請 求 の 範 囲
1 - 光圧に応答する微粒子および光圧に応答しない成分を含有する気体または液 体の流路に、 当該気体または液体の流れ方向に交差させてレーザービームを照射す ることによって、 流路内の、 光圧に応答する微粒子の運動方向のみを選択的にレー ザ一ビームの収束方向に偏向させて、 当該微粒子を光圧に応答しない成分と分別し て回収することを特徴とする、 光圧に応答する微粒子の分別回収方法。
2 . 微粒子が、 光圧に応答する有機もしくは無機高分子材料、 金属、 細胞、 微生 物および生体高分子からなる群から選ばれる請求項 1に記載の分別回収方法。
3 . 光圧に応答する微粒子および光圧に応答しな 成分を含有する気体または液 体の流路内の、 光圧に応答する標的微粒子に対して、 当該気体または液体の流れ方 向に交差させてレーザ一ビームを照射することによって、 流路内の、 当該標的微粒 子の運動方向のみを選択的にレーザ一ビームの収束方向に偏向させて、 当該微粒子 を、 他の微粒子および光圧に応答しない成分と分別して回収することを特徴とする、 標的微粒子の分別回収方法。
4. 流路が液流によって形成されてなるものである、 請求項 3に記載の標的微粒 子の分別回収方法。
5 . 標的微粒子が、 光圧に応答する有機もしくは無機高分子材料、 金属、 細胞、 微生物および生体高分子からなる群から選ばれる請求項 3に記載の標的微粒子の分 別回収方法。
6 . 標的微粒子が、 細胞または微生物である、 請求項 3に記載の標的微粒子の分 別回収方法。
7 . 請求項 6に記載の標的微粒子の分別回収方法を、 標的細胞のソーティング方 法として用いる、 フローサイトメトリ一。
8 . 光圧に応答する微粒子を回収するための回収部、 レ一ザ一ビーム照射部、 並 ぴに、 当該回収部とレーザ一ビーム照射部との間に、 光圧に応答する微粒子および 光圧に応答しない成分を含有する気体または液体を流すための流路を備えた微粒子 回収装置であって、
上記回収部が、 流路側に開口を向けて配置された少なくとも 1つのチャンバ一を備 え、
上記レーザ一ビーム照射部が、 少なくとも 1つの照射口を備え、
当該レーザービーム照射口から、 レーザ一ビ一ムを、 上記流路に交差させて、 上記 回収部のチャンバ一の開口に向けて、 当該開口より遠方に収束するように照射する ものである、
微粒子回収装置。
9 . 回収部のチャンパ一の開口とレーザ一ビーム照射部の照射口とが、 流路を隔て て、 対向して設けられている請求項 8に記載の微粒子回収装置。
1 0 . 2以上の照射口を有するレーザ一ビーム照射部、 および当該照射口の数に対 応する数のチャンバ一を有する回収部を備える、 請求項 8に記載の微粒子回収装置。
1 1 . 更に、 流路を流れる気体または液体中の微粒子を検出して解析するための、 検出および解析部を備える、 請求項 8に記載の微粒子回収装置。
1 2 . 検出および解析部がレーザ一ビーム照射部と連動してなり、 検出および解析 部で得られるデータに基づいて標的微粒子を選択し、 当該選択された標的微粒子に 対してのみレーザービームの照射が行われるものである、 請求項 1 1に記載の微粒 子回収装置。
1 3 . 請求項 8に記載の微粒子回収装置をソーティング部として備える、 セルソー
° ~~ '
L£OnO/£OOZdT/lDd I0S6£0請 OAV
PCT/JP2003/014037 2002-11-01 2003-10-31 微粒子の分別回収方法および回収装置 WO2004039501A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60335411T DE60335411D1 (de) 2002-11-01 2003-10-31 Verfahren zum sortieren und rückgewinnen von feinen teilchen und rückgewinnungsvorrichtung
AU2003280704A AU2003280704A1 (en) 2002-11-01 2003-10-31 Method for sorting and recovering fine particle and apparatus for recovery
US10/533,109 US7428971B2 (en) 2002-11-01 2003-10-31 Method for sorting and recovering fine particle and apparatus for recovery
EP03770113A EP1563908B1 (en) 2002-11-01 2003-10-31 Method for sorting and recovering fine particle and apparatus for recovery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-320103 2002-11-01
JP2002320103 2002-11-01

Publications (1)

Publication Number Publication Date
WO2004039501A1 true WO2004039501A1 (ja) 2004-05-13

Family

ID=32211836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014037 WO2004039501A1 (ja) 2002-11-01 2003-10-31 微粒子の分別回収方法および回収装置

Country Status (5)

Country Link
US (1) US7428971B2 (ja)
EP (1) EP1563908B1 (ja)
AU (1) AU2003280704A1 (ja)
DE (1) DE60335411D1 (ja)
WO (1) WO2004039501A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880744A (zh) * 2019-03-22 2019-06-14 华南师范大学 光流控细胞分选芯片及其分选细胞的方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7676122B2 (en) * 2006-12-11 2010-03-09 Jiahua James Dou Apparatus, system and method for particle manipulation using waveguides
JP4539707B2 (ja) * 2007-10-25 2010-09-08 ソニー株式会社 微小粒子分取装置及び微小粒子分取用基板、並びに微小粒子分取方法
US20090117664A1 (en) * 2007-11-05 2009-05-07 Masataka Shinoda Liquid sending method of liquid in substrate channel and liquid sending apparatus
KR100938927B1 (ko) 2007-12-31 2010-01-27 재단법인서울대학교산학협력재단 레이저 어블레이션을 이용한 미소유체 세포 분류장치
JP4572973B2 (ja) * 2008-06-16 2010-11-04 ソニー株式会社 マイクロチップ及びマイクロチップにおける送流方法
DE102008060332B4 (de) * 2008-12-03 2013-01-10 Albert-Ludwigs-Universität Freiburg Verfahren zum Sortieren von mindestens einem Partikel mit einer mikrofluidischen Sortiervorrichtung mit optischer Pinzette
US8689981B2 (en) 2009-04-10 2014-04-08 President And Fellows Of Harvard College Manipulation of particles in channels
EP2430424B1 (en) * 2009-05-13 2023-04-26 Sartorius BioAnalytical Instruments, Inc. Flow measurement and control for improved quantification of particles in flow cytometry
US20110114190A1 (en) * 2009-11-16 2011-05-19 The Hong Kong University Of Science And Technology Microfluidic droplet generation and/or manipulation with electrorheological fluid
US9259741B2 (en) 2011-12-29 2016-02-16 Danmarks Tekniske Universitet System for sorting microscopic objects using electromagnetic radiation
US9784663B2 (en) * 2012-07-27 2017-10-10 Engender Technologies Limited Method and system for microfluidic particle orientation and/or sorting
US8723104B2 (en) 2012-09-13 2014-05-13 City University Of Hong Kong Methods and means for manipulating particles
US8820538B1 (en) 2014-03-17 2014-09-02 Namocell LLC Method and apparatus for particle sorting
JP6328493B2 (ja) * 2014-05-28 2018-05-23 東京エレクトロン株式会社 測定装置及び測定方法
US11137337B2 (en) 2019-01-21 2021-10-05 Essen Instruments, Inc. Flow cytometry with data analysis for optimized dilution of fluid samples for flow cytometry investigation
US11709116B2 (en) 2020-02-04 2023-07-25 Sartorius Bioanalytical Instruments, Inc. Liquid flourescent dye concentrate for flow cytometry evaluation of virus-size particles and related products and methods
JP7511501B2 (ja) * 2021-02-10 2024-07-05 東京エレクトロン株式会社 プラズマ処理装置及び監視装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370089A (ja) * 1991-06-14 1992-12-22 Nippon Steel Corp 微粒子の分離方法
JPH0518887A (ja) 1991-07-09 1993-01-26 Akira Mizuno 微粒子の計測及び操作方法
JPH07104191A (ja) 1991-09-02 1995-04-21 Jasco Corp 細胞等の微粒子の姿勢位置制御装置
JPH0838882A (ja) * 1994-08-01 1996-02-13 Res Dev Corp Of Japan 微粒子の分別方法とその装置
JP2000206011A (ja) * 1999-01-13 2000-07-28 Kyowa Hakko Kogyo Co Ltd 微細物体の自動採取装置および採取方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808550A (en) * 1969-12-15 1974-04-30 Bell Telephone Labor Inc Apparatuses for trapping and accelerating neutral particles
US4887721A (en) * 1987-11-30 1989-12-19 The United States Of America As Represented By The United States Department Of Energy Laser particle sorter
US5170890A (en) * 1990-12-05 1992-12-15 Wilson Steven D Particle trap
US5495105A (en) * 1992-02-20 1996-02-27 Canon Kabushiki Kaisha Method and apparatus for particle manipulation, and measuring apparatus utilizing the same
US6573491B1 (en) * 1999-05-17 2003-06-03 Rock Mountain Biosystems, Inc. Electromagnetic energy driven separation methods
US20030007894A1 (en) * 2001-04-27 2003-01-09 Genoptix Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles
US20020160470A1 (en) * 2000-11-13 2002-10-31 Genoptix Methods and apparatus for generating and utilizing linear moving optical gradients
US6778724B2 (en) * 2000-11-28 2004-08-17 The Regents Of The University Of California Optical switching and sorting of biological samples and microparticles transported in a micro-fluidic device, including integrated bio-chip devices
DE10157032A1 (de) 2001-11-21 2003-06-12 Evotec Ag Verfahren und Vorrichtung zum Sortieren von Partikeln

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370089A (ja) * 1991-06-14 1992-12-22 Nippon Steel Corp 微粒子の分離方法
JPH0518887A (ja) 1991-07-09 1993-01-26 Akira Mizuno 微粒子の計測及び操作方法
JPH07104191A (ja) 1991-09-02 1995-04-21 Jasco Corp 細胞等の微粒子の姿勢位置制御装置
JPH0838882A (ja) * 1994-08-01 1996-02-13 Res Dev Corp Of Japan 微粒子の分別方法とその装置
JP2000206011A (ja) * 1999-01-13 2000-07-28 Kyowa Hakko Kogyo Co Ltd 微細物体の自動採取装置および採取方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1563908A4
SHUJUN-SHA: "Cell technology", 1 July 1999, article "Flow Cytometry Jiyu Jizai", pages: 3 - 23

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880744A (zh) * 2019-03-22 2019-06-14 华南师范大学 光流控细胞分选芯片及其分选细胞的方法
CN109880744B (zh) * 2019-03-22 2022-07-29 华南师范大学 光流控细胞分选芯片及其分选细胞的方法

Also Published As

Publication number Publication date
EP1563908A4 (en) 2007-08-22
EP1563908A1 (en) 2005-08-17
DE60335411D1 (de) 2011-01-27
EP1563908B1 (en) 2010-12-15
AU2003280704A1 (en) 2004-05-25
US7428971B2 (en) 2008-09-30
US20060163119A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
WO2004039501A1 (ja) 微粒子の分別回収方法および回収装置
US10712255B2 (en) Method and system for microfluidic particle orientation and/or sorting
JP4533382B2 (ja) マイクロ流体分析およびソーティング用の一体化された構造物
JP6136843B2 (ja) 粒子分取装置、粒子分取方法及びプログラム
JP4512686B2 (ja) 微粒子の分別回収方法および回収装置
US8723104B2 (en) Methods and means for manipulating particles
JP6447506B2 (ja) 粒子分取装置及び粒子分取方法
JP6102783B2 (ja) 粒子分取装置、粒子分取方法及びプログラム
WO2010113994A1 (ja) 細胞濃縮分離装置
US20110020855A1 (en) Method and apparatus for performing cytometry
WO2021084814A1 (ja) 微小粒子回収方法、微小粒子分取用マイクロチップ、微小粒子回収装置、エマルションの製造方法、及びエマルション
WO2011097032A1 (en) Multiple flow channel particle analysis system
US20060177940A1 (en) Optical trap separations in microfluidic flows
JP7568048B2 (ja) 微小粒子分取装置、微小粒子分取システム、液滴分取装置、及び液滴制御装置、並びに、液滴制御用プログラム
JP4816906B2 (ja) 微粒子回収装置
JP2020174598A (ja) 粒子操作方法、粒子捕捉用チップ、粒子操作システム、及び粒子捕捉用チャンバ
JP2010117197A (ja) 微小粒子分取装置及び微小粒子分取方法
JP2017122734A (ja) 粒子分取装置、粒子分取方法及びプログラム
EP2701851B1 (en) Fluidic in-line particle immobilization and collection system and method for using the same
CN114450574A (zh) 生物粒子分析装置和微粒分析装置
EP3698871A1 (en) Laser based sorting of droplets in microfluidic streams
WO2021090555A1 (ja) 微小粒子分取用マイクロチップのプライミング方法、微小粒子分取方法、微小粒子分取装置、及びプログラム
Burger et al. LASER-BASED MANIPULATION AND FLUORESCENT DETECTION OF INDIVIDUAL, CENTRIFUGALLY ARRAYED BIOPARTICLES

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006163119

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533109

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003770113

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003770113

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10533109

Country of ref document: US